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SUMMARY  

 

There are rich structures in off-task neural activity. For example, task related neural codes are 

thought to be reactivated in a systematic way during rest. This reactivation is hypothesised to 

reflect a fundamental computation that supports a variety of cognitive functions. Here, we 

introduce an analysis toolkit (TDLM) for analysing this activity. TDLM combines nonlinear 

classification and linear temporal modelling to testing for statistical regularities in sequences 

of neural representations. It is developed using non-invasive neuroimaging data and is designed 

to take care of confounds and maximize sequence detection ability. The method can be 

extended to rodent electrophysiological recordings. We outline how TDLM can successfully 

reveal human replay during rest, based upon non-invasive magnetoencephalography (MEG) 

measurements, with strong parallels to rodent hippocampal replay. TDLM can therefore 

advance our understanding of sequential computation and promote a richer convergence 

between animal and human neuroscience research. 

 

 

INTRODUCTION  

 

Human neuroscience has made remarkable progress in detailing the relationship between the 

representations of different stimuli during task performance 1,2. At the same time, it is 

increasingly clear that resting, off-task, brain activity is structurally rich and is important for 

understanding the neural underpinnings of cognition 3. However, unlike the case for task-based 

activity, little attention has been given to techniques that can measure representational content 

or structure of this resting activity. Here, we introduce TDLM (temporal delayed linear 

modelling) as an analysis framework, based on linear modelling, that can characterize temporal 

structure of internally generated neural representations.   

 

TDLM enables a detailed examination of sequential patterns in neural code reactivation that 

are not tied to task events. Our approach is inspired by evidence from the rodent literature of 

rich temporal structure in representational content of offline brain activity. Here a seminal 

finding in rodent electrophysiological research is “hippocampal replay” 4-6. During rest and 

quiet wakefulness, place cells in the hippocampus (that signal self-location during periods 

activity) spontaneously recapitulate old, and explore new, trajectories through an environment 
4,5. These internally generated sequences are hypothesized to reflect a fundamental feature of 

neural computation across tasks 7-10.  

 

Applying TDLM on non-invasive neuroimaging data we, and others, have shown it is possible 

to measure spontaneous sequences of neural representations during rest in humans 11,12. The 

results resemble key characters found in rodent hippocampal replay and inform key 

computational principles of human cognition 12.  

 

In the following sections, we introduce the logic and mechanics of TDLM in detail. We first 

compare performance of alternative algorithms on synthetic data where the ground truth is 

known (see detailed description of the synthetic data and simulation code in Supplementary 

Note 1). Subsequently, we apply the method to  real neural data, both human 

magnetoencephalography (MEG) 11,12 and rodent hippocampal electrophysiological recordings 

(Supplementary Note 2). In relation to the latter, we show TDLM successfully reproduces key 

findings, including the presence of theta sequences 13.  
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TDLM is a general, and flexible, tool for measuring neural sequences. It facilitates cross-

species investigations by linking large-scale measurements in humans to cellular 

measurements in non-human species. We outline its promise for revealing abstract cognitive 

processes that extend beyond sensory representation, potentially opened doors for new avenues 

of research in cognitive science. All code and facilities will be available at 

https://github.com/yunzheliu/TDLM. 

 

 

RESULTS 

 

TDLM   

 

Overview of TDLM 

 

Our primary goal is to test for temporal structure in neural activity. To achieve this, we would 

like ideally a method which (1) uncovers regularity in the reactivation of neural activity, (2) 

tests whether this regularity conforms to a hypothesized structure. Here the structure between 

neural representation is expressed as their sequential reactivation in time, i.e., sequence. In 

what follows, we will use the terms “temporal structure” and “sequence” interchangeably.  

 

The starting point of TDLM is a set of n time series, each corresponding to a decoded neural 

representation of a variable of interest. These time series could themselves be obtained in 

several ways, described in detail in a later section (“Getting the states”). The aim of TDLM is 

to identify task-related regularities in sequences of these representations off-task. 

 

Consider, for example, a task in which participants have been trained such that n=4 distinct 

sensory cues (A, B, C, and D) appear in a consistent order (𝐴 → 𝐵 → 𝐶 → 𝐷) (Fig 1a). If we 

are interested in replay of this sequence during subsequent resting periods, we might want to 

ask statistical questions of the following form: “Does the existence of a neural representation 

of A, at time T in the rest period, predict the occurrence of a representation of B at time T+∆𝑡”, 

and similarly for 𝐵 → 𝐶 and 𝐶 → 𝐷 .  

 

In TDLM we ask such questions using a two-step process. First, for each of the n2 possible 

pairs of variables Xi and Xj, we find the correlation between the Xi time series and the ∆𝑡-shifted 

Xj time series. These n2 correlations comprise an empirical transition matrix, describing how 

likely each variable is to be succeeded at a lag of ∆𝑡 by each other variable (Fig. 1b, left panel). 

Second, we correlate this empirical transition matrix with a task-related transition matrix of 

interest (Fig. 1b, right panel). This produces a single number that characterizes the extent to 

which the neural data follow the transition matrix of interest, which we call ‘sequenceness’. 

Finally, we repeat this entire process for all ∆𝑡 > 0, yielding a measure of sequenceness at each 

possible lag between variables (Fig. 1c). 

 

Note that, for now, this approach decomposes a sequence (such as 𝐴 → 𝐵 → 𝐶 → 𝐷) into its 

constituent transitions and adds the evidence for each transition. It therefore does not require 

that the transitions themselves are sequential: 𝐴 → 𝐵 and 𝐵 → 𝐶 could occur at unrelated times, 

so long as the within-pair time lag was the same. In section “Multi-step sequences”, we address 

how to strengthen the inference by looking explicitly for longer sequences.  
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Constructing the empirical transition matrix  

 

In order to find evidence for state-to-state transitions at some time lag ∆𝑡, we could regress a 

time-lagged copy of one state, 𝑋!, onto another, 𝑋":  
 

                                                        𝑋!(𝑡 + ∆𝑡) = 𝑋"(𝑡)𝛽"!                                                                      (1) 

 

Instead, TDLM includes all states in the same regression model for important reasons, detailed 

in section “Moving to multiple linear regression”: 

 

 𝑋!(𝑡 + ∆𝑡) = ∑ 𝑋#(𝑡)𝛽#!$
#%&  (2) 

 

In this equation, the values of all states 𝑋# at time t are used in a single multilinear model to 

predict the value of the single state 𝑋! at time 𝑡 + ∆𝑡.  
 

The regression described in Equation 2 is performed once for each 𝑋!, and these equations can 

be arranged in matrix form as follows: 

    

                  𝑋(∆𝑡) = 𝑋𝛽                                                                 (3) 

 

Each row of X is a timepoint, and each of the n columns is a state.  𝑋(∆𝑡) is the same matrix 

as X, but with the rows shifted forwards in time by ∆𝑡. 𝛽 is an 𝑛 × 𝑛 matrix of weights – which 

we call the empirical transition matrix. 𝛽"!  is an estimate of the influence of 𝑋"(𝑡)  on 

𝑋!(𝑡 + ∆𝑡), over and above variance that can be explained by other states at the same time.  

 

To obtain 𝛽, we invert Equation 3 by ordinary least squares regression.  

 

                                                     𝛽 = (𝑋'𝑋)(&𝑋'𝑋(∆𝑡)                                                        (4) 

                  

This inversion can be repeated for each possible time lag (∆𝑡 = 1, 2, 3, …), resulting in a 

separate empirical transition matrix β at every time lag. We call this step the first level sequence 

analysis.  

 

Testing the hypothesized transitions 

 

The first level sequence analysis assesses evidence for all possible state-to-state transitions. 

