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Abstract

Network analysis represents a valuable and flexible framework to understand the
structure of individual interactions at the population level in animal societies. The
versatility of network representations is moreover suited to different types of datasets
describing these interactions. However, depending on the data collection method,
different pictures of the social bonds between individuals could a priori emerge.
Understanding how the data collection method influences the description of the social
structure of a group is thus essential to assess the reliability of social studies based on
different types of data. This is however rarely feasible, especially for animal groups,
where data collection is often challenging. Here, we address this issue by comparing
datasets of interactions between primates collected through two different methods:
behavioral observations and wearable proximity sensors. We show that, although many
directly observed interactions are not detected by the sensors, the global pictures
obtained when aggregating the data to build interaction networks turn out to be
remarkably similar. Sensors data yield moreover a reliable social network already over
short timescales and can be used for long term campaigns, showing their important
potential for detailed studies of the evolution of animal social groups.

Introduction 1

Interactions between individuals are the foundation of complex social structures in 2

human and other animal societies. Network analysis represents a valuable framework to 3

understand the structure and evolution of these interactions, as it encodes a whole 4

hierarchy of patterns, from individual-level interactions to complex population-level 5

social structures. [1–3,3–8]. 6

With the increasing deployment of digital devices, new ways of collecting data, 7

combined with new network analysis tools, have made possible the development of 8

quantitative measures of these relationships and patterns in modern human societies, 9
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leading to the emergence of computational social science in the last decades [9]. For 10

instance, social relationships have been inferred and studied using various data sources 11

ranging from phone calls [10], e-mails [11, 12], online interactions [13], to face-to-face 12

interactions measured by wearable sensors [14–20]. 13

The availability of large volumes of data with high temporal resolution has thus 14

contributed to the rapid expansion of data-driven computational studies of human 15

relationships and human social networks. On the contrary, the data collection remains 16

more challenging in the field of animal studies, because the data on animal interactions 17

are still largely obtained from direct observations [6, 21]. Data resulting from such 18

observations are extremely valuable as they often include detailed information about the 19

nature, duration and location of the interactions between individuals. They thus allow 20

researchers to grasp and investigate complex social patterns in animal groups. 21

Unfortunately, observations are time costly and, if they are not performed for a long 22

enough time per individual, suffer from a strong sampling effect [22]. Moreover, 23

observations are almost always biased to some extent because, for example, the visibility 24

of animals is not uniform and some interactions are more easily defined and recognized 25

than others (see e.g. [22]). 26

Recently, a number of technological developments have started to be adapted and 27

implemented to gather high-resolution behavioral data on non-human animals, leading 28

to the adoption of the term reality mining, widely used in computational social sciences 29

for the study of human social behavior and relations [23], to the case of non-human 30

animal societies [24]. Machine-sensed data concerning the behaviour of animals can 31

indeed now be collected and, most importantly, analysed. We refer to [25] for an 32

overview of existing and emerging technologies used to collect data on movements, 33

behaviour and interactions within animal groups. In particular, image based tracking 34

software and machine learning tools can be used to identify and track animals and their 35

trajectories from video data [26–29]. High-resolution GPS can also be used to analyze 36

animals’ relative movements: for instance, GPS tracking of wild baboons revealed that a 37

process of shared decision-making governs baboon movements [30]. Different types of 38

data can also be collected jointly (as in the Sociometers deployed in human groups [31]), 39

such as for instance GPS and audio recordings to investigate the role of vocalisation on 40

the cohesion of a group of animals [32]. 41

These recent developments also include proximity logging technologies based on 42

wearable sensors that are able to provide information either on the distance between the 43

sensor and a fixed receiver [33], or on the distance between two sensors [34–39]. These 44

efforts have enabled the collection of high-resolution data sets in various contexts. Using 45

these techniques presents a number of advantages. First, wearable sensors afford an 46

objective and reliable definition of contact as a proximity event. Second, all individuals 47

equipped with a sensor are monitored together, continuously and potentially for a long 48

time without the need for constant human supervision. This enables in principle the 49

collection of large data sets covering long periods of times and, consequently, makes it 50

possible to investigate the evolution and stability of social relationships and social 51

groups on long timescales. On the other hand, wearable sensors do not yield 52

information on the type of behavioral interactions and they do not register contacts 53

with individuals not wearing any sensor, such as very young individuals or out-group 54

members for instance. The quality of the collected data might also depend on 55

infrastructure constraints and potential technical failures, so that sampling issues must 56

also be considered carefully [20, 40]. 57

Thus, data obtained from direct observations and from wearable sensors 58

infrastructures have very different nature and could in principle lead to very different 59

descriptions and understanding of the social bonds between individuals and of the 60

resulting social networks [41, 42]. 61
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Understanding to what extent the way of collecting data influences the final image of 62

the social network, which elements affect this result and how, is therefore essential to 63

assess the reliability of the outcomes of social studies. Due to the difficulty in collecting 64

data using different methods at the same time and in the same population, few studies 65

have been able to address these issues. In human groups for instance, comparisons 66

