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ABSTRACT

We present measurements of the mean mid-infrared to submillimetre flux densities of massive

(M⋆ � 1011 M⊙) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of

known objects taken from the GOODS NICMOS Survey (GNS) catalogue on maps at 24 µm

(Spitzer/MIPS); 70, 100 and 160 µm (Herschel/PACS); 250, 350 and 500 µm (BLAST); and

870 µm (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a

median [interquartile] star formation rate (SFR) of SFR = 63[48, 81] M⊙ yr−1. We note that not

properly accounting for correlations between bands when fitting stacked data can significantly

bias the result. The galaxies are divided into two groups, disc-like and spheroid-like, according

to their Sérsic indices, n. We find evidence that most of the star formation is occurring in n ≤

2 (disc-like) galaxies, with median [interquartile] SFR = 122[100, 150] M⊙ yr−1, while there

are indications that the n > 2 (spheroid-like) population may be forming stars at a median

[interquartile] SFR = 14[9, 20] M⊙ yr−1, if at all. Finally, we show that star formation is a

plausible mechanism for size evolution in this population as a whole, but find only marginal

evidence that it is what drives the expansion of the spheroid-like galaxies.

Key words: galaxies: evolution – galaxies: high-redshift – infrared: galaxies.

1 IN T RO D U C T I O N

The observed structural properties of massive galaxies (M⋆ �

1011 M⊙) at high redshift (z � 1) are difficult to reconcile with

those of galaxies that populate the local Universe. Most strikingly,

they are on average much more compact in size than local galaxies

of similar mass (Daddi et al. 2005; Trujillo et al. 2006). For the

⋆E-mail: marco.viero@caltech.edu

†Scottish Universities Physics Alliance.

spheroid-like galaxy population, this size evolution has been partic-

ularly dramatic (a factor of 4–5 since z ∼ 2, see e.g. Trujillo et al.

2007; Buitrago et al. 2008; Damjanov et al. 2009), with subsequent

observations confirming these findings (e.g. Muzzin et al. 2009;

Trujillo, Ferreras & de la Rosa 2011). Only a tiny fraction of mas-

sive galaxies in the local Universe have sizes comparable to those

found at high redshift (Trujillo et al. 2009). The absence of similar

mass counterparts in the local Universe (Trujillo et al. 2009) im-

plies that some mechanism is acting on those high-redshift galaxies

to make them grow in size (Bezanson et al. 2009; Hopkins et al.

2009).
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In order to understand the mechanism responsible for this galaxy

growth, a crucial point that needs to be addressed is the level

of star formation (or star formation rate, SFR) in this popula-

tion. From an observational point of view, evidence for star for-

mation in massive galaxies at high redshift is unclear, especially

for the spheroid-like population. For example, small samples of

high-quality spectroscopy (Kriek et al. 2006, 2009a) find little or

no star formation in this population, whereas about 50 per cent of

these galaxies appear to have 24-µm counterparts (Pérez-González

et al. 2008), indicating an elevated level of star formation. This

discrepancy may be due to biases inherent to their respective SFR

estimators, which are either susceptible to errors in extinction cor-

rection and require deep spectroscopic observations or probe emis-

sion from polycyclic aromatic hydrocarbons (PAHs), and thus pro-

vide a poor constraint on the thermal spectral energy distribution

(SED).

An alternative probe of star formation is to observe in the far-

infrared/submillimetre (FIR/submm) bands, where emission is pri-

marily from heated dust. It is known that in the local Universe the

dust luminosity in star-forming regions is correlated with SFR (e.g.

Kennicutt 1998; Chary & Elbaz 2001; Buat et al. 2007), with the

most actively star-forming galaxies often the most dust obscured or

even optically thick in the optical/UV (Genzel et al. 1998). There-

fore, it is reasonable to expect that if high-redshift, compact, massive

galaxies are vigorously forming stars, then they should be observ-

able in the rest-frame FIR/submm.

However, due to the large beams of current submm telescopes,

source confusion and flux boosting present significant obstacles to

studying the star formation properties of anything other than the

most luminous galaxies at high redshift (Moncelsi et al. 2011). For

example, the 1σ noise floor due to confusion in the 250-µm band of

Herschel/SPIRE is 5.8 mJy (Nguyen et al. 2010), which corresponds

to the flux from galaxies at z ∼ 2 with bolometric FIR luminosities

of LFIR ∼ 2 × 1012 L⊙, i.e. ultraluminous infrared galaxies. As a

result, a catalogue of galaxies at z > 2 robustly detected above the

confusion noise (5σ ) in the submm can only probe the bright end

of the luminosity distribution. Stacking provides a mechanism to

examine the full distribution, provided a reliable external catalogue

extending to faint fluxes is available (Marsden et al. 2009; Pascale

et al. 2009).

In this work we perform a stacking analysis using a catalogue of

distant massive galaxies from the GOODS NICMOS Survey (GNS;

Conselice et al. 2011) – which we select to have stellar masses M⋆ ≥

1011 M⊙ and redshifts 1.7 < z < 2.9 – on maps from Spitzer/MIPS

(Rieke et al. 2004) at 24 µm; Herschel/PACS (Poglitsch et al. 2010)

at 70, 100 and 160 µm; the Balloon-borne Large Aperture Sub-

millimetre Telescope (BLAST; Devlin et al. 2009) at 250, 350 and

500 µm; and the Large APEX Bolometer Camera (LABOCA; Weiß

et al. 2009) at 870 µm. Our objective is to estimate the average

SFRs of high-redshift massive galaxies, and to look for differences

between the disc-like and spheroid-like galaxies. An alternative

approach, based on counterpart identification of similar GNS cata-

logue sources, is carried out by Cava et al. (2010).

