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Abstract 

Common geometric models for proteins and other 

molecules are the space filling diagram, the solvent ac- 

cessible surface, and the molecular surface. We descnbe 

software that compules metric properties of these mod- 

els, including volume and surface area. It also mea- 

sures voids or empty space enclosed by the protein, and 

it keeps track of surface area contributions of individ- 
ual atoms. The software is based on J-dimensional 

alpha complexes and on inclusion-exclusion formulas 

with terms derived from the simplices in this com- 

plex. The so,ftware is available via anonymous ftp at 

ftp.ncsa.uiuc.edu. 

1 Introduct ion 

The space filling dzagram, SF, introduced by Lee and 
Richards [ll], models a protein as the union of possibly 
overlapping spherical balls in R3, see figure 1. Each 
ball represents an atom and its size is determined by 
the van der Waals radius of the atom. A void is a piece 
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of empty space completely surrounded by the balls of 
the diagram. 

Figure 1: SF: each circular disk represents an atom spec- 

ified by the location of its center and its van der Waals 

radius. 

The solvenl accessible model, SA, has been intro- 
duced to study the interaction between the protein and 
solvent molecules modeled as spherical balls [ll, 13, 141. 
The balls representing the solvent molecules are deflated 
to points and the balls representing atom in the protein 
are inflated by the same amount, see figure 2. Geomet- 

rically, there is little difference between the two models: 
both are unions of balls, only the sizes differ and thus 
also the amount of overlap between the balls. A void in 
the SA model represents all possible locations of cen- 
ters of captured solvent molecules. It is either contained 
in a larger void or it lies outside the corresponding SF 
model. 

The molecular surface model, MS, is obtained by 
rolling the sphere representing the solvent molecules 
over the SF [3, 13, 141. Alternatively, we can obtain 
MS from the SA model by removing a layer of solvent 
radius depth. There is an ambiguity in this definition 
that occurs when the same piece of space is erased from 
different directions, see figure 3. We adopt the view 
of the molecular surface as a possibly self-intersecting 
2-dimensional surface in W3. With this definition, each 
void in the SA model corresponds to a unique void in 
the MS model, only that the latter is larger in volume. 
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Figure 2: SA: the radius of each disk is the van der Waals 

radius of the corresponding atom plus the radius of a sol- 

vent molecule. 

Figure 3: MS: a circle representing solvent molecules rolls 

about the SF model and bridges narrow cusps and gaps 

between adjacent atoms. 

This paper describes software that computes the met- 
ric size of a protein and its voids under the three models. 

A complete document8ation of an earlier version is avail- 
able in [7]. The software makes no use of the fact that 
the union of balls is defined by atoms of a molecule. It is 
therefore more generally applicable to problems about 
spherical balls in R3. 

The problem of measuring proteins and other 
molecules has received a fair amount of attention in 
computational biology and chemistry, and software 
based on numerical and analytic methods is available, 
see e.g. [3, 5, 121. 0 ur software belongs to the category 
of analytic approaches. Our work differs from earlier 
work within this category in at least, two respects: it is 
based on the so-called dual complex of a union of balls, 
see [9], and on inclusion-exclusion formulas with terms 
for intersections of at most 4 balls at a time, see [6]. The 
exist,ence of such formulas has been noticed before [lO], 
but no explicit construction was available until recently. 
In spite of the shallow terms, the formulas are correct 
(non-approximat,ive) even if there are points covered by 
many more than 4 balls. 

The dual complex is a subcomplex of the larger De- 
launay or weighted Delaunay simplicial complex. Our 
software constructs the latter and represents the dual 
complex implicitly by marking a subset of the simplices 
as selected. The simplices that are not selected form 
a dual representation of the unoccupied space, in the 
sense used in [ 11. 0 ur software uses this representation 
to compute and measure voids. 

In sections 2 and 3 we specify the input to the soft- 
ware, and we describe the various metric properties it 
computes. The dual complex of a molecule and its re- 
lationship to the three models is briefly explained in 
section 4. The formulas for computing metric proper- 
ties are expressed in algorithmic language in sections 5, 
6, and 7. Section 8 briefly considers the envelope of the 
molecule, which is the part of space inaccessible from 
the outside. Section 9 gives a formula for measuring the 
so-called outside fringe of the molecule. Section 10 dis- 
cusses how the contributions of individual balls to the 
surface area can be computed. Section 11 explains the 
explicit construction of voids in the complex, which is 
necessary for computing measures of voids in any of the 

three protein models. Section 12 addresses performance 
issues of the software. Section 13 concludes this p+per 
with a few remarks placing its contents in the wider 
context of protein structure modeling and protein dy- 

namics simulation. 

