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Measuring space-group symmetry fractionalization in Z spin liquids
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The interplay of symmetry and topological order leads toréetaof distinct phases of matter, the Symmetry
Enriched Topological (SET) phases. Here we discuss pHysisarvables that distinguish different SETs in the
context of Z quantum spin liquids with SU(2) spin rotation invariancee f/cus on the cylinder geometry, and
show that ground state quantum numbers for different tapodd sectors are robust invariants which can be used
to identify the SET phase. More generally these invariargsrelated to 1D symmetry protected topological
phases when viewing the cylinder geometry as a 1D spin chaiparticular we show that the Kagome spin
liquid SET can be determined by measurements on one groate] by wrapping the Kagome in a few different
ways on the cylinder. In addition to guiding numerical saglithis approach provides a transparent way to
connect bosonic and fermionic mean field theories of spinidisit When fusing quasiparticles, it correctly
predicts nontrivial phase factors for combining their spgmoup quantum numbers.
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I. INTRODUCTION
In contrast to conventional phases that are distinguisked b

Landau order parameters, topologically ordered statels wit
emergent anyonic excitations remain distinct even in the ab
sence of symmetry. However, the presence of symmetries,
which is natural in most physical contexts, leads to furthier
tinctions, the so called symmetry enriched topologicalseisa
(SETs). Well known manifestations include fractional gear

of anyons in the fractional Quantum Hall states (and in frac-
tional Chern insulators) and spin-charge separation im-gua
tum spin liquids. Recently, rapid progress in the theoattic
understanding of SETs is being made[1-11]. This is partly
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driven by conceptual advances in the related theory ofglyon A reflection quantum number is a probe of quantum entan-
interacting Symmetry Protected Topological phases (SPTsplement: if a state is odd under reflection, then the two lsalve
where despite the absence of anyon excitations in the bullgf the system are entangled. But how can quantum numbers
nontrivial edge excitations emerde [7) 12-18]. What wouldof a global symmetry, which are always integral, be relaced t
be particularly welcome at this stage, is a physically wellm symmetry fractionalization? As a simple example - consider
tivated example of an SET. To make progress in this directiorcreating a pair of identical anyons from the vacuum. Say that
we will need to understand how different SET phases can bthe pair is related to one another by a symmetry (such as a
distinguished. reflection or rotation). If the excitations carry charge,rat u
Further motivation for studying measurable charactessti charge for this state actually implies half charge for each e
of SETs is the recent progress in the search for quantum sp#itation since they are constrained by symmetry. This is one
liquids in frustrated magnets, both in experiments and in nuof the key ideas that we will exploit. Its implementation is
merics. A number of S=1/2 quantum magnets in 2D and 3Dmore involved when the second symmetry is not charge, but
frustrated lattice have been identified, which appear taleva also a space group (or time reversal) symmetry. Neverthe-
magnetic order [19d, 20]. These include the S=1/2 Kagoméess such arguments establish the relative quantum numbers
material, Herbertsmithite, which shown no sign of orderingbetween different topological sectors.
down to temperatures that are a thousand times smaller than To relate our results to an established classification sehem
the exchange constaht[21]. While clear cut evidence of an erwe use a specific model of SETs obtained by a parton decom-
ergy gap in these materials is yet to emerge, a requirement tgosition of the spin operator into bosonic (Schwinger bs$on
be considered topologically ordered, this may be an extrins or fermionic (Abrikosov fermions) partons. Symmetry frac-
effect due to impurities (although other explanations ledse  tionalization is encoded in the Projective Symmetry Group
been suggested [22-24]). Meanwhile, extensive density maPSG) [1, 44| 45], which determines how the partons trans-
trix renormalization group (DMRG) simulations of the nesire  form under symmetry. A parton mean field theory combined
neighbor Kagome Heisenberg antiferromagnet (KHA) indi-with projection leads to a spin wave-function whose quan-
cate (i) a gapped ground state that respect all symm s [2tum numbers in each topological sector are completely de-
and (i) a topological entanglement|26,) 27] entropyl@f2.  termined, which reflect the underlying SET. In particular we
In reference [28] it was argued that the ground state must poshow that the Kagome spin liquid SET can in principle be
sess 2 (toric code) topological order to be compatible with (i) uniquely determined by measurementsooeground state in
and (ii). Animportantopen questionis the identificatiotled  a few different finite-cylinder geometries. This infornuati
precise phase of matter, i.e. the SET, realized by the Kagomie numerically superior to the relative quantum numbers be-
antiferromagnet. While a complete solution would necassit tween topological sectors, since DMRG numerics on KHA do
extensive numerical input, and is beyond the scope of this panot obtain all topological sectors in the finite sized system
per, here we will relate SET phases to physical propertigs th studied.
are readily measurable in numerical simulations. A different perspective on our approach is to view it as a
A prerequisite is a measurement of the topological order it-dimensional reduction’ in which we view a 2D SET phase
self. Entanglement entropl [29,130] provides one signatureon a cylinder as a 1D SPT. The nature of the 1D SPT de-
although it does not uniquely specify the topological orderpends on the topological sector being studied, the geometry
A complete characterization is obtained, from either the enof the cylinder, and the SET. In addition to its utility as a di
tanglement spectrum [81] (in certain cases), or the S and &gnostic in numerics, our approach provides a theoreticl t
matrice58 some of which are well suited to numericato study connections between different representatiotiseof
calculations@éZ]. Related techniques can be used ¢p diasame SET. The 1D SPT invariants for the degenerate ground
nose 2D SPT phaseés [43]. states (which are labeled by quasiparticles of the topofdgi
Here we discuss measurable properties that distinguisﬁl’del’) are shown to follow the same multiplicative law as the
SETs. For the reasons above we focus on the S=1/2 KHAfusion rules for the Abelian quasiparticles. This allowsas
assuming Z (toric code) topological order, which has a pair determine from the PSGs of two anyons types in théapo-
of emergent S=1/2 spinons (one bosonic and one fermionidpgical order the PSG of the third anyon type, which is found
and a vortex (vison). The different SETs differ in their re- to obtain nontrivial phases in certain cases. Some of these
alization of space group symmetries and their interplaywit were not previously knowri [4] and serve to correctly relate
time reversal. bosonic and fermionic mean field states on the Kagome lat-
We consider systems on both finite and infinite cylinder ge-ice [5]. In particular this leads us to equate two populatest,
ometries, which are well suited to DMRG calculations. Wethe @1 = @2 Schwinger boson state [46] and the[@ =]
show that 1) the many-body quantum numbers of a finitefermionic mean field statel[5, 47.148].
cylinder ground state under space group symmetries such asIn addition, we show how dimensional reduction can be
reflection, translation etc. provide a powerful diagnosfithe ~ used to completely identify the four topological sectorsaof
underlying SET and 2) when viewing an infinitely long cylin- cylinder; this is highly useful for DMRG studies, and does
der as a 1D spin chain, the 1D SPT order of the spin chain fopot require simultaneous knowledge of all four ground state
various geometries and topological sectors completelgrdet In particular, we have found a 1D SPT invariant that distin-
mines the SET order, at least within the space of mean-fiel@uishes between the bosonic and fermionic spinon.
parton ansatz. Earlier work employed a similar dimensional reduction ap-
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proach in the case of internal symmetries with projectiye re ~ The MES basis is the unique basis in whigh is realized

resentations/ [49] and here we find it to be much more genas apermutatiorof the basis states for all {1,b,v, f}. F2&

erally applicable in the presence of space group symmetriesacts as a permutation in the MES basis because each MES has

Related work specializing to the case of just translatian-sy definite topological flux threading the cylinder (its ‘topgi-

metry has recently appearéd[[50]. The connection betweecal sector’).

1D SPT invariants and global quantum numbers was previ- In previous discussions of the MES it is often assumed

ously noted[[13] 51], and other works have utilized globalthat each of the four MES can be uniquely identified with an

many body quantum numbers to identify topological phasesinyon typel, b, v, f, so that each MES can be labeled with

[53]. an anyon typéa). Then threading topological flux is realized
asFlla) = |b-a). This is the case for Zspin-liquids on
evencircumference cylinders, but for a$ = 1/2 model on
Il. REVIEW OF Z ; SPIN-LIQUIDS an odd circumference cylinder there is a subtlety that arise

because the MES double the unit-cell along ihdirection.