between contacts registered by wearable sensors and in diaries have shown both 67

similarities and differences between the data collected by these two methods. In 68

particular, many contacts registered by sensors are not reported in surveys, especially 69

for short contacts, while long contacts are better reported [43–45]. Comparison between 70

sensors and direct observations or videos have yielded mixed results [46, 47]. Among 71

animals, different types of networks built from the same data set of direct observations 72

have been shown to differ [41, 42], while a social network deduced from co-presence in 73

cognitive testing booths has been shown to correlate with the one obtained from 74

directly observed interactions [48, 49]. However, we are not aware of studies using data 75

collected in the same population with on the one hand wearable sensors and on the 76

other hand direct observations. 77

Here, we address this issue by collecting, describing, analyzing and comparing two 78

data sets based on dyadic interactions between individuals belonging to a group of 79

Guinea Baboons (Papio papio). The data span a time-window of almost one month 80

between June and July 2019 and were collected through two different methods: (i) 81

behavioral observations by trained human observers and (ii) an infrastructure based on 82

wearable sensors (see http://www.sociopatterns.org/). 83

For these two data sets, we first test the agreement between observations and the 84

sensors data at the level of single events: we systematically check whether an observed 85

interaction was also registered by the sensors. Overall, only a limited fraction of 86

observed interaction events were registered, with strong fluctuations depending on the 87

day of observation and type of behavior. However, and despite this poor agreement at 88

the level of single events, we show that the time-aggregated networks, and hence the 89

pictures of the group social structure, are remarkably similar. 90

Finally, we analyse the amount of time that it takes using each data collection 91

method to obtain a robust social network, by comparing the social networks obtained 92

using different time aggregation windows. Strikingly, the social network obtained with 93

just one day of sensor data is very similar to the one based on the aggregation over one 94

whole month of data. Comparatively, the network obtained from observations fluctuates 95

more between short and long aggregation windows because of stronger sampling effects. 96

This shows the potential of wearable sensors infrastructures to detect changes in a social 97

group organization on short timescales and to also monitor its long term evolution. 98

Methods 99

System setting and data collection 100

The data collection involved a group of captive Guinea baboons (Papio papio) living in 101

an enclosure of the CNRS Primate Center in Rousset-sur-Arc (France). The entire 102

group consisted of 19 individuals (7 males and 12 females) with age ranging from 1 to 103

23 years old. 104

Behavioral observations The behavioral observations were recorded between June 105

13th and July 10th, 2019 using the focal-sampling method [50]. Observations were 106

carried out for five days a week (from Monday to Friday) for a total of 20 days, with 107

two sessions of ∼ 2 hours a day at different hours each day, ranging from 8am to 5pm. 108

During each session, a trained observer focused on each individual for a period of 5 109
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minutes and recorded its behaviors. The order in which the different individuals were 110

observed was reshuffled at each session. Thirteen behavioral categories corresponding to 111

interactions were recorded, namely: ’Grooming’, ’Presenting’ (Greeting),’Playing with’, 112

’Grunting-Lipsmacking’, ’Supplanting’,’Threatening’, ’Submission’, ’Touching’, 113

’Avoiding’, ’Attacking’, ’Carrying’, ’Embracing’, ’Mounting’, ’Copulating’, ’Chasing’ (see 114

Supplementary Material for details). Another behavior of interest was ’Resting’. 115

Resting is often considered as a behavior performed in isolation, i.e., does not 116

correspond to an interaction between individuals. In some cases however, when two or 117

more individuals were resting together at less than one meter from each other, this was 118

considered as ’social resting’ and also counted as an interaction. ’Resting’, ’Grooming’ 119

and ’Playing with’ include a duration and are called State events. The other types of 120

behavior do not have a duration assigned and are called Point events. For each observed 121

behavior, the individuals involved were recorded as well as the starting and ending time 122

of each state event, and, for each point event, the time at which it took place. 123

In addition, two categories were included, namely ’Invisible’ and ’Other’, to refer to 124

the cases in which the individual was not seen by the observer or the behavior was not 125

included among those listed above. 126

Wearable sensors data A subgroup of 13 baboons, consisting only of juveniles and 127

adults (all individuals at least 6 years old) were collared with leather collars. The 128

collars were fitted with wearable proximity sensors (RFID tags) developed by the 129