2 The data 

Each ball is specified by the three coordinates of its 
center, x,y,t E R, together with its radius, w E R. 
The collection of balls is stored in a linear array, B. 
The software is based on the notion of the initial ra- 

dius or weight of a ball, and a real parameter, CY. The 
parameter globally modifies all radii. For applications 
where radii do not change, (Y can be set to zero and 
henceforth be ignored, as in the case of protein compu- 
tation where predefined van der Waals ra.dii are used. 
However, part of the versatility and efficiency of this 
software stems from the availability of this parameter, 
and it is instructive to understand how it interacts with 
the weight. The specification of Q changes a ball with 
initial radius w to one with actual radius 

dw%ign(w) + &sign(~). 

We refer to a situation where all initial radii are zero as 
the unweighted case. 

Negative values for w and for cy are possible and ad- 
missible. The underlying theory dictates we use squares 
of w and a to compute the actual radius. The sign func- 
tion reintroduces the negative sign, if any, that is other- 
wise lost by squaring. It is even possible and admissible 
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that w2sign(w)+02sign(c) is negative. In this case, the 
actual radius is imaginary and all measurements ignore 
this ball as if it were not in B. While this possibility 
seems to lack the support of a physical explanation, it is 
essential in a uniform geometric treatment of the entire 
domain of parameter values. 

arcs meet at points called corners. C, denotes the total 
number of corners. 

3 The output 

As mentioned in the introduction, both the SF and the 
SA models of a protein are geometric unions of spherical 
balls. Our software does not distinguish between these 

two models and assumes the radii of the balls in B have 
been assigned appropriately. The MS model is different 
from SF and SA and needs to be computed separately. 
We consider four problems: measuring the model (SF, 
SA, or MS) itself, measuring a single void or the to- 
tality of voids, measuring the envelope, and measuring 
the outside fringe, see tables 1 and 2. For the SF/SA 
model we compute volume, surface area, arc length, and 
number of corners. Arcs and corners have no meaning 
in the MS model, so only volume and surface area are 
computed. 

A void is a bounded component of R3 - U B. Again 
we compute the volume, I$“, the surface area, A,V, the 
total arc length, L,Y, and the number of corners, Cl. 
Besides individual voids, we compute the total mea- 
sure of all voids by summing over all voids of U B: 
VtV At’, Lt’ Ct” 

s 9 89 8, 6’ 
The envelope of U B is U B union its voids. In other 

words, it is U B as seen from the outside with all interior 
void space filled. Its measurements are Vz = V, + V’“, 

A,” = A, - Ap, L; = L, - L:’ , C,e = C, - (7;‘. 

Finally, we measure the outside fringe. This is the 
part of U B that reaches into the unbounded compo- 
nent of the complement of the dual complex. Its mea- 
surements, V,‘, A:, Li, Cz, are computed using similar 
formulas as for U B and the voids. The main reason for 
measuring the outside fringe is for software verification 
purposes. In particular, the following relations for the 
measurements can be used to double-check correctness: 

space filling (SF) or solvent accessible (SA) 

area 1 length 1 corners 

v + p - p - v - vo s 8 

A: - A:’ 

= Cl, 

- As; = Cl, 

L - Lt” - LO 

css- c$ 

= 0, 

-CT; = 0, 

where V, is the volume of the dual complex, and V,” is 
the total volume of the voids in the dual complex. Both 
are easily computed as sums of tetrahedron volumes. 

Table 1: The various measurements computed for SF and 

SA model of a protein. 

The measurements taken for the MS model can be 
classified analogously, except there are no counterparts 
for arcs and corners. We compute the volume and the 
surface area for the MS model, its voids, its envelope, 
and its outside fringe, see table 2. The following rela- 
tions can be used to check correctness of the results: 

molecular surface (MS) 

volume area 

11 

Table 2: The measurements computed for the MS model 

of a protein. 

v, + v; - v,” - v, - v,o = 0, 

A -At” -A” m m m = 0. 

Possible ambiguities in the definitions, in particular of 
V,, are clarified in section 6. 

