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Abstract Accountability of air quality management is
often measured by tracking ambient pollution concentra-
tions over time. These changes in ambient air quality are
rarely linked to changes in public health, a major driver for
such programs. We propose a method to assess the
accountability of air quality management programs with
respect to improvements in public health by estimating
national temporal trends in health risk attributable to air
pollution. The air health indicator (AHI) is a function of
two temporal functions, annual air pollutant concentrations
and annual estimates of health risk obtained by time series
statistical methods, to indicate the trend in annual percent
attributable risk (the product of concentration and risk times
100). Random effects models are used to obtain a
distribution of risk over space. The model is illustrated by
examining the association between daily nonaccidental
deaths in 24 of Canada’s largest cities and daily concen-
trations of ozone and nitrogen dioxide over the 17-year
period 1984–2000. Our analysis demonstrates that examin-
ing trends in exposure alone, which has typically been the

approach to air quality indicators, provides an incomplete
picture of trends in the impact of air pollution. The AHI
appears to provide a more informative measure of the
population burden of illness associated with air pollution
over time.
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Introduction

The Canadian government has initiated a program to
monitor the quality of the environment as one predictor of
social and economic well-being. One way to assess
environmental quality is to use indicators that convey
complex information in a simple form. Canadian Environ-
mental Sustainability Indicators (CESI) provides an indica-
tion of the health of our environment in much the same way
as the gross domestic product, and other signals provide a
sense of the health of the economy. CESI has three
components: air quality, fresh water quality, and greenhouse
gas emissions. Spatial–temporal trends in these components
are reported annually (CESI 2006). Social, economic, and
climatic factors are examined in order to understand the
causes of observed spatial and temporal variations. Each
successive reporting year is based on an additional year of
monitoring data.

The air quality component of the CESI measures the
April to September mean concentrations of ozone and fine
particulate matter averaged over all monitors within a
community and then population-weighted averaged over all
communities. As of the 2007 report, April to September
averages for ozone were reported from 1990 to 2005 while
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April to September averages of fine particulate matter were
reported for the 2000 to 2005 time period. A nonparametric
statistical test for monotonic trend in the annual averages is
presented (Sen 1968)). Annual averages are also reported
by region of the country.

When more stringent air quality standards are set and
subsequently met, it is implicitly assumed there will be
some improvement in public health (USEPA 1997; De
Civita et al. 1999). Such improvements in public health are
rarely verified other than in a few isolated cases where a
particular event or regulatory intervention resulted in a
sharp, sometimes temporary, drop in air pollution. (Clancy
et al. 2002; Friedman et al. 2001; Hedley et al. 2002; Pope
1989). In its recent monograph, the Health Effects Institute
defined accountability as part of “a broad effort to assess
the performance of… environmental regulatory policies”
(Health Effects Institute 2003). Applied specifically to the
area of air quality, this involves determining whether
policies have actually resulted in the anticipated improve-
ments in public health. The primary motivation for
evaluating accountability is to be able to guide air quality
policies based on evidence of their effectiveness and
secondarily to demonstrate that investments to improve air
quality have been warranted based on benefits to public
health. There are numerous challenges in attempting to
document improvements in public health as a consequence
of air quality policies. These primarily relate to factors
which confound or obscure the causal pathway between
introduction of a regulation or policy to changes in
emissions, exposure and dose, and finally health status.
These factors include potential impacts of the policy on
personal behaviour or economic activity which could also
affect health, changes over the same time scale as the
regulation in factors which also affect the health outcomes
of interest, incomplete or delayed implementation of a
regulation or policy, or along the time delay between
changes in exposure and changes in the frequency of
effects. If the relationship between concentrations of
ambient air pollution and various health outcomes, such
as mortality and hospital admissions, remains constant over
time, then there would be little need to verify if improve-
ments in air quality do in fact translate into improvements
in public health. However, the relationship between outdoor
air pollution and health can change over time and space for
several reasons (Shin et al. 2008). First, the nature and
extent of the at-risk population may change over time (e.g.,
through an aging population, changes in prevalence of
health conditions) and may also vary across the country due
to spatial–temporal variation in population demographics
and disease status. Second, some measured ambient air
pollutants may act as markers for the truly toxic but
unmeasured atmospheric constituents. For example, partic-
ulate mass, a pollutant often linked to health, is composed

