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ABSTRACT
Linked Open Data has made available a diversity of scien-
tific collections where scientists have annotated entities in
the datasets with controlled vocabulary terms (CV terms)
from ontologies. These semantic annotations encode scien-
tific knowledge which is captured in annotation datasets.
One can mine these datasets to discover relationships and
patterns between entities. Determining the relatedness (or
similarity) between entities becomes a building block for
graph pattern mining, e.g., identifying drug-drug relation-
ships could depend on the similarity of the diseases (condi-
tions) that are associated with each drug. Diverse similarity
metrics have been proposed in the literature, e.g., i) string-
similarity metrics; ii) path-similarity metrics; iii) topological-
similarity metrics; all measure relatedness in a given taxon-
omy or ontology. In this paper, we consider a novel annota-
tion similarity metric AnnSim that measures the relatedness
between two entities in terms of the similarity of their an-
notations. We model AnnSim as a 1-to-1 maximal weighted
bipartite match, and we exploit properties of existing solvers
to provide an efficient solution. We empirically study the ef-
fectiveness of AnnSim on real-world datasets of genes and
their GO annotations, clinical trials, and a human disease
benchmark. Our results suggest that AnnSim can provide a
deeper understanding of the relatedness of concepts and can
provide an explanation of potential novel patterns.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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Annotation datasets; topological distance; Annotation sim-
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1. INTRODUCTION
Linked Open Data has made available a diversity of scien-
tific collections. Scientists have annotated entities in the col-
lections with controlled vocabulary terms (CV terms) from
ontologies or taxonomies. Annotations describe properties
of these concepts. For example, the functions of genes are
described using Gene Ontology (GO) CV terms.

Annotations induce an annotation graph where nodes corre-
spond to scientific concepts or ontology terms, and edges
represent relationships between concepts. Figure 1 illus-
trates a portion of the Web of Data that can induce an
annotation graph. Consider clinical trials linked to a set of
diseases or conditions in the NCI Thesaurus (NCIt). Clin-
ical trials from LinkedCT1 are represented by blue ovals;
they are associated with interventions or drugs (green rect-
angles) and diseases or conditions (pink rectangles). Both
interventions and conditions are then annotated with terms
from the NCI Thesaurus (red circles). Some annotations of
a drug may correspond to terms in the NCIt that identify
the drug, while others may correspond to the diseases or
conditions that have been treated with this drug.

Knowledge captured within scientific collections, the annota-
tions and the ontologies are rich and complex. For example,
the NCI Thesaurus version 12.05d has 93,788 terms. The
LinkedCT dataset circa September 2011 includes 142,207 in-
terventions, 167,012 conditions or diseases, and 166,890 links
to DBPedia, DrugBank, and Diseasome. Thus, the challenge
is to explore these rich and complex datasets and to dis-
cover patterns, e.g., patterns of annotations across multiple
disease conditions or multiple drug interventions. For gene
functional annotations, patterns may involve cross-genome
functional annotation, e.g., combining the GO functional
annotations of two model organisms such as Arabidopsis
thaliana (a plant) and Caenorhabditis elegans (a nematode
or worm), to predict new functions.

As a first step to discovering complex patterns, we consider
an important building block that determines the relatedness
(or similarity) of a pair of scientific concepts, based on their
annotations with respect to one or more ontologies. An ex-

1http://linkedct.org/



ample is identifying the relatedness or similarity of (drug,
drug) pairs, based on the annotation evidence of diseases
(conditions) from the NCIt. This can lead to discoveries of
new targets for existing drugs, or it can predict potential
side-effects of drugs.

Lymphoma

Leukemia

Rituximab

Pentostatin

Alemtuzumab

Sargramostin

NCT00669318

NCIt:C3211

NCIt:C9300

NCIt:C9357

NCIt:C2985

Non-Hodgkin 
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Diabetes 
Mellitus

NCT00690066

NCT01559025

NCT00563004

NCT00837759

Figure 1: Annotation graph of Clinical Trials from
LinkedCT (blue ovals). Interventions are green rect-
angles; conditions are pink rectangles and CV terms
from the NCI Thesaurus are red ovals.

A broad variety of similarity metrics have been proposed
in the literature [9, 12, 14, 15, 16, 17, 19, 20, 23, 27,
29]. Existing similarity metrics can be of diverse types:
i) string-similarity metrics that measure similarity using (ap-
proximate) string matching functions (e.g., [11]); ii) path-
similarity metrics such as PathSim and HeteSim that com-
pute relatedness based on the paths that connect concepts
in a graph (e.g., [23, 27]); and iii) topological-similarity met-
rics that measure relatedness in terms of the closeness of CV
terms in a given taxonomy or ontology (e.g., [6, 15, 18]).

Example 1.1. Antineoplastic agents and monoclonal an-
tibodies are two popular and independent intervention regimes
that have been successfully applied to treat a large range of
cancers. There are 12 drugs that fall within their intersec-
tion, and scientists are interested in studying the relation-
ships between these drugs and the corresponding diseases.
Consider the two drugs Brentuximab vedotin and Catumax-

omab. Figure 2 represents a subgraph of the annotation graph
of Figure 1. Each path between a pair of conditions, e.g.,
Carcinoma and Anaplastic Large Cell Lymphoma through
the NCI Thesaurus is identified using red circles which repre-
sent ontology terms from the NCIt. The count of red circles
represents the length of a path. To simplify the figure, we
only illustrate the paths from the term Carcinoma.