4 Geometric background 

V, and A, denote the volume and the surface area of 
the union of spherical balls in B, U B. The boundary of 
UB consists of spherical patches separated from each 
other by circular arcs. L, denotes the total length of 
all arcs and is thus some kind of l-dimensional measure 
of the protein surface. Spherical patches and circular 

The software described in this paper assumes the avail- 
ability of the dual complex X: of U B as a subcomplex 
of the weighted Delaunay simplicial complex 2, of B. In 
the discrete and computational geometry literature, 2) 

is sometimes referred to as the regular or the weighted 
Delaunay triangulation of the ball centers, which are 
interpreted as points with weights. In the case where 
all radii are 0, 2) is isomorphic to the nerve of the set 
of Voronoi cells. This section explains these concepts. 
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The Voronoi cell of a point p E B is the set of points 
2 E R3 with Euclidean distance lxpl at least as small 
as 1x9) for any other q E B [15]. The nerve is the sys- 
tem of Voronoi cell collections with non-empty common 
intersection. Observe that every subset of a collection 
in the nerve is also in the nerve. For each collection of 
Voronoi cells in the nerve take the simplex spanned by 
the points generating the cells in the collection. 2, is the 
set of thus obtained simplices. Vertices in 2) correspond 
to singleton sets in the nerve, edges correspond to pairs, 
triangles to triplets, and tetrahedra to quadruplets. No 
collection in the nerve has cardinality beyond 4 if gen- 
eral position is either assumed or simulated [8]. V is 
a simplicial complex, which technically means that for 
each u E V also the faces of u belong to D, and every 
two simplices in 2, are either disjoint or meet in a com- 
mon face. A subcomplex of V is a simplicial complex 

K c: v. 
For a generalization to non-zero radii, set the 

weighted distance of x E R3 to p E B with radius w 
equal to Ixp[’ -- w2. For each ball we get a (possibly 
empty) weighted Voronoi cell, and 2, is again isomor- 
phic to the nerve of the collection of cells. 

The dual complex Fc of U B is a subcomplex of V. 
More specifically, it is the subcomplex isomorphic to the 
nerve of the weightSed Voronoi cells restricted to within 
their respective balls, see figure 4. As a consequence of 
the definitions, also the boundaries of K and U B are 
closely related. We refer to [S] for a more detailed devel- 
opment of the above concepts and for proofs of some of 
their properties, including the inclusion-exclusion for- 
mulas used in this paper. 

Figure 4: In the plane, the SF and SA models are unions 

of finitely many disks. The dual complex is a collection of 

vertices, edges, and triangles. 

An interesting aspect of these concepts is related to 
the parameter (Y mentioned in section 2. As IY increases, 
all balls grow but the weighted Voronoi cells remain 
the same. It follows that 2, remains unchanged, and 
K becomes a larger and larger subcomplex of V, until 
K = 2) at (Y = +oo. This in effect defines a sequence of 

the simplices in V, ordered by value of (Y at which they 
enter ic. This sequence is referred to as the filter of 
V and is amenable to the computation of connectivity 
questions [4]. In particular, it facilitates the efficient 
construction of the voids in K, as detailed in section 11. 

The construction of V, of its filter, and of K are fairly 
involved tasks in software systems design. A particu- 

larly challenging aspect is the consistent treatment of 
degenerate cases necessary for robustness. Such a ro- 
bust system is available via ftp at ftp.ncsa.uiuc.edu and 
is referred to as the alpha shape software. It forms the 
basis of the software described in this paper, which is 
now distributed concurrently in one package. 

5 Space filling and solvent ac- 

cessible 

Proteins are measured using two types of inclusion- 

exclusion formulas, the straight and the decomposed 
ones, both proved in [S]. For the union of balls, U B, 

we use the straight inclusion-exclusion formulas evalu- 
ated in a single loop over the simplices of K. 