The next step in TDLM is to test for the strength of a particular hypothesized sequence, 

specified as a transition matrix, 𝑇). We therefore construct another GLM which relates 𝑇) to 

the empirical transition matrix β. We call this step the second level sequence analysis: 

 

                                                            𝑣𝑒𝑐(𝛽) = 𝑇𝑍                                                               (5) 

 

where 𝑣𝑒𝑐 denotes the vectorized form of a matrix, 𝑇 is the design matrix. T has 4 columns, 

each of which is a vectorized transition matrix: 𝑣𝑒𝑐(𝑇*+,-) , 𝑣𝑒𝑐(𝑇.-$/,) , 𝑣𝑒𝑐(𝑇))  and 

𝑣𝑒𝑐(𝑇0) . 𝑇)  is the task-related transition matrix of interest, as described above. 𝑇0  is 𝑇) 

transposed; that is, the same transitions in the backward direction. 𝑇.-$/, is a constant vector 

that models away the average of all transitions, ensuring that any weight on 𝑇)  and 𝑇0  is 

specific to the hypothesized transitions. 𝑇*+,-  models self-transitions to control for auto-

correlation (equivalently, we could simply omit the diagonal elements from the regression).   
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Z is the weights of the second level regression, which has four entries. Repeating the regression 

of Equation 5 at each time lag (∆𝑡 = 1, 2, 3, …) results in four vectors, which we will call 𝑍), 

𝑍0, 𝑍*+,-, and 𝑍.-$/,. The values of 𝑍) and 𝑍0 at each time lag are our estimates of forward 

and backward sequence strength (respectively) at that lag, along the transition matrix of interest 

(Fig. 1c). 

 

In many cases, ZF and ZB will be the final outputs of a TDLM analysis. However, it may 

sometimes also be useful to consider the quantity:  

 

                                                            𝐷 = 𝑍) − 𝑍0                                        (6) 

 

𝐷 contrasts forward and backward sequences to give a measure that is positive if sequences 

occur mainly in a forward direction and negative if sequences occur mainly in a backward 

direction. This may be advantageous if, for example, 𝑍) and 𝑍0 are correlated across subjects 

(due to factors such as subject engagement and measurement sensitivity). In this case, 𝐷 may 

have lower cross-subject variance than either 𝑍) or 𝑍0, as the subtraction removes common 

variance.  

 

Finally, to test for statistical significance, TDLM relies on a nonparametric permutation-based 

method. The null distribution is constructed by randomly shuffling the identities of the n states 

and re-calculating the second level analysis for each shuffle. The first level analysis retains the 

veridical labels. This approach allows us to reject the null hypothesis that there is no 

relationship between the empirical transition matrix and the task-defined transition of interest. 

Note that there are many wrong ways to perform permutations, which permute factors that are 

not exchangeable under the null hypothesis and therefore lead to false positives. We will 

examine some of these later with simulations. In some cases, it may be desirable to test slightly 

different hypotheses by using a different set of permutations; this will also be discussed later. 

 

If the time lag ∆𝑡 at which neural sequences exist is not known a priori, then we must correct 

for multiple comparisons over all tested lags. This can be achieved by using the maximum ZF 

across all tested lags as the test statistic. If we choose this test statistic, then any values of ZF 

exceeding the 95th percentile of the null distribution can be treated as significant at 𝛼 = 0.05.  

 

 

TDLM STEPS IN DETAIL 

 

Getting the states 

 

As described above, the input to TDLM is a set of time series of decoded neural representations, 

or states. Here we give three examples of specific state spaces that we have worked with using 

TDLM.  

 

States as sensory stimuli   

The simplest case, perhaps, is to define a state in terms of a neural representation of sensory 

stimuli, e.g., face, house. To obtain their neural representation, we present the stimuli in a 

randomized order at the start of a task, while whole-brain neural activity is recorded by non-

invasive neuroimaging method, e.g., MEG or EEG. We then train a supervised decoding model 

to map the pattern of recorded neural activity to the presented image (Supplementary Fig. 1). 
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This could be any of the multitude of available decoding models. For simplicity we have used 

a logistic regression model throughout.  

 

In MEG/EEG, neural activity is recorded by multiple sensor or channel arrays on the scalp. 

The sensor arrays record whole-brain neural activity at millisecond temporal resolution. To 

avoid potential selection bias (given the sequence is expressed in time), we choose to use the 

whole brain sensor activity at a single time point (i.e., spatial feature) as the training data fed 

into classifier training.  

 

Ideally, we would like to select a time point where the neural activity can be most truthfully 

read out. This can be indexed as the time point that gives the peak decoding accuracy. If the 

state is defined by the sensory feature of stimuli, we can use a classical leave-one-out cross-

validation scheme to determine the ability of classifiers to generalise to unseen data of the same 

stimulus type (decoding accuracy) at each time point. This cross-validation scheme is asking 

whether the classifier trained on the sensory feature can be used to classify the unseen data of 

same stimuli (Fig. 2a, b).  

 

States as abstractions.  

As well as sequences of sensory representations, it is possible to search for replay of more 

abstract neural representations, within the constraint that we can build a decoder for them. Such 

abstractions might be associated with the presented image (e.g., mammal vs fish), in which 

case analysis can proceed as above by swapping categories for images.  

 

A more subtle example, however, is where the abstraction has to do with the sequence or graph 

itself. For example, one representation of interest might be whatever is common at a particular 

location in space but invariant to what sensory stimuli are present at that location 14. A related 

type of abstraction corresponds to the position of an item in a sequence, invariant to which 

actual item is in that position 12,15.  

 

We need to exercise care when setting up cross-validation schemes for training “abstract” 

classifiers, because we don’t want the “abstract” classifier to capitalize on common sensory 

features. Otherwise, we might report false positive sequences of abstract codes when in fact 

there is only sequence for sensory information (Supplementary Fig. 2). This can happen if we 

train and test on the same sensory (as well as abstract) object. In other words, we need to ensure 

that there is no one-to one mapping between sensory and abstract code. To do so, we need more 

than one sensory exemplar of each abstract state.  

 

If we have exemplars of 𝑁	(𝑁 > 1) different sensory images for each abstract state, then 

training can proceed in the following way. For example, the training set for the “2” decoder 

comprises 𝑁 − 1	types of sensory images at position 2, leaving out all instances of one single 

type sensory example for cross-validation. Therefore, an above chance classification must rely 

on features that are shared between the N-1 sensory images and the one left-out sensory image, 

which is the abstract code. If there are just 2 stimuli per abstraction, we can train on one 

stimulus, and test on the other (and vice versa), selecting the time point that does best in this 

“cross-validation”. This scheme therefore searches for representations that generalise over at 

least two stimuli that embody the same abstract meaning (Fig. 2c).  

 

States as sequence events 

TDLM can also be used iteratively to ask question about the ordering of different types of 

replay events (Fig. 2d). This can lead to powerful inferences about the temporal organisation 
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of replay, such as “Rapid replay of sensory representations is embedded within a lower 

frequency rhythm”. This more sophisticated use of TDLM merits its own consideration and is 

discussed below under “Sequences of sequences”.  

 

Controlling confounds and maximising sensitivity in sequence detection 

 

Here, we motivate the key features of TDLM.   

 

Temporal correlations 

 

In standard linear methods, unmodelled temporal autocorrelation can inflate statistical scores. 

Techniques such as auto-regressive noise modelling are commonplace to mitigate these effects 
16,17. However, autocorrelation is a particular burden for analysis of sequences, where it 

interacts with correlations between the decoded neural variables.  

 

To see this, consider a situation where we are testing for the sequence 𝑋" → 𝑋! . TDLM is 

interested in the correlation between 𝑋" and lagged 𝑋! (see Equation 1). But if the 𝑋" and 𝑋! 
time series contain autocorrelation and are also correlated with one another, then 𝑋"(𝑡) will 

necessarily be correlated with 𝑋!(𝑡 + ∆𝑡). Hence, the analysis will spuriously report sequences.   

 

Correlations between states are commonplace. Consider representations of visual stimuli 

decoded from neuroimaging data. If these states are decoded using an n-way classifier (forcing 

exactly one state to be decoded at each moment), then the n states will be anti-correlated by 

construction. On the other hand, if the states are each classified against a null state 

corresponding to the absence of stimuli, then the n states will typically be positively correlated 

with one another.  

 

Notably, in our case, because these autocorrelations are identical between forward and 

backward sequences, one approach for removing them is to compute the difference measure 

described above (𝐷 = 𝑍) − 𝑍0). This approach that works well was suggested in Kurth-Nelson, 

et al. 11. However, a downside it that it prevents us from measuring forward and backward 

sequences independently. The remainder of this section considers alternative approaches that 

can allow independent measurement of forward and backward sequences.  