In this paper, we propose a novel annotation similarity met-
ric AnnSim, that measures the relatedness between two en-
tities in terms of the similarity or relatedness of the sets of
their annotations. AnnSim combines properties of path- and
topological-based similarity metrics to decide the relatedness
of two scientific concepts. To the best of our knowledge, our
research is the first to consider both the shared annotations
between a pairs of concepts, as well as the relatedness of the
annotations (CV terms) within some ontology, to determine
the resulting relatedness of the two concepts.

Figure 2: Annotation subgraph representing the
annotations of Brentuximab vedotin and Catumaxomab.
Interventions are green rectangles; conditions are
pink rectangles; ontology terms in the NCIt are red
ovals.

A naive implementation of AnnSim would require us to com-
pute the topological similarity of all pairs of ontology terms,
or the cartesian product, over the two sets of NCIt ontology
terms that annotate each of the pair of concepts. However,
many of these pairs of terms may be unrelated. We model
AnnSim as a 1-to-1 maximal weighted bipartite matching,
and we exploit properties of existing solvers to provide an
efficient solution.

We empirically study the effectiveness of AnnSim on real-
world datasets of genes and their GO annotations, evidence
from clinical trials, and a well known human disease bench-
mark. We compare the quality of AnnSim with respect to
existing similarity metrics including dtax [6], dps [18], Het-
eSim [23].

We use the sequence-based similarity for genes based on the
normalized Smith and Waterman scores [25] computed by
BLAST2, further normalized as suggested in [8], as ground
truth for genes. We also use the evolutionary phylogenetic
tree for a family of related genes as ground truth.

The contributions of this paper can be summarized as fol-
lows:

• The formalization of an annotation-based similarity
metric AnnSim that defines the relatedness of two con-
cepts in terms of the sets of their annotations. An
implementation relies on an existing 1-to-1 maximal
weighted bipartite graph matching solver.

• An empirical study that validates AnnSim using a vari-
ety of ground truth datasets including human curation
as well as sequence based and phylogenetic evidence.

• Our results suggest that AnnSim can provide a deeper
understanding of the relatedness of concepts, and in
some cases it can also provide an explanation of pat-
terns.

2http://blast.ncbi.nlm.nih.gov/



This paper is organized as follows: Section 2 summarizes re-
lated work. Section 3 gives the preliminary knowledge of this
work and illustrates the performance of existing approaches
in a real-world example. Section 4 presents our approach.
Experimental results are reported in Section 5. Finally, we
conclude in Section 6 with an outlook to future work.

2. RELATED WORK
A key element in finding patterns is identifying related con-
cepts. Similarity metrics or distance metrics can be used to
measure relatedness; we briefly describe some of the existing
metrics.

The first class of metrics are string-similarity; they compare
the names or labels of the concepts using string comparison
functions based on edit distances or other functions that
compare strings. The broadly used string distance metrics
either reflect the number of edit operations that have to be
performed on two strings to covert one in the other (e.g.,
the Levenstein distance), or they count the number and or-
der of common characters between two strings (e.g., Jaro-
Winkler [11]).

The next are path-similarity metrics that compute related-
ness based on the paths that connect the concepts within
some appropriate graph. Nodes in the paths can be all of
the same abstract types (e.g., PathSim [27]) or they can
be heterogeneous (HeteSim [23]). Furthermore, topological-
similarity metrics extend the concept of path-similarity and
they look at relationships within an ontology or taxonomy
that is itself designed to capture relationships (e.g., nan[15],
dps [18] and dtax[6]).

Smith and Waterman [26] propose an algorithm to identify
sequence alignment in sequences of nucleotides or amino-
acids. BLAST3 and FASTA4 propose some restrictions to
the sequence entries to speed up the alignment computation
process, potentially at the cost of reducing quality. We use a
normalized sequence based similarity score as ground truth.

Ontology matching (OM) tries to identify correspondences
between semantically related entities of different ontologies [3,
24]. Advanced OM techniques utilize ontology structure [2].
Instance-based techniques (e.g., [28]) may also make use of
annotations. OM and AnnSim have shared objectives and
differences. The results of OM, i.e., the sets of correspon-
dences (also called mappings or alignments) are primarily
used for data integration, e.g., ontology merging or query
rewriting. In contrast, AnnSim is interested in applying
the metric to exploring patterns in families (graphs). More
important, AnnSim has a focus on the entire annotation
evidence. Thus, a mismatch of annotations must reduce
AnnSim. Such nuances may not apply in general to OM.

The problem of 1-1 weighted maximal bipartite match has
been tested on different domains, e.g, semantic equivalence
between two sentences and measuring similarity between
shapes for object recognition [4, 7, 22]. These approaches
clearly show the benefits of solving this matching problem.
AnnSim differs from the prior research in that we consider

3http://blast.ncbi.nlm.nih.gov/
4http://www.ebi.ac.uk/Tools/sss/fasta/

the relatedness of the sets of annotations. Further, we use
an ontology structure to determine ontological relatedness.
We extend the Dice coefficient to measure set agreement be-
tween the sets of annotations in the 1-1 weighted maximal
bipartite match; the AnnSim score will be penalized if one
of the concepts is associated with a large number of annota-
tions while only a small number of annotations participate
in the match.

Finally, we note that the value of any annotation-based simi-
larity metric will naturally depend on the accuracy and com-
prehensiveness of the underlying annotation. Since AnnSim
considers the graph structure of the ontology, it has the po-
tential to be robust in the presence of missing or incomplete
annotations, or similar yet not identical annotations.