First, the relevant output parameters, r/,, A,, L,, C,, 

are initialized to zero. The main loop consi’ders all sim- 
plices of K and computes intersections of 1, 2, 3, and 
4 balls, see figure 5. We use volume(.) and area(.) to 

Figure 5: The intersection of 1, 2, 3, and 4 spherical balls 

in three dimensions. 

denote the unambiguously defined volume and surface 
area of such an intersection. The boundary of an inter- 
section consists of 1, 2, 3, or 4 spherical patches, and 
length(.) denotes the total length of the 0, 1, 3, or 6 
circular arcs separating these patches. The arcs meet 
at common vertices referred to as corners, and for 1, 2, 
3, 4 balls there are 0, 0, 2, 4 corners. To simplify the 
notation, we denote a simplex by the list of its vertices, 
and we denote a vertex by its index. Without causing 
any confusion, the same index also denotes the spherical 
ball centered at this vertex. 
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for each u E X do 
if CT = i then 

V, :=I V, + volume(i); 

A, := A, + area(i) 

endif; 
if u = ij then 

V, := Vs - volume(i n j); 
A, := A, - area(i n j); 
L, := L, + length(i n j) 

endif; 
if F = ijk then 

l& :=I K + volume(i n j n k); 

A, := A, + area(i n j n k); 

L, :- As - length(i n j n k); 

c, := C,+2 
endif; 
if u = ijke then 

volume of the MS model from the volume of the SA 
model by subtracting the volume of annulus pieces, 
solid torus pieces, and ball sectors. The area of the 
MS model is computed by accumulation of the area of 

convex spherical patches, torus patches, and concave 
spherical patches. The convex spherical patches are 
measured following the same inclusion-exclusion pat- 
tern as the area computation in the SA model. The 
torus patches correspond to circular arcs and their area 
is computed following the inclusion-exclusion pattern of 
the length computations in the SA model. Finally, the 
concave spherical patches are measured following the 
inclusion-exclusion pattern counting corners of the SA 
model. Further details are omitted. 

V, := Vs - volume(i n j n k n e); 
A, := A, - area(i n j n k n !); 
L, := I!,, + length(i n j n k n e); 

c, :=I c:, - 4 

endif 
endf or. 

It turns out that the evaluation of the straight inclusion- 
exclusion formulas, as described above, is considerably 
slower than the compudations following the decomposed 
formulas, see sections 7 and 9. Indeed, it is more effi- 
cient, to measure U B using the reduction to voids and 

out-side fringe based on the linear relations in section 3. 

As mentioned earlier, there are some ambiguities in 
the definition of the MS model that need clarification. 
Since we talked about computing its volume and area, 
we obviously think of it as a 3-dimensional object. The 
boundary of this object in general consists of several 
closed surfaces, and each is possibly self-intersecting but 
always orientable. All atoms lie on the inside of each 
surface, and the other side, the oubide, contains no 
atoms. In contrast to previous conventions, see e.g. [3], 
we ignore self-intersections and measure the area of the 
entire surface. The outside is a Riemann space with 
flaps that overlap in W3. The volume of the inside is 

6 Molecular surface 

Atoms in the MS model have the same size as in the SF 
model. In spite of the resulting resemblance of the two, 
the possibly less obvious combinatorial and topological 
relationship between the MS and the SA models is more 
useful and exploited in computing the volume and area 
of t,he MS model. 

where K(Z) is the number of flaps covering x. In the ab- 
sence of self-intersections, K(Z) = 0 inside and K(Z) = 1 
outside. In this case, V, coincides with the conven- 
tional notion of volume. In practice, overla,pping flaps 
are rare and necessarily small. It therefore makes little 
difference whether or not self-intersections are removed. 
We choose to adopt the Riemannian view as the most 
elegant of all options. Furthermore, it satisfies the in- 
tuitive relations used to double-check correctness, see 
section 3. 

Recall that the MS model is obtained by rolling 
a sphere representing solvent molecules about the SF 

model. The sphere touches but does not otherwise over- 
lap t#he SF model. By construction, the center of the 
sphere lies on the boundary of the SA model. This 
implies that for each spherical patch of the SA model 
there is a corresponding smaller spherical patch of the 
MS model. For each circular arc in the boundary of 
the SA model there is a torus patch in the MS model. 
Finally, for each corner of the SA model there is a (con- 
cave) spherical patch in the MS model. See figures 2 
and 3 for the SA and MS models of the same set of 
disks in the plane. 

Just as for U B, it is possible to define voids and out- 
side fringe of an MS model. These can be measured by 
translating the inclusion-exclusion formulas of sections 
7 and 9, similar to the above discussion of measuring 
the MS model itself. The details of this translation are 
tedious and omitted from this paper. 

