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Measuring Rényi entanglement entropy with high efficiency
and precision in quantum Monte Carlo simulations
Jiarui Zhao1, Bin-Bin Chen 1, Yan-Cheng Wang 2, Zheng Yan 1,2,3, Meng Cheng4✉ and Zi Yang Meng 1✉

We develop a nonequilibrium increment method in quantum Monte Carlo simulations to obtain the Rényi entanglement entropy of
various quantum many-body systems with high efficiency and precision. To demonstrate its power, we show the results on a few
important yet difficult (2+ 1)d quantum lattice models, ranging from the Heisenberg quantum antiferromagnet with spontaneous
symmetry breaking, the quantum critical point with O(3) conformal field theory (CFT) to the toric code Z2 topological ordered state
and the Kagome Z2 quantum spin liquid model with frustration and multi-spin interactions. In all these cases, our method either
reveals the precise CFT data from the logarithmic correction or extracts the quantum dimension in topological order, from the
dominant area law in finite-size scaling, with very large system sizes, controlled errorbars, and minimal computational costs. Our
method, therefore, establishes a controlled and practical computation paradigm to obtain the difficult yet important universal
properties in highly entangled quantum matter.
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INTRODUCTION
Entanglement entropy (EE) is a physical quantity that measures
the quantum entanglement in an interacting many-body system.
The scaling form of the entanglement entropy contains universal
information of the system and can be used to characterize
quantum phases and phase transitions in interacting lattice
models. For these reasons, the understanding and computation
of EE attract much attention from the condensed matter, quantum
information, and high-energy communities. Significant theoretical
progress have been made to determine the universal terms in the
EE in different kinds of quantum phases, including quantum
critical systems, gapped phases in (2+ 1)d, and systems with
spontaneous continuous symmetry breaking1–23, and on the
computational front the Quantum Monte Carlo methods have
proven to be a reliable way to numerically measure the Rényi
entanglement entropy10,20,22,24–28.
We now briefly review what has been known about the scaling

form of EE in (2+ 1)d, which is the main focus of this work.
Suppose the system is partitioned into regions A and A, and
denote the length of the boundary of A by l. For critical or gapped
systems, the entanglement entropy (both von Neumann and
Rényi) takes the following form when A is sufficiently large:

S ¼ al � s lnðlÞ � γ þ Oðl�1Þ: (1)

Here a is a non-universal area law coefficient. The coefficient of
the logarithmic correction s is a universal number determined by
the geometric properties of the partition (i.e., if A is a rectangle
surrounded by A) and intrinsic properties of the underlying
physical system (i.e., central charge of the conformal field theory
at certain critical points)3,4. When s= 0, the constant γ becomes
universal and when the system is gapped, it becomes indepen-
dent of the shape of A and is known as the topological
entanglement entropy (TEE). In that case, the value of γ is given
by the logarithm of the total quantum dimension of the
underlying topological order5,6.

It is of great interest to obtain the values of the universal
coefficients s and γ since they provide access to universal
properties of the system that are hard to measure otherwise.
Extracting s or γ requires finite-size scaling with l, which is
challenging given that the calculation of EE for an interacting
many-body system is already a difficult task in general. Using
quantum Monte Carlo (QMC) simulations the numerical study of
the scaling of 2nd Rényi EE has been carried out in lattice models
that exhibit e.g., spontaneous O(N) symmetry breaking and related
critical points10,17–23,26,27,29, and also in models with Z2 topolo-
gical order12,13,30. However, despite all the progress numerical
computation of EE in QMC remains difficult due to the lack of a
stable estimator, especially when lattice models have multi-spin
interactions or frustrations, not to mention the even more
complex fermionic models where the computational complexity
scales with the system size to a higher power25,31. The high
numerical cost of measuring EE mainly stems from the fact that to
calculate the Rényi EE one has to enlarge the configuration space
to create replicas, and perform partial connection of the partition
functions between the replicas during the sampling processes.
These are the difficulties we set to overcome in this work. Here,

by combining the nonequilibrium measurements of entanglement
entropy based on the Jarzynski equality24,28,32 and the increment
trick swapping replicas10,26, we developed a new nonequilibrium
increment method, that makes use of the divide-and-conquer
procedure of the nonequilibrium process to improve the speed of
the simulation and the data quality of the entanglement
measurement. We demonstrate the strength and versatility of
the method with a few representative examples of (2+ 1)d
quantum many-body lattice model systems, in which the EEs are
notoriously hard to compute. We explicitly show that previous
methods are not able to extract the universal corrections beyond
the leading area-law contribution in the scaling of EE, due to the
lack of efficiency and precision in the EE computation.

1Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China. 2Beihang
Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China. 3State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China.
4Department of Physics, Yale University, New Haven, CT 06520-8120, USA. ✉email: m.cheng@yale.edu; zymeng@hku.hk

www.nature.com/npjquantmats

Published in partnership with Nanjing University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00476-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00476-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00476-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-022-00476-0&domain=pdf
http://orcid.org/0000-0001-8896-6173
http://orcid.org/0000-0001-8896-6173
http://orcid.org/0000-0001-8896-6173
http://orcid.org/0000-0001-8896-6173
http://orcid.org/0000-0001-8896-6173
http://orcid.org/0000-0002-4972-6545
http://orcid.org/0000-0002-4972-6545
http://orcid.org/0000-0002-4972-6545
http://orcid.org/0000-0002-4972-6545
http://orcid.org/0000-0002-4972-6545
http://orcid.org/0000-0002-3349-5965
http://orcid.org/0000-0002-3349-5965
http://orcid.org/0000-0002-3349-5965
http://orcid.org/0000-0002-3349-5965
http://orcid.org/0000-0002-3349-5965
http://orcid.org/0000-0001-9771-7494
http://orcid.org/0000-0001-9771-7494
http://orcid.org/0000-0001-9771-7494
http://orcid.org/0000-0001-9771-7494
http://orcid.org/0000-0001-9771-7494
https://doi.org/10.1038/s41535-022-00476-0
mailto:m.cheng@yale.edu
mailto:zymeng@hku.hk
www.nature.com/npjquantmats


In the QMC computation of the 2nd Rényi EE, the shape of
spacetime configuration, as shown in Fig. 5, is a two-sheeted
Riemann surface for 1D systems. Such a topological unit provides
a stable and efficient way of carrying out the computation both
conceptually and technically. In general, the n-th order Rényi
entropy can be obtained by an n-sheeted Riemann surface, which
can also help to reconstruct the low-lying entanglement spectrum
for quantum many-body systems33.
The structure of the paper is organized in the following manner.

Firstly, we show the results of finite-size scaling of EE on three
representative non-trivial systems, all in (2+ 1)d, starting from the
Néel state of the antiferromagnetic Heisenberg model with
spontaneously broken continuous symmetry, to the quantum
critical point of O(3) CFT and eventually arriving at the scaling
form on toric code toy model with Z2 topological order and
Kagome Z2 quantum spin liquid state on a torus geometry, where
in the former we also compared the results with density-matrix
renormalization group (DMRG) on cylinder geometry. In both
cases, the TEE of 2γ ¼ 2 lnð2Þ is obtained unambiguously in QMC
lattice model simulations. And in all these cases, our algorithm
provides reliable data with high efficiency and very large system
sizes. Then we conclude the results with some immediate
directions for further research. Lastly, we explain in detail the
methodology of our algorithm, which is the nonequilibrium
increment estimator for the Rényi EE24,27 with high efficiency and
precision.

RESULTS
In this section, we demonstrate the strength of our algorithm with
three representative examples. (i) Entanglement entropy at the
quantum phases with spontaneous continuous symmetry break-
ing; (ii) Entanglement entropy at the quantum critical point with
conformal field theory description; (iii) Entanglement entropy at
the topological order phase with fractional excitations. In each
case we will show that the universal correction (s or γ) can be
reliably determined using our method.

