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Abstract In this paper we propose a measure which defines the degree to which a

shape differs from a square. The new measure is easy to compute and being area

based, is robust – e.g., with respect to noise or narrow intrusions. Also, it satisfies the

following desirable properties:

– it ranges over (0, 1] and gives the measured squareness equal to 1 if and only if the

measured shape is a square;

– it is invariant with respect to translations, rotations and scaling.

In addition, we propose a generalisation of the new measure so that shape square-

ness can be computed while controlling the impact of the relative position of points

inside the shape. Such a generalisation enables a tuning of the behaviour of the square-

ness measure and makes it applicable to a range of applications. A second generalisation

produces a measure, parameterised by δ, that ranges in the interval (0, 1] and equals 1

if and only if the measured shape is a rhombus whose diagonals are in the proportion

1 : δ.

The new measures (the initial measure and the generalised ones) are naturally

defined and theoretically well founded – consequently, their behaviour can be well

understood.

As a by-product of the approach we obtain a new method for the orienting of

shapes, which is demonstrated to be superior with respect to the standard method in

several situations.

The usefulness of the methods described in the manuscript is illustrated on three

large shape databases: diatoms (ADIAC), MPEG-7 CE-1, and trademarks.
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1 Introduction

Shape descriptors are a powerful tool for shape classification tasks and many approaches

have been developed [24]. There are a number of generic shape descriptors such as

Fourier descriptors and moments that are capable of providing a high dimensionality

feature vector that precisely describes specific shapes. Alternatively, other descriptors

describe some single characteristic that is present over a variety of shapes, such as

circularity [15], ellipticity, rectangularity, triangularity [17], rectilinearity [28], com-

plexity [14] and symmetry [27]. Even for a single characteristic there often exist many

alternative measures which are sensitive to different aspects of the shape, e.g. convex-

ity [4,10,16,20,21,25,29]. Such a need for alternative measures is caused by the fact

that there is no a single shape descriptor which is expected to perform efficiently in

all possible applications – even the computation of perimeter is not a straightforward

task [5,23].

In this paper we consider measuring a single, specific aspect of shape: squareness;

i.e. how square is a shape? There appears to be little in the literature on methods

to measure squareness beyond Bowman et al.’s [3] method. They describe the shape

boundary by complex Fourier descriptors [8] ck = ak + ibk and use the normalised

magnitude r−3/r1 to measure squareness, where rk =
√

a2k + b2k. A modified version

was also given in Rosin [18].

In addition, there are some general approaches to defining shape descriptors that

could be adopted to defining squareness [22]. For example, first, fit (somehow) a square

Kfit(S) to a measured shape S, and then estimate the squareness of the shape S by

comparing Kfit(S) and S. One straightforward possibility for a fitted square Kfit(S)

is the square whose centroid coincides with the centroid of S, whose area is equal to the

area of S, and finally Kfit(S) is rotated such that the area of Kfit(S)∩S is maximised.

Now, a squareness measure (i.e. the comparison between S and Kfit(S)) can be given

as

Qfit(S) =
Area(S ∩Kfit(S))

Area(S ∪Kfit(S))
. (1)

Of course, there are other variations of this approach.

It is easy to check that the above defined squareness measure satisfies the following

desirable properties:

(a’) Qfit(S) ∈ [0, 1];

(b) Qfit(S) = 1 if and only if S is a square;

(c) Qfit(S) is invariant with respect to similarity transformations (i.e., translations,

rotations and scaling);

(d) 0 is the best possible lower bound for Q(S) (i.e. the interval in (a’) cannot be

shortened).

Note. Notice that instead of the property Qfit(S) ∈ [0, 1] in (a’) we would prefer the

following property to be satisfied:

(a) Qfit(S) ∈ (0, 1].
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That is, we would prefer that there is no shape with a positive area with measured

squareness equal to 0. But, a (slight) disadvantage of the Qfit(S) measure is that there

are many shapes whose measured Qfit(S) squareness is equal to 0. An example is a

shape containing a large hole such that its intersection with the fitted square Kfit(S)

is empty.

In this paper we define a new squareness measure which satisfies the basic require-

ments (a), (b), (c) and (d). A modification of the new measure is also described.

Such a modification enables a control of the impact of the points’ positions inside the

measured shape to the computed squareness, and, consequently, enables a tuning of the

behaviour of the squareness measure depending on the application where it is applied.

In comparison to the previously defined squareness measures [3,18] the proposed

squareness measure can be applied to shapes represented either as boundaries or sets

of internal pixels, and consequently is not restricted to single component shapes.

A by-product of squareness measures that are optimised over orientation, such as

(1) above and the new measure which will be based on (19), is that they can be used

to provide an estimate of shape orientation. There already exist various approaches

to determine the orientation of shapes, the most common being the principal axis

method, determined from the shape’s moments [24]. While computing orientation of

elongated shapes is straightforward, many approaches break down or become unreliable

for compact and/or symmetric shapes [30]. It will be shown that our squareness based

orientation estimate is more effective than the standard principal axis method in such

circumstances.

The paper is organised as follows. The next section introduces the new squareness

measure and proves several desirable properties of it. Section 3 gives some illustrative

examples that demonstrate the behaviour of the new measure Q(S) and compare it

with Qfit(S).

In Section 4 we introduce a modification of Q(S) which gives different weights to

the points inside the shape depending on their position with respect to the measured

shape centroid. In such a way, the introduced squareness measure can be adopted to be

successfully used in a wide range of applications. Illustrative examples and theoretical

consideration of the modified measure are also given in Section 4. Section 5 uses the

squareness measure for a variety of image processing applications. The suitability and

effectiveness of all the method introduced by the paper are demonstrated on three large

shape databases: diatoms (ADIAC), MPEG-7 CE-1, and trademarks. Comments and

conclusions are in the last section.

2 Squareness Measure

In this section we define a squareness measure. Throughout the paper we assume that

all shapes considered are planar and bounded. Moreover, since we are dealing with an

area based shape measure, we will assume that all shapes, whose mutual set differences

have their area equal to zero, are the same. We can formulate (mathematically) such

a condition as

q1 All appearing shapes are bounded and if point A belongs to the considered shape

S then there is a circle C(A) with a small enough radius such that: A ∈ C(A) and

C(A) ⊂ S.