7 Voids 

The above correspondence suggests we compute the 

The union of disks in figure 4 has two voids also shown 
in figure 6. Each void is contained in a corresponding 
void of the dual complex. As proved in [S], this holds 
generally and also in R3. That is, there is a one-to-one 
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correspondence between the voids of U B and the ones 
of Ic, and each void in U B is contained in the corre- 
sponding void in K. The volume of the void in U B is 
measured by subtracting the pieces of the balls reach- 
ing into the void of K. The corresponding theory is ex- 

Figure 6: The voids in the disk union of figure 4 are 

highlighted; each is contained in the corresponding void 

of the dual complex. 

pressed by the decomposed inclusion-exclusion formu- 
las. Each term measures the intersection of 1 2 m 5 3 
balls and 4 - m half-spaces. The limit of at most 3 balls 
per term has a noticeable positive effect on the speed 
of the evaluation. The planes bounding the half-spaces 
pass through the centers of the balls so that the influ- 
ence of the half-spaces can be expressed by multiplying 
the ball intersection with an angle. It is convenient 
to measure angles in revolutions, that is, normalized 

between 0 and 1. The decomposed inclusion-exclusion 
formulas are used to measure a single void, and by ac- 
cumulating single void measurement#s, the total size of 
the collection of voids. 

To measure a single void, V, we initialize the volume 
to the sum of volumes of the tetrahedra of the corre- 
sponding void in K; the area, length, and number of 
corners are initialized to zero. The main loop considers 

all tetrahedra rn V and their faces, if they are in K. For 
each such tetrahedron-face pair, it measures a sector, 
wedge, or a pawn. These are the intersections of balls 
and half-spaces mentioned above. Following the con- 
vention in section 5, a vertex and the ball around this 
vertex are bot,h denoted by the vertex index. Given 
four vertices, i,j, k,e, the half-space containing i with 
bounding plane passing through j, k, and Q is denoted 
by ijkt. For a tetrahedron ijke, in& n kijl n !?,,, is a 
sector, i n j n kije n tijk is a wedge, and i n j n k n Fiji is 
a pawn, see figure 7. Notice that a pawn is exactly half 
of the intersection of the 3 balls. The area(.) function 
measures only the spherical patches in the boundary 
of a sector, wedge, and pawn, and the length(.) func- 
tion measures only the circular arcs separating spherical 
patches. 

Figure 7: A sector, a wedge, and a pawn 

for each u = ijke E V do 
if i E K then 

v := v - volume(i n &ke n ki,jc n !ijk); 
A,V := Al + area(i n &, n kije fj eij,) 

endif ; do the same for j, k, and !; 
if ij E x then 

V,,” := Vsv + volume(i n J’ n kije 17 &jk); 

Ai := A,’ - area(i n J’ n kije n t,,jk); 
Ll := 15,’ + length(i n j n kije n -t!ijk) 

endif; do the same for ik, if, jk, ,i!?, and be; 

if ijk E K then 
Vsv := Vsv - volume(i n j n k n t?ijb); 
Ai := Ai + area(i n j n k n !!ij,); 
Q’ := L; - length(i n j n k 17 esjk); 

c,v := c,v + 1 
endif; do the same for ije, ike, and jk! 

endf or. 

8 Envelopes 

As mentioned in section 3, the measurements related to 
the impact of U B on its surroundings are sometimes 
of interest. This is for example the case in the study 
of nano-crystals, where the volume is defined so it. re- 
flects the number of water molecules pushed aside by an 
invading nano-crystal. These water molecules have no 

way to access the voids of (J B. We therefore measure 
the union of balls with voids filled. The volume of the 
envelope is the sum of the volume of (J B and its voids, 
whereas the area, length, and the number of corners are 
obtained as differences of these measurements. 

9 Outside fringe 

The outside fringe is the part of U B that lies outside 
the dual complex, see figure 8. The situation is similar 
to the one in section 7, only that we now talk about the 
unbounded component, Ii’, , of R3 - U K. Ii’, contains 
the unbounded component, B, , of R3 -U B. Formally, 
Ii’, - B, is the outside fringe. 