of hundreds of chemical compounds, whose concentrations
can vary dramatically over both space and time. Strategies
to reduce the particulate phase of the mixture may reduce
mass but not proportionately reduce the toxicity of the
atmospheric mixture. Third, the shape of the concentration–
response relationship may not be linear, and thus, changes
in the distribution of exposures over time may lead to
changes in the estimate of risk when such estimates are
based on the commonly employed linear association
between concentration and response. Finally, the relation-
ship between measurements of pollution from fixed-site
outdoor monitors and the exposure metric of most interest
(i.e., population-average personal exposure) may also vary
over space and time arising from changes in monitor
location over decades, within and between community
changes in population density, housing stock, air condi-
tioning use, and time activity patterns. It is therefore of
interest to be able to track changes in the relationship
between outdoor air pollution in urban environments and
health in both space and in time.

Several studies have used spatial variation in risk
(between cities) to identify factors that modify risk, such
as percent of homes in a city with air conditioning. We can
also use time as a means of generating additional variation
in risk estimates in order to understand what factors
influence the relationship between exposure and health
outcomes. There have been several studies linking daily
variations in urban air pollution and daily variations in the
number of deaths within a city throughout the world
(Dominici et al. 2000, 2002; Stieb et al. 2002). Some
countries maintain mortality records, thus providing a
resource to routinely track an important aspect of adverse
health risks associated with air pollution. Computerized
records of admissions to hospital for all ages are also
available and have been linked to air quality in Canada
(Burnett et al. 1994, 1997, 1999, 2001; Lin et al. 2002).
Hospital admissions indicating the number of patients
admitted into hospitals are a marker for an adverse health
event (Delfino et al. 1997; Burnett et al. 1995). One is
interested in reducing the number of adverse events, not
simply admissions to hospital. The fact of being admitted to
a hospital can be influenced by a number of factors including
the role the hospital plays in health care delivery. This role
may be changing over time in Canada. For example, hospital
admissions for asthma among those 0–24 years of age have
declined by approximately one half between 1987 and 2004.
This has been attributed to both improved medical care and
reduced availability of hospital beds (PHAC 2007). Declines
in age-adjusted hospital admission rates for cardiovascular
disease have also been reported (Johansen et al. 2005). This
issue is not as much a concern for emergency room visits
because everyone who visits the emergency room is
examined, and a record is created for that visit. Potentially
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changing patterns of how Canadians obtain their health
care, such as increases in walk-in clinics, can also influence
emergency room visit frequencies. Unfortunately, Canada
does not have a centralized computerized emergency room
record system, so universal coverage of this outcome is not
currently available.

Our approach to estimating risk over space and time is
illustrated by the case of the association between two
pollutants shown to be related to mortality in Canadian
cities (Burnett et al. 2004), nitrogen dioxide and ground
level ozone, and nonaccidental mortality in 24 of
Canada’s largest cities over the 17-year period from
1984 to 2000.

Air health indicator to monitor temporal trends
in health risk

Air health indicator

Poor air quality negatively affects human health. Most
specifically, air pollution affects heart and lung diseases.
The health effects associated with poor air quality contrib-
ute to lost productivity, emergency room and hospital
admissions, and mortality. The air health indicator (AHI)
has been developed to monitor the trend over time in the
percentage of daily mortalities resulting from exposure to
air pollution. The AHI incorporates information on air
pollutant concentrations and public health outcomes (e.g.,
daily hospital admissions or mortality), in order to identify
which air pollutants are associated with health risks, and to
track the effectiveness of air quality management actions at
reducing adverse health effects on the population.