Entanglement of spontaneous continuous symmetry breaking
state
For systems with spontaneously broken continuous symmetry, it is
known that the EE follows the scaling form of Eq. (1) with the
coefficient of the logarithmic correction s=− NG(d− 1)/2, where
NG is the number of Goldstone modes and d is the spatial
dimension11. The logarithmic correction originates from the
interplay between gapless Goldstone modes and restoration of
the symmetry in a finite system.
We consider a square lattice antiferromagnetic Heisenberg

model, whose ground state breaks the SU(2) spin rotational
symmetry in the thermodynamic limit. The number of Goldstone
modes is NG= 2 and therefore we expect s=−1. We measure
Sð2ÞA ðLÞ, the 2nd Rényi entropy for an entangling region A. The
simulation setup is shown in the inset of Fig. 1. The model is
defined on a L × L/2 lattice with periodic boundary conditions or a
L × L/2 torus, and the entangling region A is chosen to be a L/2 × L/
2 cylinder on the torus, in such a way that there are no corners
between A and A, and the boundary of A is of length (volume) L.
Sð2ÞA ðLÞ is computed using the finite-temperature stochastic series
expansion (SSE) QMC34,35 for different L, which is then fitted to Eq.
(1). From the fitting with L∈ [40, 160], we find s=− 1.00(9), in
good agreement with the theoretical prediction and a previous
numerical measurement with the sequential nonequilibrium
method24. However, we emphasize that unlike ref. 24 here we do
not need to use the valence bond basis in the QMC simulation to
suppress the thermal fluctuations. The more standard finite-
temperature simulation 1/T= L in the Sz basis already suffices to
successfully achieve the desired data quality with high efficiency.

Entanglement at (2+ 1)d quantum critical point
The second example to test the performance of our method is a
lattice model that realizes the O(3) quantum critical point (QCP).
For this purpose, following previous literature27,36,37, we consider
the square lattice J1-J2 Heisenberg model (the columnar dimer
lattice model), illustrated in the inset of Fig. 2. The Hamiltonian
reads

HJ1�J2 ¼ J1
X
hiji

Si � Sj þ J2
X
hiji0

Si � Sj; (2)
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Fig. 1 Identification of Goldstone modes. Second Rényi entangle-
ment entropy of two dimensional L ´ L

2 Heisenberg model for
different system sizes. The inset shows the entanglement region A is
chosen to be a L

2 ´
L
2 cylinder on the torus without corners and with

boundary length (area) L. The temperatures are chosen to be 1/T= L.
The fitting result is Sð2ÞA ðLÞ ¼ 0:092ð1ÞLþ 1:00ð9Þ lnðLÞ � 1:63ð3Þ for
L∈ [40, 160]. The standard error of the mean (SEM) is used when
estimating the errors of the physical quantities.
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Fig. 2 Entanglement entropy at O(3) criticality. Second Rényi
entanglement entropy of the square lattice J1 − J2 columnar
dimer model for different system sizes. The entanglement region
A is chosen to be a L

2 ´
L
2 square with four corners and boundary

length 2L. The corners contribute to the universal log-correction
with the coefficient β related to the central charge of the
underlying CFT of the O(3) transition. The fitting result is
Sð2ÞA ðLÞ ¼ 0:167ð2ÞL� 0:081ð4Þ lnðLÞ � 0:124ð7Þ. SEM is used when
estimating the errors of the physical quantities.
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where 〈ij〉 denotes the thin J1 bonds and hiji0 denotes the thick J2
bonds. The QCP located at ðJ2=J1Þc ¼ 1:90951ð1Þ36 is known to fall
within the (2+ 1)d O(3) universality class.
In the model, the presence of strong J2 and weak J1 bonds

breaks the lattice translation symmetry. Because of the translation
symmetry breaking, we choose the entangling region A so that its
boundary avoids strong J2 bonds to reduce the finite-size error in
the scaling behavior of the entanglement entropy. A similar
strategy has also been adopted in recent studies of the disorder
operator in the same model37.
We employ the torus geometry of L × L and choose a rectangle

entangling region of size L/2 × L/2 with four corners(shown in the
inset of Fig. 2). We measure Sð2ÞA ðLÞ at ðJ2=J1Þc at 1/T= L and monitor
its scaling behavior. The results are shown in Fig. 2. Here again, by
fitting with the form in Eq. (1), we obtain the coefficient of the
logarithmic correction s= 0.081(4). This value is again consistent with
the theoretical prediction for the O(3) CFT and previous numerical
results on (2+ 1)d Ising, XY and Heisenberg QCPs17,21,22,29,37. And our
method can reach much larger systems sizes and has better data
quality than the previous numerical results.

Entanglement of topological ordered state
In a fully gapped ground state, the entanglement entropy S for a
region A generally satisfies S= al− γ+⋯where γ is the TEE. For
simply-connected regions, γ ¼ lnD where D is the total quantum
dimension of the underlying topological order. For Z2 toric code
we have D ¼ 2. Extracting TEE from numerical simulations of
interacting lattice models has proven to be a challenging task. In
the following, we present our results for TEE in two different lattice
models exhibiting Z2 topological order. As will be shown below,
our algorithm can go beyond limitations in previous Monte-Carlo
studies and the expected value of TEE is obtained in the Balents-
Fisher-Girvin kagome spin-1/2 model, which unambiguously
proves that the ground state is a Z2 spin liquid. For clarify, in
this section, we fix γ ¼ ln 2.

Toy model
To test the efficiency of our algorithm on systems with topological
order, we start with a toy model of Z2 topological phase on a 2d
checkerboard lattice38–40, with the following Hamiltonian,

Htoy ¼ �Jp
X
’

B’ � h
X
i

σx
i ; (3)

with B’ �Qi2’σz
i and ■ being the red-colored plaquettes in

Fig. 3a. Note that this Hamiltonian has an extensive number of
conserved quantities:

A& ¼
Y
i2&

σx
i ; (4)

where □ are the white plaquettes in Fig. 3a. In fact,− ∑◼B◼− ∑□A□
is the celebrated toric code model.
Below, we will combine finite-size DMRG41 and QMC methods,

to show the low-energy physics of this model [c.f. Eq. (3)] is
equivalent to the well-known toric code model under transverse
field13,

HTCM ¼ �Js
X
&

A& � Jp
X
’

B’ � h
X
i

σx
i ;

Our DMRG simulations reveal 〈A□ 〉= 1 for the range of h we
consider in this section, in the low-temperature regime of Htoy.
Thus the ground state wavefunctions of Htoy and HTCM are
identical for Js > 0. In the toric code model, the transverse field
induces dynamics of ■-plaquette excitations. As h increases,
such excitations condense and drive a transition to a trivial
confined phase. Thus, the toy model Htoy should also
experience a continuous phase transition at h= hc ≃ 0.33342,
from a Z2 deconfined phase to a confined phase.
With DMRG, the ground state properties of Htoy are computed

on a Lx × Ly cylinder geometry with open/periodic boundary
condition along the horizontal(x)/vertical(y) direction. We can
directly calculate the von Neumann entropy

SvN ¼ �trðρA ln ρAÞ;
where the reduced density matrix ρA ¼ trB ψj i ψh j and the
subsystems A and B are both cylinders of size Lx