Clearly the condition q1 is not a restriction in image processing and computer vision

applications. For an area based descriptor, it is reasonable to expect that two objects
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(shapes) whose symmetrical difference has zero area (e.g. two shapes whose difference

consists of a finite number of isolated points or mathematically perfect lines whose

width is zero) have the same measured value. For example, the open circle {(x, y) | x2+
y2 < 1} and the closed circle {(x, y) | x2 + y2 ≤ 1} should have the same assigned

measure if an area based descriptor is used. In this paper those two circles (the open

one and the closed one) are assumed to be the same. In addition, the condition q1

enables us to keep the proofs of Theorem 1 and Theorem 2 mathematically rigorous.

Also, any appearing shape will be considered to be positioned (translated) such

that its centroid coincides with the origin, even if this is not explicitly stated.

We will use the l1-distance in our derivation; the l1-distance between points A =

(a1, a2) and B = (b1, b2) is defined as:

l1(A,B) = l1((a1, a2), (b1, b2)) = |a1 − b1|+ |a2 − b2|. (2)

It is easy to see that the set of all points whose l1-distance from the origin is smaller

than r is a square. Such a square will be denoted by K(r), i.e.

K(r) = {(x, y) | |x|+ |y| ≤ r}. (3)

To define the new squareness measure, we start with the quantity

min
α∈[0,2π]

∫

S(α)

∫

(|x|+ |y|)dxdy (4)

(where S(α) denotes the shape S rotated by an angle α around its centroid) and show

that such a quantity reaches the minimum possible value if and only if S is a square.

Exploiting this fact we will come to a new squareness measure. First, we prove the

following theorem.

Theorem 1 Let S be a given shape whose centroid coincides with the origin, and let

S(α) denote the shape S rotated around the origin by an angle α. Then

∫

S

∫

(|x|+ |y|)dxdy

Area(S)3/2
≥

√
2

3
; (5)

∫

S

∫

(|x|+ |y|)dxdy

Area(S)3/2
=

√
2

3
⇔ S = K(r), with r =

1√
2
Area(S)1/2;(6)

min
α∈(0,2π]

∫

S(α)

∫

(|x|+ |y|)dxdy

Area(S)3/2
=

√
2

3
⇔ S is a square. (7)

Proof. Let S be a shape as in the statement of the theorem. Also, let K, for short, de-

note the squareK
(

r = 1√
2
Area(S)1/2

)

(i.e. the vertices ofK are:
(

1√
2
Area(S)1/2, 0

)

,
(

0, 1√
2
Area(S)1/2

)

,
(

− 1√
2
Area(S)1/2, 0

)

, and
(

0,− 1√
2
Area(S)1/2

)

(see Fig.1). Triv-

ially, the areas of S and K are the same, and also:

(i) The areas of the set differences S \K and K \ S are the same (because the areas

of S and K are the same);
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(ii) The points from K \ S are closer (in terms of l1-distance) to the origin than the

points from S \ K. I.e., more formally: If (u, v) ∈ S \ K and (w, z) ∈ K \ S then

|u|+ |v| > |w|+ |z| (see Fig. 1).

Further, (i) and (ii) give:
∫

S\K

∫

(|x|+ |y|) dx dy ≥
∫

K\S

∫

(|x|+ |y|) dx dy. (8)

Now, we derive:
∫

S

∫

(|x|+ |y|)dxdy

=

∫

S\K

∫

(|x|+ |y|)dxdy +

∫

S∩K

∫

(|x|+ |y|)dxdy

≥
∫

K\S

∫

(|x|+ |y|)dxdy +

∫

S∩K

∫

(|x|+ |y|)dxdy

=

∫

K

∫

(|x|+ |y|)dxdy =

√
2

3
Area(K)3/2 =

√
2

3
Area(S)3/2

which proves (5).

S
.(u,v) .(w,z)

a

−a

a

K

−a

Fig. 1 Areas of S and K = K

(

1
√

2
Area(S)1/2

)

are the same (i.e. a = 1
√

2
Area(S)1/2). Each

point (w,z) from K \ S is closer to the origin than any point (u,v) from S \K.

The statement (6) follows from the fact that the equality in (8) holds if and only

if Area(S \ K) = Area(K \ S) = 0. I.e. shapes S and K are the same (here we need

condition q1).

To prove (7), let α0 be the angle for which
∫∫

S(α)
(|x|+ |y|)dxdy reaches the mini-

mum. I.e.
∫

S(α0)

∫

(|x|+ |y|)dxdy = min
α∈(0,2π]

∫

S(α)

∫

(|x|+ |y|)dxdy. (9)
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Since
min

α∈(0,2π]

∫

S(α)

∫

(|x|+ |y|)dxdy

Area(S)3/2
=

√
2

3

is assumed, and since Area(S) = Area(S(α)) = Area(S(α0)) we obtain

∫

S(α0)

∫

(|x|+ |y|)dxdy

Area(S(α0))3/2
=

√
2

3
. (10)

Finally, accordingly to (6), shapes S(α0) and K, are the same, i.e. S must be a square.

✷

Thus, Theorem 1 says that min
α∈[0,2π)

∫

S(α)

∫

(|x| + |y|)dxdy/Area(S)3/2 reaches the

minimal possible value
√
2/3 if and only if S is a square. Based on this, we give the

following definition.

Definition 1 Let S be a given shape. Then the squareness measure Q(S) is defined

as

Q(S) =

√
2

3
· Area(S)3/2

min
α∈[0,2π]

∫

S(α)

∫

(|x|+ |y|)dxdy
, (11)

where S(α) denotes the shape S rotated by an angle α around its centroid.

Theorem 2 summarises the desirable properties of Q(S).

Theorem 2 The squareness measure Q(S) satisfies:

(a) Q(S) ∈ (0, 1], for all shapes S;

(b) Q(S) = 1 ⇔ S is a square;

(c) Q(S) is an invariant w.r.t. similarity transformations;

(d) For each δ > 0 there is a shape S such that 0 < Q(S) < δ;

(i.e. 0 is the best possible lower bound for Q(S)).

Proof. Items (a) and (b) follow directly from Theorem 1.