The AHI is a function of two temporal functions, annual
air pollutant concentrations, and annual risks of the air
pollutant, to indicate the trend in annual attributable risks
(AR) defined as follows:

ARj ¼ Cj � bj � 100;

where Cj and βj represents annual air pollution concen-
tration and its risk, respectively, for year j. Air pollutant
concentration is measured by monitoring stations, and
risk is estimated by model. The outputs from our model,
which will be discussed in the next section, are the
annual pooled risk estimates and the annual city-specific
shrunk estimates. The AR measures the percentage of
daily mortality attributable to population exposure to the
air pollutant.

The AHI provides information in terms of the slope that
indicates the extent of incline or decline in the attributable
health risk estimates over time if there exists a time trend.
SEN’s method (Sen 1968), a nonparametric statistical test

for monotonic trend, is a good tool for this purpose shown
below.

AHI ¼ median
ARk � ARj

k � j

� �
for all k > j and j ¼ 1; 2; 3:::J :

The test result indicates compatibility with our proposed
model; whether or not there has been an increasing,
decreasing, or no trend in those annual risk estimates. Using
the AHI, we are able to assess the accountability of air quality
management programs with respect to improvements in
public health as well as in air pollution concentration.

For example, an ozone air health indicator can
establish a relationship between warm season ozone
concentration and mortality due to heart (heart attacks,
heart failure), vascular (stroke), and respiratory (pneu-
monia, bronchitis) causes.

Spatial–temporal model for risk of air pollution

The number of daily nonaccidental deaths was selected as
the response variable reflecting the adverse short-term
health effects from air pollution. To measure the associ-
ation between short-term exposure to ambient air pollu-
tion and death, we consider a time series of the counts of
daily deaths on day t within community i, Yi(t), and the
corresponding concentration of an ambient air pollutant,
xi(t). A Poisson regression model applied to the counts can
be simplified as

log E Yi tð Þ½ �ð Þ ¼ bi tð Þxi tð Þ þ confounderi tð Þ:

The unknown parameter βi(t) represents the unit log-
relative risk at time t for community i. The focus of our
analysis is to model how risk varies over time and
between communities. Since we are most interested in
changes in risk over time periods on the order of years, we
will assume the risk is constant within each calendar year.
Temporal structure of risk can be therefore simplified as
βi(t)=βij for all t in the jth calendar year.

We consider three factors as potential confounding
variables: calendar time; temperature; and indicators for
days of the week (DOW). Time is included to control both
temporal and seasonal variations, daily temperature con-
trols for the short-term effect of weather on daily
mortality, and day of the week accounts for variation in
mortality and air pollution by day of the week. Daily
counts of mortality are assumed to depend on time and
temperature in a nonlinear fashion and on air pollution in
a linear manner. To be consistent with the CESI reporting
of ambient air pollution trends, we based our temporal–
spatial risk estimator on the data for each city and year.

Air Qual Atmos Health (2009) 2:11–20 13



The estimation procedure has two stages. City- and year-
specific estimates bbij are obtained from an over-dispersed
Poisson time series model in addition to estimates of their
error variances bvij(Ramsay et al. 2003). We note that other
estimation approaches can be considered in the first stage,
such as case-crossover (Lin et al. 2002) or generalized
linear mixed models (Szysykowicz 2006).