SocioPatterns collaboration (http://www.sociopatterns.org/), already used in many 130

studies involving humans [14,16, 18, 20, 40,44, 51], and recently also animals [39]. In our 131

setting, each sensor was secured in a customized box specially designed with a 3-D 132

printer to contain the sensor and a long-life battery connected to it. The boxes were 133

positioned on the front side of the individuals (Fig 1). 134

The sensors exchanged low-power radio packets in a peer-to-peer fashion. Thanks to 135

the very low power used, the reception by the sensor of an individual A of a radio 136

packet emitted by the sensor of another individual B was a good proxy for a close 137

proximity (. 1.5 m) of individuals A and B [14]. Moreover, the radio frequency emitted 138

by the RFID tags was absorbed by body water, so that the radio packets tended to 139

propagate mostly towards the front of the individual wearing the device. The packets 140

exchange rate depended thus on the mutual orientation of the individuals and the 141

infrastructure detected mainly face-to-face interactions. The detected spatial proximity 142

relations were relayed from RFID tags to radio receivers (RFID readers), which were 143

installed around the enclosure and connected to a local area network (LAN). A central 144

server received the data, timestamping and storing each event. 145

Data were finally aggregated with a temporal resolution of 20 seconds (for more 146

details see [14]): we thus defined two individuals to be in contact during a 20s time 147

window if their sensors exchanged at least one packet during that interval, and the 148

contact event was considered over when the sensors did not exchange packets over a 20s 149

interval. 150

In the following, we will refer to the observed behaviors corresponding to 151

interactions as ’interactions’ or ’observed interactions’, and to the contacts collected by 152

the sensors as ’contacts’ or ’contact events’. 153

For the first ten days of data collection (June 13th -23rd) only two readers were 154

installed around the enclosure, whereas in the successive days a third reader was added 155

to ensure a better coverage. The data collection went on even after the observation 156

period was over and is on-going at the time of writing of this paper. We consider here 157

mainly the data collected between June 13th and July 10th, 2019, i.e., during the period 158

of the observations, and use also the data collected afterwards and until August 27th to 159

assess stability over longer time scales. 160
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(a) (b)

Fig 1. (a): Individuals in the enclosure, wearing collars with the attached boxes
embedding the tags. (b): Interior of a single box containing the tag (top) and the
connected battery (bottom)

Ethics Statement 161

The baboons lived in an outdoor enclosure (700m2) connected to an indoor area that 162

provided shelter when necessary. Water was provided ad libitum within the enclosure, 163

and they received their normal ratio of food (fruits, vegetables, and monkey chow) every 164

day at 5 pm. The baboons were all born within the primate centre. This research was 165

carried out in accordance with French standards and received approval from the 166

national French ethics committee, the ”Comité d’Ethique CE-14 pour l’Expérimentation 167

Animale” (approval number APAFIS#4816-2015091110584769). 168

Data analysis 169

Comparison of the two data sets at the level of single events. We compute 170

the fraction of observed interactions that were also detected by the wearable sensors 171

infrastructure system as follows. Each observed interaction event involves two 172

individuals i and j and is assigned a time t (for point events) or an interval [tstart, tstop] 173

(for state events), with tstart and tstop the moments of beginning and end of the 174

interaction, respectively. Note that the observed interactions are often directed, with an 175

actor individual and a recipient individual. However, since the proximity events 176

registered by the wearable sensors are not directed, we consider undirected versions of 177

the behavioral data (i.e., the direction of the interaction is not taken into account). 178

An observed interaction event is then considered as tracked if at least one RFID 179

packet was exchanged between the sensors of individuals i and j within the time 180

window [t−∆t, t+∆t] or [tstart −∆t, tend +∆t], for point and state events respectively, 181

where ∆t is a tolerance interval. This tolerance is introduced to take into account three 182

elements: (i) the potential delay of the observer in reporting the interaction with respect 183

to its actual occurrence; (ii) the 20s time aggregation of the RFID sensors data (iii) the 184

possible asynchrony between the observer’s tablet computer in which observed 185

interactions were registered and the time of the computer storing the sensors’ data. 186

Obviously, to compute the fraction of tracked interaction events, we only consider 187

observed events involving two individuals wearing collars embedded with sensors. 188

Comparison of the resulting aggregated networks. For each data set, we can 189

construct on any temporal window an aggregated network in which nodes represent 190

individuals and weighted links give a summary of the recorded contacts or observed 191
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interactions during that time window. We first consider as time window the whole 192

period in which observations were carried out, and we restrict the observational data to 193

the 13 individuals with collars and sensors. We thus obtain a ”contact network” from 194

the wearable sensor data and an ”interaction network” from the observed interactions, 195

both covering the period from June 27th to July 10th, 2019. Both networks are 196

undirected and weighted. 197

In the aggregated interaction network, a weighted link between nodes i and j is 198

drawn if at least one interaction was observed between i and j during the aggregation 199

time window. The weight w
(I)
ij of the link between individuals i and j is given by the 200

total number of interaction events recorded between i and j during this time. Note that 201

we use here the number of interactions and not their total duration in order to account 202

also for point events. Similarly, in the contact network, a link was drawn between i and 203

j if at least one contact was recorded between them by the sensors infrastructure, and 204

the corresponding weight w
(C)
ij is given by the number of contacts recorded by the 205

sensors between i and j. 206

We compare the contact and interaction networks using several metrics. We 207

computed the Pearson and Kendall’s τ correlation coefficients between the two lists of 208

weights to measure respectively the linear correlation and the similarity of the orderings 209

of the weights in the two networks. We also considered two different versions of cosine 210

similarity measures between the networks weights. A cosine similarity measure is in 211

general defined between two vectors, and is bounded between −1 and +1. It takes the 212

value 1 if the vectors are proportional with a positive proportionality constant, a value 213

of −1 if the proportionality constant is negative, and 0 if they are perpendicular. For 214

positive weights as in our case, it is bounded between 0 and 1. We consider first a 215

