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Abstract: We show that the spatio-temporal distortion, spatial chirp, is 
naturally and easily measured by single-shot versions of second-harmonic 
generation frequency-resolved optical gating (SHG FROG) (including the 
extremely simple version, GRENOUILLE)`.  While SHG FROG traces are 
ordinarily symmetrical, a pulse with spatial chirp yields a trace with a shear 
that is approximately twice the pulse spatial chirp. As a result, the trace 
shear unambiguously reveals both the magnitude and sign of the pulse 
spatial chirp. The effects of spatial chirp can then be removed from the trace 
and the intensity and phase vs. time also retrieved, yielding a full 
description of the spatially chirped pulse in space and time. 
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1. Introduction 
Because their generation involves considerable spatio-temporal manipulations, ultrashort laser 
pulses commonly suffer from spatio-temporal distortions. Probably the most common such 
distortion is spatial chirp, in which the average wavelength of the pulse varies spatially across 
the beam. Devices such as pulse compressors (see Fig. 1), which are standard in essentially all 
ultrafast lasers and apparatuses, deliberately introduce massive amounts of spatial chirp, only 
to—in principle—remove it afterward.  After two prisms, the beam lacks angular dispersion, 
but has considerable linear spatial chirp.  While the next two prisms of a pulse compressor, in 
principle, remove this effect, in practice they typically do not completely do so unless aligned 
perfectly.  One cause of this distortion is that the first and last prism separations may not be 
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equal.  Using only two prisms and a mirror or mirrors to reflect the beam back on itself 
guarantees that the relevant prism separations are equal, but there are other causes of spatial 
chirp in pulse compressors even in such a simple two-prism arrangement: the beam may be 
diverging or converging while inside the device, or the prisms may be arranged at slightly 
different angles. As a result, the beam emerging from a pulse compressor is frequently 
contaminated with spatial chirp.  

 

 
Fig. 1. A prism compressor, which utilizes four identical Brewster prisms (or two and a 
mirror), which, if misaligned, yields spatial chirp in a pulse. If the prism separations, apex 
angles, or incidence angles are not precisely the same, spatial chirp results.  Even slight 
amounts of beam divergence or expansion inside this device can yield significant spatial chirp 
in the output pulse.  

 
Worse, spatial chirp has many additional causes, including even optics that would seem 

beyond suspicion.  For example, a window with a slight wedge, as is required for laser output 
couplers (to avoid feedback from the back surface), causes angular dispersion, which also 
imparts spatial chirp in the beam, and the further that the beam propagates from the optic the 
more spatial chirp. This is especially problematic in the most broadband (that is, the shortest) 
pulses.  In addition, even a simple plane-parallel window yields unavoidable spatial chirp 
when it is tilted (Fig. 2). Thus, simply placing a (usually 45-degree) pick-off mirror in the 
beam causes spatial chirp in the transmitted beam. 

 

 
Fig. 2. An ultrashort pulse propagating through a simple plane-parallel window. Even a slight 
tilt of the window yields spatial chirp in the transmitted pulse, despite the absence of angular 
dispersion. 

  
If a pulse has spatial chirp, experiments performed with it will yield inappropriate results. 

For example, each individual ray along the beam will contain only a fraction of the full pulse 
spectrum, and hence won’t be as short as would be possible if the pulse possessed the full 
spectrum of the beam. Also, spectroscopic experiments performed with spatially chirped 
pulses will involve both exciting and probing with spatially varying wavelength, which could 
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easily confuse their interpretation. Even worse are the potential effects of spatial chirp on a 
laser-induced-grating experiment. If the grating is induced with a spatially chirped pulse and 
its spatially reflected replica (i.e., a pulse that has experienced, for example, one more or one 
less reflection), it will be a stationary grating (as expected) in the beam center, but a moving 
grating at the edges due to the different center wavelengths of the two beams creating the 
grating in these regions. The moving grating will wash out due to its motion, in addition to 
excited-state decay. Such a grating will appear shorter-lived than might otherwise be 
imagined. 