When required, we adopt the concordance model, a flat � cold

dark matter (�CDM) cosmology with �M = 0.274, �� = 0.726,

H0 = 70.5 km s−1 Mpc−1 and σ 8 = 0.81 (Hinshaw et al. 2009).

2 DATA

We perform our analysis on the Great Observatories Origins Deep

Survey South field (GOODS-South), also known as the Extended

Chandra Deep Field-South (E-CDFS), which has field centre coor-

dinates 3h32m30s, −27◦48′20′′. Here we briefly describe the cata-

logue and maps.

2.1 Mass-selected catalogue

Our catalogue is the Buitrago et al. (2008) subset of the publicly

available GNS1 (Conselice et al. 2011). Here we summarize its

main features; for a more detailed description, see Buitrago et al.

(2008), Bluck et al. (2009) and Conselice et al. (2011). For details

concerning the data reduction procedure, see Magee, Bouwens &

Illingworth (2007). The GNS is a large Hubble Space Telescope

NICMOS-3 camera programme of 60 H-band pointings (180 or-

bits), with limiting magnitudes of H ∼ 26.8 (5σ ), optimized to

collect data for as many massive (M⋆ � 1011 M⊙) galaxies as pos-

sible at high redshift (1.7 < z < 2.9), making it the largest sample

of such galaxies to date. Of these, 36 are in the southern field for

which we have infrared and submm maps.

Redshifts and stellar masses of these objects are calculated using

the BVRIizJHK filters. Photometric redshifts are found using stan-

dard techniques (e.g. Conselice et al. 2007), while spectroscopic

redshifts for seven objects are compiled from the literature (Wuyts

et al. 2008; Popesso et al. 2009; Balestra et al. 2010). Stellar masses

of these objects are estimated by fitting the multicolour photom-

etry to model SEDs – produced with stellar population synthesis

models – resulting in uncertainties of ∼0.2 dex (e.g. Bundy et al.

2006).

Additionally, due to the excellent depth and resolution of the

NICMOS images [pixel scale after resampling of 0.1 arcsec pixel−1,

and a point spread function (PSF) of 0.3 arcsec full width half-

maximum, FWHM], we are able to estimate the Sérsic (1968))

indices and sizes of the objects using the GALFIT code (Peng et al.

2002). Average properties of the sources used in our analysis are

listed in Table 1.

The selection for the GNS galaxies is based on mass and redshift,

with 1.7 < z < 2.8. These galaxies were located initially through

colour selection techniques, such as the BzK (Daddi et al. 2007),

ERO (Yan et al. 2004) and DRG Papovich et al. (2006) criteria,

and later refined through spectroscopic and photometric redshifts

within the two GOODS fields. Conselice et al. (2011) perform

several tests to ensure that the sample is complete. A possible bias

might be that extremely dusty galaxies could be missed by this

criteria due to attenuation, but the deep limiting H-band magnitude

greatly exceeds that of the expected upper bound for dusty SMGs

(∼23.3 mag; Frayer et al. 2004), so that we are confident that we

are not missing the dustiest galaxies due to attenuation. Lastly, it

is expected that this selection of galaxies closely approximates the

true ratio of red to blue galaxies in these mass and redshift ranges.

For more details concerning the selection technique and possible

biases, see Conselice et al. (2011).

2.2 Spitzer

We use the publicly available Spitzer/MIPS map at 24 µm from the

Far Infrared Deep Extragalactic Legacy Survey (FIDEL).2 The 5σ

point source sensitivity of this map is 0.03 mJy.

1 http://www.nottingham.ac.uk/astronomy/gns/index.html
2 http://data.spitzer.caltech.edu/popular/fidel/20070917_enhanced/docs/

fidel_dr2.html/
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Table 1. Average properties of stacked samples. Re is the effective radius. Dust temperatures, bolometric FIR luminosities and SFRs, corrected to a Chabrier

(2003)) IMF, are shown with the corresponding upper and lower Gaussian uncertainties, and interquartile ranges in square brackets (see Section 4, for details).

N zmedian ziqr M⋆ Re n T LFIR SFR

(M⊙) (kpc) (K) (L⊙) (M⊙ yr−1)

All 36 2.285 1.980–2.500 1.85 × 1011 2.00 2.03 29.4+1.4
−0.8[27.3, 31.6] 6.2+1.1

−1.0[4.7, 8.0] × 1011 63+11
−11 [48, 81]

n ≤ 2 20 2.285 2.085–2.500 1.93 × 1011 2.43 1.05 32.6+1.0
−0.4[30.8, 34.6] 12.0+1.4

−1.5[9.8, 14.8] × 1011 122+15
−15 [100, 150]

n > 2 16 2.270 1.865–2.625 1.74 × 1011 1.49 3.25 27.6+0.3
−7.6[24.2, 30.8] 1.4+0.2

−0.8[0.9, 2.0] × 1011 14+2
−8 [9, 20]