Item (c) follows from the fact that the quantities min
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)dxdy and

Area(S) do not depend on the rotation of S. So, Q(S) is rotationally invariant. Q(S)

is translation invariant by definition which assumes that the centroid of S is always

coincident with the origin. Finally, if shape S is dilated by a factor r to the shape r ·S
then

min
α∈[0,2π]

∫

r·S(α)

∫

(|x|+|y|)dxdy = r3· min
α∈[0,2π]

∫

S(α)

∫

(|x|+|y|)dxdy, Area(r·S) = r2·Area(S)

and, consequently,

Q(r·S) =

√
2

3
· Area(r · S)3/2

min
α∈[0,2π]

∫

r·S(α)

∫

(|x|+ |y|)dxdy
=

√
2

3

Area(S)3/2

min
α∈[0,2π]

∫

S(α)

∫

(|x|+ |y|)dxdy
= Q(S).

In other words, Q(S) is a scaling invariant as well.
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To prove (d), let us consider a rectangle Pt whose vertices are (t,−1) (t, 1), (−t, 1),

(−t,−1). By using the following

|x|+|y| ≥
√

x2 + y2,

∫

Pt(α)

∫

√

x2 + y2dxdy =

∫

Pt

∫

√

x2 + y2dxdy (for all α)

we derive:

Q(Pt) =

√
2

3
· Area(Pt)

3/2

min
α∈[0,2π)

∫

Pt(α)

∫

(|x|+ |y|)dxdy
≤

√
2

3
· Area(Pt)

3/2

∫

Pt(α)

∫
√

x2 + y2dxdy

≤
√
2

3
· Area(Pt)

3/2

∫

Pt

∫ √
x2dxdy

=

√
2

3
· (4t)

3/2

2t2
=

4
√
2

3
· 1√

t
. (12)

Now, a trivial equality lim
t→∞

Q(Pt) = 0 completes the proof. ✷

Remark. Note that the obtained estimate lim
t→∞

Q(Pt) = 0 is in accordance with our

perception. Indeed, if t → ∞ the rectangle Pt degenerates into an infinitely long (but

with constant width) strip and it is expected that the measured squareness Q(S) of

such a shape tends to 0.

However, note also that there are many other shapes, different from very elongated

rectangles whose measured squareness Q(S) can also be arbitrarily close to zero. For

example, let us consider the circular ring Cr determined by the circles x2+y2 = (r+1)2

and x2 + y2 = r2. Then,

Q(Cr) =

√
2

3
· Area(Cr)

3/2

min
α∈[0,2π)

∫

Cr(α)

∫

(|x|+ |y|)dxdy
=

√
2

3
· ((2r + 1)π)3/2
∫

Cr

∫

(|x|+ |y|)dxdy

=

√
2

3
· ((2r + 1)π)3/2

4 ·
∫ π/2

ϕ=0

(

∫ r+1

ρ=r
ρ2(cosϕ+ sinϕ)dρ

)

dϕ
=

((2r + 1)π)3/2

2
√
2(3r2 + 3r + 1)

.(13)

Thus, the estimate (13) easily gives lim
r→∞

Q(Cr) = 0, i.e. very narrow circular rings can

have an arbitrarily small measured squareness Q(S).

We compute Q(S) numerically by directly rotating and analysing each pixel in the

shape, which is both straightforward and reasonably efficient. Optimisation is initially

applied exhaustively over [0, π2 ) at increments of 0.01 radians, and this approximate

solution θ′ is refined at increments of 0.001 radians over [θ′ − 0.001, θ′ + 0.001]. For

example, the shapes in the MPEG-7 CE-1 database used in section 5 on average contain

about 125,000 pixels (after normalisation), and the average computation time of Q(S)

coded in C on a 2.0 GHz Pentium 4 was 0.16 seconds per shape.

Alternatively, the integrals could be evaluated directly from the shape boundaries

which can reduce time complexity. If S is represented by a polygon then Q(S) can be

computed in a convenient way using standard polygon operations, namely clipping and

the computation of area and centroid. Considering just integrating |x|, the polygon is

split into two parts: the positive X side Px+, and the negative X side Px−. Each of



8

the sides may consist of multiple disconnected polygons. Since
∫

Px+

∫

|x|dxdy = x̄x+ ·

Area(Px+), then

∫

S(α)

∫

(|x|+|y|)dxdy = x̄x+·Area(Px+)−x̄x−·Area(Px−)+ȳy+·Area(Py+)−ȳy−·Area(Py−).

Runtime using this approach reduced the average computation time to 0.05 seconds

per shape when the raw boundaries were first simplified by a moderate amount to

contain on average 57 line segments.

3 Experiments Illustrating Q(S) Behaviour

To demonstrate the squareness measure it is applied to several image data sets. The

first contains 808 diatoms, a type of unicellular algae [7]. The shapes minimising and

maximising Q(S) are shown along with a range of other shapes spanning the measure’s

values (see figure 2). Since the range of diatom shapes is fairly restricted, decreasing

values of squareness effectively correspond to increasing linearity of the shape. This is

in accordance with the remark in the previous section that the measured squareness

of infinitely long rectangles tends to zero.

0.305 0.400 0.501 0.600 0.701 0.800 0.900 0.992

Fig. 2 Diatoms ranked by squareness Q(S).

0.325 0.366 0.370 0.371 0.375 0.377 0.377 0.378 0.378 0.385

0.452 0.501 0.550 0.605 0.658 0.702 0.750 0.800 0.850 0.900

0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000

Fig. 3 MPEG-7 CE-1 shapes ranked by squareness Q(S).

The second database is the MPEG-7 CE-1 set of 1400 shapes. Figure 3 shows the ten

highest and lowest ranked shapes according to squareness, plus ten intermediate shapes.

The ten highest ranked shapes are indeed square, with varying degrees of irregularity
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0.246 0.269 0.301 0.309 0.326 0.333 0.336 0.339 0.347 0.349

0.960 0.961 0.963 0.964 0.966 0.969 0.973 0.985 0.991 0.999

Fig. 4 Trademarks ranked by squareness Q(S).

0.0 0.5 1.0
ε

0.985

0.990

0.995

1.000

sq
u

ar
en
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s

(a) superellipse

0.0 0.2 0.4
probability of noise

0.90

0.95

1.00

sq
u

ar
en

es
s

(b) salt and pepper noise

0 2 4 6 8
deformation level

0.998

0.999

1.000

sq
ua

re
ne

ss
(c) boundary deformations

Fig. 5 Increasing degrees of modification to a square cause a monotonic decrease in Q(S) for
all three types of change in shape.