3. SELECTED SIMILARITY METRICS
We present two taxonomic distance metrics from the litera-
ture: dtax [6] and dps [18]. Both metrics define the distance
of two nodes in terms of the depth of the nodes to the root
of the ontology, and the distance to the their lowest common
ancestor (LCA). These concepts are defined as follows:

Given a directed graph G, the depth of a vertex x in G is
the length of the longest path from the root of G to x.
Given a directed graph G, the lowest common ancestor [5]
of two vertices x and y, is the vertex of greatest depth in G
that is an ancestor of both x and y.
Let d(x, y) be the number of edges in the shortest path be-
tween vertices x and y in a given ontology. Also let lca(x, y)
be the lowest common ancestor of vertices x and y.

The intuition behind the dps metric is to capture the ability
to represent the taxonomic distance between two vertices
with respect to the depth of the common ancestor of these
two vertices. Extending on this idea, dtax[6] tries to assign
low(er) values of taxonomic distance to pairs of vertices that
are (1) at greater depth in the taxonomy and (2) are closer to
their lowest common ancestor. A value close to 0.0 means
that the two vertices are close to the leaves and both are
close to their lowest common ancestor. A value close to 1.0
represents that both vertices are general or that the lowest
common ancestor is close to the root of the taxonomy.

The distance metric dtax is as follows where root is the root
node in the ontology:

dtax(x, y) =
d(lca(x, y), x) + d(lca(x, y), y)

d(root, x) + d(root, y)
(1)

The distance metric dps is defined as follows:

dps(x, y) = 1 −
d(root, lca(x, y))

d(root, lca(x, y)) + d(lca(x, y), x) + d(lca(x, y), y)
(2)

For the pair of drugs Brentuximab vedotin and Catumax-

omab, we could locate these drugs within the NCIt and di-
rectly use either of the distance metrics and compute simi-
larity values, (1 − dtax) or (1 − dps). The similarity values
are 0.60 and 0.43, respectively. However, unlike the pro-
posed AnnSim metric, this similarity between the pair of
drugs does not exploit the knowledge of their annotations,



i.e., the diseases to which these drugs have been applied.

The metric HeteSim [23] defines the relatedness of object
pairs in terms of the paths that connect the objects in a
graph. Paths considered during the computation of this met-
ric are type-path constrained, i.e., they must correspond to
instances of a sequence of classes or types named relevance
path. HeteSim(s,t | P) measures how likely s and t will
meet at the same node when s follows along the path that
respects the relevance path P and t goes against the path
P . HeteSim is as follows:

Definition 3.1 (HeteSim [23]). Given two objects s and
t (s ∈ R1 and t ∈ Rl) and a relevance path p = R1 ◦ R2 ◦
· · · ◦Rl,

HeteSim(s, t | R1 ◦ R2 ◦ · · · ◦ Rl) =
1

| O(s | R1) || I(t | Rl)

|O(s|R1)|
∑

i=1

|I(s|Rl)|
∑

j=1

HeteSim(Oi(s | R1), Ij(t | Rl) | R2 ◦ · · · ◦ Rl−1)

where O(s | Ri) and I(s | Rj) correspond to the out-
neighbors and in-neighbors of s based on relations Ri and
Rj , respectively, and Ot(s | Ri) and Ik(s | Rj) represent the
t-th and k-th elements in the out-neighbors and in-neighbors
of s based on relations Ri and Rj , respectively.

For example, given the annotation graph of Figure 2, and
paths of type (Drug, NCIt, NCIt, Drug), the value of Het-
eSim(Brentuximab vedotin, Catumaxomab) has a value of
0.0; this is because HeteSim only considers an exact match
between the NCIt annotations of each drug. We note that
HeteSim could be extended to further consider paths through
the NCIt, i.e., these will be paths outside the annotation
dataset.

4. ANNOTATION SIMILARITY METRIC FOR

ANNOTATION GRAPHS
An annotation graph G=(V,E) is a particular graph com-
prised of two type of nodes in V : scientific concepts and
terms from an ontology. Edges in G can be between scien-
tific concepts and ontology terms.

Given two concepts c1 and c2 from an annotation graph
G=(V,E), we define an annotation similarity metric, AnnSim,
based on their sets of annotations, A1 and A2, respectively.
We assume that we know the pairwise similarity between
elements of A1 and elements of A2, i.e., sim(a1, a2) ∈ [0, 1]
for all a1 ∈ A1 and a2 ∈ A2.
These relationships between terms in A1 and A2 can be rep-
resented as a weighted bipartite graph BG with two node
sets A1 and A2.
An edge between a1 ∈ A1 and a2 ∈ A2 has a weight sim(a1, a2),
where sim(a1, a2) is computed using a taxonomic distance
metric.

The computation of AnnSim first requires building a bipar-
tite graph BG with the links in the cartesian product be-
tween the set of annotations of two scientific terms, comput-
ing all pairwise similarities, and then determining the 1-to-1

maximal weighted bipartite graph match. The time com-
plexity of this process is O(n4), where n is the number of
nodes in the ontology; the cost of computing the topological
similarity values of each one of the n2 links is O(n2).

To achieve an efficient implementation of the AnnSim met-
ric on BG, we reduce the bipartite graph BG to a 1-to-1
maximal weighted bipartite graph MWBG.

Definition 4.1. [21] A 1-to-1 maximal weighted bi-
partite graph matching MWBG=( A1 ∪A2, WEr) for a
weighted bipartite graph BG=( A1 ∪A2, WE) is as follows:

• WEr ∈ WE, i.e., MWBG is a sub-graph of BG.