2.3 PACS

We use publicly available Herschel/PACS (Poglitsch et al. 2010) ob-

servations of the GOODS-South field from the PACS Evolutionary

Probe3 (PEP; Lutz et al. 2011) survey. The data were re-processed

with the Herschel Processing Environment (HIPE; Ott 2010, con-

tinuous integration build number 6.0.2110). PEP was designed to

provide data in all three PACS bands. Since PACS can only observe

in two bands simultaneously – at 160 µm (red) and either 70 (blue)

or 100 µm (green) – we use two sets of observations to produce

maps at all three wavelengths. We combine the available deep ob-

servations using the standard PACS pipeline, choosing a high-pass

filter parameter of 20 for the blue and green bands, and 30 for the

red band (corresponding to suppression of scales larger than 40 and

60 arcsec on the sky, respectively; see Müller et al. 2011). In or-

der to prevent ringing effects around bright sources caused by the

high-pass filter, the pipeline performs an initial crude reduction and

automatically masks out the brightest sources in the subsequent iter-

ations of deglitching and filtering. The rms depths of the final maps

are 0.31, 0.44 and 1.5 mJy at 70, 100 and 160 µm, respectively.

As reported by Müller et al. (2011), the relatively strong high-

pass filter adopted along with the masking of the bright sources

may attenuate the final photometry of faint sources. To account for

these effects, we produce maps of a few, isolated, unmasked, faint

point sources of different flux density, using the same parameters

as were used in the reduction of the GOODS-South maps; we then

mask these sources and create new maps. We use the average ratio

of the flux densities of the same sources in the two maps as our

estimate of the attenuation factor due to the high-pass filter. We

find that the magnitude of the attenuation mildly increases for in-

creasing wavelengths, as expected given the shape of the 1/f noise

over the relevant frequency range (∝ f −0.5; Lutz et al. 2011). The

estimated attenuation factors are 0.80, 0.78 and 0.75 at 70, 100 and

160 µm, respectively. Note that a slightly different approach was

followed by Lutz et al. (2011), who perform tests on the red band

by adding simulated sources to the timelines before masking and

high-pass filtering; they find that the filtering modifies the fluxes by

16 per cent for very faint unmasked point sources. Despite the slight

disagreement with our finding at 160 µm, and because of the lack

of an estimate for the blue and green bands from the PEP team, we

choose to adopt our three estimated factors for consistency.

2.4 BLAST

The BLAST maps in GOODS-South4 consist of a deep region cover-

ing ∼0.9 deg2 which completely encompasses the southern sources

in the Buitrago et al. (2008) catalogue (Fig. 1), and have rms depths

of 11, 9 and 6 mJy at 250, 350 and 500 µm, respectively (Devlin

3 http://www.mpe.mpg.de/ir/Research/PEP/
4 Available at http://blastexperiment.info/results.php.

Figure 1. GNS catalogue positions (white circles, 36 arcsec in diameter,

solid are n ≤ 2; dotted are n > 2) overlaid on a 20 × 20 arcmin2 region of the

BLAST 250-µm map in GOODS-South. The overlapping Herschel/PACS

region is outlined as a dashed box. The map has been convolved with

a matched-filter (see Chapin et al. 2011) to help enhance the regions of

submm emission. Most of the sources in our catalogue lie along regions

of faint emission. Note that the BLAST beam is many (∼18–30) times

larger than a resolved galaxy, necessitating the stack. Furthermore, since the

angular resolution of Herschel/SPIRE images will only improve by a factor

of 2, stacking will still be required to understand the FIR/submm properties

of the faint population.

et al. 2009). Due to large instrumental beams (36, 42 and 60 arcsec)

and steep source counts (approximately following dN/dS ∝ S−3;

Patanchon et al. 2009), source confusion contributes substantially

to the noise in these maps, and is estimated to be σ confusion ≈ 21, 17

and 15 mJy in the three bands (Marsden et al. 2009). The BLAST

maps were made using a naive mapmaker (Pascale et al. 2011). Fur-

ther details on the instrument may be found in Pascale et al. (2008),

while flight performance and calibration are provided in Truch et al.

(2009).

2.5 LABOCA

The LABOCA E-CDFS Submm Survey (LESS; Weiß et al. 2009)

provides deep 870-µm data, with an rms depth to better than 1.2 mJy

across the full 30 × 30 arcmin2 field, with an effective resolution of

27 arcsec FWHM. For a detailed description of the instrument, see

Siringo et al. (2009).
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3 M E T H O D

3.1 Stacking formalism

Stacking is a well-established technique for finding the average

properties of objects which individually are undetectable by using

external knowledge of their positions in a map (e.g. Dole et al. 2006;

Wang, Cowie & Barger 2006; Marsden et al. 2009; Pascale et al.

2009). We follow the formalism of Marsden et al. (2009, hereafter

M09), to which we refer to for a full description of the stacking

method. Here we summarize the salient features of the technique.