In the second stage, we consider a random effects model
of the form:

bbij ¼ mb jð Þ þ dij þ eij;

where δij is an independent random variable with mean 0
and variance s2

b jð Þ. This is a random effect model with
the parameters fluctuating randomly around their mean
μβ(j). The error term eij is an independent random
variable with zero expectation and variance bvij which is
assumed known. The estimates bbij are assumed to be
normally distributed with a common mean, μβ(j) and the
variance modeled by the sum of two variances: the within
community estimation variance, vij, and between com-
munity variance indicating the heterogeneity of the true
risks among cities, s2

b jð Þ. Bayesian methods are used to
obtain estimates of the distribution of risk among the
communities annually, with expectation bmb jð Þ and vari-
ance bs2

b jð Þ (Dominici et al. 2000). An estimate of the
city-specific risk, ebij say, under the random effects model
is also obtained. Since this estimate is always closer tobmb jð Þ than bbij, it is termed a “shrinkage” estimator. If the
estimate of the heterogeneity among cities is zero, i.e.,bs2
b jð Þ ¼ 0, then the “best” estimate of risk for any

community is the common risk estimate, i.e., bmb jð Þ. The
larger the estimate of heterogeneity in risk (bs2

b jð Þ)
compared to the within community error estimate (bnij),
the closer the shrinkage estimator ebij will be to the
estimator of risk based solely on information from that
city bbij. Although the shrinkage estimators are biased,
they have smaller variances than bbij, thus providing more
stable estimates. We are thus borrowing strength from all
the communities to estimate risk for each specific
community. This is particularly useful when examining
smaller communities which inherently have large uncer-
tainties with respect to their estimates of risk.

The estimate of heterogeneity in risk among cities is
highly unstable over time (Shin et al. 2008). While the
pooled risk estimates are relatively insensitive to this
instability, the city-specific shrinkage estimates are not.
We, therefore, use a common value of bs2

b for determining
both the pooled annual risk and the city-specific annual
shrunk risks. This common value is defined as the
median of the annual estimates of s2

b over the entire time
period of observation. The same number of observations
(usually 365 days) are used to estimate both vij and s2

b.

Illustrative example

Daily variations in nonaccidental mortality in Canadian cities
have been shown to be related to daily variations in both
concentrations of ozone and nitrogen dioxide (Burnett et al.
2004). We illustrate our spatial–temporal model of risk using
these pollutants. We consider the daily 8-h running maxi-
mum as the summary measure of population average
exposure for ozone, since it is the metric employed for the
Canada-Wide Ozone Standard (CCME 2000). The daily
average concentration is used for nitrogen dioxide (NO2).
We selected communities with a reasonably long time series
of both pollutants, resulting in 24 Canadian cities having
information from 1984 to 2000, the last year of nationally
available mortality data. The cities span the geographic
breadth of the country. The time series model comprises a
natural spline term in the model for time with 9 df/year, two
natural spline terms for daily average temperature with 3 df
recorded on the day of and the day prior to death, indicator
functions for the day of the week, and a linear term for the
2-day average of pollution concentrations.

The trivariate components for the AHI are presented in
Fig. 1 for ozone. There is some evidence that ozone
concentrations have increased over the time period (p=
0.0435) from 1984 to 2000 with a slope of 0.174 ppb/year
and 95% confidence interval (CI) of (0.008, 0.346). This
corresponds to a 10.8% increase in concentrations over the
observation period. However, there is little evidence (p=
0.4338) that risk changes over time with a median slope of
−1.96×10−5 and 95% CI of (−7.57×10−5, 2.82×10−5) log-
mortality rate/ppb per year. There is also little evidence (p=
0.5367) that the percent attributable risk changes over time
with a median slope of −0.033%/ppb per year with 95% CI
of (−0.194, 0.114).

The equivalent information is presented in Fig. 2 for
nitrogen dioxide (three left-hand panels). Nitrogen dioxide
concentrations have clearly declined over time (p<0.0001)
with a median slope of −0.275 ppb/year and 95% CI of
(−0.382, −0.236) corresponding to a 20.1% decline in
concentrations over the entire time period. However, there
is some evidence to suggest (p=0.1275) that risk has
increased over time with a median slope of 4.180×10−5

log-mortality rate/ppb per year and 95% CI of (−2.033×
10−5, 10.207×10−5). The percent attributable risk also has
increased with a median slope of 0.046%/ppb per year and
95% CI of (−0.087, 0.160), but the evidence for this
assertion is weak (p=0.4840).