 

Moving to multiple linear regression: The spurious correlations above are induced because 

𝑋!(𝑡) mediates a linear relationship between 𝑋"(𝑡) and 𝑋!(𝑡 + ∆𝑡). Hence, if we knew 𝑋!(𝑡),	 
we could solve the problem by simply controlling for it in the linear regression, as in Granger 

Causality 18: 

 

                                          𝑋!(𝑡 + ∆𝑡) = 𝛽1 + 𝑋"(𝑡)𝛽"! + 𝑋!(𝑡)𝛽!!  

 

Unfortunately, however, we do not have access to the ground truth of 𝑋 – since these variables 

have been decoded noisily from brain activity. Any error in  𝑋!(𝑡) but not 𝑋"(𝑡) will mean that 

the control for autocorrelation will be imperfect, leading to spurious weight on 𝛽"! , and 

therefore spurious inference of sequences.  

 

This problem cannot be solved without a perfect estimate of X, but it can be systematically 

reduced until negligible. It turns out the necessary strategy is simple. We do not know ground 

truth 𝑋!(𝑡), but what if we knew a subspace that included estimated 𝑋!(𝑡)? If we controlled for 
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that whole subspace, we would again be safe. We can get closer and closer to this by including 

further co-regressors that are themselves correlated with estimated 𝑋!(𝑡) with different errors 

from ground truth 𝑋!(𝑡). The most straightforward approach is to include the other states of 

𝑋(𝑡), each of which has different errors, leading to the multiple linear regression of Equation 

2.                                       

 

Figure 3a shows this method applied to the same simulated data whose correlation structure 

induces false positives in the simple linear regression of Equation 1. The multiple regression 

accounts for the correlation structure of the data and allows correct inferences to be made. 

Unlike the simple subtraction method proposed above (Fig. 3a, left panel), the multiple 

regression permits separate inference on forwards and backwards sequences.  

 

Oscillations and long timescale autocorrelations. Equation 2 performs multiple regression, 

regressing each 𝑋!(𝑡 + ∆𝑡) onto each 𝑋!(𝑡) whilst controlling for all other state estimates at 

time t. This method works well when spurious relationships between  𝑋"(𝑡) and 𝑋!(𝑡 + ∆𝑡) are 

mediated by the subspace spanned by the other estimated states at time t (in particular 𝑋!(𝑡)).  
One situation in which this assumption might be challenged is when replay is superimposed on 

a large neural oscillation. For example, during rest with eyes closed (which is often of interest 

in replay analysis), MEG and EEG data often express a large alpha rhythm, at around 10Hz.  

 

If all states experience the same oscillation at the same phase, the approach correctly controls 

false positives. The oscillation induces a spurious correlation between 𝑋"(𝑡) and 𝑋!(𝑡 + ∆𝑡) 
but, as before, this spurious correlation is mediated by 𝑋!(𝑡).  
 

However, this logic fails when states experience the oscillation at different phases. This 

scenario may occur, for example, if there are travelling waves in cortex 19,20, because different 

sensors will experience the wave at different times, and different states have different 

contributions from each sensor. In this case, 𝑋"(𝑡) predicts 𝑋!(𝑡 + ∆𝑡) over and above 𝑋!(𝑡). 

To see this, consider the situation where ∆𝑡 is 
&

2
	𝜏 (where 𝜏 is the oscillatory period) and the 

phase shift between 𝑋"(𝑡) and 𝑋!(𝑡) is pi/2. Now every peak in 𝑋!(𝑡 + ∆𝑡) corresponds to a 

peak in 𝑋"(𝑡) but a zero of 𝑋!(𝑡).   
 

To combat this problem, we can include phase shifted versions/more timepoints of 𝑋(𝑡). If 
dominant background oscillation is at alpha frequency (e.g., 10Hz), neural activity at time T 

would be correlated with activity at time T +	𝜏. We can control for that, by including 𝑋(𝑡 + 𝜏), 
as well as 𝑋(𝑡) in the GLM (Fig. 3b). Here 𝜏 = 100 ms, if assuming the frequency is 10Hz. 

Applying this method to the real MEG data during rest, we see much diminished 10Hz 

oscillation in sequence detection during rest 12.  

 

Spatial correlations 

 

As mentioned above, correlations between decoded variables commonly occur. The simplest 

type of decoding model is a binary classifier that maps brain activity to one of two states. These 

states will, by definition, be perfectly anti-correlated. Conversely, if separate classifiers are 

trained to distinguish each state’s representation from baseline (“null”) brain data, then the 

states will often be positively correlated with each other. 
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Unfortunately, positive or negative correlation between states reduces the sensitivity of 

sequence detection, because it is difficult to distinguish between states within the sequence: 

collinearity impairs estimation of β in Equation 2. In Figure 3c, we show in simulation that the 

ability to detect real sequences goes down as spatial correlation goes up.  

 

Ideally, the state decoding models should be as independent as possible. We have suggested 

the approach of training models to discriminate one state against a mixture of other states and 

null data 11,12. The mixture ratio can be adjusted. Adding more null data causes the states to be 

positively correlated with each other, while less null data leads to negative correlation. We 

adjust the ratio to bring the correlation between states as close to zero as possible. In Figure 3d, 

we show in simulation the benefit for sequence detection. An alternative method is penalizing 

covariance between states in the classifier’s cost function 21. 

 

Regularization. A key parameter in training high dimensional decoding models is the degree 

of regularization.  

 

In sequence analysis, we are often interested in spontaneous reactivations of state 

representations – as in replay. However, our decoding models are typically trained on stimulus-

evoked data, because this is the only time at which we know the ground truth of what is being 

represented. This poses a challenge in so far as the models best suited for decoding evoked 

activity at training may not be well suited for decoding spontaneous activity at subsequent test.  

 

We find that L1 weight regularization outperforms L2 regularization in detecting sequences 

(Fig. 3e). Notably, the L1 penalty encourages sparsity, which reduces spatial correlation 

between states.  

 

STATISTICAL INFERENCE 

 

So far, we have shown how to quantify sequences in representational dynamics. An essential 

final step is assessing the statistical reliability of these quantities. 

 

All the tests described in this section evaluate the consistency of sequences across subjects. 

This is very important, because even in the absence of any real sequences of task-related 

representations, spontaneous neural activity is not random but follows repeating dynamical 

motifs 22. Solving this problem requires a randomized mapping between the assignment of 

physical stimuli to task states. This can be done across subjects, permitting valid inference at 

the group level. 

 

At the group level, the statistical testing problem can be complicated by the fact that sequence 

measures do not in general follow a known distribution. Additionally, if the state-to-state lag 

of interest (𝛥𝑡) is not known a priori, it will be necessary to perform tests at multiple lags, 

creating a multiple comparisons problem over a set of tests with complex interdependencies. 

In this section we discuss inference with these issues in mind. 

 

Distribution of sequenceness at a single lag 

 

If the state-to-state lag of interest (𝛥𝑡) is known a priori then the simplest approach is to 

compare the sequenceness against zero, for example using either a signed-rank test, or one-

sample t test (assuming Gaussian distribution). Such testing assumes that the data would be 

centred on zero if there were no real sequences. We show this approach is safe in both 
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simulation (assuming no real sequences) and real MEG data in which we know there are no 

sequences. 

 

In simulation, we assume no real sequences, but state time courses are autocorrelated. At this 

point, there is no systematic structure in the correlation between the neuronal representations 

of different states (see later for this consideration). We then simply select the 40 ms time lag 

and compare its sequenceness to zero using either a signed-rank test or one-sample t test. We 

compare false positive rates predicted by the statistical tests with false positive rates measured 

in simulation (Fig. 4a). We see the empirical false positives are well predicted by theory.  