Global Cosine Similarity (GCS) measure between the two networks as the cosine 216

similarity between the two vectors formed by the list of all links weights in each network 217

(using a weight 0 if a link is not present): 218

GCSI,C =

∑

i>j w
(I)
ij w

(C)
ij

√

∑

i>j

(

w
(I)
ij

)2
√

∑

i>j

(

w
(C)
ij

)2
. (1)

We moreover consider local versions of the cosine similarity: the Local Cosine Similarity 219

(LCS) of a node i is given by the cosine similarity between the vectors of weights 220

involving i in each network: 221

LCSI,C(i) =

∑

j w
(I)
ij w

(C)
ij

√

∑

j

(

w
(I)
ij

)2
√

∑

j

(

w
(C)
ij

)2
. (2)

LCSI,C(i) is thus equal to 1 if i has been detected as linked with the same individuals 222

in the two data sets with proportional weights. 223

It is equal to 0 if i has disjoints sets of neighbours in the two networks. Here we use 224

the average LCS value over all individuals as a measure of similarity between the two 225

networks. 226

To get a better grasp of the values obtained, we consider a null model in which the 227

weights are reshuffled among the links for one of the networks. We perform 1000 228

realizations of this reshuffling and recompute the values of correlations and similarities 229

in each realization, obtaining a null distribution for each measure. 230

Other aggregation timescales: fluctuations and convergence. For each data 231

set, the aggregation procedure yielding an aggregated network can be performed on any 232
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time window. In addition to the whole observation time windows, we consider shorter 233

time windows of 1 day, 3 days and one week. We then study the stability and dynamics 234

of each network by computing for each data set the cosine similarities between the 235

networks aggregated on all pairs of time window (with a given length). For instance, if 236

we consider two different time periods t1 and t2, we denote by w
(I,t1)
ij and w

(I,t2)
ij the 237

weights of the links between individual i and j in the interaction networks aggregated 238

over t1 and t2 respectively, and the local cosine similarity of i in the interaction network 239

between t1 and t2 is 240

LCSI,t1,t2(i) =

∑

j w
(I,t1)
ij w

(I,t2)
ij

√

∑

j

(

w
(I,t1)
ij

)2
√

∑

j

(

w
(I,t2)
ij

)2
. (3)

Local and global cosine similarities can be defined in the same way for each data set, 241

and can also be defined between networks aggregated on time windows of different 242

lengths. We compute for each data set similarities between the network aggregated on 243

the whole observation time window and networks aggregated on the first n days of 244

observations, in order to understand how fast the weight structure of each network 245

converges to its fully aggregated version. 246

Results 247

Single interaction and contact events 248

Behavioral data The total number of behaviors recorded for the entire group of 19 249

individuals is 5, 377. From this full data set of observations we keep just the behaviors 250

involving the 13 individuals that were carrying collars with wearable sensors. Among 251

the 995 observed interactions regarding this juvenile/adult subgroup, 944 (∼ 95%) are 252

affiliative social behaviors (Grooming, Resting, Presenting, Grunting-Lipsmacking, 253

Touching, Mounting, Embracing, Playing with) which are the most relevant to this 254

study. Moreover, grooming and (social) resting represent more than 98% of the state 255

events and ∼ 65% of the total. 256

Figure 2 represents the distributions of durations for the observed interactions (i.e., 257

with associated duration) both for the subgroup of collared individuals and for the 258

whole group, which includes very young juveniles and babies. Durations cover a broad 259

range of values with a cut-off point at 300s (5 minutes) corresponding to the duration of 260

the focal observation (i.e., some interactions lasted more than 300s but their total 261

duration is unknown). We also note that the distributions of events concerning the 262

whole group or only the collared individuals have similar shapes, with however more 263

short interactions when babies are included. 264

Contacts registered by the sensors During the period in which observations were 265

carried out, 31, 783 contact events were recorded between the 13 individuals. Of these, 266

4, 823 (15% of the total) were recorded during the periods of behavioral observations. 267

The number of contacts per day was ∼ 1, 135 on average and ranged from 754 (June 268

28th) to 1, 768 (June 13th) for a total duration of 1, 259, 500 s (349 hours). Contact 269

durations varied on a very broad range: most contacts were short, with an average 270

duration of 39.6s, and 95% of the contacts lasted less than 2 minutes, but contacts as 271

long as 1, 520s (∼ 25 minutes) were recorded, and the contact durations form a 272

continuous distribution spanning all values in between (see Fig. 2), as observed in many 273

different contexts for human and animal groups [14, 15, 18, 20, 39, 44]. In fact, we report 274

on the same graph the statistics of contact durations measured by wearable sensors 275
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between students in a school, reported in [19] and freely accessible: it turns out that the 276

distributions of contact durations of baboons and of humans are indeed very similar. 277