There is not a convenient diagnostic for spatial chirp. A spatially resolved spectral 
measurement, in principle, suffices, but aberrations in spectrometers can mimic this effect, so 
such measurements are not routinely made. Researchers have also used spatially resolved 
spectral interferometry [4] and spatially resolved SPIDER [5,6], but these interferometric 
methods are difficult to align and to keep aligned.  SPIDER is also experimentally very 
complex and has within its apparatus a pulse stretcher, which significantly disperses the beam 
and requires very careful alignment or it will introduce spatial chirp itself. Also, spectral 
interferometry requires high stability of the absolute phase of the pulse to be measured. While 
the latter two methods have measured the full intensity and phase vs. one spatial co-ordinate 
(not just the spatial chirp), it is important to develop a device for measuring spatial chirp in 
ultrashort laser pulses that is simple, easy to use, reliable, artifact-free, and accurate.  

In this note, we report such a device. Remarkably, it is a familiar one: any single-shot 
second-harmonic-generation frequency-resolved-optical-gating (SHG FROG) device, 
including the extremely simple SHG FROG device we recently reported—GRENOUILLE 
[1]. We will show that, without a single modification, single-shot SHG FROG and 
GRENOUILLE yield the pulse spatial chirp—in addition to the intensity and phase vs. time. 
Specifically, the ordinarily symmetrical  SHG FROG trace develops an asymmetrical shear 
(tilt) in the presence of spatial chirp, which is proportional to the spatial chirp. 

Even better, the inversion formula is very simple. First note that single-shot SHG FROG 
maps delay onto position and hence yields a plot of intensity vs. frequency and position, and a 
spatio-spectral diagnostic for spatial chirp involves a similar plot.  The spatio-spectral plot 
develops a shear in the presence of spatial chirp.  And so does the FROG trace. Indeed, we 
find that a spatially chirped pulse yields a single-shot FROG or GRENOUILLE trace with a 
shear that is approximately twice that of the spatial chirp when plotted vs. frequency and one 
half when plotted vs. wavelength. 

This technique also works for higher (odd) orders of spatial chirp.  And we show that the 
effects of spatial chirp may also be removed from the FROG trace, and the pulse intensity and 
phase can be determined in the usual manner.  The retrieved intensity and phase may then be 
modified taking into account the spatial chirp, and a spatio-temporal measurement of the pulse 
obtained for a spatially chirped pulse. 
2. Theory of spatial chirp in single-shot SHG FROG measurements, such as 
GRENOUILLE 
To see the effect of spatial chirp on single-shot FROG measurements (see Fig. 3), we begin 
with the usual expression for an SHG FROG trace, including the carrier frequencies of the 
two pulses [2]: 

2

0 0( , ) { ( )exp[ ]} { ( )exp[ ( )]} exp[ ]SHG
FROGI E t i t E t i t i t dtω τ ω τ ω τ ω

∞

−∞
= − − −∫   (1) 

which can be simplified to yield: 
2

0( , ) ( ) ( ) exp[ ( 2 ) ]SHG
FROGI E t E t i t dtω τ τ ω ω

∞

−∞
= − − −∫                      (2) 
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In single-shot FROG techniques, two replicas of the pulse are crossed at a large angle, and 
delay is mapped onto position, τ = αx, where α = 2 sin(θ/2)/c. This yields: ( , )SHG

FROGI xω α .
 Now if we allow the pulses to have spatial chirp in a single-shot SHG FROG set up, we 
must replace ω0 with a spatially dependent frequency: ω(x) = ω0  + ξx. Then the SHG FROG 
trace becomes: 

2

0 0

( , )

( ) exp[ ( ) ] ( )exp[ ( )( )] exp[ ]

SHG sp ch
FROGI

E t i x t E t i x t i t dt

ω τ

ω ξ τ ω ξ τ ω
∞

−∞

=

+ − + − −∫
     (3) 

Simplifying this expression, we obtain: 
2

0( , ) ( ) ( ) exp[ ( 2 2 ) ]SHG sp ch
FROGI E t E t i x t dtω τ τ ω ω ξ

∞

−∞
= − − − −∫            (4) 

which can be written in terms of ( , )SHG
FROGI ω τ : 