According to the arguments of Hastings, Oshikawa, Lieb,n€ unit cell doubles because = 1/2 models behave as if
Shultz and Mattis, [[84-56] a quantum magnet with half-there is a topological flux piercing each unit cell, so (as for
integer spin per unit cell is either gapless, breaks a symme? magnetic field) the net topological flux through the cylin-
try, or is a gapped ‘spin - liquid’ with emergent anyonic ex- der changgs alon_g the directien [28] Strictly speaklr_1g itis
citations. In the latter case, the simplest possibilitysistent ~MOre precise to view the MES as a torsor for the fusion group,
with time-reversal is the Z‘toric code’-type spin-liquid.[[28] bqt this subtlety does not affe_ct the_measurgments proposed
This phase has emerge$it= 1/2 excitations, the ‘spinons; this work, so for notational simplicity we will label the MES
even though a truly local excitation (the magnons) mustycarr by anyon types.

S = 1. These emergent spinons are anyonic excitations with

non-trivial braiding and statistics. The Zpin-liquid has four
anyon types: the local excitations (‘1’); the bosonic spino
(‘0), which carriesS = 1/2; the vison (v’), which be-
haves like ar-flux for the spinon; and the fermionic spinon ) ] )
(¢ ), formed from the composite of = bv, and which In this section we consider the space-group quantum num-
also carriesS = 1/2. Each particle is its own anti-particle, bers of a finite length cylinder: even though the structure of
v?2 = f2 = b2 = 1 (hence ‘2’). The braiding and statis- the two edges is nhon-universal, we argue that the spacggrou
tics of the 2 spin-liquid are equivalent to Zgauge theory ~duantum numbers are. In particular, consider creating a pai
(the ‘toric code’). In the language of.Zjauge theoryh is the of well-separated excitations from the vacuum which are re-
electric charge; v is the magnetic fluxn; and f is the dyon lated by a mirror plane, and separating them out to the edges
f = em composed of flux and charge. of the cylinder. If the reflection quantum number flips sign

The simplest SET aspect of the Zpin-liquid is its behav- after this process, the excitations must be anyons which are
ior under SO(3) spin rotationst andv carry integer spin, c_onne_cted by an_an|S|bIe string which @&ld under reflec-
while the spinons, f carry half-integer spin. The half-integer ton- Since the pair of anyons together transformgas —1,
spin carried by the spinons is ‘fractionalized’ becauselany It @s if R = v—l acting on each anyon individually, so we
cal excitation of the constituerst = 1/2 spins transforms as SaY R is ‘fractionalized. _ _

S — 1. We can look for additional SET distinctions based Yhile global quantum numbers are only well defined for fi-

on the transformation properties of anyons under spacepgro Nité Systems, at a later point we will show that they leave the
symmetries, which is the subject of this work. imprint on the bulk entanglement spectrum in a way which

can be measured on an infinitely long cylinder as well.

lll. SPACE-GROUP QUANTUM NUMBERS: ROBUST SET
INVARIANTS

A. Minimally entangled states .
y 9 A. Reflection quantum numbers

g e-ll’—ll‘e]?a%ysglllntlf:gutlgrﬂgsof gyflﬁjr:gécr).p(%lr?rgolEglh%rt?tut?\?ss\t\?ct)?kdv?/e Cpnsider alarge but _finite cylinder with a reflection symme-
rely on a special basis for the ground-state manifold called?y /= that exchanges its two edges. We argue that the global
the ‘minimally entangled states’ (MES).[33] To construuet 1t quantum number of any symmetric statea) with no ex-
MES basis, let: run along the infinite length of the cylin- Citationsin the interior of the cylinder depends on]y onte t
der, and letFe denote the adiabatic process in which a pairSET order of the_bulk_ phase of matter b) the details of the ge-
of anyonsa/a are created from the vacuum and dragged in®Metry, such as its dimensions, which we denote/byand
opposite directions=# out to infinity. The processe re- c) the topol_oglcal sectas of the cylinder. Throughout this
turns the system to the ground state, so is a unitary oparatid®@Per we will denote these global quantum numberg@by

in the ground-state manifold. We say t ‘threads any- A _

onic flux ' through the cylinder. Since thhe;?;model is Abelian, Bq |A, a) = Qr. (A, a) |, a). (1)
FoFY o F&P, wherea - b denotes the fusion of Abelian To elaborate on c), note that afinitelylong cylinder has the

x

anyons. same topological ground state degeneracy as the toruse Whil



the edges may reduce the ground state degeneracy, we only B. Translation quantum numbers
require that there are no excitations in thek of the cylinder,

so are left with the same bulk degeneracy as the torus. We
label these topological sectors of the finite cylinderband
as discussed earlier we assumadexes a special ‘minimally
entangled’ basis which has definite topological ftuthread-
ing the cylinder. This work focuses mainly on Ipological
order because the statg$, a) will break R, if a is not it's
own anti-particle.

In a magnetic field the translatiofi$, 7', form a ‘magnetic
algebra’ T, T, T, 'T,;' = €'® which is aprojectiverepre-
sentation of the translation group. Even in the absence of a
physical magnetic field, in a topologically ordered phase th
anyons may experience an effective magnetic field. The mag-
netic field experienced by anyaris encoded in the projective
relation (7,7, T, 'T, )@ = '

The global quantum numbe€) r, is insensitive to any de-  For an Abelian theory the projective relations must obey
tails of the edge state or bulk Hamiltonian. To show insen- . (a) (b) (ab) (a) ;

e ; the fusion rulenz, nzy = N2y, SINCENL, IS the Berry phase
sitivity to the edge, note that perturbing the edges amountgc uired wher circles a unit cell. For a Z:spin-liquid in
to acting with unitaried/;, Ug localized at the edges of the q ) pin-iig

_ iov)
cylinder. When/;, andU, are spatially well separated, using aES = 1{)2 model(,jyve r?lV\IlayS have t?e re"?‘t'ﬁé‘y = _hl.
R, symmetry we can require thelt; = &, Uz ;1. Sincethe 1 1IS can be argued in the language ofgauge theory, where

perturbationULRmULR;l commutes withi,,, the quantum all S = 1/2 objects are the source of, Zlectric flux (for

. o " . example the spinong, f, which map on to the electrically
number is unchanged? is insensitive to the bulk Hamilto- : ; o
nian becaus€) — +1, so is quantized and can only Changechargede, f particles in the gauge theory). This includes the

duri bulk oh i i microscopicS = 1/2 in each unit cell, which implies that the
uring a bulk phase transition. system behaves as if there is electric flux piercing each unit
H.owever,QR? (A,a) can depgnd on the topological sector cell. Consequently underm duality, the fluxm (the vison)
a, since changing the topological sector fram- b - a re- experiences a background flux ofper unit cell, 30'7;2) _
quires separating an anyon pajib out to the edges using?, : 1 4 (v ) () _ () thara
which is a string-like operation. We will find that the dgpen- —1. Sincerny = 1,1y = —1, andnay ey = 12y , there is
: : : a single sign left undetermined, which is the most basic SET
dence onA cancels if look at the relative quantum number ... = - T
. distinction between Zspin-liquids.
between topological sectors, [57] . . .
To prober,,, consider a cylinder of length,, and circum-
ferenceL, in topological sector, and measure the momen-
) _ Qr.(A ba) (2)  tum quantum numbepr, (A, a) = T, |A, a). Note that when
Re ™ Qr,(Aa) L, is odd the MES double the unit cell in thedirection,
S0 we must restrict td., even.T,, symmetry alone does not

. . . . . protectQr,, since the edge excitations can carry an arbitrary
These ratios have a particularly simple relationship tc3E& momentum, but the combination &, and7, allows us to

order: ingg = —1, itimplies that a pair of anyons related by gefine a robust ‘momentum per unit length.” Recall that in
R, each carry half thé, = —1 quantum number, which we - the | andau gauge, the momentdnof a particle in a mag-
consider to be ‘fractional.” In contrast, our earlier ar@m  petic field is proportional to its position. Since|A, a) has
implies that a pair of truly local excitations must alwayséa g, particle localized near the edge, as we grbwits mo-
Qr, = L. mentum grows linearly with, ie, it is a momentum per unit
Now suppose there is an additional reflection symmatyy  length of cylinder. To define the momentum per unit length
which doesot exchange the two edges. In the absence of th@perationally, we need to grow the length of the cylinder
edge-exchanging, symmetry, thek, quantum numbers are While keeping the topological flux and edge state the same,
not robust, because nothing then prevents the perturbi@iion as otherwise&)7, could contain a spurious contribution com-
from being odd undeR, while U, is even. But if bothR, ing from the changing edge state. Concretely, we require the
and R, are present, we can instead measure the combinatigieduced density matrix for the edge be kept constant.as
I = R, Ry, sincel exchanges the edges, according to ourgrows. The momentum per unitlengﬂ;@) is then
earlier reasonin@); is also a protected invariant.