(bending, rounding, roughness). The ten lowest ranked shapes are not exactly linear,

but their characteristics could be described as thin and elongated.

The third database contains 1100 trademarks which may consist of multiple compo-

nents with holes [9]. The ten highest and lowest shapes ranked according to squareness

are shown in figure 4. There is no simple perfect square in the database (this would

not be a distinctive trademark), but the ten highest ranked shapes all have strong

square-like characteristics. Again the ten lowest ranked shapes tend to contain thin

and elongated features and are sparse (i.e. contain a large proportion of white pixels).

The squareness measure also exhibits intuitively reasonable behaviour. It has al-

ready been shown in (12) that for a rectangle Q(S) decreases as the rectangle becomes

more elongated. Figure 5 provides further examples of the measure’s correct behaviour

in which Q(S) again decreases as the shape is modified from a perfect square. In fig-

ure 5a the superellipse, defined by the implicit equation
(

x
r

)
2
ǫ +

(

y
r

)
2
ǫ = 1, changes

from a square (at ǫ = 0) to a circle (at ǫ = 1); in figure 5b increasing amounts of

salt and pepper noise are added to the square; finally in figure 5c increasing amounts

of deformations are added to the square’s boundary. For the graphs in figure 5b and

figure 5c Q(S) was averaged over 100 instances at each level of noise.

4 Point Position Dependent Squareness Measure

In this section we further develop our approach in order to enable some control of the

impact of the relative positions of points inside the shape on the computed squareness.
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Again, let S be a planar shape whose centroid coincides with the origin, and rotated

such that
∫

S

∫

(|x|+|y|)dxdy reaches its minimum. Then, informally speaking, two points

(x, y) ∈ S and (αx, αy) ∈ S contribute to such an integral by |x|+ |y| and |α|(|x|+ |y|)
respectively, i.e., by their l1-distances from the shape centroid. Obviously, for |α| < 1

the point (αx, αy) has a smaller impact on the minimised integral than the point (x, y).

We could say that such an impact is smaller since (αx, αy) is closer (also in sense of

l1-distance) to the centroid of S.

Such an impact of the shape point distances from the shape centroid (measured

in the l1-metric) to the optimising integral
∫

S(α)

∫

(|x| + |y|)dxdy has a straightforward

impact to the computed squareness Q(S).

The question is: Is such an impact of the position of points, with respect to the shape

centroid, always suitable or would we like to change it in some particular situations?

For example, if we consider the measured Q(S) squareness of the elephant shape

in second row in Fig.3 are we happy with such a relatively high measured squareness

Q(S) which is 0.9002? Or, would we like the points which belong to the elephant’s

trunk (which are far from the shape’s centroid) to have a higher impact and, in such

a way, reduce the measured squareness?

In this section we give a modified method which allows us to control the impact

of a point’s position on the measured shape squareness, and in this way we enable a

tuning of the behaviour of the squareness measure and make it more suitable in a wider

range of applications than the initial squareness measure Q(S) introduced in Section

2.

We proceed with the following two lemmas which can be proven using the approach

from the proof of Theorem 1.

Lemma 1 Let S be a given shape whose centroid coincides with the origin, and let

there be a constant β > 0. Then

min
α∈[0,2π]

∫

S(α)

∫

(|x|+ |y|)βdxdy

Area(S)1+β/2
≥ 21−β/2

(β + 2)
(14)

min
α∈[0,2π]

∫

S(α)

∫

(|x|+ |y|)βdxdy

Area(S)1+β/2
=

21−β/2

(β + 2)
⇔ S is a square. (15)

Proof. Similarly as in the proof of Theorem 1, we consider the square K(r) with

r =
√

Area(S)/2 providing Area(S) = Area(K(r)). Also, centroids of S and K(r) are

assumed to be coincident. Then (see Fig.1), β > 0 implies:

(u, v) ∈ S \K(r), (w, z) ∈ K(r) \ S ⇒ (|u|+ |v|)β > (|w|+ |z|)β ,

which gives immediately:

∫

S\K(r)

∫

(|x|+ |y|)β dx dy ≥
∫

K(r)\S

∫

(|x|+ |y|)β dx dy. (16)
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Now, we prove (14):

∫

S

∫

(|x|+ |y|)β dx dy

=

∫

S\K(r)

∫

(|x|+ |y|)β dx dy +

∫

S∩K(r)

∫

(|x|+ |y|)β dx dy

≥
∫

K(r)\S

∫

(|x|+ |y|)β dx dy +

∫

S∩K(r)

∫

(|x|+ |y|)β dx dy

=

∫

K(r)

∫

(|x|+ |y|)β dx dy =
Area(S)1+β/2

2−1+β/2(2 + β)
.

To prove (15) is enough to notice that S 6= K(r) would imply that the inequality

(16) is strict. Consequently, S different from K(r) gives

∫

S

∫

(|x|+ |y|)β dx dy >

∫

K(r)

∫

(|x|+ |y|)β dx dy

for all shapes different from a square. ✷

Lemma 1 considers only β > 0, but it is also possible to consider negative β. To

preserve the convergence of the integrals appearing we assume β > −1. Notice that,

contrary to the situation when β > 0, in the case of −1 < β < 0 and S is a square,

the quantity

∫∫

S

(|x|+ |y|)βdxdy/(Area(S))1+β/2 reaches the maximal possible value.

This maximal value is 21−β/2/(2 + β). Taking this into account, the proof of the next

lemma can be derived analogously to the proof of Lemma 1 and because of that it is

omitted.

Lemma 2 Let S be a given shape whose centroid coincides with the origin and let β

be a constant such that −1 < β < 0. Then

max
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)βdxdy

Area(S)1+β/2
≤ 21−β/2

2 + β
(17)

max
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)βdxdy

Area(S)1+β/2
=

21−β/2

2 + β
⇔ S is a square. (18)

Now, by the arguments from Lemma 1 and Lemma 2 we give the following definition

for a modified measure.
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Definition 2 Let S be a given shape whose centroid coincides with the origin and a

real β such that −1 < β and β 6= 0. Then the squareness measure Qβ(S) is defined as

Qβ(S) =



































21−β/2Area(S)1+β/2

(2 + β) min
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)βdxdy

, β > 0

(2 + β) max
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)βdxdy

21−β/2Area(S)1+β/2
, β ∈ (−1, 0)

(19)

It is worth mentioning that such a generalised measure Qβ(S) still keeps the basic

requirements that each squareness measure should have. We give the following theorem

which summarises the desirable properties of Qβ(S). The proof is omitted because of

the analogy with the proof of Theorem 2.