( , ) ( 2 , )SHG sp ch SHG
FROG FROGI I xω τ ω ξ τ= −                                                     (5) 

Since, in single-shot FROG techniques, delay is mapped onto position, τ = αx, the single-shot 
SHG FROG trace of a pulse with spatial chirp will be:    

( , ) ( 2 , )SHG sp ch SHG
FROG FROGI I x xω τ ω ξ α= −                          (6) 

This expression shows that the SHG FROG trace, which is normally symmetrical with 
respect to delay, ( , ) ( , )SHG SHG

FROG FROGI x I xω α ω α− = , develops shear in the presence of spatial chirp 
and no longer exhibits such symmetry. Because no other effect is known to cause such 
asymmetry, this is a simple and clear indicator of spatial chirp. 

GRENOUILLE is a type of single-shot FROG measurement, but it (like single-shot 
methods that involve mirrors inserted halfway into the beam) involves spatially splitting the 
beam in two, rather than splitting the beam with a beam splitter. In other words, the left side 
of the beam gates the right side of the beam, rather than the entire beam gating itself.  
However, it yields the same slope (Fig. 4), so the result for GRENOUILLE is identical. 

At this point, the observant reader might note that, since GRENOUILLE uses a Fresnel 
biprism to split and cross the beams, it would seem that it also introduces spatial chirp into the 
beams, which might perhaps bias the measurement. However, not only is this spatial chirp 
very small in magnitude (since the apex angle is very close to 180o), but this spatial chirp is 
imparted with opposite sign onto the two beams inside the GRENOUILLE, and it cancels out 
of the analysis.  There is also a very small amount of pulse-front tilt imposed by the biprism, 
but this is also taken into account by the standard delay calibration methods and does not 
affect the measurement. 

Note that the above derivation also holds for all odd (i.e., higher) orders of spatial chirp.  
On the other hand, even orders of spatial chirp will produce symmetrical distortions in the 
trace and would be confused for pulse distortions in time and hence will require another (yet-
to-be-invented) technique for their identification. Currently, the linear component of spatial 
chirp is of greatest interest (higher-order terms are generally very small), so henceforth we 
take “spatial chirp” to mean “linear spatial chirp.” 

Note also that this result is independent of the pulse intensity and phase; the method is 
general.  
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Fig. 3. Spatial chirp in single-shot SHG FROG. Two spatially chirped pulses are crossed at an 
angle in the SHG crystal. This yields variable delay mapped onto transverse axis. The crystal 
yields the autocorrelation signal of the pulse for the purpose of measuring its intensity and 
phase vs. time. However, spatial chirp causes a variation of the autocorrelation signal 
wavelength vs. distance (i.e., vs. delay).  This yields a shear in the SHG FROG trace 
proportional to the magnitude of the spatial chirp.  

 
 
 

 
Fig. 4. Spatial chirp and GRENOUILLE. A spatially chirped pulse enters the Fresnel biprism 
from the left.  The Fresnel biprism splits the pulse into two, which then cross in the SHG 
crystal.  While the crystal yields the autocorrelation signal of the pulse for the purpose of 
measuring its intensity and phase vs. time, spatial chirp causes a variation of the autocorrelation 
signal wavelength vs. distance.  This yields a shear in the GRENOUILLE trace proportional to 
the magnitude of the spatial chirp. Note that the slopes in both single-shot SHG FROG and 
GRENOUILLE are exactly the same.  
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3. Trace Shears in Single-Shot SHG FROG, GRENOUILLE, and Spatio-Spectral Plots 
Measuring the spectrum vs. one spatial co-ordinate for a pulse yields a spatio-spectral plot. If 
the pulse has spatial chirp, ω(x) = ω0  + ξx, this plot will be sheared with slope ξ.  This is the 
most obvious way to measure the spatial chirp, and it works well provided that the 
spectrometer is aberration-free. 