2 ´ Ly . Figure
3b shows that the plaquette energy 〈B◼〉-s monotonically
decrease as the transverse field h grows, and a change of curve
can be seen around the dashed vertical line, which highlights
the point h= hc ≃ 0.333 (the inset shows dhB’i

dh and a dip is found
around h ≃ 0.338 for both Ly = 10 and 12 systems). In Fig. 3c, for
72 × 10 and 72 × 12 cylinders, SvN-s are shown versus h and
exhibit peaks around hc. The above DMRG data strongly suggest
the expected deconfinement-confinement transition at h= hc
≃ 0.333, consistent with the literature13,42.
To further extract the nature of the low-h phase, we perform

finite-size scaling and extrapolate the topological entanglement
entropy (TEE), i.e., γ in Eq. (1), both in the cylinder geometry for
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Fig. 3 Results of TEE for toy model. a The checkerboard lattice Z2 gauge field model with plaquette term B◼ and transverse field h term as in
Eq. (3). b, c The DMRG results on the plaquette energy term and the von Neumann entropy for cylinder geometry with Lx= 72 and Ly= 10 and
12. The deconfine-confine transition happens at hc= 0.33, indicating by the vertical dashed line, which is determined by the dip of the slope d
〈B◼〉/dh for both circumferences. c The EE at h= 0.3 < hc of von Neumann and 2nd Rényi obtained from DMRG with 72 × 12 cylinders and the
QMC measurements on torus of size L × L with L= 4, 6, 8, 10. d The entangling region A for QMC is L × L/2 (similar with Fig. 4b and the
boundary length l= 2L. The extrapolation for both DMRG and QMC gives rise to the TEE of values γ= 0.69(1) for cylinder geometry and 2γ=
1.35(8) for torus geometry, respectively. SEM is used when estimating the errors of the physical quantities.
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DMRG and torus geometry with our QMC algorithm. As shown in
Fig. 3d, we measure both von Neumann entropy SvN and Rényi
entropy S(2) in cylinder geometry via DMRG simulations. With
circumferences Ly= 6, 8, 10, 12 and fixed length Lx= 72, the
entanglement entropies are measured and extrapolated with
boundary length l= 2Ly, where the extrapolated value of γ= 0.69
(1) is obtained. For the torus geometry of size L × L, the Rényi
entropy versus l= 2L is also measured in QMC simulations, and
the extrapolation gives 2γ= 1.35(8). Both of the results are
numerically indistinguishable from γ ¼ ln 2 � 0:693.

Minimal entropy state
We now discuss an important subtlety in our prescription for
extracting TEE. Since TEE is the correction to the entanglement
area law, to directly extract TEE complex prescriptions on planar
partitions have been designed5,6 to cancel the leading area-law
contributions as well as possible corrections from corners.
However, when numerically implemented on lattice such pre-
scriptions typically suffer from severe finite-size effects because
they require several non-overlapping regions. As an example, the
Levin-Wen prescription has been employed to study the TEE of
the Z2 quantum spin liquid state, which in principle should yield a
universal correction of 2γ ¼ 2 ln 2. The best results by now only
find ln 2 instead of 2 ln 212,30. This is because within the allowed
system sizes for large-scale numerical simulations, the size of each
of the four partitions is at most l ~ 10, which is too small compared
with the characteristic length-scale of the problem (inverse vison
gap43, as discussed in the next section), and the cancellation of
the entanglement entropies between different partitions are too
noisy to give the TEE in a controlled manner.
To this end, the kind of entanglement cut adopted in our

simulations, i.e., bipartition of a torus into two cylinders, has the
advantage of maximally enlarging the entangling region while
avoiding corners on the boundary. Naively, the TEE should be 2γ
since the boundary has two disconnected components. However,
because the boundary curve is topologically nontrivial (non-
contractible cycles on a torus), the value of the TEE now depends
on which ground state is used for the calculation of the
entanglement entropy. More specifically, for Z2 toric code and a
given entanglement cut (e.g., along the y direction), only certain
choices of ground states on torus yield the expected value
2γ ¼ 2 ln 2. Any other ground state gives a smaller γ and thus a
larger S for the same size. For this reason, these special ground states
which saturate 2γ ¼ 2 ln 2 are called minimum entropy states
(MES)44,45. Physically, the MES are characterized by a definite anyon

flux through the non-contractible entanglement cut, so are in one-to-
one correspondence with anyon excitations of the topological order.
Numerical simulations in DMRG for the toric code toy model in

the previous section and quantum spin liquid system13, have
shown that due to the energy minimization process in the DMRG
for quasi-one-dimensional systems with finite accuracy, the
algorithm actually finds the desired MES with γ ¼ ln 2 for the
cylinder geometry (also shown in ref. 13) as shown in Fig. 7d.
Our numerical results in the previous section for Z2 toric code

toy model suggest that the Monte Carlo sampling processes in the
our algorithm serve the same purpose in finding the expected TEE
of 2γ ¼ 2 ln 2, as shown in Fig. 3d. In the next section, we further
strengthen this point using an even more nontrivial test of the
kagome Z2 spin liquid lattice model.

Z2 quantum spin liquid on kagome lattice
The last and yet the most challenging case for the entanglement
entropy measurement is that of the Balents-Fisher-Girvin (BFG)
model with Z2 quantum spin liquid (QSL) ground state12,46–53. As
far as we are aware of, the expected value of the TEE for such
Kagome Z2 QSL model has never been observed in previous QMC
computations of the 2nd Rényi EE.
As illustrated in Fig. 4a, b, the model is defined on a Kagome

lattice with the following Hamiltonian

H ¼ �J±
X
hi;ji

ðSþi S�j þ H:c:Þ þ Jz
2

X
⎔

X
i2⎔

Szi

 !2

; (5)

where J± is the ferromagnetic transverse nearest neighbor
interaction and Jz is the antiferromagnetic longitudinal interac-
tions between any two spins in the hexagon of the Kagome plane.
The model is known from previous intensive QMC simulations to
host a Z2 QSL and the transition from the ferromagnetic phase to
theZ2 QSL occurs at ðJ ± =JzÞc ¼ 0:07076ð2Þ47,52. The identification
of a Z2 QSL ground state for ðJ ± =JzÞ<ðJ ± =JzÞc has been
supported by several different types of measurements, such as
the unconventional quantum phase transition between ferromag-
netic phase and the Z2 QSL belonging to the (2+ 1)d XY* (instead
of XY) universality class47,48,51, signifying the existence of fractional
anyon excitations in the Z2 QSL phase, and the vison-pair spectra
with translation symmetry fractionalization50, the vestigial anyon
condensation transition towards other topological ordered state53

and the fractional conductivity at the (2+ 1)d XY* critical point52.
This system is also relevant for on-going experimental efforts in

synthesizing and identifying QSL materials in the Kagome based
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Fig. 4 Results of TEE for Z2 quantum spin liquid. The second Rényi entanglement entropy of the 2D Kagome Z2 QSL model in Eq. (6) for
different aspect ratios, with the torus geometry of size L ´ L

2 in (a) and L × L in (b), J±/Jz= 0.0625 (inside the QSL phase) and 1/T= 480 (below
the anyon gaps). The entangling region A is chosen to be a L

2 ´
L
2 cylinder in (a) and L ´ L

2 cylinder in (b), which is half of the system without
corners. Therefore the entanglement entropy is expected to only have area law contribution plus a constant γ -- the topological entanglement
entropy. c For the Z2 QSL state on Kagome lattice with torus geometry, the γ ¼ 2 lnð2Þ signifying the fractionalized statistics of the topological
ordered QSL state. Our fitting results with L= 12, 14, 16 in type-I geometry (a) and L= 6, 8, 10 in type-II geometry (b), give rise to γ= 1.4(2).
SEM is used when estimating the errors of the physical quantities.
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quantum magnets such as Zn-paratacamite ZnxCu4−x(OH)6Cl2(0 ≤
x ≤ 1) with Herbertsmithite its full Zn end54–58 and Zn-doped
Barlowite ZnxCu4−x(OH)6FBr and Zn-doped Claringbullite
ZnxCu4−x(OH)6FCl (0 ≤ x ≤ 1)59–63 with NMR59, neutron scatter-
ing64,65, μSR65 and thermodynamic measurements66,67. Better
theoretical characterization of the Z2 QSL states with fundamental
probe such as the EE, and its future connection with the
experimental reality such as the existences of magnetic impu-
rities67, will certainly help to eventually reveal the existence of
fractionalized excitations and anyonic statistics in Kagome based
quantum magnets68,69.
However, previous attempts of measuring the second Rényi EE

in this model12 and other similar frustrated Kagome spin model30

using the Levin-Wen prescription, were not successful in revealing
the actual value of the TEE 2γ ¼ 2 ln 2 in Eq. (1). As discussed in
the previous section, although the Levin-Wen construction5,6 can
in principle remove the area law contribution and expose the
universal constant correction of 2γ, what has been observed at
best is a plateau of approximately γ for finite-size systems (e.g.,
3 × 8 × 8 with 3 sites per unit cell of the Kagome lattice), at an
intermediate temperature below the spinon energy scale ~ Jz, but
still comparable or higher than the vison energy scale of � J3± =J

2
z .