100 101 102 103

contact duration t (s)

10 5

10 4

10 3

10 2

10 1

100

P(
t)

baboons contacts
students contacts
observations
observations all indvs
1 minute
5 minutes

Fig 2. Durations of contacts and observed interactions. Distributions of
durations for: contacts detected by the wearable sensors infrastructure (blue dots;
average = 39.6s, std = 52.7s, median = 20.0s, max = 1, 520s); contacts between
students in a school in Utah (USA) measured by an infrastructure based on wireless
ranging enabled nodes (WRENs) [19] (orange triangles; average = 39.6s, std = 72.8s,
median = 19.5s, max = 3164s); state events in observed interactions (green diamonds
for interactions involving only the 13 collared individuals; average = 81.3s, std = 90.3s,
median = 41.0 s, max = 300s; magenta diamonds for all interactions; average = 43.8s,
std = 64.6s, median = 18.0 s, max = 300s). Note that according to the observational
method used in this study, individuals are observed for 5 minutes (300 seconds) at a
time. The peak value at 300s for the observations data is therefore an artifact of the
observation method.

Comparing interactions and contacts Figure 2 allows to compare the 278

distributions of durations of the observed interactions and of the contacts registered by 279

the sensors infrastructure. Although they differ, with in particular a distribution 280

extending to much larger values for the contacts, they are both broad and spanning a 281

large range of values. The limited range of the interactions durations is due to the 282

observational protocol, since all durations above 300 seconds are cut-off at that value. 283

In addition, the duration of interactions starting before the start of a given observation 284

5-minutes time-window, or ending after its end, are necessarily underestimated, which 285

biases the resulting distribution in a complex way. Overall, it seems possible that the 286

two distributions would have similar slopes at large durations if this cut-off were not 287

enforced although a detailed study of the biases introduced by the cut-off is beyond the 288

scope of this work. 289

To go beyond this statistical comparison, we perform a detailed matching procedure, 290

as described in Methods, between each single observed interaction (in the behavioral 291

data) and the contact events (obtained from the sensors data). Table 1 gives the results 292

of this matching, for different categories of interactions and different values of the 293

tolerance ∆t. The fraction of observed interactions finding a match in the sensors data 294

is quite low, with a slightly better performance when the tolerance is increased. For 295

∆t = 20s, on average only one third of the observed interactions appear in the data 296
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obtained from the sensors infrastructure. The fraction is notably larger if we consider 297

only grooming events, which are known to be very important socially [52]. We note that 298

in this case the fraction of tracked observed interactions is about 50%, a value very close 299

to the one recently obtained in [47] in a comparison between the contacts between 300

human individuals as observed in an annotated video and as registered by wearable 301

sensors. On the contrary, the fraction is lower for very short events such as greetings. 302

We finally note that we can consider the reverse procedure, considering the contacts 303

registered by the sensors as ground truth. To this aim, we restrict the sensors’ contact 304

data to the time windows corresponding to the behavioral observation periods: only 305

6.63% of these contacts were recorded by the observer as interactions. Note that this 306

small number is not surprising, as the observer focuses on one individual at a time, 307

while the sensors’ infrastructure registers contacts between all collared individuals 308

during the same time window. 309

All Interactions State Events Grooming Presenting (Greeting)

∆t 20s 40s 60s 20s 40s 60s 20s 40s 60s 20s 40s 60s

Tot. 0.32 0.36 0.39 0.36 0.4 0.43 0.48 0.53 0.56 0.23 0.27 0.29
Avg. 0.32 0.36 0.38 0.37 0.4 0.42 0.49 0.53 0.55 0.2 0.24 0.27
Std. 0.12 0.13 0.13 0.12 0.13 0.14 0.19 0.21 0.22 0.2 0.2 0.21

Min. 0.1 0.1 0.12 0.11 0.11 0.14 0.17 0.17 0.17 0.0 0.0 0.0
Max. 0.54 0.63 0.63 0.61 0.64 0.64 0.83 0.83 0.89 0.67 0.67 0.83

Table 1. Fractions of observed interactions with a corresponding match in the sensors data. We consider an
interaction to have a match in the contacts data if the pair of individuals involved in the interaction appears in the sensors
data in the same time window ±∆t (see Methods). We report the overall fraction of matched interactions (first row), the
average fraction over the days (second row) with the corresponding standard deviation (third row), and the minimum and the
maximum (fourth and fifth row) fractions of tracked interactions over the different days. The values were computed for
different delay parameters ∆t, and considering either all interactions, only state events (i.e., interactions with duration), only
grooming events and only greeting events.