Q

Lo

Finally, if lattice doesn’t have &'y symmetry (as for the Qr,(A,a) = q(A, a) (77%)) A3)

Kagome model) there are distinct ways to compactify the ge-

ometry into a cylinder: for one choice?, exchanges the ) o
edges, while for the secon&, does. We can then measure ¢(0A, a) depends on the edge, while the bulk contribution re-
quantum numberg&)r, in the first cylinder,Qr, under the veals the SET invariamg(ﬁ}.

second cylinder, an@; in either. This give three independent  The momentum per unit lengthigvial to measure in any
quantum numbers for each anyon ty b:%?/p which we  tensor network ansatz. For MPS, it is the invariaklf =

will find almost fully characterizes ZSETs (at least within 7, defined in Eq.[{(4B)) when viewing = T, as an ‘onsite’
the PSG framework). The remaining information relates tosymmetry in the 1D representation of the cylindey;, is a

the commutation relations of time-rever§aland the reflec-  byproduct of the algorithm used to calculate the momentum-
tions R, which will lead to protected edge degeneracies weaesolved entanglement spectrum of infinite-DMRG studies, s

discuss in Selc.VIC. presumably has already been computed in existing studies.
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IV. SYMMETRY ENRICHED ORDER: DETECTING THE we enforce the constraint via Gutzwiller projection to dbta
PROJECTIVE SYMMETRY GROUP ansS = 1/2 wavefunction:
(tida o |U) =

The preceding discussion is independent of any classifica-
tion of space-group SETSs, since we have argued on general O fertfrat == Frion == IMF)., (6)
grounds that these quantum numbers are robust SET invagmd similarly in the bosonic construction. Note that in the

ants. Nevertheless, we would like to identify these invari-fermionic case, we must choose and fix an ordering of sites
ants within a general classification scheme. Currentlyaherrl’r% .-+ in order to maintain the correct relative sign be-
is not a complete classification of space-group SETs. Howtween different spin configurations. For the purposes of cal
ever, the parton construction provides a rich zoo ofgin-  culation|MF) is usually taken to be a free wavefunction, such
liquids whose symmetry properties can be analyzed usingis a mean-field BCS superconductor or pair-superfluid for the
Wen's ‘projective symmetry group’ (PSG). [1] The PSG pro- fermionic / bosonic constructions considered here. Guizwi
vides at least a partial classification of space-group SETS. projecting the creation of aingle parton fT/b' results in a
this section, we show how to compute the quantum numbengighly non-trivial excitation: ar = 1/2 anyonic excitation,
Qu (A, a) within the parton construction, thereby identifying the spinon.
them with invariants of the PSG. A crucial question in the parton construction is how the
symmetries{U € SG} of the S = 1/2 wavefunction (such
_ o as global SO(3) spin rotations and space-group symmetries)
A. The Parton Construction and the Projective Symmetry are realized in the partons and their mean-field an$ae .
Group The simplest possibility is that the partons form a linegrre
resentation of the symmetry group SG. But is this the only
The resonating valence bond (RVB) picture proposed byyption? The answer is no, because according to[Eq. (4) apply-
Phil Anderson provided the first intuition for a spin liquid ing a gauge transformatidn , — ei?rb, , leaves the physi-
ground state as a quantum superposition of different dimegal spin operators unchanged, and accordingly the Gueawill
configurations covering a lattice of spip2 particles. Each projection in Eq.[(B) is a many-to-one mapping insensitive t
dimer (denoted by — e) is a singlet pair formed by two spin-  {7(1) gauge transformations. Consequently under a series of
1/2 particles: symmetry operation§U;} € SG which yield the identity op-

o —e) = 1] L2 — | )] e eratione

The state is a ‘liquid’ because the quantum superposition of
dimer patterns restores the translational symmetry. Ope ty a single-parton operatdk. , (or f) may acquire a nontriv-
of elementary excitation in these systems is created bykbreaial phase factoe'? # 1 instead of remaining invariant. In
ing a dimer into a pair of particles carrying spifi2 each, this case the partons transfoiprojectively rather than lin-
which were coinedpinons early, under the symmetry group SG. The symmetry oper-
Thepartonconstruction is a systematic formalism for writ- ations{U € SG} are accompanied by certain gauge trans-
ing down ansatz RVB wavefunctions in which each spinon isormations{Gy|U € SG} on partons, forming a “projec-
realized either as a fermionic partgp or bosonic parton,,  tive symmetry group” PSGz {GyU|U € SG} which is a
wheres =1, |.. In the fermionic description, each dimer is re- central extension of the symmetry group SG.! [1] The cen-
alized as an s-wave Cooper pair of partons; breaking a Coopégr of such an extension is called the “invariant gauge group
pair generates a pair of spinons. The microscopic spirme |GG = PSG/SG. The IGG are those gauge transformations

U1U2---Un:e (7)

related to the partons through the bilinears which leave the mean-field ans3k#F) invariant.
1 1 For the 2 spin liquids which are the focus of this work, the
S, = 5 Z f;f,a&a,ﬁfr,ﬁ =3 Z bi,aﬁa,ﬁbr,ﬁ-@) invariantgauge group is IG@. Z5. This means undera_senes
Ny Ny of symmetry operation$U;} in (@), each parton acquires a

75 phase factor of-1. This is consistent with the mean-field

whered are the three Pauli matrices. In order for this mappin%nsatz being a Sing'et BCS Superconductor of Spinonsl For

to generate a sensibfe= 1/2 wavefunction, the partons can- example, for symmetry a symmetiyU = e we have the
not be free particles: they obey the “single-occupancy™cone|ation

straint of one parton per lattice site: NP A P f ¢
(GUU) fl‘i,,Ui,(GUU) = 77Ufr1:,01:a Ny = +1. (8)

Z fjv"f“” - Z bi-ﬂbr"’ =1, Vlatice siter. (5) The primary goal of this work is to show how to detect these

o=ht o=ht 41 phases associated with symmetry group SG.
This constraint can be implemented by a gauge field which
couples to the partons.

In practice, we use the parton construction to create ansat®- Minimally entangled states within the parton construction

wave-functions. IfiMF) is a ‘mean-field ansatz’ state for the
partons which need not obey the single occupancy constraint We first must review how to generate the MES within the
(for example, a BCS superconductor of fermionic partfy)s  parton construction.



There is a two-fold degeneracy associated with threading/ (i), the wavefunction transforms as
a visonw for both finite and infinite cylinders. In the parton
ansatz this arises because the boundary conditions ofra cyli ({0 }|UV) = ({o17-1(;)}|¥) = (0] H frioy1g,y IMF),
der of circumferencd., can be either periodic (P) or anti- i
periodic (AP). At the level of the parton Hamiltonian, thés i (13)
accomplished by assigning an additional sign-afto all ma- o ) ) )
trix elements which cross a line at some fixgd= y,; the and similarly for the bosonic ansatz. We can split the resmilt
choice ofy, is a gauge choice. When acting wma(or R, guantum number into two contributions. First, there is & par
the location of the twist, must be restored by an additional @u (A, bc) coming from the Gutzwiller projection,

contribution to the gauge transformatia@s, , r, , leading to .
new PSG relations: ’ O frioy 1y = QU b O T] fri. Gu U, (24)

(Gr, TP = (-1 .
) w ich ql_epends on.ly on the geometkyand the PSG (Whlch
o S o is modified by bc); we will show how to compute this in the
(Gr,Ty)"/*(Gr, Ry)(Gr,T,) “v/*(Gr,Ry)~" = (—1)®  subsequent section. The second contribution comes from the
(10)  quantum number gMF). Inserting Eq.[(TK) into EqL(13) we
find that the total quantum number factorizes as
where bc= 0/1 for P/AP. Hence in all that follows the o
PSG implicitly depends on the boundary condition (bc) of the GuU IMF) = Qu(MF) IMF) (15)
mean-field ansatMF) > _
The two-fold degeneracy associated with threading a UI¥) = Qu(A,bo)Qu(MF) [¥) (16)
spinon is a bit more subtle, as in the finite case the degeperac
is split by the edges. If we make a bipartition of the cylin- p  Ratios of edge-exchanging quantum numbers in different
der at somexy, the parton paritf—1)™Ve/s in the left half of topological sectors
the mean-field ansatdF) fluctuates across the cut (note the
parton number itself is not conserved). After Gutzwilleopr

A . N In the first scenario, we suppose we have access to all sev-
jection, Eq. [(®), the parton parity to the left is fixed by the PP

; . S .~ eral topological sectors on the same geometry. We find that
number of sites to the left. But in the infinite case there is any edge-exchanging symmetries, the ratio between the-quan

ambiguity, since Fhe ”“"?ber. of sites is infinite. This MeaNJ;m number before and after threading anyonic fieveals
that when Gutzwiller projecting we can freely choose enherthe PSG of anyon

the sector with even (E) or odd (O) parton parity to the left of
the cut atry, which generates an additional 2-fold degeneracy
on the infinite cylinder. 1.