It is understood that the data quality and the computational
complexity in simulating even larger sizes and lower temperatures
prohibit more precise determination of the 2nd Rényi EE of the
system12.
We found that our our algorithm successfully overcomes these

difficulties. We consider two kinds of geometry as shown in Fig.
4a, b, with periodic boundary conditions in both lattice directions
and aspect ratios Lx/Ly= 2 and Lx/Ly= 1. We choose a cylindrical
entangling region A without corners but with two disconnected
boundaries. In this way, the second Rényi entropy (for a MES)
should scale as

Sð2ÞA ¼ 2αLy � 2γ; (6)

where 2Ly is now the total length of the boundary and the TEE is
2γ ¼ 2 ln 2 � 1:386. We carried out the non-equilibrium increment
measurement with N= 240 parallel pieces and gradually increase
the system sizes Lx= L (so the two torus are L × L/2 and L × L,
respectively), with J±/Jz= 0.0625 (inside the QSL phase) and T= 1/
480 (below the anyon gaps)50,52.
The results are shown in Fig. 4c. One can see that as L increases,

Sð2ÞA ðLÞ clearly develops a linear behavior, with a converged slope
(α in Eq. (6)) and more importantly, converged intercept 1.4(2), for
both systems with different aspect ratios. It is worth noting that
the converged behavior with system sizes starts to emerge at
around l ~ 12, which may explain why previous QMC works on the
same system12 fail to extract the value of 2 ln 2. This observation
shows the importance of having access to sufficiently large system
sizes to be able to observe the full TEE. Such large-scale
computation of entanglement entropy only becomes possible
because of our improved algorithm, which can be easily and
robustly implemented for such complicated models, resulting in
significantly improved performance. Our results thus unambigu-
ously demonstrate the existence of Z2 QSL in the system.
As mentioned in the previous section, despite potential

complications known theoretically44,45, owing to the sampling
selection mechanism built into the Monte Carlo processes, our
algorithm, based on the numerical evidence, indeed finds the MES
TEE, similar to the DMRG application on the other Z2 spin liquid
model13.

DISCUSSION
The measurement of entanglement entropy differs fundamentally
from more traditional probes such as order parameters, structure
factors and various correlation functions, being able to reveal

more subtle global information hidden in the wave function of
quantum many-body systems. However, the precise detection of
EE has been very hard for the past decades. Here we show that
previously difficult task can be greatly optimized and improved via
the nonequilibrium increment method, and in this way, one can
investigate the scaling behavior of EE in many (2+ 1)d quantum
many-body systems with very large system sizes, controlled
errorbars, and minimal computational costs. Starting from the
three representative cases shown here, one can foresee the
implementation and measurement of EE via our algorithm for
other topological ordered phases and phase transitions, interact-
ing fermionic systems such as the Gross–Neveu QCPs with critical
Dirac fermions70, the deconfined QED3 problems of gauge fields
coupled to fermion matter fields71–73 and the more complicated
situations of non-Fermi-liquid and quantum critical metals74–82

and hopefully make further suggestions to the on-going experi-
mental search for these strongly entangled quantum matter.
At last we want to mention that, except for the measurement of

EE, in recent years new measurements such as the symmetry
domain walls or field lines of emergent gauge field and disorder
operators to probe and characterize phases and phase transitions
and the associated condensation of extended objects, sponta-
neously breaking of the so-called higher-form symmetry29,37,83–93

have been successfully designed and implemented in many exotic
quantum many-body systems. For example, the recent measure-
ment of disorder operator at the deconfined quantum critical
point (DQCP) has unambiguously exhibited the difference
between the DQC and other QCPs with unitary CFT descrip-
tion27,37, as is also seen in the measurement of entanglement
entropy27. These new measurements are very hopeful to extract
more fundamental information and lead to a deeper under-
standing of the interacting many body systems.

METHODS
Replica trick
In a quantum many-body system, the entanglement of a subsystem A with
the rest of the system A is most commonly identified by the von-Neumann
entropy SðvNÞA ¼ �TrρA ln ρA . Here ρA ¼ TrAρ is a reduced density matrix
defined as the partial trace of the total density matrix ρ over a complete
basis of subsystem A. The calculation of the von-Neumann entropy directly
from the reduced density matrix in QMC simulations is difficult as usually
one does not have the wave function of a generic quantum many-body
system, say, in (2+ 1)d.
However, the Rényi entropy2,3,94

SðnÞA ¼ 1
1� n

ln
ZðnÞ

A

ZðnÞ

 !
; (7)

which can be regarded as a generalization of the von-Neumann entropy,
approaching the latter when n→ 1, can be calculated by the QMC method.
As ZðnÞ ¼ ½Trðe�βHÞ�n is the ordinary partition function of n replicas of the
system while ZðnÞ

A is a modified partition function with the boundary
conditions of area A of the n replicas changed according to the value of n.
In the case of n= 2 and in the 1D model, Zð2Þ

A is two replicas with area A
glued together as depicted in Fig. 5. However, for sites in A for each replica,
the usual periodical boundary condition is maintained.
Based on Eq. (7), various estimators have been introduced to calculate

the Rényi entanglement entropy10,20,26. However, the data quality of these
estimators has severely limited their usage in higher dimensions and larger
sizes. And for all the previous methods mentioned, the obtainable system
sizes of the 2nd Rényi entropy of spin lattice models are very limited. There
is one empirical explanation for this limitation. All the previous methods

somehow measure the observable ZðnÞ
A

ZðnÞ directly to obtain the Rényi entropy

in the equilibrated ensemble. For interacting spin lattice models, SðnÞA

typically obeys an area law with respect to the boundary length l, so ZðnÞ
A

ZðnÞ

should decay exponentially with the system size L (typically we choose l∝

L in 2D systems). As a result, the observable ZðnÞ
A

ZðnÞ will be too small to be
obtained precisely and efficiently when we increase the system size.
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The recent proposal of the nonequilibrium method24,28, which borrows
Jarzynski’s equality32 of a nonequilibrium process, has made substantial
progress in this regard by conducting the measurement out of the
equilibrium protocol. It can obtain the 2nd Rényi entanglement with
improved data quality for larger system sizes. The success of this method,
as we will discuss in the next section, might owe to the fact that in the

nonequlibrium protocol we are not taking ZðnÞ
A

ZðnÞ as a direct observable in an

equilibrated ensemble, but measuring the total work WðnÞ
A done in a

nonequilibrium tunning process which is of the same order of SðnÞA
according to Eq. (12). But the disadvantage of this method, as we will show
in the following sections, is the tunning process should not be too fast.
However, this shortcoming can be overcome by the increment trick which
gives rise to a nonequilibrium increment method, making it possible to
obtain the Rényi entropy more precisely and efficiently for the more
complicated quantum many-body systems with frustration, multi-spin
interactions, etc. We will give more details of the nonequilibrium protocol
and the comparison of our method with the original proposal in the
subsequent sections.