Theorem 3 Let β be a real number, such that β 6= 0 and β > −1. Then, the squareness

measure Qβ(S) satisfies the following properties:

(a) Qβ(S) ∈ (0, 1] for all planar shapes S;

(b) Qβ(S) = 1 ⇔ S is a square;

(c) Qβ(S) is invariant w.r.t. the similarity transformations;

(d) For each δ > 0 there is a shape S such that 0 < Qβ(S) < δ.

Since Qβ=1(S) = Q(S) it is obvious that Definition 2 generalises Definition 1.

Definition 2 allows the control of the behaviour of Qβ(S) by a suitable choice of β. The

effect of altering β is demonstrated in figure 6. The trademarks used in figure 4 are re-

ranked for various values of β. A negative β = −0.5 gives a lower measured squareness

to the shape in figure 6(a3) than to the shape in figure 6(a4) while a small positive

β = 0.25 changes the ranking among those two shapes (see shapes in figure 6(b4) and

figure 6(b1)). Much larger β – i.e. β = 4 and β = 16 – do not even include the shape

in figure 6(a4) (i.e. in figure 6(b1)) among the four highest ranked shapes from the

database.

0.980
(a1)

0.985
(a2)

0.985
(a3)

0.988
(a4)

β = −0.5

0.995
(b1)

0.996
(b2)

0.998
(b3)

1.000
(b4)

β = 0.25

0.882
(c1)

0.925
(c2)

0.933
(c3)

0.993
(c4)

β = 4

0.624
(d1)

0.626
(d2)

0.636
(d3)

0.918
(d4)

β = 16

Fig. 6 Four highest ranking trademarks according to Qβ(S) with different values of β.
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Fig. 7 Sorted squareness values (Qβ=1(S), Qβ=16(S) and Qβ=64(S)) for the trademark and
MPEG-7 CE-1 databases. With a large β value very few shapes have squareness values signif-
icantly larger than zero.

4.1 Behaviour of Qβ(S) for a large β

In this subsection we show that Qβ(S) strongly penalises even very small deviations

of a shape S from a perfect square if β is chosen large enough. More formally, we

prove that Qβ(S) tends to zero when β tends to infinity whenever S is different from a

square. Of course, when S is a square then Qβ(S) = 1 for all β. This is the statement

of the following lemma whose proof is in the Appendix.

Lemma 3 Let S be a shape different from a square. Then

lim
β→∞

Qβ(S) = 0. (20)

The effect of large β is demonstrated on the trademark and MPEG-7 CE-1 databases,

where high β can be used to penalise small irregularities from a square. Figure 7 shows

cumulative distributions of the squareness values in the databases for various values

of β; the rightmost graph of each pair in figure 7a and figure 7b shows a close-up

of the top end of the distribution. As already seen in figure 4, there are no squares

in the trademark database – all the trademarks have significant deviations either on

the boundary or interior. The cumulative distribution in figure 7a therefore contains

no large values of Qβ=64(S). The MPEG-7 CE-1 database contains a small number

of fairly square-like shapes (about 10-20), and so there are several shapes with high

squareness values, even for Qβ=64(S) – see figures 7b and 8. For both databases it

can be seen that Qβ=1(S) is relatively large (e.g. > 0.5) for the majority of shapes.

Increasing β to 16 generates a quicker drop-off in Qβ=16(S) for non-square shapes, and

a further increase results in a sharp drop-off for Qβ=64(S).

The effect using large β is also visible when we consider the shapes in figure 8. All

displayed shapes have a high squareness when measured by Q(S). Notice that even a

circle has a high measured squareness if Q(S) is used – such a measured squareness is
π
√
π

4
√
2
≈ 0.9844. But, as mentioned above, if a higher β is used then the deviations from

a square are penalised accordingly to the size of β selected. In the presented example

β = 64 reduces all measured squareness. Despite that, all shapes in the second row

could be understood as fairly square-like shapes, their measured Qβ=64(S) squareness

ranges from 0.2031 to 0.8067 keeping a reasonable high measured squareness only for

the last three shapes. The irregularities are bigger in the shapes in the first row and,

because of that, the decrease in the measured squareness is much stronger. All obtained

values are close to zero, including the measured Qβ=64(S) squareness for the circular

shape which is 0.0023.
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0.002 0.003 0.005 0.008 0.011 0.011 0.019 0.031 0.031 0.198

0.203 0.248 0.316 0.332 0.350 0.416 0.425 0.640 0.807 0.807

Fig. 8 Twenty highest ranking trademarks according to Qβ=64(S).

4.2 Modification for rhombus shapes

The method presented here to define the new squareness measure Q(S) allows several

modifications. One such modification was introduced in Definition 2. It involves a

parameter β, which enables a tuning of the behaviour of the squareness measure Qβ(S)

enabling us to assign higher or lower weights to the points which are closer to the shape

centroid. There is also a possibility for a further upgrade of the squareness measure

Qβ(S). If we start from the set

R(r, δ) = {(x, y) | |x|+ δ · |y| ≤ r} (21)

which is a rhombus (with vertices (r, 0), (0, r/δ), (−r, 0), and (0,−r/δ)) for any choice

of δ, r > 0, (of course, it is a square if δ = 1), and if we follow the same scenario as in

developing the measures Q(S) and Qβ(S), we could come to a spectrum (depending on

the selected δ) of rhomboidal measures Rβ
δ . Those rhomboidal measures are precisely

described by the following definition.