The following approach to computing its volume, 
area, length, and number of corners is implemented 
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Figure 8: The outside fringe of the disk union in figure 4. 

in two different ways. After initializing V,“, AZ, Lz, C,O 

all to 0, we accumulate the terms of the decomposed 
inclusion-exclusion formula. Each vertex, edge, and tri- 
angle (T E EC corresponds to possibly several terms col- 
lected in one by computing the angle, (o,, at u in K,. 
For cr a vertex, cpo is the solid angle in revolutions in- 

side K,. For CT an edge, (P~ is the dihedral angle in 
revolutions inside K,. For cr a triangle, (P,, = 0 if u 
does not bound K,, (Pi = f if u bounds K, on one 
side, and cpO = 1 if u bounds K, on both sides. 

for each u E K do 
if u = i then 

V,” := Vso + pa * volume(i); 

At := A,O -I- p. *area(i) 

endif; 
if u = ij then 

V,O := Vso - (0, * volume(i fl j); 

A; := A; - ‘pO * area(i n j); 

Lz := I,; + po, * length(i n j) 
endif; 
if u = ijk then 

Vso := V,” + pO * volume(i n j n 6); 
A; := A; + cpO * area(i n j n k); 

L; := L; - p. * length(i n j n k); 

c,o := c; + 2*p" 
endif 

endfor. 

The two implementations of this approach differ in the 
way the angles (p. are computed. The first method 
initializes each angle to 1, the full angle, and subtracts 
angles inside tetrahedra in K and in voids of K. The 
second method initializes each angle to 0, the empty 
angle, and adds angles inside K,. One of the reasons 
to implement both methods is that one tends to be fast 
when the other is slow. Another is that we can compare 
the results, and if they match this is evidence that the 
computations are done correctly. 

10 Surface area contributions 

The surface of U B consists of patches of spheres, each 
being part of the boundary of a ball in B. A single ball 
may contribute an arbitrary number of such patches, 
and its area conlribvtion is the total area of all its 
patches. Each term in the inclusion-exclusion formula 
belongs to a group of 1, 2, 3, or 4 balls, and can be split 
into the same number of terms, each attributed to a sin- 
gle ball. The total contribution of a single ball is then 
a partial sum in the inclusion-exclusion formula. When 
the surface area of U B is computed, we distribute the 
terms to the individual balls and keep track of partial 
sums in the array A,[l..n]; its ith element accumulates 
the contributions of ball i. The same thing can be done 
for voids and for the outside fringe; the corresponding 
partial sums are accumulated in arrays A”,‘\l..n] and 
A;[l..n]. 

Similar to other measurements, we can cross-check 
the contributions of individual balls to gain confidence 
in the computed numbers. The contribution of the same 
ball or atom should be the same, whether computed us- 
ing the straight inclusion-exclusion formulas of section 
5 or the decomposed formulas of sections 7 and 9. Sim- 
ilarly, the contribution of a ball to U B should be the 
same as the sum of the contributions to the voids and 
the outside fringe. Apart from the equations for in- 
dividual balls, the following relations are supposed to 
hold: 

A, - c A&] = 0, 

i=l 

AL’- kAr[i] = 0, 

i=l 

A; - 2 A;[i] = 0. 

i=l 

It is possible, in principle, to compute individual area 
contributions of balls per void, and also individual vol- 
ume contributions, or individual length contributions of 
circles. All these measures seem to be of little interest 
though, and are thus not implemented at this time. 

11 Finding voids 

Measuring voids and outside fringe assume their avail- 
ability as sets of tetrahedra from 2) - K. These sets in 
effect represent the voids and outside of Kc. This section 
describes the use of a union-find data structure [2] to 
construct the voids and outside as a system of disjoint 
sets. 
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We take advantage of the linear array, called F for 
filter, which stores the simplices of V in sorted order, 
see section 4. Given an index m, all tetrahedra up to 
position m in F belong to the corresponding dual com- 
plex, K, and all tetrahedra after position m belong to 
V - K. Similarly, for triangles, edges, and vertices. Let 
f be the last index of F and m the index corresponding 
to K. The voids are computed as follows. 

for i := f dounto m + 1 do 
let u be the simplex stored in F[i]; 

if u is a tetrahedron then 
add {u} as a singleton set to the system 

e1sei.f u is a triangle then 
find the sets that contain the tetrahedra 

sharing u; 
merge the two sets, if they are different 

endif 
endf or. 

The computat,ion simulates the birth and growth by 
combination of voids as the parameter (Y decreases from 
infinity to zero. One of the sets in the system collects 
tetrahedra of D - K that lie outside K. Whenever the 
encountered triangle 0 belongs to only one tetrahedron, 
its set is merged with this special set. At completion 
of the process, each set represents a void except for the 
special set which represents the outside. 