Nonequilibrium measurement
In this section the nonequilibrium method24 will be reviewed as the
foundation of our further development. The first step of the none-
quilibrium method is to introduce a partition function ZðnÞ

A ðλÞ parameter-
ized by λ. ZðnÞ

A ðλÞ is defined as the sum of a collection of partition functions
ZðnÞ
B weighted by a binomial distribution gA λ;NBð Þ ¼ λNB ð1� λÞNA�NB .

According to this definition, ZðnÞ
A ðλÞ can be written as

ZðnÞ
A ðλÞ ¼ P

B�A
λNB ð1� λÞNA�NBZðnÞ

B

¼ P
B�A

gA λ;NBð ÞZðnÞ
B

(8)

where ZðnÞ
A ð1Þ ¼ ZðnÞ

A and ZðnÞ
A ð0Þ ¼ ZðnÞ

+ . With this definition, the Rényi

entanglement entropy can be rewritten as SðnÞA ¼ � 1
n�1

ZðnÞ
A ð1Þ

ZðnÞ
A ð0Þ, which leads

to an integral expression

SðnÞA ¼ 1
1� n

Z 1

0
dλ

∂ lnZðnÞ
A ðλÞ

∂λ
(9)

where ∂ lnZðnÞ
A ðλÞ

∂λ can be measured by h∂ ln gA
∂λ i

λ
¼ hðNB=λÞ � ðNA � NBÞ=

ð1� λÞiλ. Ref. 24 puts forward a nonequilibrium process where the system

evolves from a configuration of ZðnÞ
+ðZðnÞ

A ð0ÞÞ to a configuration of

ZðnÞ
A ðZðnÞ

A ð1ÞÞ through tunnning from λ= 0 to λ= 1. The total work done in
this process is

WðnÞ
A ¼ � 1

β

Z tf

ti

dt
dλ
dt

∂ ln gA λðtÞ;NBðtÞð Þ
∂λ

(10)

where λ(ti)= 0 and λ(tf)= 1.
According to the Jarzynski’s equality32, the free energy difference ΔF

accumulated in such a path can be extracted by the ensemble average of

nonequilibrium measurement by the following relation:

ΔF ¼ �β�1 ln e�βW ; (11)

the overbar refers to the average of an ensemble of nonequilibrium paths.
As the free energy for a canonical ensemble can be expressed by
F ¼ �β�1 lnZ, the Rényi entanglement entropy can then be estimated by

SðnÞA ¼ 1
1� n

ln e�βWðnÞ
A

D E� �
(12)

where SðnÞA is rewritten in the free energy difference of ensemble ZðnÞ
A ð0Þ

with ensemble ZðnÞ
A ð1Þ.

Note that although λ(t) can take different forms, in this paper, we only

consider the case where λ varies uniformly with t. In this case, WðnÞ
A

can be calculated by accumulating Δ ln gAðλðtmÞ;NBðtmÞÞ ¼
ln gAðλðtmþ1Þ;NBðtmÞÞ � ln gAðλðtmÞ;NBðtmÞÞ or alternatively recording the
value of gAðλðtmþ1Þ;NBðtmÞÞ

gAðλðtmÞ;NBðtmÞÞ at each time and multiplying them at the end of the
measurement.

Nonequilibrium increment method
Above is the basic concept of the nonequilibrium measurement, our
optimization of this method takes advantage of the fact that the partition

function ZðnÞ
A ðλÞ is well defined at every λ∈ [0, 1], so that we can insert a

set of identity elements ZðnÞ
A ðkhÞ

ZðnÞ
A ðkhÞ ðk ¼ 1; 2; :::;N � 1Þ and rewrite ZðnÞ

A ð1Þ
ZðnÞ

A ð0Þ as

ZðnÞ
A ð1Þ

ZðnÞ
A ð0Þ

¼ ZðnÞ
A ðNhÞ

ZðnÞ
A ððN � 1ÞhÞ

ZðnÞ
A ððN � 1ÞhÞ

ZðnÞ
A ððN � 2ÞhÞ

� � � Z
ðnÞ
A ðhÞ

ZðnÞ
A ð0Þ

(13)

where N is an integer and h ¼ 1
N. The increment trick is discussed in ref. 26

as a way to overcome the limitation of equilibrium measurement of the
Rényi entanglement entropy with large entangling regions. Our algorithm
is the nonequilibrium version of the increment trick. According to Eqs. (13)
and (9) the Rényi entanglement entropy can be reexpressed as

SðnÞA ¼ 1
1� n

X
k¼0;1;��� ;N�1

Z ðkþ1Þh

kh
dλ

∂ lnZðnÞ
A ðλÞ

∂λ
: (14)

Jarzynski’s equality32 can be carried out on each piece ZðnÞ
A ððkþ1ÞhÞ
ZðnÞ

A ðkhÞ ðk ¼
1; 2; :::;N � 1Þ and the corresponding small piece of integralR ðkþ1Þh
kh dλ

∂ lnZðnÞ
A ðλÞ

∂λ . Then we obtain

SðnÞA ¼ 1
1� n

X
k¼0;1;��� ;N�1

ln e�βWðnÞ
k;A

D E� �
(15)

where WðnÞ
k;A-s are defined same as Eq. (10) but λ(ti)= kh and λ(tf)= (k+ 1)h

for each small piece in the nonequilibrium process, as shown in Fig. 6. In
this way, our algorithm follows the protocol:

1. We perform quantum Monte-Carlo simulation on the partition
function Z and store the thermalized QMC configuration (one
replica) for later use.

2. Prepare two replica configurations as the thermalized configuration
of Zð2Þ

+ and then send them to N parallel processes.
3. As shown in Fig. 6, for process k we set the initial value of λ to be λ

(ti)= kh. The value of λ controls the probability of sites in A (the
entanglement region) joining or leaving the glued geometry of the
replicas, with the following probabilities:

Pjoin ¼ min
λ

1� λ
; 1

� �
Pleave ¼ min

1� λ

λ
; 1

� �
: (16)

Each MC sweep then consists of the following steps:

● Each site in A can choose whether to stay or leave the region
according to Eq. (16). After the decision is made, change the
topology, i.e., update the connectivity of the entangling region A.

● After the trace structure is determined, carry out the MC updates
on the replicas.

4. At this step, we fix λ= kh for process k and conduct several MC
sweeps to thermalize the configuration at the beginning of the
nonequilibrium measurement.

5. Start the nonequilibrium measurement. Increase the value of λ by Δλ
and record the value of gAðλðtmþ1Þ;NBðtmÞÞ

gAðλðtmÞ;NBðtmÞÞ . Here λ(tm)= kh+mΔλ and
λ(t0)= λ(ti= kh). Then carry out a MC sweep. Repeat this process

��

A A

Fig. 5 The geometrical presentation of the partition function Zð2Þ
A .

Area A of the two replicas is glued together, while area A of the two
replicas are independent to each other.
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until λ(tm) reaches the value of (k+ 1)h. For each process,

e�βWðnÞ
k;A

D E
¼ Qh=Δλ�1

m¼0
gAðλðtmþ1Þ;NBðtmÞÞ
gAðλðtmÞ;NBðtmÞÞ

D E
.

6. In the end, we collect the observable from all the N parallel
processes and sum them to get the Rényi entanglement entropy
according to Eq. (15).