 

We also tested this on real MEG data. In Liu, et al. 12 we had one condition where we measured 

resting activity before the subjects saw any stimuli. Therefore, by definition these stimuli could 

not replay, but we can use the classifiers from these stimuli (measured later) to test the false 

positive performance of statistical tests on replay. To get many examples, we randomly 

permute the 8 different stimuli 10,000 times and then compare sequenceness (at 40 ms time 

lag) to zero using either signed rank test or one-sample t test across subjects. Again, predicted 

and measured false positive rates match well (Fig. 4b, left panel). This holds true across all 

computed time lags (Fig. 4b, right panel).  

 

An alternative to making assumptions about the form of the null distribution is to compute an 

empirical null distribution by permutation. Given that we are interested in the sequence of 

states over time, one could imagine permuting either state identity or time. However, permuting 

time uniformly will typically lead to a very high incidence of false positives, as time is not 

exchangeable under the null hypothesis (Fig. 4c, blue colour). Permuting time destroys the 

temporal smoothness of neural data, creating an artificially narrow null distribution 11,12. State 

permutation, on the other hand, only assumes state identities are exchangeable under the null 

hypothesis, while preserving the temporal dynamics of the neural data, represents a safer 

statistical test that is well within 5% false positive rate (Fig. 4c, purple colour). 

 

Correcting for multiple comparisons 

 

If the state-to-state lag of interest is not known, we have to search over a range of time lags. 

As a result, we have a multiple comparison problem. Unfortunately, we don’t yet have a good 

parametric method to control for multiple testing over a distribution. It is possible that one 

could use methods that exploit the properties of Gaussian Random Fields, as is common in 

fMRI 23, but we have not evaluated this approach. We could use Bonferroni correction, but the 

assumption that each computed time lag is independent is likely false and overly conservative.  

 

We recommend relying on state-identity based permutation. To control the family wise error 

rate (assuming 𝛼 = 0.05), we want to make sure that there is a 5% probability of getting the 

tested sequenceness strength (𝑆,3/,) or bigger by chance in *any* of the multiple tests. We 

therefore need to know what fraction of the permutations give 𝑆,3/, or bigger in any of their 

multiple tests. If any of the sequenceness scores in each permutation exceed 𝑆,3/,, then the 

maximum sequenceness score in the permutation will exceed 𝑆,3/,, so it is sufficient to test 

against the maximum sequenceness score in the permutation. The null distribution is therefore 

formed by first taking the peak of sequenceness across all computed time lags of each 

permutation. This is the same as approach as is used for family-wise error correction for 

permutations tests in fMRI data 24, and in our case it is shown to behave well statistically (Fig. 

4d). 
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What to permute 

 

We can choose which permutations to include in the null distribution. For example, consider a 

task with two sequences, 𝑆𝑒𝑞1:	𝐴 → 𝐵 → 𝐶 → 𝐷, and 𝑆𝑒𝑞2:	𝐸 → 𝐹 → 𝐺 → 𝐻. We can form 

the null distribution either by permuting all states (e.g., one permutation might be: E→ 𝐹 →
𝐴 → 𝐵, H→ 𝐶 → 𝐸 → 𝐷), as was performed in Kurth-Nelson, et al. 11.  Alternatively, we can 

form a null distribution which only includes transitions between states in different sequences 

(e.g., one permutation might be: D→ 𝐺 → 𝐴 → 𝐸, H→ 𝐶 → 𝐹 → 𝐵), as was performed in Liu, 

et al. 12.  In each case, permutations are equivalent to the test data under the assumption that 

states are exchangeable between positions and sequences. The first case has the advantage of 

many more possible permutations, and therefore may make more precise inferential statements 

in the tail (Fig 4e). The second may be more sensitive in the presence of signal, as the null 

distribution is guaranteed not to include permutations which share any transitions with the test 

data.  

 

Cautionary note on exchangeability of states after training  

 

Until now, all tests have assumed that state identity is exchangeable under the null hypothesis. 

Under this assumption, it is safe to perform state-identity based permutation tests on 𝑍) and 

𝑍0. In this section, we consider a situation where this assumption is broken. 

 

More specifically, we are considering a situation where the neural representation of state 𝐴 and 

𝐵 are related in a systematic way or, in other words, the classifier on state 𝐴 is confused with 

state 𝐵, and we are testing sequenceness of  𝐴 → 𝐵. Crucially, to break the exchangeability 

assumption, representations of 𝐴 and 𝐵 have to be systematically more related than other states, 

e.g., 𝐴 and 𝐷. This cannot be caused by low level factors (e.g., visual similarity) because states 

are counterbalanced across subjects, so any such bias would cancel at the population level. 

However, such a bias might be induced by task training.  

 

In this situation, it is, in principle, possible to detect sequenceness of 𝐴 → 𝐵, even in the 

absence of real sequences. In the autocorrelation section above, we introduced protections 

against the interaction of state correlation with autocorrelation. These protections may fail in 

the current case as we cannot use other states as controls (as we do in the multiple linear 

regression), because 𝐴  has systematic relationship with 𝐵 , but not other states. State 

permutation will not protect us from this problem because state identity is no longer 

exchangeable.  

 

Is this a substantive problem? After extensive training, behavioural pairing of stimuli can 

indeed result in increased neuronal similarity 25,26. These early papers involved long training in 

monkeys. More recent studies have shown induced representational overlap in human imaging 

within a single day 27-29. However, when analysed across the whole brain, such representational 

changes tend to be localised to discrete brain regions 30,31,  and as a consequence may have limited 

impact on whole brain decodeability.  
 
Whilst we have not yet found a simulation regime in which false positives are found (as opposed 

to false negatives), there exists a danger in cases where, by experimental design, the states are not 

exchangeable. 
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EXTENSIONS TO TDLM 

 

TDLM can be used iteratively. Two extensions of TDLM of particular interest are: Multi-step 

sequences and Sequence of sequences. The former asks about consistent regularity among 

multiple states, the latter ask about the hierarchical structure of state reactivation, not only 

within but between sequences. 

 

Multi-step sequences.  

 

So far, we have introduced methods for quantifying the extent to which the state-to-state 

transition structure in neural data matches a hypothesized task-related transition matrix. An 

important limitation of these methods is that they are blind to hysteresis in transitions. In other 

words, they cannot tell us about multi-step sequences. In this section, we describe a 

methodological extension to measure evidence for sequences comprising more than one 

transition: for example, 𝐴 → 𝐵 → 𝐶.  

 

The key ingredient is controlling for shorter sub-sequences (e.g., 𝐴 → 𝐵 and 𝐵 → 𝐶), in order 

to find evidence unique to the multi-step sequence of interest. 

 

Assuming constant state-to-state time lag, ∆𝑡, between A and B, and between B and C. We can 

create new state space AB, by shifting B up ∆𝑡, and elementwise multiply it with state A. This 

new state AB measure the reactivation strength of 𝐴 → 𝐵, with time lag ∆𝑡. In the same way, 

we can create new state space, BC, AC, etc. Then we can construct the same first level GLM 

on the new state space. For example, if we want to know the evidence of 𝐴 → 𝐵 → 𝐶 at time 

lag ∆𝑡. We can regress AB onto state time course C, at each ∆𝑡 (cf. Equation 1). But we want 

to know the unique contribution of AB to C. More specifically, we want to test if the evidence 

of 𝐴 → 𝐵 → 𝐶 is stronger than 𝑋 → 𝐵 → 𝐶, where X is any state but not A. Therefore, similar 

as Equation 2, we want to control CB, DB, when looking for evidence of AB of C. Applying 

this method, we show TDLM successfully avoids false positives arising out of strong evidence 

for shorter length (see simulation results in Fig. 3f, see results obtained on human neuroimaging 

data in Fig. 3g). This process can be generalized to any number of steps. 

 

Sequence of sequences  

 

We have so far detailed use of either sensory or abstract representations as states in TDLM. 

We now take a step further and use sequences themselves as states. With this kind of 

hierarchical analysis, we can search for sequences of sequences. This is useful because it can 

reveal the temporal structure not only within sequence, but also between sequences. The 

organization between sequences is of particular interest for revealing neural computations. For 

example, the forward and backward search algorithms hypothesized in planning and inference 
32 can be cast as sequences of sequences problem: the temporal structure of forward and 

backward sequence. This can be tested by using TDLM iteratively.  