Now, we can also compute the slope of the SHG FROG (or GRENOUILLE) trace vs. 
position. (We usually describe FROG and GRENOUILLE measurements in terms of the 
delay, but single-shot measurements map delay onto position, and position is the more natural 
unit for discussions of spatial chirp.) Simple examination of the expression for the sheared 
SHG FROG trace of a pulse with spatial chirp [Eq. (8)] shows that its frequency vs. position 
shear is ωave(x) = 2ξx. However, the position ‘x’ here is not beam transverse coordinate as in 
the case of spatio-spectral plots, but is instead the crystal transverse coordinate. They are 
simply related by a factor of cos(θ/2), where θ is the beam crossing angle. So, the SHG FROG 
trace slope is 2ξ/cos(θ/2).  

Since the cosine factor is approximately unity, the spatial-chirp-induced slope of the 
FROG trace is approximately twice the spatial chirp and twice that of the spatio-spectral trace 
when plotted vs. frequency. When plotted vs. wavelength, recall that the SHG FROG trace 
occurs at the second harmonic. Converting from frequency to wavelength, a factor of λ2 must 
be included, reducing the slope of the FROG trace by a factor of 4 and yielding a new ratio of 
½, rather than 2, for traces plotted vs. wavelength. 

 

 
Fig. 5. Spatial chirp causes shear in both GRENOUILLE traces and spatio-spectral plots. The 
spatial-chirp-induced slope of the FROG trace is approximately twice the spatial chirp and 
hence twice that of the spatio-spectral trace. 

 
4. Extracting the spatial chirp and intensity and phase from a linearly sheared trace 
Finding the linear slope of the trace yields 2ξ. This can be done in several ways, but simply 
finding the difference between the centers of mass of the trace at +x and –x and plotting this 
result vs. x suffices to yield 2ξ.  The spatial chirp can then be removed from the trace, and the 
true SHG FROG trace for E(t) is simply: 

( , ) ( 2 , )SHG SHG spch
FROG FROGI x I x xω α ω ξ α= +                                     (7) 

The resulting trace is now the best estimate for the actual trace—and hence the pulse—in 
the absence of spatial chirp. The SHG FROG algorithm can then be run on the now 
symmetrical trace, yielding the pulse intensity and phase in the absence of spatial chirp.  The 
spatial chirp can then be added back  into the retrieved pulse, reproducing the pulse with the 
appropriate amount of spatial chirp.  Note that the pulse will typically be longer when it is 
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spatially chirped because its bandwidth along a given ray will be smaller due to the dispersing 
of the frequencies into different spatial regions, and this result will accurately reveal this fact. 

The pulse can then be reconstructed using the retrieved intensity and phase and including 
the measured spatial chirp. If the FROG algorithm returns an intensity, I(t), and phase, φ(t), 
then the spatially chirped pulse field will be given by: 

 

0( , ) ( ) exp[ ( ) ( )]E x t I t i x t i tω ξ φ= + −     

 
where ξ is the measured spatial chirp. Note that the assumption of linear spatial chirp implies 
that the intensity and phase are independent of spatial co-ordinate.  This would not be the case 
for nonlinear spatial chirp, in which the center frequency varies nonlinearly with position and 
the outer regions of the beam would necessarily have narrower spectra.  But this result is exact 
for linear spatial chirp, the vast majority of cases, and we believe that it represents a 
significant improvement in practical pulse measurement. 

5. Experiment 

To introduce variable amounts of spatial chirp into a pulse, we modified the usual prism pulse 
compressor, placing mirrors between last two prisms, deflecting the pulse to two additional 
mirrors mounted on translation stage (see Fig. 6). By translating the latter two mirrors, we 
were able to align and misalign the compressor, obtaining positive, zero, or negative spatial 
chirp. Also, we aligned the compressor so that the angular dispersion was zero in all of our 
measurements, although we do not believe that the presence of angular dispersion would alter 
our results. 

 

 
Fig. 6. Modified prism pulse compressor: translation stage used between last two prism 
provides variable prism separation and can be used to align and misalign the compressor. 