M09 showed that the mean flux density of an external catalogue

is simply the covariance of the mean-subtracted map with the cat-

alogue, divided by the variance of the catalogue density. If the

catalogue is Poisson-distributed, then a powerful diagnostic is that

the variance of the source density should equal the mean, and the

average flux density can be rewritten as the mean map value at

the position of each catalogue source. This is true no matter what

the size of the beam or surface density of sources in the map, so

long as the sources are uncorrelated at the scale of the beam. The

algorithm has been extensively tested with Monte Carlo simulations

on mock random maps with increasing source densities, and was

shown consistently to recover the correct mean flux density, with no

dependence on the number of sources per beam (Fig. 2). If, however,

the catalogue is clustered on the beam scale, the stacked flux will be

biased high, compared to the properly normalized covariance, by a

factor equal to the catalogue variance at the beam scale divided by

the mean source density. In the following section, we show that this

factor is consistent with unity for our data.

Uncertainties and possible biases of our measurement are esti-

mated by generating random catalogues and stacking them on the

actual maps themselves. We find that the uncertainties are Gaussian-

distributed and scale as the map rms (including confusion noise)

divided by the square root of the number of catalogue entries. Note

that these uncertainties account for both instrumental and source

Figure 2. Histograms showing the ratio of recovered stacked fluxes to

true flux for 10 000 simulations. The stacks were performed on simulated

0.25 deg2 maps based on a random catalogue of 12 500 sources, with size

and source densities typical for deep 24-µm MIPS catalogues. We have

repeated the test for six beam sizes in the range 10–60 arcsec, which probe

the effects of stacking at source densities ranging from 0.4 to 16 sources per

beam. As described in Section 3.1 and in M09, larger beams lead to larger

uncertainties, but in all cases the stacked values are consistent with the true

catalogue flux, showing that there is no bias when stacking on uncorrelated

catalogues.

confusion noise, as well as for any pixel–pixel correlations intro-

duced by the map-making algorithm (e.g. the ‘drizzling’ technique

used to produce the PACS maps with the standard pipeline).

3.2 Testing the Poisson hypothesis

Stacking provides an unbiased estimate of the mean flux only when

the sources in the sky are uncorrelated. While massive galaxies have

been shown to cluster quite strongly (e.g. Foucaud et al. 2010), we

find that on scales relevant for this analysis they are essentially

Poisson-distributed, as we show with the following tests.

(1) In the presence of clustering, the FWHM of the postage stamp

of stacked sources would be larger than the nominal instrumental

PSF. We compare our measured stacked 24-µm PSF to that mea-

sured from stacking the sources used in M09 (Magnelli et al. 2009),

which were shown to be Poisson distributed (see fig. 3 of M09), and

find that they are identical.

(2) If the sources are Poisson-distributed over a given scale, then

by definition the average number of sources in a cell of that size

should equal the variance. We test that by dividing the field into

equal-sized cells, from 2.7 to 0.225 arcmin on a side, and find that

the ratio of the variance to the mean is consistent with unity at all

scales.

(3) In the presence of strong clustering around massive galaxies,

we would expect to find more sources per beam surrounding the

galaxies than would be found at random. We calculate the number of

sources inside a BLAST beam radius at the locations of each massive

galaxy and compare that to what we would expect at random. From

1000 Monte Carlo simulations, we find 1.10 ± 0.13, 1.16 ± 0.17 and

1.28 ± 0.21 sources per beam at 250, 350 and 500 µm, compared to

the measured 1.04, 1.13 and 1.17, respectively. We extend this test

to galaxies with log(M⋆/M⊙) > 9, to account for the possibility of

less massive galaxies clustering around our more massive ones. We

find there are 2.85 ± 0.40, 3.83 ± 0.51 and 5.97 ± 0.73 sources

per beam at 250, 350 and 500 µm, compared to the measured 2.53,

4.04 and 5.87, respectively. Thus, while there are multiple sources

per beam at all wavelengths, because their distribution is consistent

with Poisson, they do not bias the result.

There still remains the possibility, however, that even fainter

(<13 µJy at 24 µm), undetected sources cluster around detected

ones. We can estimate their potential contribution in the following

way. If clustered, faint sources contribute significantly to the stacked

flux density for large beams, then after convolving the 24-µm map

(whose beam is 6 arcsec) with a much larger beam we would expect

the stacked flux density to increase. On the other hand, as described

in the previous section, if the faint sources are Poisson-distributed

then we would expect only the noise to increase. We find that after

convolving the 24-µm map with a 60-arcsec beam, the stacked flux

density per source is 0.08 ± 0.11 mJy, compared to the original

0.081 ± 0.005 mJy (see Table 3). Thus, the stacked signal does not

change, but the errors increase substantially, which is consistent

with what we would expect from additional, Poisson-distributed

sources in the beam. We therefore conclude that the contribution

from faint clustered sources is negligible.

3.3 SED fitting, IR luminosities and star formation rates

We model the thermal dust emission as a modified blackbody with

an SED of the form:

Sν = AνβB(ν, T ), (1)

C© 2012 The Authors, MNRAS 421, 2161–2169
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where B(ν, T) is the blackbody spectrum with amplitude A, and

β is the emissivity index, which effectively takes into account the

variability of dust temperatures within a single galaxy. Following

Blain, Barnard & Chapman (2003) we set β to 1.5. Additionally,

we replace the mid-infrared exponential on the Wien side of the

spectrum with a power law of the form f ν ∝ ν−α (with α = 2;

following Blain et al. 2003), which in practice means imposing that

the two functions and their first derivatives be equal at the transition

frequency. In our case that transition occurs at rest frame ∼74 µm

(for T ∼ 30 K; see Section 4.3).