The choice of P / AP boundary conditions combined with E
/ O parton parity generates the 4-fold degeneracy of the infi-
nite cylinder. These sectors are identified with the anypesy
in a manner that depends on the parton construction:

Spinon insertion

We fix the geometryA and compute the relative reflection
guantum numbef) r between two states which differ by the
insertion of a pair of spinons at the edges. To generate the
1,0,b, f < (P, E), (AP, E), (P, 0), (AP, O) (bosonid (11 appropriate pair of mean-field ansit4~) and|c - MF) which
vb.f e (P E) ) ) ( ) . Q. (1) differ by spinon fluxc = b/ f (depending on the construction),
1,v,b, f < (AP, E), (P, E), (AP, O), (P, O) (fermionic) b . . .
(12) let ¢; create an arbitrary bosonl_c / fermlom_c parton near the
left edge. To ensure that- MF is symmetric unde? we

Note the role of P/AP is flipped between the two construcMust create a corresponding spinon on the right ugjpg=

tions. (GrR)cl (GrR)™!, s0
For an even circumference cylinder the E / O parity is the o o
same for all cuts:y, since an even number of sites intervene lc- MF) = ¢l (GrR)cl (GrR)™ |MF). (17)

between cuts. But for an odd circumference cylinder, the E / _ o _ _
O assignment alternates witly. This alternation doubles the Qu (A, bc) is unchanged, and it is straightforward to verify
physical unit cell. N N
GrRIb/f-MF) = (-1)"(GrR)*Qr(MF)[b/f - MF)
(18)
C. Computation of global quantum numbers from the PSG
where the sigri—1)" occurs for fermionic partons as we must

Since the PSG determines how the partons transform und&Xchange the creation operators and we(t&el?)* to denote
symmetry operations, we can compute the (crystal) symmethe parton PSG associated wiifi = e:
try quantum numbers of any projected wavefunction (El. (6)) N B2 A P2 .
constructed from a parton mean-field ansat/ lis a space- (GrR) Ci(GARBE) =g ci, Vi
group operation which permutes the sites according to (GrR)? = n%. (29)
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Consequently for any geometry the change in the quantune || b f o]V =W
numberQ r after inserting a bosonic / fermionic spinon is gg; n%. _ngm 1n%. = _ngm
Ab/f - MF : i, nh, —nk, 11k, =%
®/f) _ Qr(A, /f ) _ (_1)F b/ f (20) (@) b b b T b ' g
BT Qr(AMF) T Q|| MR MRe R, TR TR, MR R, LMReR, = NR,R,

(a) bbb b ot ot pf o Al = —pf
Hence the spinon PSG can be recovered by measuring the reciy-“‘ e A e e K

atl_\ll_(;gurzlr;ttl rr; nur;g?rn?ert]wri%r;?slﬁfgﬁnééogg:zgIctael ;?g:o;nTABLE I. Relative quantum numbe@g‘) between topological sec-
Ive quantu u pu Yors a of a square lattice spin-liquid. I,,/, is a plaquette or bond

_Spac_e'gfoup sy_mmetry WhiCh_ _exc_hanges the edges; by u§¢'anteredr-rotation, whilel, is a site-centered-rotation.
ing different cylinder compactifications we can measure the

R,,R,, andI = R,R, quantum numbers. There may be ) — A AG)
distinct r-rotations depending on whether the rotation is site a H b f “|Q =Q 70

or bond / plaquette centered; on a square lattice, for ex@ampl Q|| (=1yp=tes —1e 1|(=1)P2 ¥ = —p,
I' = T,R,T,R,, reveals an independent PSG relation. In Q%‘y (=12 —nonecs 1|(=1)P = nece
Figs. [ andl) we tabulate the relative quantum numbers for thﬁ (—1)P1HPs e 1|(—1)P = —negmecs
the square and Kagome lattices. ga) (=1)% —mane, -1/ (=1)P" = —nie

TABLE Il. Relative quantum numbel@g‘) between topological sec-

torsa in aKagome lattice spin-liquid. 1/, is a hexagon / site cen-

teredr-rotation. The bosonic PSGs are expressed through the-invar
We again fixA, and compute the relative reflection quantumants(p:, p», ps) of Ref. [44], while the fermionic PSGs are expressed

numberQ » between two states which differ by the insertion through the invariants of Ref. [47]. The fermionic invariants satisfy

of a vison. As discussed, threading a vison switches betweenzncs1-c, = 1 tautologically.

P/AP boundary conditions, €9 (A, bc) may change due to

the PSG relations of Eq[](9). The PSG relations associated

with U? = e are only modified ifU takes an odd number 3. Fusion and unificationQ) = Q" Q®

of sites across the twist boundary condition modified by the

vison. For both the square and Kagome lattice, for the ge-

ometries in whichlJ exchanges the edges of the cylinder we

2. Vison insertion

Our derivation of the vison quantum numbers shows that
the relative reflection quantum numbers obey fus'@ﬁ,) =

have () (b) ] ] ]
v’ Qp’ , because vison insertion changes the quantum num-
Qr,(A,AP) = Qr,(A,P) (21)  per byQ™ regardless of the parton parity at the edge. As
Qr,(A,AP) = Qg (A,P) (22) tabulated in Tablg | and Tab[g Il, we can use this fusion rule
_ to equate the bosonic and fermionic PSGs, unifying the two
be/p (AaAP) le/p (A7 P) (23) approaches.
QIS(AaAP) = _QIS(Aa P) (24)
wherel,, is ais bond or plaquette centeredotation, while
1, it site-centered. E. The quantum numbers of the ground state

Next we argue thaf);(MF) is unchanged when threading

a vison. To start, suppogdF) is in the same phase as the A given geometryA generically has a lowest energy state
ground state of a BCS superconductor / pair super-fluid. Iwhich is SO(3) symmetric on both edges, and two-fold degen-
the subsequent section, we show tat(MF) = 1 regardless  eracy for vison insertion. We can compute the quantum num-
of boundary condition, so is unchanged by vison insertionpers for such an SO(3) symmetric state by assurfiviig) is

Now suppose we modify the ground stgéF) with arbitrary  in the same universality class as a BCS superconductor / pair
U-symmetric edge perturbations of fixed parton parity. Thesuperfluid in the fermionic / bosonic construction®F) is

resulting@u (MF) can depend only on the parton parity of the then invariant under any symmetrg;/(MF) = 1. This is
edge perturbation, but not on the boundary condition, b&Eau pecause in both constructions we have

the vison-modified PSGs of Ed}] (9) will necessarily acon

related partons and the signs will cancel. This shQw$MF) IMF) = exp [Zij g(i— j)CiTTCJT J 0Y, (26)
is unchanged by vison insertion, and we conclude that ’ Y
o o o o 9(i-j) = (~1)Tg(i 1)
Qr, =1, Qp, =1, le/p =1, Q) =-L

(25) wherec = f/band(—1) = —1/1 for Abrikosov-fermions
and Schwinger-bosons respectively. Beca|ME) always

A possible loophole in our argument is that we assumed thatontains the parton Fock vacuug) as a component in the

for the ground stateMF) could be taken to be in the same Taylor expansion of the exponential, ajdl is neutral under

phase as a BCS / pair superfluid, but our result agrees witany symmetry operatiodMF) must also be neutral. There-

earlier discussion$][5] fore the quantum number of the ground state depends only on



the geometrnA and the PSG: 2. Eigenvalue of site-centered inversibn

Qu (A, bc MF) = Qu (A, bo) (27) . . .