To test the efficiency of our algorithm with the original nonequilibrium
proposal, we carry out the measurement of the second Rényi EE of a 2D
antiferromagnetic Heisenberg model on a Lx: Ly= 32 × 16 torus, with the
partition of A and A chosen to be the same as the inset of Fig. 1. Note that
when the total number N of small processes equals 1, our algorithm
reduces to the original proposal of the last section. Figure 7 shows the

comparison of the results of Sð2ÞA versus the total quench time for N= 1 and
N= 24. For the N= 1 case, one sees that as tf− ti becomes larger, the
second Rényi EE gradually converges. When tf− ti is not sufficiently large a
shift of the Rényi EE from the converged value of Sð2ÞA ¼ 4:84ð1Þ manifests.
We find that this deviation is systematic and is probably caused by two
reasons. First, when the quench is not slow enough, not all sites in A will
join the topology of glued geometry at the end of the nonequilibrium
process, so the final state of the tunning process is not a configuration of
Z2

Að1Þ which gives rise to a bias in Eq. (12). Second, the observable of the
nonequilibrium protocol is actually an integral defined in Eq. (10), and in
the algorithm the sample mean method is used to estimate this integral,
which naturally brings a systematic error that decays when the quench
time increases. Although the errors mentioned above can always be
eliminated by increasing the quench time, in practice it is not an ideal way
because of the limited computing time. This defies the controlled
computation of Rényi EE of larger and more complicated systems such
as the Kagome spin model.
For the N= 24 case, the 2nd Rényi entropy converges faster and has

smaller errorbars than the results of N= 1 as the quench time tf− ti
increases. This is because the total quench time from λ= 0 to λ= 1 is
actually 24 × (tf− ti) in the simulation. The parallelization of the none-
quilibrium process increases the total quench time by N times, which
actually cures the problem arising from not enough quench time. One
thing we want to stress is, for the comparison in Fig. 7, the total number of
the bins for N= 1 case is 24 times bigger than that of N= 24 case, this
ensures that the total computing power and simulation time for the two
cases are nearly the same. The comparison shows that our method cures
the limitation of the original algorithm and has smaller errorbars and
better convergence.
We would like to end this section by mentioning that the nonquilibrium

increment measurement of entanglement, implemented here and in ref. 24,
could also be applied on other physics systems beyond quantum many-
body lattice model and even condensed matter physics95,96.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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Fig. 6 A schematic plot of the nonequilibrium increment algorithm. It splits a consecutive λ− parameterized nonequilibrium process into N
independent smaller pieces. For each piece we start from a thermalized state of the partition function Zð2Þ

A ðλ ¼ khÞ and carry out the
nonequilibrium measurement from λ= kh to λ= (k+ 1)h. For the k= 0 piece (the left column), the starting configuration is two independent
replicas with ordinary periodical conditions and as the system evolves to λ= h the configuration becomes two modified replicas with some
sites in region A are glued together. The k= h (the middle column) and k= (N− 1)h (the right column) pieces are carried in parallel. The final
entanglement entropy is obtained from the summation of these independent pieces, as shown in Eq. (15).
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Fig. 7 Convergence of EE for different quench time. The 2nd Rényi
entanglement entropy Sð2ÞA of a 2D antiferromagnetic Heisenberg
model on a 32 × 16 torus versus the quench time tf− ti for the
nonequilibrium increment method with the total number of
nonequilibrium pieces taken to be N= 1 and N= 24. The entangling
region A is a 16 × 16 lattice which is chosen as depicted in the inset
of Fig. 1. SEM is used when estimating the errors of the physical
quantities.

J. Zhao et al.

7

Published in partnership with Nanjing University npj Quantum Materials (2022)    69 



CODE AVAILABILITY
All numerical codes in this paper are available upon request to the authors.

Received: 18 February 2022; Accepted: 8 June 2022;

REFERENCES
1. Cardy, J. L. & Peschel, I. Finite-size dependence of the free energy in two-

dimensional critical systems. Nucl. Phys. B 300, 377–392 (1988).
2. Calabrese, P. & Cardy, J. Entanglement entropy and quantum field Theory. J. Stat.

Mech.: Theory Exp. 2004, P06002 (2004).
3. Fradkin, E. & Moore, J. E. Entanglement entropy of 2d conformal quantum critical

points: hearing the shape of a quantum drum. Phys. Rev. Lett. 97, 050404 (2006).
4. Casini, H. & Huerta, M. Universal terms for the entanglement entropy in 2+1

dimensions. Nucl. Phys. B 764, 183–201 (2007).
5. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96,

110404 (2006).
6. Levin, M. & Wen, X.-G. Detecting topological order in a ground state wave

function. Phys. Rev. Lett. 96, 110405 (2006).
7. Wolf, M. M. Violation of the entropic area law for fermions. Phys. Rev. Lett. 96,

010404 (2006).
8. Lin, Y.-C., Iglói, F. & Rieger, H. Entanglement entropy at infinite-randomness fixed

points in higher dimensions. Phys. Rev. Lett. 99, 147202 (2007).
9. Yu, R., Saleur, H. & Haas, S. Entanglement entropy in the two-dimensional random

transverse field Ising model. Phys. Rev. B 77, 140402 (2008).
10. Hastings, M. B., González, I., Kallin, A. B. & Melko, R. G. Measuring Renyi entan-

glement entropy in quantum Monte Carlo simulations. Phys. Rev. Lett. 104,
157201 (2010).

11. Metlitski, M. A. & Grover, T. Entanglement entropy of systems with spontaneously
broken continuous symmetry. Preprint at https://arxiv.org/abs/1112.5166 (2011).

12. Isakov, S. V., Hastings, M. B. & Melko, R. G. Topological entanglement entropy of a
Bose-Hubbard spin liquid. Nat. Phys. 7, 772–775 (2011).

13. Jiang, H.-C., Wang, Z. & Balents, L. Identifying topological order by entanglement
entropy. Nat. Phys. 8, 902–905 (2012).

14. Casini, H. & Huerta, M. Positivity, entanglement entropy, and minimal surfaces. J.
High Energy Phys. 2012, 87 (2012).

15. Swingle, B. & Senthil, T. Structure of entanglement at deconfined quantum critical
points. Phys. Rev. B 86, 155131 (2012).

16. Kovács, I. A. & Iglói, F. Universal logarithmic terms in the entanglement entropy of
2d, 3d and 4d random transverse-field Ising models. EPL 97, 67009 (2012).

17. Inglis, S. & Melko, R. G. Wang-Landau method for calculating Rényi entropies in
finite-temperature quantum Monte Carlo simulations. Phys. Rev. E 87, 013306
(2013).

18. Inglis, S. & Melko, R. G. Entanglement at a two-dimensional quantum critical
point: a T = 0 projector quantum Monte Carlo study. New J. Phys 15, 073048
(2013).

19. Kallin, A. B., Hyatt, K., Singh, R. R. P. & Melko, R. G. Entanglement at a two-
dimensional quantum critical point: A numerical linked-cluster expansion study.
Phys. Rev. Lett. 110, 135702 (2013).

20. Luitz, D. J., Plat, X., Laflorencie, N. & Alet, F. Improving entanglement and ther-
modynamic rényi entropy measurements in quantum monte carlo. Phys. Rev. B
90, 125105 (2014).

21. Kallin, A. B., Stoudenmire, E. M., Fendley, P., Singh, R. R. P. & Melko, R. G. Corner
contribution to the entanglement entropy of an O(3) quantum critical point in
2 + 1 dimensions. J. Stat. Mech. 2014, 06009 (2014).

22. Helmes, J. & Wessel, S. Entanglement entropy scaling in the bilayer heisenberg
spin system. Phys. Rev. B 89, 245120 (2014).

23. Laflorencie, N. Quantum entanglement in condensed matter systems. Phys. Rep.
646, 1–59 (2016).

24. D’Emidio, J. Entanglement entropy from nonequilibrium work. Phys. Rev. Lett.
124, 110602 (2020).

25. Grover, T. Entanglement of interacting fermions in quantum Monte Carlo cal-
culations. Phys. Rev. Lett. 111, 130402 (2013).

26. Humeniuk, S. & Roscilde, T. Quantum Monte Carlo calculation of entanglement
Rényi entropies for generic quantum systems. Phys. Rev. B 86, 235116 (2012).

27. Zhao, J., Wang, Y.-C., Yan, Z., Cheng, M. & Meng, Z. Y. Scaling of entanglement
entropy at deconfined quantum criticality. Phys. Rev. Lett. 128, 010601 (2022).