Our SED fitting procedure estimates the amplitude and tempera-

ture of the above template, keeping α and β fixed. For the BLAST

points, the SED fitting procedure (described in detail in Chapin et al.

2008) takes the width and shape of the photometric bands into ac-

count, as well as the absolute photometric calibration uncertainty in

each band (see Truch et al. 2009). Correlations due to instrumental

noise are estimated and accounted for with a Monte Carlo procedure.

Because we do not possess similar detailed data for Spitzer/MIPS

and LABOCA, these photometric points are not colour-corrected,

whereas we do apply a colour correction to the PACS points, fol-

lowing the standard procedure described in Müller et al. (2011, see

their table 4.2, for a power law ν−2); the colour-correction factors

are 1.016, 1.012 and 1.017 at 70, 100 and 160 µm, respectively, and

have a negligible impact on the final results. The PACS points are

assumed to have completely uncorrelated instrumental noise among

bands.

Correlated confusion noise must also be accounted for in the

fit, as these correlations reduce the significance of a combination

of single band detections. We estimate the Pearson coefficients of

the correlation matrix for all bands (see Table 2) from the beam-

convolved maps within a region of 0.064 deg2 that encompasses

all the sources in the GOODS-South NICMOS catalogue. In Sec-

tion 4.3 we will show how the effect of correlations between bands

is quite significant, especially among PACS and BLAST bands (see

also Moncelsi et al. 2011), and thus including them in the SED

fitting algorithm is crucial.

SEDs are corrected for redshift by assuming the median redshift

for each subset (see column 3, Table 1). Interquartile errors reflect-

ing the uncertainty in dimming due to the width of the redshift bin

are estimated with a Monte Carlo, where 1000 mock redshifts with

the same distribution as the chosen subset (i.e. all, disc-like and

spheroid-like) are drawn, and the dimming factor for each redshift

is calculated.

The resulting infrared luminosity, LFIR, is conventionally the in-

tegral of the rest-frame SED between 8 and 1000 µm, and the SFR

is estimated as

SFR[M⊙ yr−1] = 1.728 × 10−10 × LFIR[L⊙], (2)

Table 2. Pearson correlation matrix for all bands.

Band

(µm) 24 70 100 160 250 350 500 870

24 1 0.11 0.13 0.23 0.35 0.28 0.22 0.05

70 1 0.92 0.77 0.22 0.15 0.08 0.006

100 1 0.86 0.27 0.19 0.11 0.007

160 1 0.44 0.33 0.20 0.04

250 1 0.70 0.62 0.11

350 1 0.70 0.14

500 1 0.13

870 1

Table 3. The mean flux densities of massive galaxies in the GNS catalogue

from stacking. Reported are the results for all of the sources, as well as those

identified as disc-like and spheroid-like, based on their Sérsic indices, n.

Band All n ≤ 2 (disc-like) n > 2 (spheroid-like)

(µm) (mJy/source) (mJy/source) (mJy/source)

24 0.081 ± 0.005 0.130 ± 0.007 0.020 ± 0.007

70 0.16 ± 0.07 0.36 ± 0.09 −0.05 ± 0.10

100 0.39 ± 0.09 0.84 ± 0.13 −0.17 ± 0.14

160 1.2 ± 0.3 2.9 ± 0.5 −0.66 ± 0.50

250 5.0 ± 2.9 9.3 ± 3.9 −0.3 ± 4.4

350 7.9 ± 2.3 10.7 ± 3.1 4.5 ± 3.5

500 5.3 ± 1.9 6.2 ± 2.6 4.2 ± 2.9

870 0.97 ± 0.26 1.03 ± 0.35 0.9 ± 0.4

from Kennicutt (1998), which assumes a Salpeter (1955)) ini-

tial mass function (IMF). To convert to a Chabrier (2003)) IMF,

log(SFR) must be corrected by lowering 0.23 dex (e.g. Kriek et al.

2009b; van Dokkum et al. 2010).

4 R ESULTS

4.1 Stacking results

Stacked flux densities and 1σ uncertainties are reported in the sec-

ond column of Table 3. We find statistically significant, non-zero

signals in all the submm bands, with 2σ , 3σ , 3σ and 4σ detections

at 250, 350, 500 and 870 µm, respectively, as well as robust 16σ ,

3σ , 4σ and 4σ detections at 24, 70, 100 and 160 µm, respectively.

Next, we divide the catalogue by Sérsic index into those with

n > 2, which are spheroid-like and thus more likely to have sup-

pressed star formation, and those with n ≤ 2, which are disc-like and

thus more likely to be actively forming stars (Ravindranath et al.

2004). Contamination of one population into the other has been

shown with simulations to be very low (<10 per cent; Buitrago

et al. 2011), but when galaxies do cross the n = 2 threshold, it is

always from n < 2 to n > 2, i.e. from spheroid-like to disc-like.

The results are listed in the third and fourth columns of Table 3.

At 24 µm, we measure a distinct signal from both populations,

with 19σ and 3σ detections from the disc-like and spheroid-like

sources, respectively. At longer wavelengths, for the disc-like pop-

ulation we detect signals with greater significance than that of the

combined catalogue, between 2.5σ and 6.5σ , in each FIR/submm

band; whereas for the spheroid-like population we find a much

weaker signal, with four bands consistent with zero.