We note the unusually low-risk estimate for nitrogen
dioxide estimated in 1998. Reasons for this lower risk value
are unclear but are neither due to the time series model
formulation (degrees of freedom for the nonlinear terms)
nor the distribution of weather or air pollution concen-
trations. The trivariate components of the AHI were
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Fig. 1 Annual average concen-
trations of ozone (daily
8-h maximum) over 24
Canadian cities with trend line
(top panel, p=0.0435), annual
ozone-mortality unit risk×100
and trend line (middle panel,
p=0.4338), percent attributable
risk—product of concentration
and risk×100—and trend line
(bottom panel, p=0.5367)

1985 1990 1995 2000

16
18

20
22

24
26

NO2: Annual Daily Average

co
nc

en
tr

at
io

n 
(p

pb
)

1985 1990 1995 2000

-0
.2

0.
0

0.
2

NO2: Annual Pooled Risk (%/ppb)

po
ol

ed
 r

is
k 

(%
)

1985 1990 1995 2000

-4
-2

0
2

4
6

NO2: Percent Attributable Risk

at
tr

ib
ut

ab
le

 R
is

k 
(%

)

1985 1990 1995 2000

16
18

20
22

24
26

NO2: 1998 excluded
co

nc
en

tr
at

io
n 

(p
pb

)

1985 1990 1995 2000

-0
.2

0.
0

0.
2

NO2: 1998 excluded

po
ol

ed
 r

is
k 

(%
)

1985 1990 1995 2000

-4
-2

0
2

4
6

NO2: 1998 excluded

at
tr

ib
ut

ab
le

 R
is

k 
(%

)
Fig. 2 Annual average concen-
trations of NO2 (daily mean)
over 24 Canadian cities with
trend line (top left panel,
p<0.0001), annual
NO2-mortality unit risk×100
and trend line (middle left panel,
p=0.1275), percent attributable
risk—product of concentration
and risk×100—and trend line
(bottom left panel, p=0.4840).
Right panels are corresponding
plots excluding the data for
1998. Annual average NO2 with
trend line (top right panel,
p<0.0001), annual
NO2-mortality unit risk×100
with trend line (middle right
panel, p=0.0274), percent
attributable with trend line
(bottom right panel, p=0.1917)
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calculated excluding the information from 1998 (three
right-hand panels of Fig. 2). The median slope in
concentration was insensitive to this single year exclusion
(median slope of −0.296 ppb/year with 95% CI of (−0.411,
−0.255)) since the NO2 concentrations in 1998 were not
unusual. Exclusion of 1998 information, however, in-
creased the slope in risk from 4.180×10−5 log-mortality
rate/ppb per year to 6.419×10−5 log-mortality rate/ppb per
year with 95% CI of (0.878×10−5, 11.519×10−5) with
much stronger evidence of a positive median slope (p=
0.0274). Sixteen additional models of risk were fit each
excluding a single year of information. The risk trend line
was most sensitive to the exclusion of 1998. The percent
attributable risk median slope was 0.0839%/ppb per year
with 95% CI of (−0.035, 0.0209) with weak evidence of a
nonzero trend (p=0.1917).

Information concerning the distribution of risk and time
trend among cities can be visualized by plotting the time
trend slope versus the shrunk risk among cities. This
information is displayed in Fig. 3 for ozone (top panel) and
nitrogen dioxide (bottom panel) to illustrate this analysis
feature. The trend line of the shrunk risks is plotted against
the median of the annual shrunk risks by city. Most trend
lines are negative (y-axis) except for very small positive
slopes for Niagara and Winnipeg for ozone, and positive for
nitrogen dioxide, except for a very small negative slope for

Hamilton. For both pollutants, the shrunk risks (x-axis) are
all positive with about a twofold variation among cities.