 

As yet little human neural data is available on the organization of sequences. Interestingly, one 

can think of theta sequence, a well-documented phenomenon during rodent spatial navigation 
8,13,33, as a neural sequence repeating itself in theta frequency (6 - 12 Hz). We will show TDLM 

is able to replicate this well-known phenomenon. 

 

To look for sequences between sequences we need first to define sequences as new states. To 

do so, the raw state course, for example, state B needs to be shifted up by the empirical within-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.066407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.066407
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequence time lag ∆𝑡 (determined by the two-level GLM described above), to align with the 

onset of state A, if assuming sequence 𝐴 → 𝐵 exist (at time lag ∆𝑡). Then, we can elementwise 

multiply the raw state time course A with the shifted time course B, resulting in a new state 

AB (Fig. 2d). Each entry in this new state time course indicates the reactivation strength of 

sequence AB at a given time. 

 

After that, the general two-level GLMs framework still applies, but with one important caveat. 

The new sequence state (e.g., AB) is defined based on the original states (A and B), and we are 

now interested in the reactivation regularity, i.e., sequence, between sequences, rather than the 

original states. We should therefore control for the effects of the original states. Effectively, 

this is like controlling for main effects (e.g., state A and shifted state B) when looking for their 

interaction (sequence AB). TDLM achieves this by putting time lagged original state regressors 

A, B, in addition to AB, in the first level GLM sequence analysis (see details in online Methods). 

 

In simulation we demonstrate, applying this method, that TDLM can uncover hierarchical 

temporal structure: state A is temporally leading state B with 40 ms lag, and the sequence A->B 

tends to repeat itself with a 140 ms gap (Fig. 4a). On real rodent hippocampal 

electrophysiological recording, we replicate the well-known theta sequence - neural sequence 

repeating itself in theta frequency (Fig. 4b, see detailed analysis on rodent data in 

Supplementary Note 2). 

 

In addition to looking for temporal structure of the same sequence, this method is equally 

suitable when searching for temporal relationship between difference sequences in a general 

form. For example, assuming two different types of sequences, one sequence type has a within-

sequence time lag at 40 ms; while the other has a within-sequence time lag at 150 ms; and there 

is a gap of 200 ms between the two types of sequences (Supplementary Fig. 3a) (these time 

lags are set arbitrarily for illustration purposes. TDLM captures accurately the dynamics both 

within and between the sequences (Supplementary Fig. 3b, c), supporting a potential for 

uncovering temporal relationships between sequences in general under the same framework. 

 

SOURCE LOCALIZATION 

 

Uncovering the temporal structure of neural representation is important, but one might also 

want to ask where in the brain the sequence is generated. Rodent electrophysiology research 

focuses mainly on hippocampus when searching for replay. One advantage of whole-brain non-

invasive neuroimaging over electrophysiology (despite many known disadvantages, including 

poor anatomical precision, low signal-noise ratio) is its ability to look for neural activity in 

other brain regions. Ideally, we would like a method that is capable of localizing sequences of 

more abstract representation in brain regions beyond hippocampus 12. 

 

We can achieve this by availing of the two-level GLMs in TDLM. More specifically, after 

identifying the empirical time lag that gives rise to the strongest neural sequence, one can 

project the time lag back to the time series of decoded states and work out the probability of 

sequence reactivation at each time point (Supplementary Fig. 4a, left panel). This is the same 

as changing the state space from A and B to sequence A->B.  This gives us a temporal stamp 

on the testing time, e.g., resting state: the time indices of sequence onset (Supplementary Fig. 

4a, right panel). To ensure it is the onset of a sequence event, rather than a middle portion, we 

apply an extra constraint: there is a low sequence probability time window (e.g., 200 ms) before 

the sequence onset. Then, we can epoch the testing time data into a bunch of sequence events 

with appropriate thresholding, e.g., above 95th percentile (see detailed calculation in online 
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Method). After epoching, the epoched data can be treated as event related neural activity, with 

onset as the initialization of neural sequence. This approach is similar to spike-triggered 

averaging 34,35. Applying this to real MEG data during rest, we can detect increased 

hippocampal power at 120-150 Hz, during replay onset (Supplementary Fig. 4b, c). 

 

DISCUSSION 

 

TDLM is a general analysis framework for capturing sequence regularity of neural 

representations. It is developed on human neuroimaging data but can be applied to other data 

sources, including rodent electrophysiology recordings. The framework can facilitate cross-

species investigations and enables investigation of  phenomena that are not readily addressable 

in rodents 12.  

 

The temporal dynamics of neural states have been studied previously with MEG 22,36. Normally 

states are defined by common physiological features (e.g., frequency, functional connectivity) 

during rest, and termed resting state networks (e.g., default mode network 37). However, these 

approaches remain agnostic about the content of neural representation.  Being able to study the 

temporal dynamics of representational content permits richer investigations into cognitive 

processes, as neural states can be analysed in the context of their roles with respect to cognitive 

tasks.  

 

Reactivation of neural representations have also been studied previously 38 using approaches 

similar to the decoding step of TDLM, or multivariate pattern analysis (MVPA) 39. This has 

proven fruitful in revealing mnemonic functions29, understanding sleep40, and decision-

making41. However, classification alone cannot reveal the rich temporal structures of 

reactivation dynamics. For example, the ability to detect sequences allows us to tease apart 

clustered from sequential reactivation, where this  may be important for dissociating decision 

strategies 42 and their individual differences 42,43. Furthermore, it enables comparisons with the 

sequential reactivation patterns reported in rodent hippocampus 10,44, and may allow tests of 

neural predictions from process models such as reinforcement learning 45, which have been 

hard to probe previously in humans 46. 

 

We have mainly discussed the application of TDLM on high temporal resolution neuroimaging 

data (e.g., MEG). Recently, sequential replay has been reported using fMRI 47. We anticipate 

it will be useful to combine the high temporal resolution available in M/EEG and the spatial 

precision available in fMRI to probe region - specific sequential computation. Whilst related 

techniques are available 48, TDLM could, in principle, also be applied to fMRI data.  

 

TDLM enables neuroscientists to decipher rich temporal structures of neural reactivation. We 

described the application of TDLM mostly during off-task state. However, the very same 

analysis can be applied to on-task data, to test for cued sequential reactivation 43, or sequential 

decision-making 46. We believe TDLM opens doors for novel investigations of human 
cognition, including language, sequential planning and inference in non-spatial cognitive tasks 
11,42. It is particularly suited to test specific neural prediction from process models. Therefore, 

we hope TDLM can aid a synthesis between empirical and theoretical approaches in 

neuroscience and in so doing shed novel lights on dynamic neural computation. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.04.30.066407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.066407
http://creativecommons.org/licenses/by-nc-nd/4.0/


ONLINE METHODS 

 

The TDLM framework 

 

TDLM comprises three stages. The objective of the first stage is to map the multivariate neural 

activity to labelled states. In the second and third stage, TDLM builds a linear generative model 

of the state time course and assesses the statistical significance by non-parametric permutation 

test. The three-stage computation is described below. 

 

Step 1: Mapping multivariate neural activity to labelled state 

 

Mappings between neural activity and labelled states are established through a supervised 

decoding approach. To avoid selection bias, the training data should come from an independent 

task with no biased experience of the states. The choice of machine learning methods is not the 

focus of this work. We choose logistic regression models for simplicity.  

 

For each state we trained one binomial classifier. Positive examples for the classifier were trials 

on which that object was presented. Negative examples consisted of two kinds of data: trials 

when another object was presented, and data from the fixation period before the semantic pre-

cue appeared (i.e., “null data”). The null data are included to reduce the anticorrelation between 

different classifiers. It was possible for all classifiers to report low probabilities simultaneously 

in testing data. Prediction accuracy was estimated by treating the highest probability output 

among all classifiers as the predicted object. Permutation-based method is employed to assess 

the statistical significance, which is corrected for multiple comparisons across time. The time 

point that gives the highest cross-validation accuracy is selected for training the classifiers.  

 

Step 2: Quantifying strength of state transitions 

 

The decoding models allow one to measure spontaneous reactivation of task-related 

representations during testing time, where ground truth label is not available e.g., resting state. 