Now let’s take one more step to consider an inversion sym-
where bc will depend on the two-fold degeneracy associatefhetry I, whose inversion center lies on one or more lattice
vison insertion an@ (A, be) is defined in EJ_T4. Thisresult sites. Let's assume inversion centers confsjnsites andV,
is particularly useful numerically, since by modifyilgwe s the total number of lattice sites. For thq9é, — N;) sites
can probe the PSG using onlyimgletopological sector. other than the inversion centers, their contribution to khe

In the following we specifically illustrate how to obtain the ejgenvalue follows exactly the same form Bs](31) (32),
eigenvalues)y (A, bc) of two crystal symmetry operators, in- except that we need to repladg by N, — N;.
version/ and mirror reflection’z, for a projected wavefunc-  \what about the contribution from th; inversion centers?
tion (8) on a finite-size lattice from parton PSGs. First of all, if there is an odd number of inversion centers
(N; =odd), the inversion eigenvalue is not a gauge invari-
ant quantity since the symmetry operations on a single spino
can always be followed by an arbitrary gauge transformation
In the case wheV; =even, if the inversion centers are not

First we consider an inversion symmetfy whose inver-  related by any other symmetry, again they can acquire extra
sion center lies on a plaquette. For a finite-size latticda wit gauge transformations independenﬂy under symmetry epera

plaguette-centered inversidp, the number of lattice site¥;  tions, and again the inversion eigenvalue is not a topotdgic
must be even. All lattice sites must be exchanged in pairghvariant.

1. Eigenvalue of plaquette-centered inversign

under inversion operation, since no lattice site remaivnarin If an even number of inversion centers are related by sym-
ant underl,, operation. More specifically, spinofy, ,, must metry, on the other hand, one can compute their contribution
appear altogether with its inversion counterpit. . = {0 I, eigenvalue from parton PSGs in a universal manner.
Gr1,1pfri.0:(Gr,1,)~" inthe many-spinon operatdy; fr, ...  Without loss of generality, let's consider a pair of inversi

Note that in prolected wavefunctidd (6) there is always a parcenters related by certain crystal symmefty(e.qg. it could
ticular ordering for the real-space positiofts} of the many-  be a mirror reflection or a translation on a finite cylindemjst

spinon operatoH fri0:- Here we simply choose a ordering spinon pair operator transforms under inversipas
in which a pair of spinons related by inversion show up to-

getheri.e. élsf [f i GppfrU(Gpp) MG f)

H'fri o :H/' fri o; 'él Apfri Ui(él A)il' (28) :élsfsfr,a(élsf) GI IGPPfrU(CTY A) ( A)_l
where’ denotes the product over half lattice sites that are un-= 5/ G L fro(Gr 1) GpPG fsfm(éles)—l(épp)—l
related by inversion. Clearly under inversion operatipithe ol ol A Bv_1
above many-spinon operator transform as =1, i, fr. - GpPfro(GrP) ] (33)

Gr, I, 1, frion (Gr, 1)~ = where we defined spinon PSGs
LG Lo feno (G 1) (Gr 1) feo (G, 1) 2 L
Hz Ip Pf iy 1,( Ip P) ( Ip P) fu w( Ip P) GIC GPPfr,U(GPP)_l(GISIs)_l _ (34)

By definition of PSGs we have ¥
A T2 A F =2 _ f I _

(Gr,1p)" frioi (G, 1p) " = 771pfr1:,am N, = +1. (29) (Glsfs)2fr7g((;ls 3 froo- (35)
sincel? = e yields the identity operation. We used to
denote the PSGs for fermionic spinons (Abrikosov fermions) Consequently, for &;-site lattice withN; inversion cen-
and " for bosonic spinons (Schwinger bosons). Noticeters (Vs, N; =even) which are pairwise related by crystal
that for Abrikosov-fermion representation, exchange of tw symmetryP, the inversion eigenvalue of projected wavefunc-
spinonsf,, and ffpri gives rise to an extra-1 sign due to  tion (@) is given in terms of spinon PSGs by
Fermi statistics. As a result we obtain

1, Iy [T fevos (Gr, 1) = (=0 )N T v, (30) Qu,(Nuy Ni) = (=g )N g, g )™ /2
i B = (=nf YN/2(=nf, p)N112. (36)
Hence the eigenvalue of plagquette-centered inversjofor _ _
projected wavefunctioil{6) onZ,-site lattice (V, =even)is for Abrikosov fermions and
Qr, (Ns) = (=g, )™/2 (31) Qu.(Ney Np) = (my )N/2(nf, p)N1/2. (37)

for Abrikosov-fermion representation. On the other hand, i

the Schwinger-boson representation, exchange of two spino fOF Schwinger bosons.
won't yield a—1 sign and we have A crucial point is that the PS@;, p can depend on the

boundary condition of the cylinder (for example, if =
Q1,(Ns) = (ny, )N/ (32)  prizy



3. Eigenvalue of mirror reflection operatd V. DIMENSIONAL REDUCTION AND ENTANGLEMENT
SIGNATURES

The eigenvalues of mirror reflection operaidcan be com-

puted completely in parallel to the case of inversion symynet A 2D model defined on a cylinder can be viewed as a 1D
as discussed previously. Again let's assuig lattice sites  System by grouping one ring of the cylinder into a single
lie on the mirror reflection axis onA,-site lattice. As argued super-site. This point of view is useful because the ingrpl
earlier, only whenVy, is even and thes¥ 1, sites are related to  of symmetry, topology and entanglement has been completely
each other by other crystal symmetries, will tReeigenvalue  understood in 1D through the recent classification of 1D SPT
be a topological invariant that is fully determined by parto phases.|[13—15] In this section we explain how 2D SET or-
PSGs. Let’'s assume thesg; sites are exchanged in pairs by der manifests itself as 1D SPT order under this dimensional
crystal symmetry?. Similar to the case of inversion symme- reduction. In particular, we find the,ZPSG relations have
try I, we can compute the reflection eigenvalue of projected One-to-one correspondence with the U(1) projective repre

wavefunction[(b) as sentations that classify 1D SPT phases. While generally U(1
projective representations are a coarse-grained ver$idn o
Qr(Ns, Ng) = (_ng)Ns/Z(_ngp)NR/?, (38)  projective representations, space-group symmetriesaictu
have ananti-unitary character under the dimensional reduc-
for Abrikosov fermions and tion, and for this special case the correspondence becomes
one-to-one.
Qr(Ns, Ng) = () ™2 (nfp p)¥/2. (39)
for Schwinger bosons. The parton PSGs are defined as A. Areview of 1D SPT phases.
N RGP YoVl GLR)l —
J?R}?Glf]ffr’f(Gplf) R (GR}?) o (40) While the classification of 1D SPTs can be discussed in
g pGPPGRRfr o (GRR) T (GPP)™, terms of Schmidt decomposition, the most compact treatment
(GRR)er,U(éRR)_Q _ mf%fm. (41) uses the formalism of matrix product states. We refer to pre-

vious works for a more detailed review. [121-15]
for Abrikosov fermions and similarly for Schwinger bosons.

1. Matrix product states

4. Unifying bosonic and fermionic PSGs
Let |j,) span the local Hilbert spaces of a spin chain with

ites atn. A MPS|¥) is characterized by a sequence of rank-

If an Abrikosov-fermion state and a Schwinger-boson stat tensors{I'» Y and rank-1 vectorgs,_ } through the

describes the san, spin liquid state, their symmetry quan- Qn O 41
tum numbers on any finite lattice must be the same for ardnsatz
bitrary crystal symmetries. Therefore from the eigenvalue Xn
of inversion and reflection symmetries summarized previ- {jn}¥) = Z HsanFi&anH- (47)
ously, we can achieve a unification of Abrikosov-fermion and on=1 n
Schwinger-boson representation: i.e. their PSGs mustfgati
the following correspondence: The indicesw,, which are summed over are called the auxil-
lary indices, with dimensiory,,. We have assumed the MPS
— 77{ = nl}p; (42) is in the ‘canonical form,” which means that eagl), is the
fp X set of Schmidt weights for a bipartiton of the system between
— 7, =5 (43)  sitesn — 1,n.
_ 77}:,13 =1 p, (44) The MPS ansatz includes both finite and infinite spin

chains. In the finite case with sites,x1 = xr+1 = 1. In the

; \ infinite case with a unit cell of length, we can always choose
—Nr = "r (45)  the tensors to share this unit cell?’ " o, .., = r-g;aw

_ n-}f%yp = 77?{7137 (46)  and likewise fors andy.

v crystal symmetryP satisfyingPR = RP.