The amount of shrinkage of risk is illustrated in the top
two panels of Fig. 4 which display the relationship between
the estimates of the city-specific risks bbij and the shrunk
risks ebij by connecting the two estimates each year by a line
with an arrow pointing in the direction of the pooled risk
(solid line). The top left hand panel is for Toronto, Canada’s
largest metropolitan community, and the top right hand
panel is for Regina, a relatively small Canadian city. It is
evident from these graphs that there is considerably more
shrinkage of risk in the smaller community.

The middle and bottom two panels in Fig. 4 display the
shrunk risks annually (points), the city-specific trend line
(solid line) and the pooled trend line (dashed line) for
Winnipeg (middle left hand panel), Ottawa (middle right
hand panel), Quebec (bottom left hand panel), and York
(bottom right hand panel). These four cities were selected
based on their relatively extreme values of either the trend
line or shrunk risk visualized in Fig. 3. First, there is
considerable variation in the shrunk risks over time in each
city. Second, although these cities represent the extremes in
trend and risk, it is not clear that there is any real difference
in either trend or risk between these cites or from the
pooled estimates. Formal statistical tests confirm that none
of the cities show any evidence that their trend lines or
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shrunk risks are different from their pooled counterparts
(p>0.2). Similar statistical tests on the nitrogen dioxide
data lead to the same conclusions as that for ozone.

Discussion

In this paper, we propose a new method to estimate the
association between daily variations in ambient air pollu-
tion and daily fluctuations in nonaccidental mortality over
space and time. Spatial-temporal risk estimates, coupled
with city-specific and national estimates in trends in air
pollution, can be used to assess whether the adverse effect
of air pollution related to mortality have changed over time.

We observed statistically significant changes in exposure
to both ozone and nitrogen dioxide over time, although the
magnitude of these changes was modest. Conversely, we
observed much larger proportional changes in risk over
time, but these were generally not statistically significant.
This phenomenon results from low predictive power of air
pollution to explain mortality translated into high uncer-
tainty in estimates for both risk and trend over time. The
trend in the product of exposure and risk was dominated by
the trend in risk due to the larger variation in risk over time
comparing to air pollution concentration. While this
phenomenon is in fact simply a reflection of the data, it
may be possible to equalize the impact of each element of

the AHI by, e.g., normalizing the trend in each element
prior to calculating the product. These findings also
illustrate the value from the point of view of accountability,
of evaluating trends in attributable risk in addition to the
customary approach of examining solely trends in ambient
air pollution concentrations. If the goal of regulatory efforts
to control air pollution is to improve public health, then
examining trends in ambient air pollution alone does not
address this goal and, in fact, provides potentially mislead-
ing guidance on the effectiveness of air pollution controls,

Within the Bayesian modeling framework, city-specific
estimates of risk and the time trend in risk can be obtained.
The observed total variance among the city-specific risk
estimates is quite small, and thus the estimate for
heterogeneity among the cities often resulted in zero.
Bayesian approach using MCMC enables estimation of
the heterogeneity. Cities can then be identified which
display unusual spatial–temporal patterns in risk. As seen
in the previous section of example, the clear decline in NO2

concentrations in Canada has not translated into health
benefits as measured by mortality. This may be due to the
fact that NO2 is a marker of combustion for many sources
and that the true toxic components of combustion have not
declined at the same rate as NO2. Attempts to explain these
patterns can be made in the second stage of the two-stage
modeling approach. Here, the annual average community-
specific risk estimates will be considered as the dependent
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variable and regressed on potential predictors of risk
(community health status, air conditioning use, particle
phase constituents, demographics, and measures of social
welfare) within a Bayesian modeling framework over time
and space. Nonlinear models of air pollution association
with mortality can also be considered. Risk may be also
summarized by region of the country. The second stage
model would contain two levels of clustering: city within
region and region within the country. Trend estimates could
then be obtained for the country and each region.