Comparing interaction and contact networks 310

Both interaction and contact networks, obtained from the aggregation over the whole 311

period of observation, are very dense, with respectively 70 and 78 links (in particular, 312

the contact network is fully connected, i.e., with at least one contact registered between 313

all pairs of individuals). 314

The two networks have by nature widely different weights, due to the differences in 315

the methods of measurement. In particular, the number of observed interactions is 316

strongly limited by the amount of time dedicated to the observation of each individual. 317

As a result, the number of observed interactions between a given pair of individuals is at 318

most of a few tens. On the other hand, sensors are active at all times and the weights of 319

the contact network span several orders of magnitude, as common in such data sets [14]. 320

Despite these differences in the range of weights of the two networks, Figure 3 show that 321

the statistical distributions have in fact very similar shapes. 322

In addition, Figure 4 gives a visualization of the two weighted networks in which the 323

weights have been rescaled to have comparable widths. This figure highlights some 324

important similarities in the structure of the strong links of both networks: relevant 325

examples include the links Kali-Pipo (female-male) and Angele-Felipe (female-male), as 326

well as the triad Atmosphere-Harlem-Violette (female-male-female) with two similarly 327

strong links Atmosphere-Harlem and Harlem-Violette, and a very weak link 328

Atmosphere-Violette. 329
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Fig 3. Distributions of weights. Probability distributions of interaction (a) and
contact (b) networks weights. Despite the very different values of the weights, their
distributions have similar shapes. In panels (c) and (d) the same distributions are
shown after rescaling the weights of each network by either the maximum weight (c) or
the average weight (d).

Fig 4. Graphs visualization. Visualization realized with Gephi software
(www.gephi.org, see also [53]) of the interaction network (left) and the contact network
(right), aggregated over the entire observation period. The thickness of the lines is
proportional to the links weights (scaled in order to have comparable links widths in
both networks). The figure shows in a qualitative way the high resemblance between the
patterns of strong and weak links of the two networks.
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To go further, we present in Table 2 a systematic comparison of the strongest links 330

in both networks. The table reports the lists of the ten strongest links in each network. 331

The two strongest links are the same in both networks, and more than half (6/10) of 332

these links appear in both interaction and contacts networks. The links that are among 333

the top ten of one network but not of the other are moreover within the top 20 strongest 334

links of the other network, except for one. The exception is the only link between two 335

adult males appearing in Table 2, namely the link BOBO-PIPO, ranked 8th for the 336

interaction network but only 55th in the contact network. The interactions between 337

adult males are usually short greetings (’presenting’), which are not face-to-face but face 338

to rear (see the description of behaviors in the Supplementary Material), making this 339

interaction harder to be detected by the sensors. We checked that this was indeed the 340

case for the BOBO-PIPO link, with almost only greetings and other point events (92%). 341

Rank Interaction Network (observations) Contacts Network (sensors data)

1 FELIPE - ANGELE FELIPE - ANGELE
2 KALI - PIPO KALI - PIPO
3 VIOLETTE - HARLEM FANA - EWINE
4 ATMOSPHERE - HARLEM EWINE - ANGELE
5 FEYA - PETOULETTE ATMOSPHERE - HARLEM
6 FANA - EWINE EWINE - FELIPE
7 PETOULETTE - PIPO VIOLETTE - HARLEM
8 BOBO - PIPO FANA - FELIPE
9 FANA - FELIPE FANA - ANGELE
10 EWINE - PETOULETTE FEYA - ANGELE

Table 2. Top 10 strongest links. For each network, links are ordered based on their weights, from the strongest to the
weakest. The links in bold are the ones present in both top ten rankings.

Finally, as described in Methods, we use four different indicators to give a 342

quantitative estimation of the similarity between the networks. Each indicator is 343

computed for the two empirical networks and for 1000 realizations of the null model 344

described in Methods, and we compare in Figure 5 the empirical value and the 345

distribution of values obtained with the null model. The global and average local cosine 346

similarity are extremely high (close to 0.9), as well as the Pearson correlation coefficient 347

(0.83), while the Kendall rank correlation coefficient is still large (0.58) but more 348

impacted by the large number of links with low weights, whose order is expected to be 349

less stable than the one of the strong links. In all cases, the empirical values lie far 350

above any value obtained in the null model realizations, as clearly seen on the figure 351

(see also the Supplementary Material for a scatterplot of the weights of the links in the 352

two networks and for the values of the local cosine similarities of each individual). 353

Other aggregation timescales 354

As described in Methods, we also considered other timescales on which to aggregate the 355

data coming from the observations and from the sensors infrastructure. Indeed, the 356

time constraint of observational measures implies that the amount of information 357

concerning each individual per day is relatively small. Building a reliable image of the 358

social bonds between individuals requires thus many days of observation and an 359

aggregation window of one month is usually advocated [22,48]. In the case of data 360

collected through wearable sensors on the other hand, a large amount of contacts is 361

already recorded after a few hours. However, it is a priori unclear whether the 362

structures present on short timescales such as e.g. one day of data fluctuate from day to 363

day or are stable and already representative of the group social structure and of its 364
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Fig 5. Similarity metrics. Quantitative comparison between the contact network
and the interaction network through several correlation and similarity measures. In each
panel the empirical value is presented as a vertical red line, together with the
distribution of 1000 values (light blue) obtained using a null model in which the weights
of the contacts network were reshuffled and reassigned at random to the links. (a)
average of the local cosine similarity, i.e. average of the cosine similarity between the
ego-networks of single nodes (empirical value: 0.91, distribution: average = 0.44, std
= 0.06); (b) global cosine similarity between the lists of weights of the two networks
(empirical value: 0.84, distribution: average = 0.33, std = 0.08); (c) Kendall rank
correlation coefficient between the weights of the two networks (empirical value: 0.58,
distribution: average = −0.004, std = 0.080); (d) Pearson correlation coefficient
between the weights (empirical value: 0.80, distribution: average = 0.04, std = 0.11).