TDLM defined a ‘sequenceness’ measure, which describes the degree to which these 

representations were reactivated in a prescribed sequential order. 

 

TDLM first applies each of the state decoding models to the test data. This yields a reactivation 

matrix X with dimension 𝑇 × 𝑁 ., where 𝑇 is the duration of the time series, and 𝑁  is the 

number of states. After that, TDLM asks whether particular sequences of state activations 

appeared above chance in the reactivation matrix X, by applying a two-level GLMs (Equations 

2 and 5). 

 

Step 3: Test statistical significance of neural sequence 

 

In the final step, TDLM assesses the statistical significance of sequenceness. TDLM chooses 

to apply nonparametric tests involving possible permutations of the state labels. Shuffling state 

identity allows one to reject the null hypothesis that the MEG time series had no relationship 

to the transition structure of the task. Different levels of statistical inference can be made 

precisely by controlling the null distribution - how the states are permuted. 
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Change of state spaces 

 

TDLM allows one to construct a new state space by building on the original one. For example, 

after figuring out the empirical state-to-state time lag, TDLM can build the sequence state, and 

look for sequence of sequence, or identify the onset of sequence. 

 

To do so, TDLM first time shifted the reactivation matrix X up to the empirical time lag ∆𝑡4, 

obtained 𝑋∆4. 

																																																																			𝑋∆4 = 𝑋(𝑡 − ∆𝑡4)                                                       
 

Then, 𝑋 is multiplied by the transition matrix	𝑃, obtained a project matrix - 𝑋6. 

 

																																																																								𝑋6 = 𝑋 × 𝑃							                                                                
 

Next, TDLM elementwise multiply 𝑋∆4 by 𝑋6, result in matrix 𝑅, which indicate the new state 

space of sequence, where each element indicates the strength of a (pairwise) sequence at a 

given moment in time.  

																																																																				𝑅 = 𝑋∆4	.∗ 𝑋6                                                          

 

 

Identifying sequence onsets 

 

Sequence onsets were defined as moments when a strong reactivation of a state was followed 

by a strong reactivation of the next state in the sequence. In general, TDLM first finds the 

empirical state-to-state time lag ∆𝑡4  where there is maximum evidence for state-to-state 

sequenceness. Finally, TDLM identifies the sequence onset by thresholding the sequence state 

at its high (e.g., 95th) percentile with a constraint that a sequence onset has a sequence-free time 

window (e.g., 100 ms) preceding it. This analysis pipeline gives a temporal stamp on the testing 

time. One can therefore epoch the data based on those sequence onsets and apply temporal 

frequency analysis and source localization, just like on the standard task data. 

 

 

Sequence of sequence 

 

TDLM is capable of quantifying not only the item-to-item transitions, but also sequence-to-

sequence dynamics after change of state space. To quantify sequence of sequences, TDLM 

needs to construct the design matrix to carefully control for dynamics within the sequence. In 

the linear model, this is effectively asking for the interaction effect of item state A and B, one 

should therefore control for the main effect of A and B. Similar with quantifying the original 

state-to-state transitions, TDLM operate in two-level GLMs to measure the sequence-to-

sequence transitions, but with extra control of within sequence effects.  

 

Let’s assume the sequence state matrix is 𝑋/37, after transforming the original state space to 

sequence space based on the empirical within-sequence time lag ∆𝑡8. Each column at 𝑋/37 is 

sequence state, denoted by 𝑆"!, which indicates the strength of sequence i -> j reactivation. The 

raw state i is 𝑋", and the shifted raw state j is 𝑋!8 (by time lag ∆𝑡8). 
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In the first level GLM, TDLM ask for the strength of unique contribution of sequence state 𝑆"! 
to 𝑆9$ while controlling for original states (𝑋" and 𝑋!8). For each sequence state 𝑖𝑗, at each 

possible time lag ∆𝑡, TDLM estimated a separate linear model: 

 

	𝑆9$ = 𝑋"(∆𝑡)𝛽" +	𝑋!8(∆𝑡)𝛽! +	𝑆"!(∆𝑡)𝛽"!(∆𝑡)	                         
 

Repeat this process for each sequence state separately at each time lag, resulting a sequence 

matrix 𝛽/37. 

 

In the 2nd level GLM, TDLM asks how strong the evidence of sequence of interest is compared 

to sequences that have the same starting state or end state at each time lag.	𝛽/37 contains the 

beta of sequence of interest, 𝛽:"!; beta of sequence that share the same starting state, 𝛽:"; beta 

of sequence that share the same end state, 𝛽:! . The design matrix T includes sequence of 

sequence of interest 𝑇/37 (label “1” for 𝛽"!∆"#, “0” for anything else), constant, 𝑇.. 
 

𝛽/37 = 𝑇𝑍                                                              

 

This is asking how strong the specific sequence of sequence of interest (𝑇/37) is, compared to 

the general sequence effect that is contributed by either the same starting state or the end state. 

This resulted in a single number 𝑍/37, quantifying the specific strength of transition of interest 

at given time lag ∆𝑡.  
 

Abstract code 

 

TDLM assumes the variance of structure code and sensory code of the same object are 

uncorrelated and can be linearly decomposed. TDLM first estimates the mean multivariate 

response pattern of the objects (sensory code) on the data where there is no structural 

information. The objective here is to find the response patterns that can explain the maximal 

variance of sensory code overall rather than separating neural representations of each sensory 

code 49. After that, TDLM regresses the multivariate response pattern of sensory code, 𝛽/3$/-;<, 

onto the position code training data, 𝐷=, and get the residual that cannot be explained by the 

sensory code, 𝐸6. 

 

	𝐸6 = 𝐷= − 𝑝𝑖𝑛𝑣R𝛽/3$/-;<S × 𝐷= × 𝛽/3$/-;<                                     

 

The position code is then trained only on the residuals, 𝐸6, through the same analysis pipeline 

of the first step of TDLM.  

 

 

Human MEG dataset 

 

Task design 

 

Participants were required to perform a series of tasks with concurrent MEG scanning (see 

details in Liu, et al. 12).  The functional localizer task was performed before the main task and 

was used to train a sensory code for eight distinct objects. Note, the participants were provided 

with no structural information at the time of the localizer. These decoding models, trained on 

the functional localizer task, capture a sensory level neural representation of stimuli (i.e., 
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stimulus code). Following that, participants were presented with the stimuli and were required 

to unscramble the “visual sequence” into a correct order, i.e., the “unscrambled sequence” 

based on a structural template they had learned the day before. After that, participants were 

given a rest for 5 mins. In the end, stimuli were presented again in random order, and 

participants were asked to identify the true sequence identity and structural position of the 

stimuli. Data in this session are used to train the structural code of the objects.  

 

MEG data Acquisition and Pre-processing  

 

MEG was recorded continuously at 600 samples/second using a whole-head 275-channel axial 

gradiometer system (CTF Omega, VSM MedTech), while participants sat upright inside the 

scanner. Participants made responses on a button box using four fingers as they found most 

comfortable. The data were resampled from 600 to 100 Hz to conserve processing time and 

improve signal to noise ratio. All data were then high-pass filtered at 0.5 Hz using a first-order 

IIR filter to remove slow drift. After that, the raw MEG data were visually inspected, and 

excessively noisy segments and sensors were removed before independent component analysis 

(ICA). An ICA (FastICA, http://research.ics.aalto.fi/ica/fastica) was used to decompose the 

sensor data for each session into 150 temporally independent components and associated sensor 

topographies. Artefact components were classified by combined inspection of the spatial 

topography, time course, kurtosis of the time course and frequency spectrum for all 

components. Eye-blink artefacts exhibited high kurtosis (>20), a repeated pattern in the time 

course and consistent spatial topographies. Mains interference had extremely low kurtosis and 

a frequency spectrum dominated by 50 Hz line noise. Artefacts were then rejected by 

subtracting them out of the data. All subsequent analyses were performed directly on the 

filtered, cleaned MEG signal, in units of femtotesla.  