v crystal symmetryP satisfyingPI; = I P;

These relations are in agreement with our conclusions based 2. Onsite symmetries

on the relative quantum numbers. In the next section we’ll

establish the correspondence between Schwinger-boson andif a spin chain is invariant under an onsite symmeiry G
Abrikosov-fermion representations for those PSGs concerne.g. a spin rotation) , it is natural to ask how the symmetry
ing time reversal symmetry. This is achieved by relating thes encoded in the tensofs The representation of the onsite
2D parton PSGs to 1D SPT invariants by considering prosymmetry decomposes into its action on each §ite,®,,g,, .
jected wavefunctions on a thin but long cylinder. For notational simplicity, we will drop the site index An
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MPS is symmetric underif and only if theI" ands transform There is also an interplay between the other symmetries and
as [58] T. If G containsH x ZI C G as a subgroup, wherH is
_ onsite, forh € H there is a projective relation
Zgijf;ﬂ =Ty Z Ugsw’rfwﬂ'U;;B’ﬂ (48) Th
: bt vrupust = Ay (56)
Ugiapsp = 5aUgap (49) w(h, T)

For our purposes it will be sufficient to understand= Zo;
sincea’7 is itself a unitaryZ, symmetry we can form the
gauge-invariant relation

where thel/, are unitary matrices ang, € U(1).

The phases, form a U(1) representation of the group, and
encode the-charge per unit length. But for the unitari€g
there is another possibility7, may be gprojectiverepresen- Unr U — — 41 (whenh? =1 57
tation, meaning that the requirements of a group representa RTYRT =TT o ) ®7)
tion are satisfied only up to U(1) phases. This subtlety arisean additionalZ, invariant. Alternatively, we have the relation
because the phase @f, isn’t fixed by the transformation law
of Eq.[48. Arbitrarily fixing the phase of eadh,, the U(1) (U,f)(UTU;;U,;lU}:l) = VhTYT (58)
phasesu are encoded in the relations

U,Up, = w(g, h)Ugp,  w(g,h) € U(L). (50) 4. Reflection symmetry

The phases are called cocycles, or the factor set. If we con-
sider the phase ambiguity, — 6(g)U,, 6(g) €U(1) to be a 1D chain,R |j,) = ugy, x_, [k—n). The unitary matrix:z

gauge ”?f?Sfo_rma“O“” we see thatis not gauge invariant. encodes any internal rotation in the definition of the reitect
The classification of gauge-inequivalenis given by the 2nd The transformation law i$ [13]
5 e "

group cohomologyw] € H*[G,U(1)], resulting in a classifi-
cation of 1D phases symmetric und&r Note that for sym- Tk j T
metry groupG' = Zy, there are no projective representations, Xk:umk (r )aﬂ — 'R Z, Urioa T g Upgr (59
and hence no 1D SPT phases. o

An important physical signature of an SPT phase under on- Ur;apss = SaUR;ap (60)
site G is degenerate edge states. It can be shown there areh ides the fi . . he ‘pari
edge states which transform undéwith the same projective w _elrerR h:,il prowh esthe |lrs_%2l|nvarlagft, the E?mxﬁﬁer
representatiofw] as thel/; if [w] is non-trivial, the projective unit length.” Somewhat surprisingly, combining this triams

representation must be multi-dimensional, implying a dege Mation law with those of an onsite we find the projective
eracy. relations are the same as those aindi-unitary symmetry:

Finally, consider a reflectio® which spatially inverts the

UrUj, = w(R, h)Ugp, (61)
3. Time-reversal symmetry UnUr =w(h, R)Upr  w € U(1). (62)

The origin of this similarity is that transpositidh and com-
plex conjugation behave analogously when acting on the uni-
tary U;,. This point is important, as it implies inversion has
the same&Z, invariants as time-reversal:

The transformation laws are modified for time-reversal
T = ®,u7K because of the complex conjugatiin Similar
to before, the MPS can be taken to transform as

Z”T;J’kfiﬁ = Z UT%aa’Fi'B'U’Tr;ﬁ/ﬁ (51) UrUg =vr = %1 (63)
g . “Z &) UnrUip = mr = +1 (whenh?=1) (64)

T;aB88 = SaUT;a8 wrr—lyr—
(UNURURUZ'ULY) = mrvr = £1 (65)

(note we can remover by redefining the U(1) phase of the
state). But for an anti-unitary symmetry like time-revérga

the projective relations are modified to B. Identification of 1D SPT order and the space-group PSGs
UrU; = w(T,h)Urp, (53) Earlier we argued that space-group quantum numbers are
UnUr = w(h, TUpr w € U®1) (54) topological invariants in the presence of reflection symme-

tries, and calculated these quantum numbers using the PSG.
In contrast to an onsit& = Z,, for the anti-unitary time- We now show that under the dimensional reduction these
reversaKG = Zg) we can form the gauge-invariant relation quantum numbers can be calculated from the 1D SPT invari-
antsrg,vr, Ynr- This clarifies the origin of their stability,
vr = UrUs = £1. (55) since 1D SPT phases are robust in the presence of symme-
tries, and provides a dictionary between the 2D SET and 1D
This~ gives aZ, SPT classification. SPT order.
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To equate the 2D SET order with the 1D SPT invariantsOn the other hand, the site-centered inverdiorequires odd

we must compute the quantum numbers of a finite chain given, and fromQy’) = —1 we find
theinfinite chain 1D SPT invariants. For notational simplicity, °
we will assume the dimensional reduction results in a otee-si r,(AL,v-a)
: P —= = =1 (74)
1D unit cell. The notation is more complex for the Kagome i, (AL, a)

model, since under the dimensional reduction it is more con-

venient to use a unit cell of two, so we delay the discussion

of this case. Since the system is a 2D cylinder, in addition to 1. Translating between the;2SG and the 1D SPT U(1) PSG

a reflectionk which exchanges the edges of the chain, there

may be an orthogonal reflectidf which does not exchange  The hosonic Z PSG is encapsulated by the projective rela-
the edges, but instead behaves as an ‘onsite’ symmetry undgg,s

the dimensional reduction. We combine these two reflections

to form a 180 degree inversioh = RR’/, which again ex- XY =wb(X,Y)(XY) (75)
changes the edges. Consequently ther&areD SPT invari-
antsyg,vr = YRR wherew® € Z,. The 1D SPT relations are similar, but

For anyR/I symmetric state on a finite chain wifhsites  w € U(1), which is in general a much coarser classification
(L-odd implies a site-centered inversion) it can be provet) tha as there are more phase ambiguities. Yet we have shown that
independent of any details of the edge, the quantum numbetie 1D SPT relations recover the 2D PSG. So how do the 2D

of the chain are PSG relations ‘descend’ to the 1D SPT relations? The key
L point is that if the symmetry? exchanges the edges of the

Qr(L) =R (rR) (66) cylinder, we can transcribe the 2D PSG relations into 1D SPT

Q:(L) = ~; (r)* (67) relations if we remember that reflection / inversion becomes

anti-unitary in the 1D SPT realization:
where~, r are the 1D SPT invariants of the bulk phase.

To relate the 1D SPT invariants to the PSG, fix the trans- R® =1y = UrUf, = g (76)
verse geometryA, of the cylinder (such as the circum-
ference), and find the four ground states of the infinite
cylinder. Each topological sectar has 1D SPT invariants
Yo (AL, a),ry(AL,a).