strong links. Indeed, the structures present in the monthly aggregated network might 365

result either from a superposition of different daily networks, or, on the contrary, from 366

the repetition of the same contact network every day. 367

To investigate this issue, we compute aggregated interaction and contact networks 368

over different timescales (1 day, 3 days, 1 week), obtaining in each case series of 369

successive snapshots corresponding to the interactions observed or to the contacts 370

measured in successive time windows. For each type of network, we compute the cosine 371

similarities (local and global) between each couple of snapshots to determine how stable 372

networks are, once aggregated on such timescales. We show in Fig. 6 the resulting 373

color-coded matrices for the average local cosine similarity: the values obtained for the 374

interaction network are much lower than for the contact network, showing that the 375

former fluctuates much more than the latter. We show in the Supplementary Material 376

that the interaction networks aggregated at daily scale are even more fluctuating, and 377

that important differences are measured even between weekly aggregated successive 378

networks. On the other hand, daily networks obtained from sensor data are already 379
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Fig 6. Cosine similarities between 3-days networks. Color-coded matrices of
average local cosine similarity values between every couple of 3-days (a) interaction
networks (min = 0.52; mean = 0.63) and (b) 3-days contact networks (min = 0.75;
mean = 0.89). A smaller number of snapshots is obtained for the interaction network
because no observations were carried out during the week-ends.
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Fig 7. Global and average local similarities between the networks
aggregated on the whole period of observation and networks aggregated on
shorter time windows. (a): interaction networks; (b): contact networks.

quite stable. 380

We then build interaction and contact networks on time windows of increasing 381

lengths, starting from the beginning of the observations (using only the first day of data, 382

then the first two days and so on), and compare them with the aggregated network 383

based on the whole observation time window. Figure 7 shows the resulting GCS and 384

average LCS as a function of the length of the time window considered. The obtained 385

similarities are already close to 1 when only one day of the sensors data is used (GCS = 386

0.93, Avg. LCS = 0.90), and remain at high values for longer time windows. In fact, the 387

inset shows that similarity values rise above 0.8 as soon as about 10− 12 hours of data 388

are collected. Comparatively, the similarities with the final aggregated network increase 389

much more slowly for the interaction data than for the contact data. For instance, the 390

one-day interaction network has much smaller similarity with the monthly one (GCS = 391

0.68, Avg. LCS = 0.58). However, they reach very high values already after 9− 10 days 392

of observation. 393

Finally, to illustrate the possibility to explore long timescales using the sensors 394
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Fig 8. Stability of weekly-aggregated contact networks on long time scales.
Color-coded matrices of the average local cosine similarity values (a) and global cosine
similarity values (b) for all pairs of weekly contact networks from June 13th to August
27th.

infrastructure, we consider the data collected after the observation period was over. 395

Figure 8 shows the global and average local cosine similarities between networks 396

aggregated on weekly timescales, from June 13th to August 27th, 2019. The picture 397

emerging from Fig 8 is the one of a very stable network, with average similarity values 398

of 0.89 and 0.87 for the average LCS and for the GCS, respectively. Note that the 399

minima of the similarities between weekly networks (0.75 and 0.61) are observed for the 400

week July 18th-25th, in which the infrastructure actually failed for a couple of days, 401

resulting in data loss for July 20th and 21st. 402

Discussion 403

In this paper we analyzed and compared data sets describing social relationships in a 404

group of non-human primates, collected through two different methods: behavioral 405

observations and wearable proximity sensors. Sensors and behavioral observations 406

methods have different advantages and limitations that influence their ability to detect 407

contacts and interactions between individuals. On the one hand, observational methods 408

provide high-quality data, through which we can distinguish different behaviors and 409

describe in depth social relationships between individuals. However, the data suffers 410

from several sampling issues: only a limited amount of time can be spent observing each 411

individual, and data may be completely absent on certain days for logistical reasons 412

(the week-ends in our case). Biases related to the observation technique can also occur 413

and are difficult to estimate. The cutoff on the duration of each individual observation 414

leads moreover to an underestimation of the duration of long interactions, which can be 415

particularly important to determine the social structure of a group. Finally, the total 416

duration of the observation period is usually limited to a few weeks and the group can 417

not be monitored continuously on very long time scales, for clear practical reasons. 418