 

MEG Source Reconstruction 

 

All source reconstruction was performed in SPM12 and FieldTrip. Forward models were 

generated on the basis of a single shell using superposition of basis functions that 

approximately corresponded to the plane tangential to the MEG sensor array. Linearly 

constrained minimum variance beamforming 50, was used to reconstruct the epoched MEG data 

to a grid in MNI space, sampled with a grid step of 5 mm. The sensor covariance matrix for 

beamforming was estimated using data in either broadband power across all frequencies or 

restricted to ripple frequency (120-150 Hz). The baseline activity was the mean neural activity 

averaged over -100 ms to -50 ms relative to sequence onset. All non-artefactual trials were 

baseline corrected at source level. We looked at the main effect of the initialization of sequence. 

Non-parametric permutation tests were performed on the volume of interest to compute the 

multiple comparison (whole-brain corrected) P-values of clusters above 10 voxels, with the 

null distribution for this cluster size being computed using permutations (n = 5000 

permutations). 

Code availability 

Source code of TDLM can be found at https://github.com/yunzheliu/TDLM. 

Data availability  

Data are available upon reasonable request from the corresponding author, unless prohibited 

owing to research participant privacy concerns.  
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FIGURES & LEGENDS  
 

 
 
Fig. 1 TDLM is a linear generative model that assumes that state time course can be predicted by 

other lagged state time courses. a, State definition: The first step of TDLM is decoding, to establish 

the mapping between multivariate neural patterns and labelled states through supervised learning. A 

separate decoding model, e.g. regularised logistic regression was trained to recognize each state (left) 

vs. other states and null data. Decoding models (consisting of a set of weights over sensors) were then 

tested on unlabelled testing data (e.g., resting state) to generate a time*state decoding matrix (right). 

Examples of forward sequential state reactivations in simulated data (right).  b, The second step of 

TDLM is to quantify the temporal structure of the decoded states using a two-level GLM approach. In 

the first level GLM result in a state*state regression coefficient matrix at each time lag. In the second 

level GLM, this coefficient matrix is projected onto the hypothesized state transition matrix (in red), to 

give a single measure of sequenceness as a function of time-lag. c, The statistical significance was tested 

using a nonparametric state permutation test by randomly shuffling the transition matrix of interest (in 
grey). The statistical significance threshold is defined as the 95th percentile of all shuffles across all time 

lags for raw forward (in red) and backward (in blue) sequence, denoted as the dashed line. In addition, 

we define a summary statistic – sequence difference (D), which is the subtraction of forward and 

backward sequence at each time lag (in green). Positive value means favouring forward vs. backward, 

and vice versa. The permutation threshold for sequenceness is defined as the 95th percentile of the 

maximum absolute value of the subtraction of all shuffles across all time lags.  
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Fig. 2 TDLM is capable of working on different state spaces. a, Assuming we have two abstract 

codes, each abstract code has two different sensory codes (left panel). The M/EEG data corresponding 

to each stimulus is a conjunctive representation of sensory and abstract codes (right panel). The abstract 

code can be operationalised as the common information in the conjunctive codes of two stimuli that 

share the same abstract representation. b, Training decoding models for stimulus information. The 

simplest state is defined by sensory stimuli. To determine the best time point for classifier training, we 

can use classical leave-one-out cross validation scheme on the stimuli-evoked neural activity. c, 

Training decoding models for abstracted information. The state can also be defined as the abstractions. 

To extract this information only, we need to avoid sensory information. We can train the classifier on 
the neural activity evoked by one stimulus and tested on the other sharing the same abstract 

representation. If the neural activity contains both the sensory and abstract code, then the only 

information can generalize is the common abstract code. d, The state can also be defined as the sequence 

event itself. 
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Fig. 3 TDLM builds a linear model to test for sequential structure in state reactivations by 

controlling for temporal and spatial correlations. a, Simple linear regression or cross-correlation 

approach relies on the asymmetry of forward and backward transitions; therefore, subtraction is 

necessary (left panel). TDLM instead relies on multiple linear regression. TDLM can assess forward 

and backward transitions separately (right panel). b, Background alpha oscillations, as seen during rest 

periods, can reduce sensitivity of sequence detection (left panel), controlling alpha in TDLM helps 
recover the true signal (right panel). c, The spatial correlation between the sensor weights of decoders 

for each state reduces the sensitivity of sequence detection. This suggests reducing overlapping patterns 

between states are important for sequence detection. d, Adding null data to the training set can help 

increase the sensitivity of sequence detection by reducing the spatial correlations of the trained classifier 

weights. Here the number indicates the ratio between null data and task data. “1” means the same 

amount of null data and the task data. “0” means no null data is added for training. e, L1 regularization 

helps sequence detection by reducing spatial correlations (all red dots are L1 regularization with a 

varying parameter value), while L2 regularization does not help sequenceness (all blue dots are L2 

regularization with a varying parameter value) as it does not reduce spatial correlations of the trained 

classifiers compared to the classifier trained without any regularization (green point).  
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Fig. 4 Statistical inference. a, P-P plot of one-sample t test (blue) and Wilcoxon signed rank test (red) 

against zero. This is done in simulated MEG data assuming auto-correlated state time courses but no 

real sequences. In each simulation, the statistics are done only on sequenceness at 40 ms time lag, across 

24 simulated subjects. There are 10,000 simulations. b, We have also tested the sequenceness 

distribution on the real MEG data. This is pre-task resting state of 22 subjects from Liu et. al, where the 

ground truth is no sequence given the stimuli are not shown yet. The statistics are done on sequenceness 

at 40 ms time lag, across the 22 subjects. There are eight states. The state identity is randomly shuffled 

10,000 times to construct the null distribution. c, Time-based permutation test tends to give high false 

positive, while state identity-based permutation does not. This is done in simulation assuming no real 

sequences (n=1000). d, P-P plot of state identity-based permutation test over peak sequenceness is 

shown. To control for multiple comparisons, the null distribution is formed taking the maximal absolute 
value over all computed time lags within a permutation, and the permutation threshold is defined as the 

95% percentile over permutations. In simulation, we only compared the max sequence strength in the 

data to this permutation threshold. There are 10,000 simulations. In each simulation, there are 24 

simulated subjects, with no real sequence. e, In state-identity based permutation, we can test more 

specific hypotheses by controlling the null distribution. Blue are the permutations that only exchange 

state identity across sequences. Red are the permutations that permit all possible state identity 

permutations. 500 random state permutations are chosen from all possible ones. The X axis is the 

different combinations of the state permutation. It is sorted so that the cross-sequence permutations are 

in the beginning.  
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Fig. 5 Extension to TDLM: Multi-step sequences and Sequence of sequences. a, TDLM can 

quantify not only pair-wise transition, but also longer length sequences. It does so by controlling for 

evidence of shorter length to avoid false positive. b, Method applied to human MEG data, incorporating 

control of both alpha oscillation and co-activation for both length-2 and length-3 sequence length. 

Dashed line indicates the permutation threshold. This is adapted from Liu, et al. 11. c, TDLM can also 

be used iteratively to capture the repeating pattern of sequence event itself. Illustration in the top panel 

describes the ground truth in the simulation. Intra-sequence temporal structure (right) and inter-

sequence temporal structure (right) can be extracted simultaneously. d, On a real rodent hippocampal 

electrophysiological dataset, TDLM revealed the well-known theta sequence phenomena during active 

spatial navigation. 
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SUPPLEMENTARY FIGURES  

 

 
 
Supplementary Fig. 1 Source localization of stimuli evoked neural activity. The states here are 

defined as the stimuli evoked neural activity. The classifiers are trained at 200 ms post-stimulus 

onset. For example, the stimuli are faces, buildings, body parts, and objects. Source localizing 

the evoked neural activity, we found expected activation pattern of the 4 stimuli based on 

literature. For faces, activation peaked in a region roughly consistent with the fusiform face 

area (FFA) as well as the occipital face area (OFA). Activation for building stimuli was located 

between the well-known parahippocampal place area (PPA) and the retrosplenial cortex (RSC), 

a region also known to respond to scene and building stimuli. Activation for body part stimuli 

was in a region consistent with the extrastriate body area (EBA). Activation for objects was in 

a region consistent with the object-associated lateral occipital cortex (LOC) as well as an 

anterior temporal lobe (ATL) cluster that may relate to conceptual processing of objects. 