• the sum of the weights of the edges in WEr is maxi-
mized, i.e.,

max
∑

(a1,a2)∈WE

sim(a1, a2)

• for each node in A1 ∪ A2 there is only one incident
edge in WEr, i.e.,

–
∑|A1|

i=1 (ai, aj) = 1, ∀j = 1 · · · | A2 |

–
∑|A2|

j=1 (ai, aj) = 1, ∀i = 1 · · · | A1 |

Example 4.1. Consider the two drugs Brentuximab ve-

dotin and Catumaxomab. Figure 3 represents the 1-to-1 max-
imal weighted bipartite graph match produced by the Blos-
somIV solver [10].

Definition 4.2 ( AnnSim Annotation Similarity).
Consider two concepts c1 and c2 annotated with the set of
terms A1 and A2 in an annotation graph AG. Let BG=(
A1 ∪A2, WE) be a weighted bipartite graph for set of terms
A1 and A2. Let MWBG=( A1∪A2, WEr) be 1-to-1 maximal
weighted bipartite graph matching for BG. The annotation
similarity of c1 and c2 is defined as follows:

AnnSim(c1, c2) =
2 ·

∑
(a1,a2)∈WEr

sim(a1, a2)

|A1|+ |A2|

The above definition is in the style of the well-known dice
coefficient. The maximal similarity of 1.0 is achieved if
and only if both annotation sets have the same cardinal-
ity (|A1| = |A2|) and all edge weights equal 1. Further,
AnnSim penalizes (large) differences in the cardinality of A1

and A2. We apply an exact solution to the problem of com-
puting the 1-to-1 maximal weighted bipartite graph MWBG
from a weighted bipartite graph BG using the BlossomIV
solver [10]. Considering the 1-to-1 Maximal Weighted Bi-
partite Graph Matching for anticancer drugs Brentuximab
vedotin and Catumaxomab in Figure 3. We can observe
that AnnSim (Brentuximab vedotin,Catumaxomab) is 0.324
representing certain grade of similarity between these two
drugs.

Theorem 4.1 (Properties of AnnSim). Consider two
concepts c1 and c2 annotated with the set A1 and A2 in
agraph AG then:



(a) Weighted bipartite graph for Brentuximab
vedotin and Catumaxomab

(b) 1-to-1 Maximal weighted bipartite
graph for Brentuximab vedotin and
Catumaxomab

Figure 3: Bipartite graphs for drugs Brentuximab ve-

dotin and Catumaxomab. For legibility only the value
of the highest matching edges are shown in Figure
3(a).

• Symmetry: AnnSim(c1, c2) = AnnSim(c2, c1).

• Self-maximum: AnnSim(c1, c2) ∈ [0, 1].

• Time complexity: polynomial in the size of AG.

5. EXPERIMENTAL EVALUATION
While scientists use annotations widely, AnnSim is novel to
our work. Thus, there is no prior gold standard that can be
used to evaluate the quality of AnnSim. Further, there are
few established ground truth datasets or alternate metrics to
use as a baseline; thus, our evaluation is somewhat indirect
out of necessity. We provide details of the datasets and our
protocol to construct ground truth datasets for evaluation.
We then present evaluation results.

5.1 Datasets and Evaluation Roadmap
Dataset 1: 30 pairs of diseases from the Mayo Clinic Bench-
mark; each pair is coded for similarity from 1.0 (least sim-
ilar) to 4.0 (most similar). The coding was performed by
3 physicians (Phy) and 10 medical coders from the Mayo
Clinic (Cod) [15, 17]. Diseases were annotated with NCI
Thesaurus version 12.05d. Dataset 1 is used to compare
(1− dtax) and (1− dps) using SNOMED and MeSH.

Dataset 2: 12 anticancer drugs in the intersection of mon-
oclonal antibodies and antineoplastic agents: Alemtuzumab,
Bevacizumab, Brentuximab vedotin, Cetuximab, Catumaxomab,
Edrecolomab, Gemtuzumab, Ipilimumab, Ofatumumab, Pan-

itumumab, Rituximab, and Trastuzumab. The drugs were
associated with conditions or diseases in clinical trials in
LinkedCT circa September 2011 and each disease was linked
to its corresponding term in the NCI Thesaurus version
12.05d. The number of annotations varies from 1 to 100+.
Dataset 2 is used to compare AnnSim with (1− dtax), (1−
dps), and HeteSim. We recognize that HeteSim performs
poorly because it is not designed to consider terms that are
close to each other in the ontology as related. However, we
use this baseline since it is the only metric that can consider
paths between heterogeneous nodes.

Dataset 3: 10 families of Arabidopsis thaliana transporter
genes [1]; 20 genes were selected for each family. 10 sets of 20
genes were also randomly chosen across all transporter Ara-
bidopsis transporter gene families to create a control dataset
in Dataset 3.

Dataset 4: Families of genes from Caenorhabditis elegans,
e.g., actins. Genes in Datasets 3 and 4 were annotated with
GO circa April 2013. Annotations were obtained from the
portals TAIR 5 and WormBase6.

For genes in Datasets 3 and 4, we compare AnnSim with
SeqSim, a sequence based similarity for genes based on the
normalized Smith and Waterman scores [25] computed by
BLAST7, further normalized as suggested in [8]:

SeqSim(g, g
′
) =

SW (g, g′)
√

SW (g′, g′)
√

SW (g, g)

where, g and g′ are genes and SW is the pairwise or re-
flexive Smith and Waterman score. We also construct the
phylogenetic (evolutionary) tree for the Arabidopsis families
of Dataset 3 and compute dtax and dps against these trees.