While the error on the stacks is Gaussian, the uncertainty associ-

ated with the average rest-frame LFIR is dominated by the width of

the redshift distribution, which is not Gaussian. Thus, for estimat-

ing T , LFIR and SFR (Section 4.3), we choose to adopt the median

value and interquartile range, as they best reflect the asymmetric

shape of the redshift distribution, which ultimately determines the

uncertainty of our measurement. For reference we also quote the

Gaussian uncertainties. We anticipate that the lower Gaussian errors

on T , LFIR and SFR for the spheroid-like subset exceed the lower

bound of the interquartile range, and reflect the elevated level of

uncertainty in our measurement.

4.2 Contribution of stellar emission

At z ∼ 2.3 the observed 24-µm band probes rest-frame wave-

lengths of 6–7 µm, which, in addition to PAH emission, is where

the Rayleigh–Jeans tail of stellar emission lies. It is then plausible

C© 2012 The Authors, MNRAS 421, 2161–2169
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2166 M. P. Viero et al.

that the emission we find in this band may be entirely attributed to

stellar emission. Since our detection of PAH and dust emission, par-

ticularly for the spheroid population, is supported strongly by this

data point (given its high signal-to-noise ratio), in this section we

investigate the contribution of pure stellar emission to the observed

24-µm band.

Any additional emission not attributed to stellar emission is likely

associated with PAH emission, which in turn is accompanied by

longer wavelength dust emission that we have inferred our SFRs

from. We note that this emission may be associated with either star-

forming regions or evolving main-sequence stars [such as asymp-

totic giant branch (AGB) and thermally pulsating AGB (TP-AGB)

stars]. Typically, emission associated with star formation dominates

in most galaxies (even those with moderate SFRs) as the infrared

light-to-mass ratio is up to 3 orders of magnitude larger for a simple

stellar population (SSP) of 107 yr compared to an SSP of 109 yr

(Piovan, Tantalo & Chiosi 2006), where TP-AGB emission would

be most significant.

To investigate the contribution of pure stellar emission in our

sample, we calculate the predicted 24 µm observed flux densities

from stellar population synthesis models using redshifts and stellar

masses as per our catalogue (see Section 2.1). We opt to use a galaxy

template with solar metallicity and an exponentially declining SFR

with an e-folding time of 500 Myr, generated with the stellar pop-

ulation synthesis code PEGASE.2 (Fioc & Rocca-Volmerange 1997).

Output from non-stellar emission or evolving main-sequence stars

is not included, as the source of non-stellar emission at 7 µm is

assumed to be the same as that of the FIR emission. Assuming a

formation redshift of z = 9, the galaxy ages range from 1.5 to 3 Gyr

and the predicted 24-µm flux densities due to stellar emission range

from 1.3 to 8.8 µJy, depending primarily on the galaxy’s redshift.

For each stacked sample, we find the predicted contamination per

galaxy from stellar emission is 3.0, 2.9 and 3.9 µJy for the entire

sample, the disc-like and spheroid-like populations, respectively.

Contributing at most 20 per cent (see Table 3) to the observed 24-µm

flux densities of the spheroid population and less than 5 per cent to

the observed 24-µm flux densities of the disc-like and total sample,

we conclude that the mid-infrared observations (rest frame 7–8 µm)

included in our analysis are dominated by non-stellar emission (i.e.

dust and PAH emission).

4.3 Best-fitting SEDs and star formation rates

The best-fitting SED and interquartile range to the stacked values of

the complete catalogue are shown in the left-hand panel of Fig. 3,

corresponding to a median (plus/minus Gaussian) [interquartile]

temperature of T = 29.4+1.4
−0.8[27.3, 31.6] K, luminosity of LFIR =

6.2+1.1
−1.0[4.7, 8.0] × 1011 L⊙ and SFR = 63+11

−11[48, 81] M⊙ yr−1.

As a sanity check, we compare our modified blackbody approxi-

mation to the best-fitting template of Chary & Elbaz (2001, hereafter

CE01). The purpose of this is simply to reassure ourselves that an

exponential approximation on the Wien side of the thermal SED is

not an unreasonable way to estimate the contribution to the bolo-

metric luminosity short of the SED peak, rather than an attempt to

derive SFRs from fitting SED templates. Thus, for each of the 101

templates, we approximate the stacked SED by taking the average

of templates shifted to the redshift of each galaxy in the catalogue;

this acts to smear out the otherwise highly variable PAH region

of the rest-frame SED probed by the 24-µm band. We fit the re-

sulting template to our photometric points without accounting for

calibration uncertainties, colour corrections or correlations among

bands. The best-fitting template is shown as a triple-dot–dashed

line in Fig. 3 and falls well inside our error region. However, the

SFR of the best-fitting template is SFR = 87 M⊙ yr−1, or ∼38

per cent larger than our modified blackbody estimate. This overes-

timate likely arises because the fit with the CE01 template does not

include the substantial correlations among bands (see Section 3.3),

which reduce the significance of the combination of individual pho-

tometric points.