Individual category maps thresholded to display localized peaks for illustration. This is adapted 

from Wimmer, et al. 2. Full unthresholded maps can be found at 

https://neurovault.org/collections/6088/. 
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Supplementary Fig. 2 Sequences of abstract code. a, Illustration of the relationship between sensory 

code and (abstract) structural code. The problem is we cannot directly access structural code. We can 

only indirectly obtain structural code from the conjunctive code which have both sensory and structural 

information. In the ground truth, there is sequence of sensory code but not structural code. b, We show 

in simulation the importance of controlling for sensory (stim) information, when looking for sequences 

of abstract code.  
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Supplementary Fig. 3 Temporal structure between and within different sequences. a, Illustration 

of two sequence types with different state-to-state time lag within sequence, and a systematic gap 

between the two types of sequences. b, TDLM can capture the temporal structures both within (left 

panel) and between (right panel) the two sequence types. 
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Supplementary Fig. 4 Source localization of replay onset. a, TDLM figures out the onset of sequence 

based on the identified optimal state-to-state time lag (left panel). Sequence onset during resting state 

from one example subject is shown (right panel). b, On the real human neuroimaging data during rest, 

there was a significant power increase (averaged across all sensors), in the ripple frequency band (120-

150 Hz), at the onset of replay, compared to the pre-replay baseline (100 to 50 ms before replay). c, 

Source localization of ripple-band power at replay onset revealed significant hippocampal activation 

(right panel, peak MNI coordinate: X = 18, Y = -12, Z = -27). This is adapted from Liu, et al. 1. 
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Supplementary Note 1: Synthetic datasets 
 

We simulate the data to be similar with the human MEG data. Therefore, there is always strong 

autocorrelation in time, and sometimes with rhythmic oscillation (e.g., 10Hz). In spatial 

domain, the sensors are always spatially correlated. To imitate the temporal auto-correlation 

feature of real MEG data, the simulated data is generated with an auto-aggressive model with 

multivariate gaussian noise. To imitate the spatial correlation between MEG sensors, we add 

dependence among sensors in the simulated data. The simulated data is nSensors (number of 

sensors = 273) by nSamples (number of samples = 6000, with each sample =10 ms). 

  

An example of the Matlab implementation are  

(see full codebase in https://github.com/yunzheliu/TDLM): 

 
%% Simulate_Replay 
 
   %% generate dependence of the sensors 
    A = randn(nSensors); 
    [U,~] = eig((A+A')/2);  

covMat = U*diag(abs(randn(nSensors,1)))*U'; 
 
    %% make simulated data  
    X = nan(nSamples, nSensors);    
    X(1,:) = randn([1 nSensors]); 

for iT=2:nSamples 
      X(iT,:)=0.95*(squeeze(X(iT-1,:))'+mvnrnd(zeros(1,nSensors),covMat));% add dependence  
end 

 

We generate ground truth multivariate patterns of states with core common patterns across all 

states. This is to respect the fact that most of the states are likely to be defined as pictures, 

which elicit similar neural activity in general, to some degree. The sequences of the 

multivariate patterns of states are then injected into the simulated data following the ground 

truth of state transitions. The state-to-state time lag is assumed to follow gamma distribution 

with Matlab function “gamrnd”. 

 
    %% generate the true patterns 

    commonPattern = randn(1,nSensors);     
patterns = repmat(commonPattern, [8 1]) + randn(8, nSensors);  
 

    %% Injecting Sequence 

    for iRS = 1:nSequences 

        seqTime = randi([40 nSamples-40]); % pick a random point, not right at the edges 
        state = false(8,1); state(randi(8)) = true;  % start the sequence in a random state 

         
        for iMv=1:2 % number of transition length allowed 

            if sum(state)~=0 

                X(seqTime,:) = X(seqTime,:) + patterns(state,:);  
                state = (state'*T)'; state2 = false(8,1); state2(find(rand < cumsum(state), 1, 'first')) = true; 
state = state2; % advance states 

                seqTime = seqTime + round(gamrnd(gamA,gamB)); 
            end 

        end 

    end 

 

The classifiers are trained based on a different set of simulated data, same as the real MEG data 

analysis setup. The classifiers are trained using Matlab function “lassoglm”.  
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    %% make training data 

    trainingData = 4*randn(nNullExamples+8*nTrainPerStim, nSensors) + 
[zeros(nNullExamples,nSensors); ... 
        repmat(patterns, [nTrainPerStim 1])]; 
    trainingLabels = [zeros(nNullExamples,1); repmat((1:8)', [nTrainPerStim 1])]; 

 

    %% train classifiers on training data 

    betas = nan(nSensors, 8); intercepts = nan(1,8); 
    for iC=1:8 

        [betas(:,iC), fitInfo] = lassoglm(trainingData, trainingLabels==iC, 'binomial', 'Alpha', 1, 'Lambda', 
0.006, 'Standardize', false); 
        intercepts(iC) = fitInfo.Intercept; 
    end 

 
    %% make simulated data  
    X = nan(nSamples, nSensors);    
    X(1,:) = randn([1 nSensors]); 

for iT=2:nSamples 
      X(iT,:)=0.95*(squeeze(X(iT-1,:))'+mvnrnd(zeros(1,nSensors),covMat));% add dependence  
end 

 

In the end, the simulated data are passed through the trained decoders. The sensor data are 

transformed to state time courses. 

 
    %% make predictions with trained models 

preds = 1./(1+exp(-(X*betas + repmat(intercepts, [nSamples 1])))); 
 

After that, TDLM works on the decoded state space data - *preds* throughout. 
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Supplementary Note 2: Rodent data analysis under TDLM 
 

The rodent data is from Matt Wilson’s lab. This is electrophysiology recording from one rat. 

Data were collected in a spatial navigation task where the rat ran back and forth on a circular 

track that had a high-wall divider with reward sites on either side. The rat completed 6 rounds 

of run up (both clockwise and counterclockwise). Fifty-three Cells were recorded in the CA1 

of the hippocampus. Spiking activity was recorded at 31,250 Hz /channel. The local field 

potential was sampled at 2000 Hz. The position of the rat was simultaneously recorded with a 

sampling rate of 30 Hz. The position records were linearized for later analysis. 

 

The data is analyzed by first subsetting the data based on running speed. In all analysis, the 

data are restricted to time when the velocity is greater than 10 cm/s. This is to exclude resting 

or pause during active spatial navigation. We then binned the data for future analysis. The 

spatial bin size is 5 cm, and the temporal bin size is 10 ms. 

 

The turning curve of the cells on the track is estimated separately based on the running direction 

(clockwise vs. counterclockwise). After that, the classical one-step Bayesian position decoding 

is performed on the spike counts of cells, assuming the spike counts follow Poisson distribution, 

independent between cells and uniform prior over space 3. Importantly, the probability of the 

position is joint estimated based on the running direction and the position on the track. To 

obtain a readout of the decoded position, we marginalize over the running direction. This is 

important, because sequence results based on TDLM can be biased by the biased experience 

(e.g., in clockwise direction, A is always followed by B), estimating jointly with running 

direction can reduce this concern given the rat has equal experience of running clockwise and 

counterclockwise. 

 

After that, TDLM can perform on the decoded position space just as the same as on the state 

time series derived from human MEG data. Importantly, we cannot estimate forward and 

backward sequence separately, because of the biased experience during decoder training, i.e., 

the tuning curve at position A is correlated with B, and tuning curve at position B is correlated 

with C, etc. To correct for this, we rely again on the asymmetry of forward and backward 

transitions by subtracting reverse sequenceness from forward sequenceness. The state identity 

permutation test can now work given the rodent running in the clockwise and counterclockwise 

with equal amount of experience, any asymmetry of forward and backward cannot be explained 

by the biased experience alone. This analysis pipeline replicates the key rodent finding (Fig 

5d), the sequence is forward and is repeating in theta frequency (autocorrelation of sequence 

peaks at 80 ms, roughly 12 Hz). 
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