5.2 Effectiveness in Dataset 1
The goal of the experiment is to tune the performance of (1−
dtax) and (1−dps) with respect to multiple ontologies. This
will reveal if AnnSim scores will be stable across different
taxonomic metrics and ontologies.

We annotated the 30 diseases of Dataset 1 with their cor-
responding terms in SNOMED, MeSH and the NCI The-
saurus. The scores determined by (1−dtax) and (1−dps) are
compared to the human ground truth evaluation of physi-
cians and coders. Table 1 reports on this comparison. Ad-
ditionally, Table 2 reports on the Normalized Discounted
Cumulative Gain [13] (nDCG) between the ranking of the
results using (1− dtax) and (1− dps), and the ground truth
from a physician panel or a coder panel. The nDCG corre-
lations take values between 0.0 and 1.0, where a value close
to 1.0 represents a high correlation of the ranking induced
by the similarity metric and the one in the ground truth.

Given the order of the pairs of diseases induced by the values

5http://www.arabidopsis.org/
6http://www.wormbase.org/#012-3-6
7http://blast.ncbi.nlm.nih.gov/



Table 1: Similarity Dataset 1: (1−dtax) and (1−dps) for SNOMED, MeSH, and NCIt. Empty Cells(-) represent
terms that do not appear in the ontology. Values highlighted in bold show high correlation between the
relevance given by the physician, coder and the metrics.

Medical Terms Phy Cod SNOMED MeSH NCIt
1 − dtax 1 − dps 1 − dtax 1 − dps 1 − dtax 1 − dps

Renal Insufficiency - Kidney Failure 4.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00
Heart - Myocardium 3.30 3.00 0.77 0.64 0.80 0.67 0.20 0.11
Stroke - Infarction 3.00 2.80 0.31 0.31 0.80 0.67 0.87 0.78
Abortion - Miscarriage 3.00 3.30 0.89 0.80 0.00 0.00 0.92 0.86
Delusions - Schizophrenia 3.00 2.20 0.00 0.00 0.00 0.00 0.80 0.67
Congestive heart failure - Pulmonary edema 3.00 1.40 0.50 0.46 0.00 0.00 0.59 0.42
Metastasis - Adenocarcinoma 2.70 1.80 0.83 0.71 0.25 0.14 0.00 0.00
Calcification Stenosis 2.70 2.00 0.55 0.38 0.00 0.00 0.40 0.25
Diarrhea - Stomach cramps 2.30 1.30 0.29 0.17 0.75 0.63 0.42 0.30
Mitral Stenosis - Atrial Fibrillation 2.30 1.30 0.63 0.46 0.50 0.33 0.53 0.36
Chronic obstructive pulmonary disease - 2.30 1.90 0.70 0.63 - - 0.13 0.07
Lung infiltrates
Rheumatoid Arthritis - Lupus 2.00 1.00 0.50 0.33 0.00 0.11 0.86 0.75
Brain tumor - Intracranial hemorrhage 2.00 1.30 0.63 0.57 0.63 0.50 0.17 0.09
Carpal Tunnel Syndrome - Osteoarthritis 2.00 1.00 0.33 0.33 0.00 0.00 0.33 0.20
Diabetes Mellitus - Hypertension 2.00 1.00 0.64 0.50 0.00 0.00 0.17 0.09
Acne - Syringe 2.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Antibiotic - Allergy 1.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Cortisone - Total knee replacement 1.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Pulmonary Embolism - Myocardial Infarction 1.70 1.20 0.36 0.42 0.29 0.29 0.63 0.46
Pulmonary Fibrosis - Lung Cancer 1.70 1.40 0.75 0.63 0.67 0.50 0.60 0.50
Cholangiocarcinoma - Colonoscopy 1.30 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Lymphoid hyperplasia - Laryngeal cancer 1.30 1.00 0.43 0.33 0.00 0.00 0.36 0.22
Multiple Sclerosis - Psychosis 1.00 1.00 0.44 0.29 0.00 0.00 0.33 0.20
Appendicitis - Osteoporosis 1.00 1.00 0.31 0.31 0.00 0.00 0.50 0.36
Rectal polyp - Aorta 1.00 1.00 0.00 0.00 - - 0.00 0.00
Xerostomia - Liver Cirrhosis, Alcoholic 1.00 1.00 0.00 0.00 0.00 0.00 0.14 0.08
Peptic Ulcer - Myopia 1.00 1.00 0.23 0.29 0.00 0.00 0.15 0.08
Depression- Cellulitis 1.00 1.00 0.00 0.00 0.00 0.00 0.31 0.18
Varicose vein - Entire knee meniscus 1.00 1.00 0.13 0.07 - - 0.00 0.00
Hyperlipidemia - Metastasis 1.00 1.00 0.33 0.20 0.00 0.00 0.00 0.00

of (1− dtax) and (1− dps), a high value of nDCG of a given
pair highly ranked by the physicians (or coders) indicates
that the pair appears at the top of the ranking list. A low
value of nDCG reflects that the relevant pair appears at the
bottom of the ranking list.

We can observe that both (1 − dtax) and (1 − dps) have
similar values of nDCG across SNOMED, Mesh and NCI
Thesaurus, for both physicians and coders. This reveals
that both metrics are successful at computing high values of
similarity for the pairs that were also ranked highly by the
physicians and coders. These values also suggest that both
metrics have similar performance.