Definition 3 Let S be a given shape whose centroid coincides with the origin, β such

that −1 < β and β 6= 0 and δ > 0. Then the rhomboidal measure Rβ
δ (S), which also

incorporates the β weighting w.r.t. the distances of points from the origin, is defined

as

Rβ
δ (S) =



































δβ/2 · (Area(S))(β+2)/2

(β + 2) · 2(β−2)/2 · min
α∈[0,2π]

∫∫

S(α)
(|x|+ δ · |y|)β dx dy

, β > 0

(β + 2) · 2(β−2)/2 · max
α∈[0,2π]

∫∫

S(α)
(|x|+ δ · |y|)β dx dy

δβ/2 · (Area(S))(β+2)/2
, β ∈ (−1, 0)

(22)

The new defined rhomboidal measure Rβ
δ (S) has all the desirable properties listed

in Theorem 2 and Theorem 3 and satisfied by the measures Q(S) and Qβ(S). I.e.,

Rβ
δ (S) ranges in the interval (0, 1] and equals 1 if and only if S is a rhombus whose

diagonals are in the proportion 1 : δ. Also, Rβ
δ (S) is invariant with respect to similarity

transformations. We leave to the reader to verify this.

The use of the modified measure Rβ
δ (S) to provide improvements over Q(S) and

Qβ(S) in the estimation of the orientations of shapes are illustrated by examples given

in the following section.
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5 Experiments

The first experiment applies the squareness measure to the classification of the MPEG-

7 CE-1 database of 1400 shapes – see table 1. A set of five features had been previously

been selected [19]: triangularity, roundness, rectangularity, ellipticity, and convexity,1

which gave a score of 71.05% on the bulls-eye test when applied with a minimum Ma-

halanobis distance classifier; this is similar accuracy to other global descriptors [11]

– see Zernike moments in table 1. If the shape measures are augmented by square-

ness Qβ=2(S) then the score improves to 72.97%. A better accuracy is provided by

Table 1 Bull’s eye test scores for MPEG-7 CE-1 database. Values in the middle section are
taken from [11].

method score

5 shape features 71.05
5 shape + Qβ=2(S) 72.97
5 shape + Qfit(S) 73.76

5 shape + Qβ=2(S) + Qfit(S) 74.74

directed acyclic graph 60.00
wavelets 67.76

Zernike moments 70.22
multilayer eigenvectors 70.33

scale space 75.44
correspondence of visual parts 76.45

shape context [2] 76.51
inner distance shape context [12] 85.40

curvature tree [1] 87.13

including Qfit(S) instead: 73.76%. Combining both along with the set of five features

produces a further improvement in accuracy (74.74%), showing that the two squareness

measures are providing mostly independent information. This is also shown when just

the squareness measures are used without the other five shape features. Accuracies are

Qβ=2(S): 23.07%, Qfit(S): 23.00% and the two combined gives 39.60%. We note that

it is possible to obtain significantly better bull’s eye scores, as demonstrated by state

of the art methods such as that by Alajlan et al. [1] which achieves 87.13%. They use a

curvature tree to model the shape and topology of objects, and perform dynamic space

warping and the Hungarian bipartite matching algorithm to enable exact tree match-

ing. A drawback with such approaches is that computational complexity increases, as

does the difficulty in implementation. In Alajlan et al.’s method construction of the

tree from a shape containing N boundary points is O(N2), and matching between two

trees is O(bnmN2), where b is the maximum branching factor and the trees contain

n and m nodes respectively. Another example is the inner distance shape context of

Ling and Jacobs [12], for which construction of the descriptor for one shape is O(N3)

and matching two shapes requires O(N2) time. A great advantage of global descrip-

1 The specific shape measures used were: a Fourier based triangularity measure [3], roundness
based on the ratio of the areas of the shape S and its circumscribing circle, rectangularity based
on the ratio of the areas of the shape S and its minimum bounding rectangle, ellipticity based
on the first affine moment invariant [17] and convexity based on the areas of the shape S and
its convex hull.
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Fig. 9 Original data with added noise; upper row orientated using moments, lower row ori-
entated using squareness (β = 8).

tors such as ours is that the computational cost of using them for matching shapes is

independent of the number of boundary points.

Table 2 Circular variance of orientation estimates for 10 noisy shape instances, averaged over
1400 shapes from MPEG-7 CE-1 database. The rows show results for different normalisations
and scalings (in the X direction) of the data before noise is added.

data moments Qfit(S) squareness Qβ(S) Rδ=50
β=8 (S)

β = 0.5 β = 1 β = 2 β = 4 β = 8 β = 16

original 0.0416 0.0830 0.0395 0.0390 0.0373 0.0356 0.0322 0.0373 0.0231

normalised 0.4592 0.1181 0.0478 0.0480 0.0448 0.0455 0.0440 0.0510 0.0473

normalised;
Xs = 1.01 0.2969 0.1194 0.0494 0.0503 0.0451 0.0429 0.0400 0.0498 0.0298

normalised;
Xs = 1.10 0.0201 0.0962 0.0393 0.0386 0.0414 0.0333 0.0210 0.0289 0.0130

normalised;
Xs = 1.25 0.0094 0.0797 0.0327 0.0327 0.0337 0.0200 0.0147 0.0197 0.0071

For the next experiment we also used the MPEG-7 CE-1 database, but in this

case to test the effectiveness of squareness for determining shape orientation. There

are no ground-truth “correct” orientations for the shapes. In practise what is required

is a means for standardising the orientation of each shape in a consistent manner

so that the pose of unseen objects can be set prior to matching against the dataset

of models. Therefore we test effectiveness of the orientation estimators by measuring

their stability under relatively small changes to the shapes. Shape orientations were

computed usingQβ(S) andQfit(S) by determining the orientations that minimised the

integral in (19) and the intersection area in (1) respectively. In addition the principal

axis method, determined from the shape’s moments [24] was applied; this method will

be referred to as the ‘moment based’ method and is probably the most standard method

for computing orientation.

Noise was added to the shapes as follows: points on the boundary were perturbed

in their normal direction with random magnitude determined by a Normal distribution

with standard deviation of 4. The X and Y extents of the shapes are typically in the

range [300,500]. A morphological opening with circular structuring element of diameter

3 was applied to tidy up the shape, following which only the largest connected com-

ponent was retained. The latter step occasionally removes narrow parts of the shape,

which can also be considered to be a typical segmentation error.
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Fig. 10 Sorted circular variances of orientation estimates plotted for the 400 shapes with the
highest variances. Gray curves (rightmost curves on graph) represent variances on the noisy
versions of the original MPEG-7 CE-1 data and black curves represent variances on the noisy
versions of the normalised data.

Fig. 11 Normalised data with added noise; upper row orientated using moments, lower row
orientated using squareness (β = 8).