On the other hand, sensors provide a large amount of data in a continuous manner, 419

with a high temporal resolution and potentially on very long timescales. However, the 420

advantage of having an objective definition of a contact as an exchange of radio packets 421

between sensors is at the same time a limitation since no information on the behavior of 422

the individuals in contact is available. In particular, it is not possible to distinguish 423
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affiliative behaviors from agonistic ones, and it is therefore not possible to determine 424

the dominance hierarchy using only wearable proximity sensors. Moreover, two types of 425

sampling biases need to be mentioned. First, the directionality of the sensors limits the 426

detection to approximately face-to-face interactions, while some social interactions 427

between primates (in particular, greetings or social resting) occur when individuals have 428

different mutual orientations. Second, individuals not wearing the sensors are by 429

definition absent from the data. In the case of human populations, it has been shown 430

that a uniform population sampling does not alter the statistical properties of the 431

contact network between individuals [20]. However, the absence of data concerning a 432

specific subgroup of individuals with behavioral patterns different from the rest of the 433

group (such as all the individuals less than 6 years old, in our case) is a clear limitation. 434

Another difficulty could also come from data losses whenever a part of the 435

infrastructure fails. We show however in the Supplementary Material by simulating the 436

failure of a reader that the structure of the social network deduced from the sensor data 437

remains very stable even when the amount of data lost is important. 438

We have performed a comparison of the two data sets at various levels of detail. At 439

the most detailed level, we have checked for each observed interaction whether a contact 440

was registered by the sensors at the same time. This matching turns out to be very 441

limited: about one third of the observed interactions was also recorded by the sensors, 442

but this amount fluctuates and depends strongly on the type of interaction. In 443

particular, for interactions that tend to last, such as grooming, the percentage of 444

tracked events rises to ∼ 50% and is above ∼ 80% in some days of observations. This is 445

particularly important as grooming behavior is for primates one of the core social 446

interactions allowing to define the social structure of the group [52]. For short and 447

elusive interactions instead, like greeting, this percentage is only of about ∼ 20%, which 448

can be explained by the fact that greetings among primates are most often not 449

face-to-face interactions. Notably, our results are in line with [47], where the 450

correspondence was examined between data collected by wearable sensors and a video of 451

the same interactions, yielding a sensitivity of 50% (about half of the interactions 452

annotated on the video were present in the wearable sensor data). 453

Although this limited correspondence between the two methods of measuring 454

interactions could be seen as a negative result, it is striking that, when considering the 455

global social structure extracted from the data, the results of the two methods are in 456

fact strikingly similar. First, at a statistical level, the distributions of events durations 457

are broad in both cases, with most events having a short duration, and a continuously 458

decreasing distribution with no cutoff except the one imposed by the procedure. The 459

distributions of weights (number of events between two individuals) are also very 460

similar. Most importantly, the networks aggregated over the whole observation period 461

turn out to be extremely similar as measured by several metrics: the weights of a link 462

joining two individuals are highly correlated in the two networks, the top ranked links 463

and the strong structures are preserved. Overall, the picture of the social network 464

provided by the two measurement systems are thus extremely similar, despite the 465

discrepancies observed at the very detailed level. We note that this result is at odds 466

with the analysis of [41], in which an interaction network and a proximity network, built 467

from the same set of direct observations of baboons, were shown to differ. However, our 468

infrastructure detects very close proximity, which would be allowed only between 469

animals sharing a certain level of trust, while the proximity criterion used by [41] was of 470

5 or 10 meters, thus not corresponding to a ”contact” between individuals. 471

Moreover, we have built aggregated networks at shorter timescales and investigated 472

how quickly a reliable network could be obtained in each case. The observation network 473

fluctuates strongly from day to day. It yields a very similar picture with respect to the 474

whole observation period after about 10 days of observation. This is in agreement with 475
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recent results showing that limited amounts of observational data was enough to obtain 476

a clear picture of the social structure of the group [22]. Comparatively, the structure of 477

the aggregated network obtained with the sensors is very stable already at short 478

timescales, and we obtain a reliable network structure very similar to the one 479

aggregated over one month even with only one day of data. This implies that the sensor 480

data would potentially allow to pinpoint a change in the structure of the social network 481

of the group on much shorter timescales than with observational data. Moreover, we 482

have actually deployed the sensors infrastructure on much longer timescales with no 483

interruption (currently up to 6 months), while continuous observations cannot be 484

carried out realistically on such timescales. 485

Conclusion Collecting and analyzing data coming from digital devices to evaluate 486

social patterns has become quite common in human social studies. Recently, new 487

infrastructures and protocols based on sensors have also become more easily available 488

for the study of animal groups as an alternative to traditional data collections methods 489

such as behavioral observations. In particular, we have shown the potential of the 490

sensors infrastructure used here, which detects close proximity between individuals, to 491

enable an automatic, less costly, long-term and reliable data collection that yields a 492

picture of the social interactions very similar to the one obtained from direct 493

observations, despite not registering all observed interactions and not distinguishing 494

between different types of behaviors. Such techniques could thus facilitate animal social 495

network analysis and most importantly make accessible both short and long timescales 496

for the investigation of the dynamical evolution of animal social networks [54]. 497
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