To summarize, the two metrics to compare taxonomic re-
latedness perform well across multiple ontologies, and their
performance is matched.

5.3 Effectiveness in Dataset 2
Our objective is to compare the performance of AnnSim

with existing similarity metrics to determine relatedness be-
tween the drugs in this family. We consider both topological
metrics (1− dtax), (1− dps) and HeteSim. Intuitively, Het-
eSim would detect that two drugs are similar if they have
many (identical) diseases in common. HeteSim will perform
poorly when drugs do not treat identical diseases. In con-
trast, AnnSim also considers diseases that are not identical
but are similar based on the topology of the NCI Thesaurus.
Finally, (1− dtax) and (1− dps) only consider the topology
of the drug terms in the NCI Thesaurus and will ignore the
annotation evidence.

Table 3 reports on the values of these four similarity metrics
when Alemtuzumab is compared to the eleven other drugs in
the dataset. We can observe that HeteSim consistently as-
signs very low values of similarity. Although all these drugs
are used to treat different types of cancers, Alemtuzumab
shares only a small number of identical diseases with the
rest of the 11 drugs and this confuses HeteSim.

AnnSim, however, assigns higher values because is able to
detect that many of the diseases treated with Alemtuzumab
share similar topological properties in NCIt with the diseases
treated by the rest of the drugs.

What is notable is that the taxonomic metrics (1 − dtax)
and (1 − dps) only consider the topology of the drug terms
in the NCIt and they ignore the annotation evidence. Thus,
they return uniformly high similarity scores. The column
AnnotCount of Table 4 summarizes the number of annota-
tions for each drug; it is clear that there is a wide variation
in the diseases that are treated by these drugs. Hence, the
inability to exploit the annotation evidence does not allow
the taxonomic metrics to differentiate between these drugs.

Table 4 summarizes the pairwise scores for the four metrics
for each drug, compared to the other 11 drugs. For each
drug, the score is used to rank the other 11 drugs. Then
SRank1 is the Spearman’s correlation for AnnSim and (1−
dtax) and SRank2 is the correlation for AnnSim and (1 −
dps). We observe that HeteSim consistently assigns very
low values of similarity. AnnSim again assigns higher values
overall. Values of SRank1 and SRank2 are higher than 0.5,



Table 2: Normalized Discounted Cumulative Gain (nDCG) of (1− dtax) and (1− dps)
Metric SNOMED MeSH NCI

Physician Coder Physician Coder Physician Coder
1 − dtax 0.837 0.961 0.977 0.957 0.959 0.959
1 − dps 0.966 0.963 0.976 0.987 0.959 0.959

Table 3: Pairwise comparison of Alemtuzumab with the rest of the 11 drugs. HeteSim assumes perfect
matching between annotations and assigns low similarity values.

Pair drug AnnSim 1 − dtax 1 − dps HeteSim
Alemtuzumab - Bevacizumab 0.263 0.670 0.500 0.001
Alemtuzumab - Brentuximab vedotin 0.140 0.364 0.222 0.000
Alemtuzumab - Catumaxomab 0.199 0.364 0.222 0.000
Alemtuzumab - Cetuximab 0.359 0.727 0.571 0.000
Alemtuzumab - Edrecolomab 0.037 0.727 0.571 0.000
Alemtuzumab - Gemtuzumab 0.046 0.500 0.333 0.000
Alemtuzumab - Ipilimumab 0.482 0.727 0.571 0.005
Alemtuzumab - Ofatumumab 0.468 0.727 0.571 0.002
Alemtuzumab - Panitumumab 0.422 0.727 0.571 0.000
Alemtuzumab - Rituximab 0.409 0.727 0.571 0.002
Alemtuzumab - Trastuzumab 0.319 0.727 0.571 0.000

Average 0.286 0.635 0.479 0.001

suggesting that the annotation evidence is consistent with
the topological relationships of the drugs in the NCIt.

We note on a couple of outlier cases. Both Edrecolomab

and Gemtuzumab have a single annotation, Colorectal Car-

cinoma and Acute Myeloid Leukemia, respectively. While
these diseases are different, the drugs have very similar and
low values for AnnSim. We note that the drugs have high
values for the taxonomic metrics; e.g., (1 - dtax(Colorectal
Carcinoma, Acute Myeloid Leukemia)) is equal to 0.714.
Since dtax meets the triangle inequality property [6], any
disease that is similar to one disease will also be similar to
the other. We further note that the SRank1 and SRank2
have a negative score for Edrecolomab but the score is closer
to 0.5 for Gemtuzumab. This reflects that further work is
needed to tune these metrics to consider outliers.

Details of the 12 drugs in Dataset 2 as well as their an-
notations and pairwise values of AnnSim can be found at
http://pang.umiacs.umd.edu/AEDdemo.html.

5.4 Effectiveness in Dataset 3
The goal of the experiment is to compare the performance of
AnnSim with both SeqSim and topological similarity on the
phylogenetic (evolutionary) tree. We consider both family
and random (control) datasets. We compute pairwise values
for AnnSim, as well as SeqSim based on the normalized
Smith and Waterman scores [25] computed by BLAST8,
further normalized as suggested in [8]. For each gene, we
rank the 19 other genes in the family/set using AnnSim and
SeqSim. We then calculate the Spearman’s Rho correlation
coefficient SRank3 for the 2 rankings. We expect to have a
greater measure of relatedness in families over the random
datasets.