We then separately fit the stacked flux densities measured for

disc-like and spheroid-like galaxies. The best-fitting modified black-

body SED for the disc-like population is shown in the centre

Figure 3. SED fits to the stacked flux densities of all (left), disc-like (centre) and spheroid-like (right) sources. The median value of the redshift distribution,

z ∼ 2.3, is used here to convert flux densities into rest-frame luminosity. The brown crosses are from Spitzer (24 µm); the blue dots are from PACS (70, 100

and 160 µm); the green squares are from BLAST (250, 350 and 500 µm) and the red asterisks are from LABOCA (870 µm). The error bars represent the

1σ Gaussian uncertainties from the stacks as listed in Table 3. The SED is modelled as a modified blackbody with a fixed emissivity index β = 1.5, and a

power-law approximation on the Wien side with slope α = 2. The solid black lines are the best-fitting SEDs, while the dotted light-blue lines enclosing the

shaded regions show the uncertainties due to the width of the redshift distribution (interquartile range), which clearly dominate over the Gaussian errors on the

stacks (see Section 4.1). The navy triple-dot–dashed lines are the best-fitting, redshift-averaged templates from Chary & Elbaz (2001).
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Star formation in high-z massive galaxies 2167

panel of Fig. 3, and results in a median (plus/minus Gaussian)

[interquartile] temperature of T = 32.6+1.0
−0.4[30.8, 34.6] K, lumi-

nosity of LFIR = 12.0+1.4
−1.5[9.8, 14.8] × 1011 L⊙ and SFR =

122+15
−15[100, 150] M⊙ yr−1. The best-fitting CE01 template is also

shown, and corresponds to a SFR = 142 M⊙ yr−1.

Likewise, the best-fitting modified blackbody SED for the

spheroid-like population is shown in the right-hand panel of Fig. 3,

and results in a median (plus/minus Gaussian) [interquartile] tem-

perature of T = 27.6+0.3
−7.6[24.2, 30.8] K, luminosity of LFIR =

1.4+0.2
−0.8[0.9, 2.0]×1011 L⊙ and SFR = 14+2

−8[9, 20] M⊙ yr−1. Note

that the lower Gaussian errors exceed the lower bound of the in-

terquartile range, thus reflecting the elevated level of uncertainty

in our measurement. Once again, the best-fitting CE01 template is

shown, which corresponds to a SFR = 16 M⊙ yr−1.

Finally, to check that contributions to the rest-frame SED from

PAHs, which are highly variable, are not significantly influenc-

ing the best-fitting result, we re-fit the modified blackbody after

excluding (i) just the 24-µm point and (ii) all points below rest-

frame 100 µm. In the first scenario we find SFR = 57+9
−14[42, 72],

109+11
−18[91, 135] and 12+5

−7[8, 17] M⊙ yr−1, while in the second

scenario we find SFR = 67+11
−16[50, 83], 129+16

−23[107, 160] and

30+10
−7 [19, 42] M⊙ yr−1, for all, disc-like and spheroid-like galaxies,

respectively. In the first case, the SFRs decrease only marginally,

and within the error bars, suggesting that the 24-µm point alone does

not unreasonably influence the result. In the second case, SFRs for

all and disc-like galaxies are mildly affected, while the spheroid-

like galaxies are artificially boosted by a factor of 2 simply because

we have removed the two data points consistent with zero.

Thus, although the best-fitting SED to the combined stack returns

a robust 4σ detection, it is clear that signal is dominated by the disc-

like (n ≤ 2) galaxies, which are detected at 5σ . The best fit to the

spheroid-like (n > 2) galaxies, on the other hand, returns a marginal

2σ result, which suggests, but does not formally detect, a low level

of star formation taking place in the spheroid-like population.

We note that if correlations between bands are not properly ac-

counted for when finding the best-fitting SED, the corresponding

SFRs are 94, 163 and 32 M⊙ yr−1 for all, disc-like, and sphere-like

galaxies, respectively. This is significantly different, and the rea-

son is that if correlations between bands are not considered, more

weight is attributed to the BLAST measurements than is appropriate,

pulling the best fit up. Intuitively this makes sense: since confusion

noise arises from multiple sources in a beam, a larger beam has

more sources in it and thus more variance, i.e. more confusion

noise. Of course, for bands of similar wavelengths those sources

are more or less present in each map, resulting in confusion noise

that is not independent. Though this will be less of a problem for

Herschel/SPIRE, the beam size and thus improvement in confusion

noise is only of order ∼2 times, so that correctly accounting for

correlated confusion noise will still be very important.

5 D ISC U SSION

5.1 Consequences for galaxy growth

There are indications that massive galaxies at high redshift are the

cores of present-day massive ellipticals (Bezanson et al. 2009; Hop-

kins et al. 2009), and that the growth of these galaxies takes place

mostly in the outskirts via star formation and minor mergers (Hop-

kins et al. 2009; van Dokkum et al. 2010) – a process sometimes

referred to as ‘inside-out’ growth, which has also been observed

in hydrodynamical cosmological simulations (Johansson, Naab &

Ostriker 2009; Naab, Johansson & Ostriker 2009; Oser et al. 2010).

Furthermore, van Dokkum et al. (2010) find that a SFR of 55 ±

13 M⊙ yr−1 at z ∼ 2 is necessary to account for the mass growth

they observe in massive galaxies selected by number density, from

z = 2 to the present day, and that for z � 1.5 the mechanism for

growth is primarily star formation. Note that nearly half of their

z ∼ 2 subsample of massive galaxies has n < 2 (see right-hand

panel of their fig. 7) – a fraction similar to our own. Our measure-

ment of 63[48, 81] M⊙ yr−1 for the entire sample agrees well with

their finding; however, we do not find convincing evidence that star

formation is the mechanism driving the expansion in spheroid-like

galaxies.