Following our earlier discussion, we first compute the ratio
of quantum numbers after threading a spingffi:

Qu(A,b/f-a) ~u(AL,b/f-a) TU(ALab/f'a))LC dentification of 1D SPT order and the RT BT~ PSG
QU(A,@) ’YU(AJ_,G/) TU(AJ_,GJ) . entification o order and the S

Due to the anti-unitary nature, the U(1) phase ambiguitysdoe
not affect the robustness ofz. In general,the 2D PSG
relations descend to 1D SPT relations if we treat edge-
exchanging symmetries as anti-unitary This explains the
equality of the quantum numbers found in Hq.1(69).

b/ f
QU —

_ - In the fermionic parton construction there is an additional
Since the result independenof the geometry, we have the fermion PSG associated with the interplay of time-revefsal

following: and a reflectiorR:
w/f) _ AL, b/f-a) (69) nhy = R-'T~'RT (77)
o =
) Viewing R ite, under the dimensional reducti
A b/fa) = ri(A 70 iewing R as on-site, under the dimensional reduction we
ru(AL,b/f-a) =ru(A,a) (70) have a similar 1D relation
We find thatthe ratio of 1D SPT invariants v between the W(R,T)
topological sectors of an infinite cylinder reveals the PSG UrUr = (T7R) UrUg (78)
relation Qg’/f). Furthermore, the parity per unit length is Wi
unchanged by threading a spinon. But w(R,T) is not U(1) gauge invariant. Instead, we may
We then compute the ratio of quantum numbers aftegonsiderthe 1D SPT invariant defined by Eql(57). Comparing
threading a visomw: the 2D and 1D SPT PSG relations,
Q) = ch(A(}\v -;z) _ vu(A(X,v -)a) rU(A(X,v -)a))L (R)(R™'T™'RT) = nhnky  2DPSG  (79)
) a 9 a T 9 a — * _
u UL UAAL 1) (Ur)2(UR'UrURUSY) = yrryr 1D SPT  (80)

WhenU is not site-centered, our earlier discussion found thatVe OPtain the following 2D PSG to 1D SPT reduction:

QSJ) = 1, so by comparison we expect

WwbL,v-a)=w(AL a) (72) " Thisidentification can be verified by checking for the phgsic
ro(Ar,v-a) =ry(Ara), Ue{R. Dyt (13)  signature ofyfynh, = —1. The fermionic spinon always has

77{377{:& — YRTVT- (81)
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a 2-fold degeneracy associated with it's Kramer's degaayera  We conclude that thd, v sectors will have an entangle-
77% = —1, but Whe”ﬂ{zﬁ{w = —1 the spinon excitation is at ment spectrum that transforms under integer represengatio
least four-fold degenerate, as this is the minimal dimemefo ~ of SO(3), and hence will have singlets in the entanglement
these projective relations. The 1D SPT relatign= —yzy  SPectrum, while the entanglement spectrum ofithfesectors
impliespreciselythis additional two-fold degeneracy. will transform under half-integral representations of 3(

In summary, we can determiné?n'}’;T by computing the leading to a minimum two-fold entanglement degeneracy.
change in the 1D SPT invariantyrr (with R onsite) when
the topological flux changes bf. In Ref.[5 it argued that

whenn), = —1, 9k, = 1 (whereR = o in the notation of B. 1vsv
the Kagome model), themmaybe gapless edge modes pro-
tected by a non-trivialison PSGR™'T~'RT = —1 (as- In an SO(3) symmetric spin liquid, threading a vison

sociated with topological superconductivity in the fermio  through the system is topologically equivalent to thregdin
mean-field ansatz). Presumably the vison PSG can also #r - flux with respect toS* spin-rotations. To distinguish
computed from the change in the 1D SPT invariapt- (  between thel andv sectors we can detect the change in mo-
~r = 1 for the vison) when threading a vison. mentum induced by the flux threading. Viewing a cylinder of
length L, and circumferencé,, as a spin chain on a periodic
ring of lengthL,, the unit cell of the chain contains integral /

VL. INTRINSIC TOPOLOGICAL ORDER: DETECTING half-integral spin wherl,, is even / odd. In the half-integral
THE TOPOLOGICAL FLUX case, threading flux with respect$6 spin rotations is known
to increase thg-momentum by = —1.[54] In the integral

It is important to have a method for measuring the topolog-case, the threading flux will not change the momentum.
ical flux « of an MES independent of the SET order; in the We conclude that threading a vison through the system will
finite cylinder, we must detect whether a visothreads the increment they-momentum byr when L, is odd, and by0
cylinder, and for a torus / infinite cylinder we must distimgu  if L, is even. This increment is simply themomentum per
between all oft, b, v, f. It has previously been shown that the ynit Iengthn%” introduced in Sed_TIIB. Hence for the vac-
topologicalS andT matrices can be calculated from the MES Uum,nily = 1, while for the visony, = —1. This result is
on both the torus and infinite cylinder, which can then be usedtraightforward to check in any parton construction.

to label the MES[[33] In practice this is not so simple as all e knowngy = —7757,, since they differ by vison insertion,

four-sectors must be found on a finite circumference cylinhytwhich of the two carrieg)?, = —1 will in fact depend on
der, which is frustrated by finite size effects which lead to athe PSG relationi7,, T,)* = n;Z(Tmi)a-

sizable splitting of the topological degeneracy. Howefara

Z5 spin-liquid we find there is a simpler procedure to uniquely

label the MES individually. C. bvsf
Note that anS = 1/2 model must have finite topological-

flux per unit cell [28], so the topological flux through an emta

glement cut depends on the location of the cut. So to simplif)(N

the discussion, we restrict to even circumferentgse 27,

A fermionic anyon has topological spify = —1, which
e can use to distinguish between thand f spinons. We
will show that the fermion’s topological spin is encoded im a

which contain an even number 5f= 1/2 within each ring of additional 2x degeneracy in the entanglement spectrunt (ES)
the cylinder, and always consider 'vertical’ entanglenmzris :  deg y 9 pectrum {
combined with the 2x spin degeneracy, the fermionic spinon

thCh lie between 1D super-sites under the 2D to 1D dlmenES if 4x degenerate. Intuitively, the ES of the fermionicteec
sional reduction.

should have anti-periodic boundary conditions, meanirg th
the momenta: are quantized a8 € 2%(Z + 3). With ei-
Y

A {1,v}vs{b, f} ther time-reversal or reflection symmetry, the momengad
—Fk will be degenerate, so there is a 2x degeneracy. We will
show this 2x degeneracy arises from non-trivial 1D SPT order
under a combination of.z, rotational symmetry and either
reflection or time-reversal.

The first distinction detects the fractionéll = 1/2 spin
carried by the spinons and f. Under the dimensional re-
duction, an even circumference cylinder is an SO(3) inveria
integer-spin chain, which hasZ 1D SPT classification as-
sociated with the emergence of two-fold degenefate 1/2
edge states (protected either by time-reversal or SO(3g. T
simplest non-trivial example is th& = 1 AKLT state. In
2D, when topological flux or f terminates at the edge of the ~ Momentum polarization is a procedure to detect topological
cylinder it also produces a spinon excitation near the edge ¢ Spin using a translatiof, that rotates a cylinder of circum-
rying S = 1/2. If the system is SO(3) symmetric, this emer- ferenceL,,. [36,[37] To review, each left Schmidt state) of
gent edge spin carries a two-fold degeneracy. Hence uneler tithe Schmidt decompositiofe~#, |a) } can be assigned def-

dimension reduction, the f sectors are non-trivial 1D SPT inite momentume**=, meaning thafl, o) = e**=|a). In a
states under SO(3), whili, v are trivial. convention in whichk, € 227, the momentum polarization
Y

1. Review of momentum polarization
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is Since Ur, commutes with the entanglement spectrum
L, e~ Fe, we have
ZefEaJrika = T, e~ (a=inmLy L O(e=Lu/t),
~ A=Tr(e "Ur,) = Tr(e” UL U, Ug,) (87)
82 _ - - * *
_ (82) =Tr(e PoqpUs ') = yrTr(e” P2Uz, ) = yp A" (88)
7— _ eQTrz(hafc/Qél). (83) Y d

Herea is non-universal real constant related to the area-la//Sing this relation, for evefi, the momentum polarization is
fluctuation of momentum of the cujy is the ‘Hall-viscosity’
(which isn't quantized on a lattice), ang = e2™i(ha—c/24) g ALy = Nou/2(yp\*)ou/2 = yEu/2 N Ly = (Z1)F |\ By,
the desired entry of the modul@rmatrix. (89)

The momentum polarization isot necessarily a 1D SPT
invariant, since there are no 1D SPTs associated with ateonsiSo long at|\| # 0, the momentum polarization is equivalent
Zr, symmetry. As a consequence, generally the momenturto the SPT invariant. The SPT invariant is even more robust
polarization only becomes quantized in thg — oo limit, since it is well defined even when| = 0.
and a scaling analysis is required.