We also determine the phylogenetic (evolutionary) tree for
each of the families. We then compute dtax and dps for
these trees, and the Spearman’s correlation, SRank4 and
SRank5 with AnnSim. We do not compute these metrics

8http://blast.ncbi.nlm.nih.gov/

for the control genes since they are not closely related using
phylogeny.
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Figure 4: Annotation Similarity Distribution for
Family and Control (Random) Datasets

Figure 4 shows the annotation similarity distributions for
families and control (random) groups. Table 5 reports on
the (average, standard deviation) for SeqSim, AnnSim and
correlation SRank3 for the families and the control (ran-
dom) groups.

Our evaluation strongly confirms that AnnSim is a useful
metric. AnnSim assigns higher values to genes in families
compared to genes in the control datasets as can be seen
from the distribution of Figure 4. From Table 5, the aver-
age value for families is 0.62, while the same value for the
control datasets is 0.40. The average Spearman’s correlation
coefficient SRank3 comparing the rank based on sequence
similarity and AnnSim is 0.20 for families and 0.01 for the
control dataset. All of these values were significant at the
95% confidence interval.

Figure 5 shows the distribution of annotation similarity at
the disaggregated level for 4 of the 10 Arabidopsis trans-
porter families. We see that cpa2 and mate and mfs have
the highest values of annotation similarity, while vic and
p-atpase show the lowest annotation similarity.



Table 4: Average similarity and Standard Deviation (avg; std) when each is compared with 11 other drugs
(Antineoplastic Agents and Monoclonal Antibodies)

.

Drug Annot Count AnnSim (1 − dtax) (1 − dps) HeteSim SRank1 SRank2

Alemtuzumab 39 (0.286; 0.161) (0.635; 0.150) (0.479; 0.146) (0.001; 0.002) 0.625 0.625
Bevacizumab 136 (0.206; 0.173) (0.636; 0.152) (0.479; 0.146) (0.002; 0.002) 0.505 0.543
Brentuximab vedotin 3 (0.206; 0.125) (0.433; 0.093) (0.284; 0.091) (0.002; 0.007) 0.752 0.752
Catumaxomab 7 (0.244; 0.106) (0.416; 0.066) (0.269; 0.061) (0.002; 0.003) 0.348 0.339
Cetuximab 50 (0.303; 0.189) (0.691; 0.163) (0.547; 0.171) (0.003; 0.004) 0.523 0.507
Edrecolomab 1 (0.157; 0.211) (0.691; 0.162) (0.547; 0.171) (0.004; 0.014) -0.318 -0.318
Gemtuzumab 1 (0.157; 0.219) (0.539; 0.045) (0.375; 0.046) (0.000 0.000) 0.511 0.466
Ipilimumab 22 (0.363; 0.208) (0.691; 0.163) (0.547; 0.171) (0.004; 0.003) 0.502 0.502
Ofatumumab 18 (0.302; 0.159) (0.692; 0.162) (0.547; 0.171) (0.003; 0.007) 0.382 0.411
Panitumumab 22 (0.358; 0.212) (0.692; 0.162) (0.547; 0.171) (0.007; 0.014) 0.514 0.525
Rituximab 100 (0.222; 0.169) (0.691; 0.163) (0.547; 0.171) (0.001; 0.001) 0.311 0.311
Trastuzumab 18 (0.304; 0.175) (0.692; 0.162) (0.547; 0.171) (0.002; 0.003) 0.350 0.364

Average 34.750 (0.259; 0.176) (0.625; 0.137) (0.476; 0.141) (0.003; 0.005) 0.417 0.419

Table 5: Average and Standard Deviation (avg; std) of Sequence Similarity (SeqSim), AnnSim and Spearman’s
Rank (SRank3) for Families and Control (Random) Dataset 3.

(a) Dataset 3: Families
Familes SeqSim AnnSim SRank3
aaap (0.093; 0.023) (0.654; 0.102) 0.025

abc (0.088; 0.026) (0.573; 0,110) 0.222

cpa2 (0.051; 0.015) (0.788; 0.077) 0.220

dmt (0.045; 0.013) (0.542; 0.116) 0.146

f-atpase (0.091; 0.023) (0.540; 0.060) 0.231

mate (0.093; 0.020) (0.857; 0.071) 0.134

mfs (0.074; 0.022) (0.724; 0.090) 0.016

mip (0.097; 0.044) (0.607; 0.044) 0.234

p-atpase (0.142; 0.046) (0.502; 0.064) 0.322

vic (0.075; 0.017) (0.462; 0.064) 0.392

Average (0.085; 0.025) (0.625; 0.080) 0.194

(b) Dataset 3: Control
Random SeqSim AnnSim SRank3
#1 (0.044; 0.012) (0.347;0.066) 0.061

#2 (0.041; 0.012) (0.418; 0.083) 0.004

#3 (0.042; 0.010) (0.367; 0.081) -0.139

#4 (0.050; 0.008) (0.418; 0.065) 0.003

#5 (0.052; 0.017) (0.450; 0.089) 0.069

#6 (0.048; 0.018) (0.358; 0.066) -0.039

#7 (0.040; 0.013) (0.418; 0.095) 0.089

#8 (0.043; 0.012) (0.378; 0.075) -0.053

#9 (0.047; 0.013) (0.427; 0.079) 0.061

#10 (0.033; 0.011) (0.408; 0.062) 0.084

Average (0.044; 0.013) (0.399; 0.076) 0.014

Table 6 compares AnnSim with (1 − dtax) and (1 − dps)
computed over the phylogenetic tree for each of the families.
We observe that the values of (1 − dtax) and (1 − dps) are
quite low. This is a results of the binary topology of the
phylogenetic trees. Note that in binary trees only one pair
of terms appear in the same branch. Thus, only one of
the genes in the family is considered to be similar and the
other genes will have very low similarity. Unfortunately,
both metrics suffer from this behavior.