Ten noisy versions of each shape were generated, and the circular variance (which

is in the range [0,1]) [13] of the ten estimated orientations was calculated, where orien-

tations modulo 90◦ were used. Table 2 lists the mean circular variances averaged over

all 1400 shapes. We note that for the squareness method the value of 8 is a good choice

for β across the different versions of MPEG-7 CE-1 database. This can be considered

to be the best trade off between increasing β so as to increase Qβ(S)’s sensitivity to

small deviations so that difficult (e.g. compact) shapes can be oriented, whilst avoiding

increasing β so much that Qβ(S) becomes over-sensitive to noise. Thus, if the test

set had contained a different level of noise then a different value of β would be ap-

propriate. It can be seen that, even on the original data, overall the squareness based

orientation is slightly better than the moment based approach. Although the moment

based approach is generally effective for many of the shapes, especially those that are

elongated, there are also many other shapes contained in the MPEG-7 CE-1 database

that are problematic. Some of those are symmetric shapes such as stars, squares, and

other rotationally symmetric shapes. Others are compact such as the apple in figure 9.

However, it is obviously still potentially orientable, and it can be seen that squareness

is successful in doing so. The octopus in figure 9 is neither rotationally symmetric or

compact, but again orientation computed by squareness is much more consistent than

that by moments.

The performance of the orientation estimators is further explored by normalising

the data following the approach of Süße and Ditrich [26] in which a shearing and

anisotropic scaling is applied to produce a shape that is unorientable by the moments

based method. However, as can be seen from table 2 the mean circular variance of
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Fig. 12 Normalised data with a 1.1 scale factor in X and added noise; upper row orientated
using moments, lower row orientated using squareness (β = 8).

the moments based method is still below unity (i.e. its performance is better than

random) since the process of adding noise makes some of the shapes more orientable.

Nevertheless, whereas most of the shapes are consistently oriented by both of the

methods for the original data, with the normalised data the variances for the moments

based method are roughly uniformly distributed in [0,1] while the squareness method is

only slightly affected; see figure 10. We note that the MPEG-7 CE-1 database contains

shapes such as stars with high orders of rotational symmetry (e.g. 8) that have intrinsic

ambiguity if orientations modulo 90◦ are used. This leads to the small proportion of

shapes that have high variances for both methods even before the normalisation step.

Examples of the moments based method producing inconsistent orientation estimates

on the normalised data are given in figure 11. For both shapes the squareness method

is very consistent.

When the normalised data is stretched to make it more elongated then it naturally

becomes more orientable, and the circular variances reduce (see table 2). Rescaling all

the data by 1.1 in the X direction ensures that even the previously problematic shapes

(such as the symmetric shapes) are now orientable by the moments based method.

Additional elongation further reduces the circular variances of the moments based

method. In contrast, the squareness method is already consistent for compact shapes,

and unlike the moments based method its circular variance does not decrease as sub-

stantially for elongated shapes. The moments based method can generally determine

orientations reliably for the elongated shapes produced after the data is scaled in X

by 1.1. However, even for such shapes the noise model used to generate the data can

still cause problems. Figure 12 shows an example in which the thin parts of the rat

(tail, feet, etc.) are prone to truncation when noise is added. It can be seen that the

orientations estimated by the moments based method are more prone to disruption

than those of the squareness method.

The square fitting method Qfit(S) provides similar advantages to Q(S) for the

normalised data and also the close to normalised data (i.e. scaling in the X direction

by 1.01). However, it is consistently outperformed by the moments based method in all

other situations. Moreover, Q(S) produces better results than Qfit(S) for all versions

of the dataset.

Furthermore, the version of Q(S) generalised to provide a rhomboidal measure

provides further improvements, yielding more reliable orientation estimates for all the

sets of database scalings except for the normalised data (i.e. the most extreme case).

Even for the latter case only a small increase in error occurs. As shown in table 2,

Rβ
δ (S) consistently outperforms both the moments based method and Qfit(S), even
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Fig. 13 Seven examples of shape data from sequences of deforming objects after landmark
based pose normalisation.

for the largest scaling of the data Xs = 1.25 for which all the shapes are distinctly

elongated.

Table 3 Circular variance of orientation estimates for data sequences shown in figure 13.

data moments squareness
β = 0.5 β = 1 β = 2 β = 4 β = 8 β = 16 β = 32

hand (1) 0.1619 0.1819 0.2267 0.3727 0.2841 0.0808 0.0585 0.0844
hand (2) 0.3068 0.2905 0.3219 0.3256 0.3214 0.2415 0.2193 0.1767
ventricle 0.7948 0.3806 0.3723 0.3486 0.2480 0.1987 0.2041 0.2509

The second experiment on orientation tests the stability of the orientation estimates

in a different way. A sequence of instances of a deforming object are used – despite

the shape differences the aim is to consistently orient the shapes within the sequence.

The data was provided by the Technical University of Denmark for the purpose of

building statistical shape models, and consists of a set of landmarks which correspond

over the shape sequence. Given such a point correspondence it is straightforward to

estimate a similarity transformation to normalise the pose of the shapes. Following

Cootes et al. [6] the best transformation, in the least squares sense, is determined for

each shape against one arbitrary shape which is chosen as the reference. The mean of

the transformed shapes becomes the reference shape, and this process is iterated until

convergence.

This pre-normalisation acts as a sort of ground-truthing, enabling us to assess the

orientation estimates by their circular variances in the same manner as the first exper-

iment. However, in this case the shape variations are more natural – although more

severe – compared to the addition of synthetic noise. Figure 13 shows example shapes

from each sequence; the two hand sequences each contain 20 frames, while the bottom

sequence contains 14 left ventricles from cardiac MR images. Again, table 3 demon-

strates that the squareness based orientations with β = 8 are more consistent than the

moment based orientation. In fact, for the hand sequences further improvements are

obtained by increasing the value of β to β = 16. All the circular variances are higher
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than in the previous experiment with the MPEG-7 CE-1 database which is due to

the greater variability of the shapes compared with just uniformly adding noise. Also,

as expected, the compact shape of the ventricle is especially difficult, but while the

moment based method fails the squareness based method performs reasonably well.