 
We performed pulse measurements for various amounts of spatial chirp using 

GRENOUILLE. We determined the spatial-chirp parameter, ξ, from the measured 
GRENOUILLE trace from the linear slope of the trace (wavelength vs. delay) using the 
approach described in the previous section. We also made independent measurements of the 
spatial chirp parameter, ξ, from a spatially resolved spectral measurement using a carefully 
aligned imaging spectrometer. 

Figure 7 shows GRENOUILLE traces and spatio-spectral plots of pulses with different 
amounts of spatial chirp for some of the experiments we have performed. The spatial chirp 
parameter ξ, on top of the figures was calculated from the details of our apparatus using 
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Kostenbauder [3] matrices. The calculated numbers are rough (since they required knowledge 
of the exact path difference of the beams, which is not well defined when prisms are 
involved), but the calculations are of little importance here, as we have made independent 
measurements of the spatial chirp using the spatio-spectral plots. In any case, these figures 
nicely illustrate the effect of spatial chirp on experimental GRENOUILLE traces.  
 

 
Fig. 7. Experimental GRENOUILLE traces and spatio-spectral plots. The shear in 
GRENOUILLE traces clearly reveals the existence and sign of spatial chirp. 

The shear in the GRENOUILLE trace can be computed in many ways.  The method we 
have used is to perform a Gaussian fit to the intensity vs. frequency slice in the trace for each 
position, and then finding the peaks at multiple positions and fitting to a line. We calculated 
the slopes of both the GRENOUILLE traces and spatio-spectral plots (Fig. 8), and we find 
that the slope of this plot, that is, the ratio of the GRENOUILLE trace slope and the spatio-
spectral plot slope, is 0.49 +/- .027. This measurement agrees very nicely with the theoretical 
value of ½cos(θ/2) = 0.4995 (the beam crossing angle is θ = 0.093 radians for our 
experiment). 

We find that GRENOUILLE can measure spatial chirp with high sensitivity. Using this 
method, we were able to align our prism pulse compressor with a sensitivity (in prism 
separation) of 0.4 mm. With such accuracy, this device should provide a practical and reliable 
alignment of pulse compressors used in ultrafast laser laboratories. 
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Fig. 8. Slopes of GRENOUILLE traces and corresponding spectrum vs. position slopes for 
various amounts of spatial chirp. 

 

6. Retrieval of Pulse in the Presence of Spatial Chirp 
We also performed a preliminary test of our approach for determining the full spatio-temporal 
intensity and phase vs. time and position for a pulse with linear spatial chirp. 

We first retrieved the intensity and phase of a pulse without spatial chirp (i.e. without 
trace shear) from a properly aligned pulse compressor. We then misaligned the compressor, 
creating a spatially chirped pulse.  We measured this pulse’s (sheared) GRENOUILLE trace 
and then removed the shear from the originally sheared trace and retrieved the pulse from this 
new trace (see Fig. 10).  This pulse was slightly longer and less broadband than the pulse we 
obtain when we aligned our pulse compressor for zero spatial chirp (see Fig. 9), as expected 
since the spatially chirped pulse should have less bandwidth along any given ray. 
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Fig. 9. Retrieval of intensity and phase of a pulse which does not have significant amount of 
spatial chirp. The FWHM pulse width is 123.7 fs. FROG error is 0.42% for this measurement. 

 
 

 
Fig. 10. Retrieval of intensity and phase of a pulse with spatial chirp after the shear is taken out 
from the trace. The FWHM pulse width is 129.3 fs. Note that the pulse broadens due to its 
narrower spectrum. The FROG error is 0.41% for this measurement. 
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7. Conclusion 
In conclusion, we have theoretically and experimentally demonstrated that single-shot SHG 
FROG and GRENOUILLE measurements not only yield the pulse intensity and phase, but the 
trace shear also sensitively yields the pulse spatial chirp. The shear in single-shot SHG FROG 
and GRENOUILLE is approximately twice the spatial chirp.  In particular, we believe that 
GRENOUILLE’s simplicity makes it an ideal diagnostic, not only for the pulse intensity and 
phase, but also for the spatial chirp. 
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