We further note that the Spearman’s correlations SRank4

and SRank5 with (1−dtax) and (1−dps) are identical, even
though the values for (1 − dtax) and (1 − dps) appear to
be different. This too is due to the behavior of these two
metrics in the binary phylogenetic tree.

In summary, our results show that AnnSim validates the hy-
pothesis that genes from families will have a higher distribu-
tion of similar annotations, and will have higher correlation
with sequence based SeqSim, compared to control datasets.

Table 7: Pairs of (average, standard deviation)
of SeqSim normalized sequence similarity, AnnSim

annotation similarity for actins; Spearman’s Rank
SRank6 compares rankings of SeqSim and AnnSim.
Family SeqSim AnnSim SRank6

Actins (0.185; 0.093) (0.520; 0.132) 0.078

5.5 Effectiveness in Dataset 4
We use a case study of manual curation and the phylogenetic
evidence to explore AnnSim on a family of Caenorhabditis
elegans genes. Actins are long cytoplasmic proteins that are

slow-evolving, and present in all eukaryotes. For animals
(and some plants) they are usually present in a small family
of 5-10 copies. Their function is to allow the cell to control
its shape, usually working together with an unrelated pro-
tein called myosin. Muscle cells are mostly filled with dense
arrays of actin and myosin, but all cells have at least a small
amount of actin.

Figure 6 shows the distribution of pair-wise annotation sim-
ilarity for the actins. Figure 7 reports on the (average, stan-
dard deviation) for normalized sequence similarity (SeqSim)
and annotation similarity (AnnSim) for actins. We also re-
port on the the Spearman’s correlation coefficient between
the two rankings induced by these metrics, (SRank6).

We observe that actins have high values of annotation sim-
ilarity; this confirms that AnnSim assigns higher values to
genes in functionally related families. However, we note that
the SeqSim values appear to be very low. This is explained
by the results of the clustering to be described next. All
values were significant at the 95% confidence interval.

Figure 7 illustrates the clustering of actins based on the
values of AnnSim; the threshold for edges was 0.5 to appear
in the figure. The clustering and resulting communities us-
ing AnnSim is consistent with the phylogenetic evidence.
Based on the phylogenetic evidence, act-1, act-2, act-4 and
act-5 are closely related to each other. act-3 is a redundant
variant splice form. The arx-n genes are actin related genes.
Of the 7 genes, only arx-1 and arx-2 can be aligned with
the act-n genes. The other 5 genes arx-3 through arx-7 do
not share sequence similarity with the act-n genes. Finally,
ani-1, ani-2 and ani-3 are actin binding genes. None of them
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Figure 5: Distribution of Annotation Similarity for 4 Arabidopsis Families

Table 6: Average similarity 10 Arabidopsis thaliana families;(1 − dtax) and (1 − dps) where computed on the
phylogenetic tree of the genes that comprise each family in Dataset 3.

Family (1 − dtax) (1 − dps) AnnSim SRank4 SRank5

abc (0.135; 0.038) (0.091; 0.027) (0.573; 0.110) 0.399 0.399
cpa2 (0.154; 0.042) (0.108; 0.031) (0.788; 0.077) 0.307 0.307
dmt (0.156; 0.052) (0.105; 0.036) (0.542; 0.116) 0.491 0.491
f-atpase (0.174; 0.060) (0.121; 0.045) (0.540; 0.060) 0.567 0.567
mate (0.147; 0.046) (0.099; 0.033) (0.857; 0.071) 0.185 0.185
mfs (0.167; 0.055) (0.114; 0.038) (0.724; 0.090) 0.069 0.069
mip (0.186; 0.070) (0.126; 0.049) (0.607; 0.044) 0.407 0.407
p-atpase (0.206; 0.064) (0.144; 0.049) (0.502; 0.064) 0.387 0.387
vic (0.168; 0.056) (0.116; 0.039) (0.462; 0.064) 0.327 0.327

Average (0.166; 0.054) (0.114; 0.039) (0.622; 0.077) 0.349 0.349

share sequence similarity with the act-n genes.

If we examine Figure 7, we observe that the actin binding
ani-1 through ani-3 are not connected to the other genes.
The 5 actins form a community. They are connected to arx-
2 which is one of the 2 actin related genes that share sequence
similarity with the actins. The 7 actin related arx-n genes
also form a community.

To summarize, Dataset 4 is a strong validation of AnnSim
using the phylogenetic evidence. The results from Datasets
2 and 4 suggest that AnnSim can also be used to explore
and explain deeper and more nuanced relationships among
genes or drug families.

6. CONCLUSIONS AND FUTURE WORK
We have proposed an annotation similarity metric AnnSim

to determine the relatedness of two concepts based on the
topological similarity of their sets of annotations. AnnSim is
defined as a 1-to-1 maximal weighted bipartite graph match.
We have performed an extensive evaluation using multiple
datasets and ground truth. We note that the 1-to-1 maximal
weighted bipartite graph match has many limitations since it
ignores unmatched terms and does not consider groups of

matching terms. In future work, we will explore extensions
to n-m weighted bipartite graphs.
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