. . - . VIl. DETECTING SET ORDER ON THE KAGOME
2. A 1D SPT invariant for detecting fermionic topologicakflu LATTICE USING CYLINDER-DMRG

However, in the presence of a mirror reflectipr-> —y or
time reversal, we can prove that the momentum polarizatio
is aZy 1D SPT invariant that detects whether the topologica
flux is bosonic or fermionic. Consider a cylinder of even cir-
cumferencd., with a mirror reflectiorR,, : (z,y) — (z, —y)
that acts as an onsite symmetry in the 1D picture (the resu“1
for time reversal is analogous). When acting on the entanglefi
ment spectrum, a-rotation (translation by., /2) may anti-
commute with the inversiof,,:

Un, (Ur,)"?Ug! = (=1)"(Ur,)"»/?, F=0,1 (84)

giving a 1DZ; invariant ' = 0,1. To showF is a 1D SPT
invariant, note the symmetry group generatedZhy R, is
G = Zr, % Zy (for evenL,). The cohomology classifica-

We now propose a procedure to determine the Kagome
SGs which is practically adapted to the constraints ofeyli
der DMRG. The results of this analysis will be reported in a

subsequent work.[59]

Following the notation of the earlier analysis, [47] within
e fermionic parton construction we must determine the
ve invariants{na, NCesNoCes NNoT NCsTH 12 = 1C6T0Cs }'
combined with a possible,,, € Z classification of any
symmetry-protected gapless edge statés. [5]

A. Finite DMRG

tion is We first consider a technique for finite length cylinders. By
5 finding the SO(3) invariant ground state after adding or re-
H[ZL, X Ly, U(1)] = Zo. (85) moving an extra spin at each edge of the geometry, DMRG
The relationF of Eq. (83) is a gauge invariant, so must label studies can reliably obtain two topological sectors théedi
these two possibilities. by threading a spinon through the bulk. At the circumferance

To relate the SPT invariarff' to the anti-periodic bound- that can currently be well converged (such as YC8 and XC8),
ary conditions of the entanglement spectrum, suppose wée other two topological sectors are not generally obskrve
redefine the phase df;, to ensure the expected relation Even without determining whether these two sectorsi re
Up'Ur,Ur, = (Ur,)"*. With this gauge choice Eq[{B4) b/ f.theratio ofR,, R, I, quantum numbers before and after
! adding the extra sites (i.e. a spinon) will detern@%{f}%wlh,
and referring to Tablelll, three of the PSG invariants. Sthee
symmetries must be edge-exchanging, on the YC type cylin-

ders we obtair@%’if) and hexagon centerefggi/f). On the

requires(UTy)Ly = (=1)F. For F = 1, the diagonal basis
Ur, = e'* requiresk, € 2Z(Z + 1).
Y
We note that the most general commutation relation is

Ur,Ur, URy1 =F UTyl (86) XC type cylinders, we obtail@%’/ " and hexagon centered
Y
with yv/? = (=1)F ng/f), the latter serving as a double check on the YC data.
There is a simple algorithm for measuring space-group quan-
tum numbers in finite DMRG.[59]
3. Quantization of momentum polarization by the 1D SPT To determinen;», one must first determined whether the
invariant topological sector of the spinon ig' f. To distinguishb/ f,

we check if there is a 4-fold degeneracy in the entanglement
We now prove that the momentum polarization is quantizedgpectrum as predicted by Ed. 184), which would imply the
to be(—1); this confirms the interpretation thAtdetects the  sector isf. Knowing the sectob/f, we know the correct
topological spird; = —1 of the fermionic spinon. boundary condition for the parton ansatz, and following the
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techniques of SeC.IVIE we can predict the site-centereda-inve depends on whether the vison has a non-tri@lR 17!
sion@Q;, (A,b/f). The details depend on the cylinder used,PSG. If the vison PSG is trivial, there are no gapless edge
but the result always reveals,. states and the boson will have the saRIER~!T~! PSG as
Once we know the topological sector of the sample, wethe fermions, so the bosonic relative SPT orgét again re-
can further check these results by comparing dbsolute  covers the fermionic PSG invariants. If the vison PSG is non-

quantum numbers undét,, R, I;,,, with the computation trivial, there are gapless edge states, ghgh), = —1 for the
of Sec[IVE; there are many different cases depending on th&, edge and),rnc,rn-1m-c, = —1 for the R, edge regard-
sample. less.

B. Infinite DMRG VIIl. CONCLUSIONS

An infinitely long cylinder can be studied using iDMRG, e argued that the many body symmetry quantum numbers
which has certain numerical advantages due to the absence &fe a robust global property ideally suited to detectintruis
edge effects and the reduced computational costs. iDMRGons between SETs, and calculated these for several SETs
also reliably finds two topological sectors which differ by a described by slave particle mean field theories with difiere
spinon: Here we discuss only eyen-(_:ircumference cylinders projective symmetry groups.

As discussed, thé, 1D SPT invariants for SO(3)7 de- More generally, the SETs may be diagnosed from the 1D
termine which state has the spinon. The fermionic 1D SPTSPT invariants in the cylinder geometry. These invariaoits f
invariant distinguishes betweéyif. The momentum per unit  giferent topological sectors (which are labeled by thesiua
lengthr)z, is trivial to compute in IDMRG, so we distinguish particles) combine together in a way that reflects the fusion
between sectors/v usingl = T]}Ey = —1n3,- The momen- rules. In contrast, combining PSGs for a pair of quasiplesic
tum per unit length of the spinon sector determines eitheto predict the PSG for the fusion product needs to be cayefull
ma = nl, (if the sector isf) or —n15 = 75, (if the sector  considered in the case of internal symmetries.
is ). The knowledgeable reader may be puzzled by this corre-

To measure the reflection PSGs, one can in principlgpondence between PSGs and 1D SPTs. The latter is de-
detect the 1D SPT reflection invariants using establishegermined by projective representations modulo a phase, or
methods[[60] This can be a bit unwieldy in 2D DMRG, as technically#2(G, U(1)), whereG is the symmetry group,
the ordering of the DMRG ‘snake’ breaks the reflection sym-while the former is a projective representation modulg Z
metries. A simpler procedure is to generatinite cylinder  7/2(G, Z,), for Z, topological order. That is, we represent
wavefunction by projecting the left / right regions of the in group elements by matrices, whose product satisfies thggrou
finite cylinder onto reflection related classical produetes,  multiplication, up to either a U(1) phase or just an overigihs
leaving behind a finite segment of spinsl[59] Regardless 0fz,) of the matrices . This is because the physically observ-
projection used, the resulting state is a reflection symmetr able quantities are made by combining two identical quasipa
finite cylinder wavefunction. One can then measure the spaceicles and so we can only change the overall sign of the ma-
group quantum numbers of the resulting finite cylinder wave+rices. For example, if X is aZsymmetry, then ‘half charge’

function in order to determin@%’if}% I of a quasiparticle corresponds to the PSG = —1. How-
" ever, this is not a 1D SPT invariant. How is this discrepancy
reconciled?
C. Determining RTR™ 7! The key observation is if inversior, or a equally a reflec-

tion is present, these act like anti-unitary symmetriesmwhe
restricted to the Schmidt states on one side of a bipartition

et ) .
lated to the onsite 1D SPT invarianigr for R = R,, R,, Thus, \_/vh||_eI = —1 may again seem to be a PSG relatl_on,
which can be measured on YC and XC type cylinders respegggardlng Itas an antiunitary symmetry turns it into a proje

; : ; tive representation even wifli(1) phase factors and hence a
tively using known methods for detecting 1D SPTs. [60] The . . S
most obvious signature is the 4-fold degeneracy in the ES reLD SPT invariant[[13, 51]. Similarly, for a globabZsym-

) . 5
uired to realize the projective relatiobsU; = =-1 metry, X, Wh'le by |tseIfX_ = 1 does not pr_oduce_a ;D
1 1 - invariant, when combined with the effective antiuritar
gnd(U (UL 'UrU pU J) = 7y —ﬁ&lTThve:grmmmc SPT h bined with the eff w
R R YTYRYT — JTVRT — — 4 . . Ix-tr-t . . .
PSGs are related to the relative 1D SPT orgdé? between MVErsion sym.metryx_;z is a 1D SPT invariant and the
the 1 and f sectors via denominator is the fractional charge we are interestedhis T
type of reasoning has been repeatedly used in this work.

As discussed in SeE. M C, the remaining invariants are re

7;1»)%({5 e —— (90) Our procedure is expected to be complete foliguids, but
o (f') for more complicated topological orders, such as satopo-
Y1 VR, T = NoTNCT oo Cy (91)  logical order, there is aZinvariant associated with a;Gota-
tion symmetry. Taking into account certain subtletiespglo
Of courseyf) = —1, as itis a spinon. Cs; quantum numbers detect this topological invariant, but the
ey p q polog

If the DMRG obtains sectors which differ by, we are  simplest cylinder dimensional reduction will not work. Ert
done. If DMRG obtains sectors which differ bythe analysis  sions are left to future work.
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