6 Conclusion

This paper has described a measure to quantify the degree to which a shape is square-

like. There appears to be little in the literature on methods to measure squareness,

but some general methods for defining shape descriptors can be adopted to test shape

squareness. A standard approach to defining shape descriptors is used here for compar-

ison in testing the performance of the new squareness measures. We note that one of

reasons for a lack of methods for measuring the squareness of shapes could be the fact

that there is no ‘simple’ equation of the square boundary (e.g. the existence of such an

equation leads to straightforward methods for measuring shape circularity). Another

reason is that a square has no straightforward geometric property which could lead to

a simple definition of the shape squareness measure. In comparison, simple definitions

of the convex shapes have led to several definitions for shape convexity measures [4,

10,16,20,21,25,29].

Roughly speaking, we start from the integral
∫∫

S
(|x| + |y|)dxdy and show that it

reaches the minimal possible value if and only if S is a square which is suitably oriented.

Such a minimum is
√

2Area(S)3/3. Based on this we define the shape squareness

measure as

Q(S) =

√
2

3
· Area(S)3/2

min
α∈[0,2π]

∫

S(α)

∫

(|x|+ |y|)dxdy
,

where S is the measured shape and S(α) is obtained by rotating S around the origin

for an angle α. In order to extend the number of applications where the squareness

measure could be a useful tool we generalise the definition of Q(S) and come to the

definition Qβ(S) of the shape squareness which takes into account relative positions of

points inside the shape. Qβ(S) is defined as:

Qβ(S) =



























21−β/2Area(S)1+β/2

(2 + β) min
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)βdxdy

, β > 0

(2 + β) max
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)βdxdy

21−β/2Area(S)1+β/2
, β ∈ (−1, 0)

Both measuresQ(S) = Qβ=1(S) andQβ(S) have the following desirable properties:

• easy to compute;

• area based, and therefore robust;

• range in (0, 1];

• maximised only by a square;

• invariant to similarity transformations;

• applicable to compound shapes, as well;

• naturally defined and theoretically well founded;

• results match human intuition.
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In addition, the orientation of the shape that maximises the squareness measure

has been shown to be a reliable estimator of the shape’s orientation, while R(S),

a modified version of Q(S) that provides a rhomboidal measure, was found on the

MPEG-7 CE-1 database to provide even more reliable orientation estimates. Unlike

the standard principal axis method Q(S) and R(S) are able to cope even with shapes

that are compact and/or symmetric.

The behaviour of the introduced squareness measures and their usefulness, together

with applicability to the computing of shape orientation, is verified on three large shape

databases: diatoms (ADIAC), MPEG-7 CE-1, and trademarks. The obtained results

have shown the benefits of the new measures in the majority of performed experiments.

The proposed measure of squareness has been developed and defined in the con-

tinuous space. Therefore some of the measure’s properties are only strictly true for

continuous shapes. In practise, any discrepancies are insignificant except for very small

shapes. A topic for future research would be to develop a measure of squareness defined

on discrete data.
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7 Appendix

Proof of Lemma 3 Let S be a given shape different from a square. Let K(a) be the

square with a =
√

Area(S)/2 – i.e. the areas of S and K(a) are the same. Because S

and K(a) are assumed to be different shapes then

∆ = Area(S \K(a)) = Area(K(a) \ S) > 0. (23)

Further, let us define the parameter aext as follows:

aext =

√

a2 +
∆

2
. (24)

It is easy to check that such a defined parameter aext provides

Area(K(aext) \K(a)) = ∆. (25)

Now, by using the same reasoning as in the proof of Theorem 1, assuming β > 0, and

by using (24) we derive

∫

S\K(a)

∫

(|x|+ |y|)βdxdy ≥
∫

a≤|x|+|y|≤aext

∫

(|x|+ |y|)βdxdy (26)
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= 4

∫ aext

x=0

(
∫ aext−x

y=0

(x+ y)βdy

)

dx − 4

∫ a

x=0

(
∫ a−x

y=0

(x+ y)βdy

)

dx (27)

=
4

β + 2

(

aβ+2
ext − aβ+2

)

(28)

=
4

β + 2

(

(

a2 +
∆

2

)(β+2)/2

− aβ+2

)

(29)

=
4aβ+2

β + 2

(

(

1 +
∆

2a2

)(β+2)/2

− 1

)

(30)

Now, Taylor expression of (1 + x)α with x =
∆

2a2
and α =

β + 2

2
implies a θ ∈ (0, 1) such that

=
4aβ+2

β + 2

(

(β + 2)∆

4a2
+

β(β + 2)

8

(

1 + θ
∆

2a2

)

β+2

2
( β+2

2
−1)
)

(31)

≥ 4aβ+2

β + 2
· (β + 2)∆

4a2
(32)

= aβ∆ (33)

Notice that the last proved inequality:

∫

S\K(a)

∫

(|x|+ |y|)βdxdy ≥ aβ∆, (34)

does not depend on how the shape S is rotated. In other words, if α0 is the angle which

minimises the integral
∫∫

S(α)
(|x|+ |y|)βdxdy we have the estimate which is analogous

to (32) and we can write:

∫

S(α0)\K(a)

∫

(|x|+ |y|)βdxdy ≥ aβ∆ (35)

where
∫

S(α0)\K(a)

∫

(|x|+ |y|)βdxdy = min
α∈[0,2π]

∫

S(α)\K(a)

∫

(|x|+ |y|)βdxdy. (36)

Further, we derive

Qβ(S) =
21−β/2Area(S)1+β/2

(2 + β) min
α∈[0,2π]

∫∫

S(α)
(|x|+ |y|)βdxdy

(37)

=
21−β/2Area(S)1+β/2

(2 + β)
∫∫

S(α0)
(|x|+ |y|)βdxdy

(38)
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≤ 21−β/2Area(S)1+β/2

(2 + β)
∫∫

S(α0)\K(a)
(|x|+ |y|)βdxdy

(39)

≤ 21−β/2Area(S)1+β/2

(2 + β)aβ∆
(40)

≤ 21−β/2(2a2)1+β/2

(2 + β)aβ∆
(41)

=
4a2

(2 + β)∆
. (42)

Finally, taking into account that ∆ and a are strictly positive, and do not depend on

β, the last proven inequality Qβ(S) ≤
4a2

(2 + β)∆
gives the required: lim

β→∞
Qβ(S) = 0.

✷