5.2 Potential contribution from other sources of dust heating

Star formation may not be the only explanation for infrared emission

in our sample which consists of very massive, yet relatively young

systems. The age of the universe by z = 3–1.8 is just ∼1.5–3 Gyr,

providing a strict upper limit on the ages of the stellar populations.

If these galaxies formed the bulk of their stellar mass, as their

colours suggest, early on, then it is likely that they contain a large

population of stars undergoing post-main-sequence phases in which

carbonaceous dusty material is being produced and heated by very

luminous stars. While it is generally accepted in the current versions

of stellar population synthesis models (Bruzual & Charlot 2003;

Maraston 2005; Conroy & Gunn 2010) that TP-AGB stars can

contribute up to 70 per cent of the emission seen in the near-infrared

bands at ages of 1–2 Gyr, there has been little work calibrating

the global contribution of this population to a galaxy’s infrared

luminosity. By extension, given the masses and ages of our galaxies,

we cannot rule out the possibility that the infrared emission we have

detected in our analysis is partially due to dust heated and created

by post-main-sequence stars.

5.3 Red and dead?

Our best-fitting SED to stacked data does not correspond to a for-

mal detection of star formation in the spheroid-like (n > 2) galax-

ies; however, the high 24-µm flux might indicate a non-zero SFR.

Though we have stated that 24-µm emission alone is insufficient

for accurately estimating the level of star formation in a galaxy, lo-

cally, 24-µm emission is typically well correlated with star-forming

regions (Calzetti et al. 2007; Kennicutt et al. 2009). Additionally,

emission from evolved stars seems unable to account for the level of

24-µm emission observed (Section 4.2). Therefore, it seems plau-

sible that star formation may be occurring in these galaxies at some

level. Furthermore, if a low level of star formation does indeed exist,

given the noise properties of our maps, the only bands which would

permit a significant detection are the 24- and 870-µm bands – those

in which our measurements have signal-to-noise ratio greater

than 2.5.

If star formation is occurring in the spheroid-like galaxies, even at

a low level, and if they are fair analogues of the apparently red-and-

dead compact spheroids seen by e.g. Kriek et al. (2009b), then why

is it that star formation is not significant in ultra-deep spectroscopy?

One possibility is that the star formation is localized in very dust-

obscured regions. Note that although Kriek et al. (2009b) detect

a faint Hα line, concluding that SFRs are at most 2–4 M⊙ yr−1,

that is after correcting for a very moderate amount of extinction

(Av = 0–0.3 mag). For this galaxy to actually be forming around

14 M⊙ yr−1, LHα would need to have been underestimated by a

factor of ∼3.5–7, which corresponds to 1.4–2.1 mag of extinction.
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2168 M. P. Viero et al.

Considering that resolved observations of nearby galaxies showing

extinction values of AHα > 3 are common in H II regions (Prescott

et al. 2007) and regions of high star formation (Mentuch, Abraham

& Zibetti 2010), this amount of extinction is not unrealistic.

Lastly, note that our low levels of observed star formation are

in disagreement with Cava et al. (2010), who (after correcting by

0.23 dex due to differences in the assumed IMF) find an average SFR

of 30–60 M⊙ yr−1 for the spheroid-like galaxies. Their average

SFRs are based on photometry of individual galaxies at 24 µm,

and at 250, 350 and 500 µm from Herschel/SPIRE with a mean

detection fraction for the spheroid-like population of ∼0.4 at 24 µm

and ∼0.15 at 250 µm. This selection makes it difficult to properly

compare measurements.

6 SU M M A RY

Our goal was to search for evidence of star formation in high-redshift

massive galaxies, with the hope of leading to a better understanding

of the mechanisms responsible for their growth. We found that

on average the full catalogue of sources are forming stars with

a median [interquartile] SFR = 63[48, 81] M⊙ yr−1, which can be

decomposed into a relatively strong signal for the disc-like galaxies,

with a median [interquartile] SFR = 122[100, 150] M⊙ yr−1, and

a marginal signal for the spheroid-like population, with a median

[interquartile] SFR = 14[9, 20] M⊙ yr−1.

The level of star formation detected for the full catalogue is in

good agreement with other measurements of galaxy growth (e.g. van

Dokkum et al. 2010) which show that star formation can account

for most of the growth at these redshifts. However, despite having

detected stacked emission at 24 and 870 µm, we are unable to say

convincingly that star formation is responsible for the dramatic size

evolution of the spheroid-like population.

Lastly, though a red sequence appears to already be in place

by z ∼ 2 (Kriek et al. 2009a), we found hints that perhaps the

red, compact, spheroid-like galaxies may not be completely dead.

Future stacking work with larger catalogues and better maps will

go a long way to further understanding this question. Better data

bracketing the peak with SPIRE (250, 350 and 500 µm; Griffin et al.

2010) will make more robust estimates of the SED possible, and will

greatly increase our understanding of star formation in high-redshift

massive galaxies.
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Sérsic J. L., 1968, Atlas de Galaxias Australes. Obser. Astron., Córdoba
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