28. Alba, V. Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality.
Phys. Rev. E 95, 062132 (2017).

29. Zhao, J., Yan, Z., Cheng, M. & Meng, Z. Y. Higher-form symmetry breaking at Ising
transitions. Phys. Rev. Research 3, 033024 (2021).

30. Block, M. S., D’Emidio, J. & Kaul, R. K. Kagome model for a Z2 quantum spin liquid.
Phys. Rev. B 101, 020402 (2020)..

31. Assaad, F. F. Stable quantum Monte Carlo simulations for entanglement spectra
of interacting fermions. Phys. Rev. B 91, 125146 (2015).

32. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett.
78, 2690–2693 (1997).

33. Yan, Z. & Meng, Z. Y. Extract low-lying entanglement spectrum from quantum
Monte Carlo simulation. Preprint at https://arxiv.org/abs/2112.05886 (2021).

34. Sandvik, A. W. Stochastic series expansion method with operator-loop update.
Phys. Rev. B 59, R14157–R14160 (1999).

35. Syljuåsen, O. F. & Sandvik, A. W. Quantum Monte Carlo with directed loops. Phys.
Rev. E 66, 046701 (2002).

36. Ma, N. et al. Anomalous quantum-critical scaling corrections in two-dimensional
antiferromagnets. Phys. Rev. Lett. 121, 117202 (2018).

37. Wang, Y.-C., Ma, N., Cheng, M. & Meng, Z. Y. Scaling of disorder operator at
deconfined quantum criticality. Preprint at https://arxiv.org/abs/2106.01380
(2021).

38. Assaad, F. F. & Grover, T. Simple fermionic model of deconfined phases and
phase transitions. Phys. Rev. X 6, 041049 (2016).

39. Chen, C., Xu, X. Y., Qi, Y. & Meng, Z. Y. Metal to orthogonal metal transition. Chin.
Phys. Lett. 37, 047103 (2020).

40. Chen, C., Yuan, T., Qi, Y. & Meng, Z. Y. Fermi arcs and pseudogap in a lattice model
of a doped orthogonal metal. Phys. Rev. B 103, 165131 (2021).

41. White, S. R. Density matrix formulation for quantum renormalization groups. Phys.
Rev. Lett. 69, 2863–2866 (1992).

42. Wu, F., Deng, Y. & Prokof’ev, N. Phase diagram of the toric code model in a
parallel magnetic field. Phys. Rev. B 85, 195104 (2012).

43. Yan, Z., Wang, Y.-C., Ma, N., Qi, Y. & Meng, Z. Y. Topological phase transition and
single/multi anyon dynamics of Z2 spin liquid. npj Quantum Mater. 6, 39 (2021).

44. Dong, S., Fradkin, E., Leigh, R. G. & Nowling, S. Topological entanglement entropy
in Chern-Simons theories and quantum Hall fluids. J. High Energy Phys. 2008,
016–016 (2008).

45. Zhang, Y., Grover, T., Turner, A., Oshikawa, M. & Vishwanath, A. Quasiparticle
statistics and braiding from ground-state entanglement. Phys. Rev. B 85, 235151
(2012).

46. Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis kagome
antiferromagnet. Phys. Rev. B 65, 224412 (2002).

47. Isakov, S. V., Kim, Y. B. & Paramekanti, A. Spin-liquid phase in a spin-1/2 quantum
magnet on the kagome lattice. Phys. Rev. Lett. 97, 207204 (2006).

48. Isakov, S. V., Melko, R. G. & Hastings, M. B. Universal signatures of fractionalized
quantum critical points. Science 335, 193–195 (2012).

49. Wang, Y.-C., Fang, C., Cheng, M., Qi, Y. & Meng, Z. Y. Topological spin liquid with
symmetry-protected edge states. Preprint at https://arxiv.org/abs/1701.01552
(2017).

50. Sun, G.-Y. et al. Dynamical signature of symmetry fractionalization in frustrated
magnets. Phys. Rev. Lett. 121, 077201 (2018).

51. Wang, Y.-C., Zhang, X.-F., Pollmann, F., Cheng, M. & Meng, Z. Y. Quantum spin
liquid with even Ising gauge field structure on kagome lattice. Phys. Rev. Lett.
121, 057202 (2018).

52. Wang, Y.-C., Cheng, M., Witczak-Krempa, W. & Meng, Z. Y. Fractionalized con-
ductivity and emergent self-duality near topological phase transitions. Nat.
Commun. 12, 5347 (2021).

53. Wang, Y.-C., Yan, Z., Wang, C., Qi, Y. & Meng, Z. Y. Vestigial anyon condensation in
kagome quantum spin liquids. Phys. Rev. B 103, 014408 (2021).

54. Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S =
1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).

55. Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet
ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).

56. Han, T. H. et al. Fractionalized excitations in the spin-liquid state of a kagome-
lattice antiferromagnet. Nature 492, 406–410 (2012).

57. Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground
state in a kagome heisenberg antiferromagnet. Science 350, 655–658 (2015).

58. Norman, M. R. Colloquium: Herbertsmithite and the search for the quantum spin
liquid. Rev. Mod. Phys. 88, 041002 (2016).

59. Feng, Z. et al. Gapped spin-1/2 spinon excitations in a new kagome quantum
spin liquid compound Cu3Zn(OH)6FBr. Chin. Phys. Lett. 34, 077502 (2017).

60. Wen, X.-G. Discovery of fractionalized neutral spin-1/2 excitation of topological
order. Chin. Phys. Lett. 34, 090101 (2017).

61. Feng, Z. et al. Effect of zn doping on the antiferromagnetism in kagome
Cu4−xZnx(OH)6FBr. Phys. Rev. B 98, 155127 (2018).

62. Feng, Z. et al. From claringbullite to a new spin liquid candidate Cu3Zn(OH)6FCl.
Chin. Phys. Lett. 36, 017502 (2019).

63. Wen, J.-J. & Lee, Y. S. The search for the quantum spin liquid in kagome anti-
ferromagnets. Chin. Phys. Lett. 36, 050101 (2019).

J. Zhao et al.

8

npj Quantum Materials (2022)    69 Published in partnership with Nanjing University

https://arxiv.org/abs/1112.5166
https://arxiv.org/abs/2112.05886
https://arxiv.org/abs/2106.01380
https://arxiv.org/abs/1701.01552


64. Wei, Y. et al. Evidence for a Z2 topological ordered quantum spin liquid in a
kagome-lattice antiferromagnet. Preprint at https://arxiv.org/abs/1710.02991 (2017).

65. Wei, Y. et al. Magnetic phase diagram of Cu4−xZnxOH6FBr studied by neutron-
diffraction and μsr techniques. Chin. Phys. Lett. 37, 107503 (2020).

66. Wei, Y. et al. Antiferromagnetism in the kagome-lattice compound α− Cu3Mg
(OH)6Br2. Phys. Rev. B 100, 155129 (2019).

67. Wei, Y. et al. Nonlocal effects of low-energy excitations in quantum-spin-liquid
candidate Cu3Zn(OH)6FBr. Chin. Phys. Lett. 38, 097501 (2021).

68. Wen, X.-G. Choreographed entanglement dances: Topological states of quantum
matter. Science 363, eaal3099 (2019).

69. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
70. Liu, Y., Wang, W., Sun, K. & Meng, Z. Y. Designer Monte Carlo simulation for the

gross-neveu-yukawa transition. Phys. Rev. B 101, 064308 (2020).
71. Xu, X. Y. et al. Monte Carlo study of lattice compact quantum electrodynamics

with fermionic matter: the parent state of quantum phases. Phys. Rev. X 9, 021022
(2019).

72. Wang, W., Lu, D.-C., Xu, X. Y., You, Y.-Z. & Meng, Z. Y. Dynamics of compact
quantum electrodynamics at large fermion flavor. Phys. Rev. B 100, 085123 (2019).