12 Remarks on performance 

We break down the task of measuring a protein into sev- 
eral steps and briefly discuss the performance of each. 

Assuming the protein is specified in protein data bank 
(pdb) format, it is a trivial matter to translate it into 
an input format suitable for the alpha shape software, 
see section 2. The radius of each ball is either taken 
directly from a standard table of van der Waals radii 
or the latter is incremented by the radius of the sol- 
vent molecules. A translator is provided as part of our 
software. 

In the first step, the alpha shape software constructs 
the weighted Delaunay simplicial complex, 2), of the 
data set, B. The number of simplices, f = card2), 
depends on the size of B, n = card B, and on the dis- 
tribution of the balls’. For dense distributions common 

‘There is a fairly frequent misconception in the applied liter- 

ature that the construction of 3dimensional Delaunay simplicial 

complexes necessarily take time proportional to n2. This is only 

true for unlikely distributions of the n balls. In the absolute worst 

case, f is about 2n2, and any algorithm explicitly constructing 

the f simplices will require time proportional to n2 or worse. Pro- 

teins typically consist of locally dense packings of atoms. Such 

packings tend to imply Delaunay simplicial complexes with small 

number of simplices; these can be constructed much faster than 

for proteins, f is proportional to n. The time to con- 
struct V depends on the input size, n, and the output 
size, f, and for f 5 c. n, c a constant, it runs in ex- 
pected time O(n log n). See [9] for further details and 
timings for various data sets. 

The second step is the generation of the filter and 
the dual complex, K. The filter is the sequence of sim- 
plices in 2) ordered by the value of CY at which they 
enter ic, see section 4. Computing the value of CY takes 
only constant time per simplex, and sorting takes time 
O(f log f). For measuring a protein we are only inter- 
ested in (Y = 0, that is, we need to separate the simplices 
with negative value of Q (the ones in Kc> from the ones 
with positive value of (Y (the ones in V - K). In the 
interest of economical software production, this simpli- 
fication avoiding sorting has not been implemented. 

The third and last step is the evaluation of the 
inclusion-exclusion formulas, as described in this pa- 
per. For each simplex, there is only one term in the 
straight and at most some constant number of terms 
in the decomposed formula. Each term involves the in- 
tersection of 4 or fewer spherical balls and half-spaces. 
There are analytic expressions that can be evaluated in 
constant time to measure this intersection. The entire 
evaluation thus takes time at most O(f). For practi- 
cal purposes this is not a very meaningful statement 
because the constant involved in measuring the inter- 
section of 4 balls is fairly large and has a noticeable 
effect on the performance. Indeed, we experience a sig- 
nificant improvement in performance when we move to 
terms of at most 3 balls per term, as in the case of the 
decomposed inclusion-exclusion formula. 

Currently, the software runs on single processor com- 
puter architectures only. The evaluation of the terms 

in the formulas can be done completely independent of 
each other. This implies that an implementation on a 
massively parallel architecture can speed up the third 
step by a factor close to the number of available proces- 

sors. The same is true for the second step computing 
LY values of simplices. This leaves the construction of 
the Delaunay simplicial complex in the first step as a 
possible bottleneck for future efforts to develop a fast 
parallel version of the alpha shape software. 

13 Conclusions 

This paper describes a small fraction of the possibilities 
for using the alpha shape software in modeling and sim- 
ulating macromolecules, such as proteins. The advan- 
tage of using complexes over conventional approaches 
to modeling proteins directly via surfaces (SF, SA, or 

worst-case examples. 
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MS) is the availability of a rich set of quickly accessible 
information. This includes proximily information ex- 

plicitly present in the structure of the Delaunay simpli- 
cial complex, 2opological informalion in terms of com- 
ponents, tunnels, and voids [4], and metric information 
as described in this paper. 

We intend to extend the current software to com- 
pute additional information crucial in the study of pro- 
teins. This will include pocket structures and electro- 
static forces. The targeted applications are the study of 
ligand-protein docking and the simulation of dynamic 
behavior of proteins. The latter application requires the 
development of fast dynamic data structures for Delau- 
nay simplicial complexes and algorithms for derivatives 
of metric information under infinitesimal motion. 
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