We are also interested in the longer-term exposure effects
on mortality. These effects are usually determined by
examining cohorts of subjects followed over time in selected
communities or neighborhoods with varying long-term air
pollution concentrations (Pope et al. 2004; Rabl 2006). A
dynamic risk model could be postulated including a time–air
pollution interaction. However, due to the potential con-
founding of risk with age, a single static cohort cannot be
used. In addition, ultimately all members of the cohort will
die and thus time trends cannot be continually determined.

Health Canada is currently examining the effects of
longer-term outdoor pollution on longevity by using a
cohort determined from linking income tax records to vital
status and cancer incidence. A pilot study is underway in
which over 600,000 residents of ten Ontario communities
have had their income tax records linked to both vital status
and cancer incidence since the mid-1980s. Tax records
report a subject’s address, age, gender, marital status, and
income annually.

This income tax cohort can be dynamic in nature with all
new filings included each year. There is no time restriction on
the monitoring of this type of cohort. The time–air pollution
interaction can then be used as an estimator of temporal
changes in risk. Careful attention must be paid, however, to
the changing age–gender distribution of tax filers over time.

We have chosen not to include in the AHI an estimate of
the number of people whose lives would have been
lengthened, on average, if air quality would have been
improved. Although such calculations have been made for
longer-term exposure metrics in Canada (Coyle et al. 2003)
using risks based on cohort studies (Krewski et al. 2003),
they have not been attempted for risks based on time series
studies for methodological reasons. The time series studies
do not necessarily measure risk to individuals in the same
manner as they do in cohort studies. Time series risks can
be used in a similar manner to that of the cohort study-
based risks if one assumes that all members under study (in
the time series case the entire population) have the same
baseline hazard function and the same air pollution risk
estimate at any given age (Miller and Armstrong 2001;
Burnett et al. 2003; Rabl 2006). However, it is known that
air pollution risk can vary by underlying disease status
(Goldberg et al. 2005) and by age.

It is not possible to determine an individual’s risk or
baseline hazard function and thus not possible to determine
the true joint distribution of these quantities. However, we
can estimate underlying hazard functions and risk for
specific subgroups of the population. For example,
Goldberg et al. (2005) have established a dynamic
population study in the city of Montreal, Canada. All
interactions with the provincial health care system for
subjects over 65 years of age are recorded and linked to the
individual over time, such as doctors’ billings, emergency
visits, and hospital admissions, drug prescriptions, clinic
visits, and vital status. The population can then be divided
by presence of one or more chronic diseases. Time series of
deaths for all nonaccidental causes can then be created for
each subgroup and linked to air pollution using time series
statistical methods. Thus, a disease-specific risk can be
determined. The total attributable risk (sum of disease
specific risk times number of daily nonaccidental deaths in
that disease group) can be compared to the equivalent
quantity based on the total number of nonaccidental daily
deaths times the risk based on a time series of total deaths.
The difference in these two quantities would give an
indication of the degree of under(over)estimation of attribut-
able risk using the standard time series risk. Disease-specific
life tables would then be required to translate the disease-
specific air pollution risks into years of life lost and number
of individuals expected to survive a fixed time period under
selected changes in ambient air pollution.

Conclusion

We have described the properties of an AHI which accounts
for variation in air pollution exposure and risk over space
and time. Our analysis demonstrates that examining trends
in exposure alone, which has typically been the approach to
air quality indicators, provides an incomplete picture of
trends in the impact of air pollution. The AHI appears to be
a more informative tool for measuring the change in air
pollution attributable health risk over time as a means of
addressing accountability for the impacts of programs to
control air pollution. However, to be truly informative and
advance the cause of accountability in air pollution
reduction measures, the reasons for changes in the AHI,
and conversely the lack of response in the AHI to changes
in air pollution exposure levels must be examined. In this
vein, additional research is required to attempt to explain
sources of variation in risk over space and time.
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