73. Janssen, L., Wang, W., Scherer, M. M., Meng, Z. Y. & Xu, X. Y. Confinement transition
in the QED3-Gross-Neveu-XY universality class. Phys. Rev. B 101, 235118 (2020).

74. Xu, X. Y., Sun, K., Schattner, Y., Berg, E. & Meng, Z. Y. Non-Fermi liquid at (2+ 1)D
ferromagnetic quantum critical point. Phys. Rev. X 7, 031058 (2017).

75. Xu, X. Y. et al. Revealing fermionic quantum criticality from new Monte Carlo
techniques. J. Phys. Condens. Matter 31, 463001 (2019).

76. Liu, Z. H., Pan, G., Xu, X. Y., Sun, K. & Meng, Z. Y. Itinerant quantum critical point with
fermion pockets and hotspots. Proc. Natl. Acad. Sci. U.S.A. 116, 16760–16767 (2019).

77. Xu, X. Y., Klein, A., Sun, K., Chubukov, A. V. & Meng, Z. Y. Identification of non-
Fermi liquid fermionic self-energy from quantum Monte Carlo data. npj Quantum
Mater. 5, 65 (2020).

78. Klein, A., Chubukov, A. V., Schattner, Y. & Berg, E. Normal state properties of
quantum critical metals at finite temperature. Phys. Rev. X 10, 031053 (2020).

79. Shen, B. et al. Strange-metal behaviour in a pure ferromagnetic kondo lattice.
Nature 579, 51–55 (2020).

80. Jiang, W. et al. Pseudogap and superconductivity emerging from quantum
magnetic fluctuations: a Monte Carlo study. Preprint at https://arxiv.org/abs/
2105.03639 (2021).

81. Wu, Y. et al. Anisotropic c− f hybridization in the ferromagnetic quantum critical
metal CeRh6Ge4. Phys. Rev. Lett. 126, 216406 (2021).

82. Liu, Y. et al. The dynamical exponent of a quantum critical itinerant ferromagnet:
a Monte Carlo study. Preprint at https://arxiv.org/abs/2106.12601 (2021).

83. Nussinov, Z. & Ortiz, G. Sufficient symmetry conditions for Topological Quantum
Order. Proc. Natl. Acad. Sci. U.S.A. 106, 16944–16949 (2009).

84. Nussinov, Z. & Ortiz, G. A symmetry principle for topological quantum order.
Annals Phys. 324, 977–1057 (2009).

85. Gaiotto, D., Kapustin, A., Seiberg, N. & Willett, B. Generalized global symmetries. J.
High Energ. Phys. 2015, 1–62 (2015).

86. Ji, W. & Wen, X.-G. Categorical symmetry and non-invertible anomaly in
symmetry-breaking and topological phase transitions. Preprint at https://arxiv.
org/abs/1912.13492 (2019).

87. Kong, L., Lan, T., Wen, X.-G., Zhang, Z.-H. & Zheng, H. Algebraic higher symmetry
and categorical symmetry – a holographic and entanglement view of symmetry.
Phys. Rev. Research 3, 043086 (2020).

88. Wu, X.-C., Ji, W. & Xu, C. Categorical symmetries at criticality. Preprint at https://
arxiv.org/abs/2012.03976 (2020).

89. Wang, Y.-C., Cheng, M. & Meng, Z. Y. Scaling of the disorder operator at (2+ 1)d u
(1) quantum criticality. Phys. Rev. B 104, L081109 (2021).

90. Estienne, B., Stéphan, J.-M. & Witczak-Krempa, W. Cornering the universal shape
of fluctuations. Preprint at https://arxiv.org/abs/2102.06223 (2021).

91. Wu, X.-C., Jian, C.-M. & Xu, C. Universal features of higher-form symmetries at
phase transitions. SciPost Phys. 11, 33 (2021).

92. Chen, B.-B., Tu, H.-H., Meng, Z. Y. & Cheng, M. Topological disorder parameter.
Preprint at https://arxiv.org/abs/2203.08847 (2022).

93. Yan, Z. & Meng, Z. Y. Extract low-lying entanglement spectrum from quantum
monte carlo simulation. Preprint at https://arxiv.org/abs/2112.05886v3 (2021).

94. Tagliacozzo, L., Evenbly, G. & Vidal, G. Simulation of two-dimensional quantum
systems using a tree tensor network that exploits the entropic area law. Phys. Rev.
B 80, 235127 (2009).

95. Shirts, M. R., Bair, E., Hooker, G. & Pande, V. S. Equilibrium free energies from
nonequilibrium measurements using maximum-likelihood methods. Phys. Rev.
Lett. 91, 140601 (2003).

96. Palassini, M. & Ritort, F. Improving free-energy estimates from unidirectional work
measurements: Theory and experiment. Phys. Rev. Lett. 107, 060601 (2011).

ACKNOWLEDGEMENTS
J.R.Z., B.B.C., Z.Y., and Z.Y.M. would like to thank Jonathan D’Emidio for encouraging
and fruitful discussion on the details of the quench time of the Jarzynski estimator,
and its applications in other subjects. They also thank Chenjie Wang for valuable
discussions on the theoretical meaning of MES and related issues. They acknowledge
support from the RGC of Hong Kong SAR of China (Grant Nos. 17303019, 17301420,
17301721, and AoE/P-701/20), the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDB33000000), the K. C. Wong Education
Foundation (Grant No. GJTD-2020-01) and the Seed Funding “Quantum-Inspired
explainable-AI” at the HKU-TCL Joint Research Center for Artificial Intelligence. Y.C.W.
acknowledges the supports from the NSFC under Grant Nos. 11804383 and
11975024, and the Fundamental Research Funds for the Central Universities under
Grant No. 2018QNA39. M.C. acknowledges support from NSF under award number
DMR-1846109. We thank the Computational Initiative at the Faculty of Science and
the Information Technology Services at the University of Hong Kong and the Tianhe
platforms at the National Supercomputer Centers in Tianjin and Guangzhou for their
technical support and generous allocation of CPU time. The authors also acknowl-
edge Beijng PARATERA Tech CO., Ltd. (https://www.paratera.com/) for providing HPC
resources that have contributed to the research results reported within this paper.

AUTHOR CONTRIBUTIONS
J.Z., Z.Y.M, and M.C. initiated the work. J.Z. developed the algorithm and carried out
the Quantum Monte Carlo simulations of all the models mentioned. B.-B.C.
conducted the DMRG calculations of the toy model. All authors contributed to the
analysis of the results and the preparation and revision of the draft. M.C. and Z.Y.M.
supervised the project.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Meng Cheng or
Zi Yang Meng.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

J. Zhao et al.

9

Published in partnership with Nanjing University npj Quantum Materials (2022)    69 

https://arxiv.org/abs/1710.02991
https://arxiv.org/abs/2105.03639
https://arxiv.org/abs/2105.03639
https://arxiv.org/abs/2106.12601
https://arxiv.org/abs/1912.13492
https://arxiv.org/abs/1912.13492
https://arxiv.org/abs/2012.03976
https://arxiv.org/abs/2012.03976
https://arxiv.org/abs/2102.06223
https://arxiv.org/abs/2203.08847
https://arxiv.org/abs/2112.05886v3
https://www.paratera.com/
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Measuring R&#x000E9;nyi entanglement entropy with high efficiency and precision in quantum Monte Carlo simulations
	Introduction
	Results
	Entanglement of spontaneous continuous symmetry breaking state
	Entanglement at (2nobreak&#x02009;nobreak&#x0002B;&#x02009;1)d quantum critical point
	Entanglement of topological ordered state
	Toy model
	Minimal entropy state
	Z2Z2 quantum spin liquid on kagome lattice

	Discussion
	Methods
	Replica trick
	Nonequilibrium measurement
	Nonequilibrium increment method

	DATA AVAILABILITY
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




