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Measuring strain response mode shapes with

a continuous-scan LDV

Anthony B. Stanbridge∗, Milena Martarelli and David J. Ewins
Department of Mechanical Engineering, Imperial College, London, UK

Abstract: A continuous-scan LDV is a convenient means for measuring the response mode shape (ODS) of a vibrating surface,

particularly in view of the fact that the ODS is automatically derived as a spatial polynomial series. Second spatial derivatives

of the deflection equations are therefore easily derived, and these should, in principle, give curvature equations from which,

for a beam or plate of known cross-section, stresses and strains can be obtained directly. Unfortunately, the stress and strain

distributions depend critically on higher terms in the original ODS series, which are not accurately measured. This problem can

be avoided by a method described here, which enables accurate stress and strain distributions to be derived, from a straight-line

LDV scan along a uniform beam, using only five terms in the mode-shape polynomial series. A similar technique could be

applied to uniform plates but the analysis and the governing equations are rather more complicated.
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1. Introduction

The use of a continuous-scan laser Doppler vibrom-

eter (CSLDV) for measuring the response mode shape
of a structure’s surface has been described elsewhere

for straight-line [1], and rectangular [2], area scans. If
the structure’s vibration is sinusoidal at every point, the

vibration measured during a continuous scan is ampli-
tude modulated so that, in the frequency domain, there

are components at the basic response frequency and at

sidebands spaced symmetrically about it. These side-
band data are easily processed to give the coefficients of

a polynomial expression for the response mode shape.
Out-of-plane deflection mode-shape data may be suf-

ficient to decide the viability of a design but, quite

commonly, stress or strain data would be even more
valuable, and these are, for simple beams and plates,

functions of curvature, the second spatial differentials
of the out-of-plane deflection. Spatial differentials may

be obtained from finite difference equations, on the ba-

sis of arrays of discrete point response measurements,
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but the process is likely to be frustrated by random ex-
perimental errors. On the other hand, a CSLDV scan
should, in principle, make the derivation of such differ-
entials a trivial matter, because the response is directly
available as an easily-differentiated polynomial series,
and there are, at first sight, no random noise errors to
contend with.

In practice, as we will see, with a CSLDV there are
higher order terms in the response polynomial series
that are small, have little influence on the deflection
ODS, and are not measured accurately – indeed many
of them are usually much too small to be measured at
all. Although these do not much affect the deflection
response shapes, they have a crucial influence on the
curvature distribution, and so a CSLDV, used in this
simple way, on the face of it, provides little improve-
ment in accuracy over the discrete-point, finite differ-
ence method. However, a correction technique, pro-
posed here for CSLDV analysis will, in some cases,
overcome this problem completely.

2. Beam mode-shape measurement

If an LDV is scanned sinusoidaly along a straight
line over a surface vibrating at a frequency ω, the LDV
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output spectrum has a sideband structure, centred on

ω, the sidebands being spaced at multiples of the scan

frequency, Ω [1]. It is convenient for the analysis to

assume the scan to be of amplitude ± 1, with zero at

the scan mid-point, so that the point addressed is

x(t) = cosΩt (1)

The sideband structure is always, theoretically, sym-

metrical (although phase spectrum symmetry requires

the signal sampling to be triggered suitably from the

scan signal).

The beam vibration is assumed to follow a spatial

polynomial series, defined along the line by:

vz(x, t) =

p
∑

n=0

{Vanx
n cos(ωt + αn)

(2)

+Vbnx
n sin(ωt + αn)}

Substituting for x(t) from Eq. (1):

vz(t) =
∑

n

{Van cos(ωt + αn) cosn Ωt
(3)

+Vbn sin(ωt + αn) cosn Ωt}

When Eq. (3) is expanded out, multiple terms arise at

frequencies (ω±nΩ). The in-phase (real) and quadra-

ture (imaginary) parts of the upper and lower sidebands

are equal, i.e.

vz(t) =

+p
∑

n=−p

{San[cos(ω − nΩ)t

+ cos(ω + nΩ)t] (4)

+Sbn[sin(ω − nΩ)t + sin(ω + nΩ)t]}

After some manipulation, it can be shown that the

sideband coefficients, {Sa} and {Sb} in Eq. (4), are

related to the ODS polynomial coefficients, {Va} and

{Vb} in Eq. (3), by a simple matrix transform:

{Va} = [T ]{Sa} and {Vb} = [T ]{Sb} (5)

Suffixes a and b are used for real (in-phase) and

imaginary (quadrature) mode-shape components, re-

spectively. The matrix [T ] has been derived explicitly

elsewhere [1].

Real and imaginary components of the ODS depend

on a reference vector, often the input force signal, for

their definition. If, however, one of the larger ODS

coefficients is assumed real, and used as the reference,

the extent or absence of complexity in the ODS is more

easily seen; in many cases the ODS will be entirely real

and only one of the Eq. (5) need then be employed.

Equation (5) may also be used in reverse, so that, if a

polynomial series has been established for a particular

ODS or natural mode shape, the sideband pattern to be

expected from a relevant LDV scan is given by:

{S} = [T ]−1{V } (6)

2.1. Curvature analysis

Suppose that a CSLDV is scanned along a length±L
of a beam, vibrating at a frequency ω. Then, as de-

scribed above, the ODS may be obtained as two series,

for real and imaginary components, each of the form

V = V0 + V1
x

L
+ V2

( x

L

)2

+ V3

( x

L

)3

(7)

+V4

( x

L

)4

+ etc.

For a simple Euler beam, the surface strain at a point

is z ∂2y
∂x2 , z being the distance between the surface and

the bending neutral axis, and y the displacement at a

point x. The strain produced by the ODS is z ∂2V
∂x2 and

the corresponding stress is simply Ez ∂2V
∂x2 , where E is

Young’s modulus, and V stands for either the real or

the imaginary component of the ODS.

The bending moment at a point x1 is

M1 = −EI

(

∂2V

∂x2

)

x=x1

, (8)

I being the second moment of area for the beam cross-

section.

i.e.

M1 = −EI

(

2
V2

L2
+ 6

V3x1

L3
+ 12

V4x
2
1

L4
(9)

+20
V5x

3
1

L5
+ 30

V6x
4
1

L6
+ 42

V7x
5
1

L7
+ etc.

)

2.2. Correction of ODS coefficients

Scanned LDV measurements are, of course, not free

from error and it is obvious from Eq. (9) that inaccura-

cies in higher-order polynomial series terms have a far

greater impact on the curvature, stress and strain than

they do on out-of-plane displacement. It is, however,

possible to correct higher order series coefficients when

the underlying form of the stress expression is known,

as it is for a uniform beam, because the ODS is, in fact,

controlled by only a limited number of parameters: five

in this particular case.
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Fig. 1. Deflected form of a simple beam.

If the scanned part of the beam, length ±L, is uni-

form, straight and free, i.e. there are no other con-

straints, added masses, etc. over this length, the bend-

ing moment can also be expressed (Fig. 1) in terms of

the moment and shear force at the left-hand end, and

the inertial moments due to vibration. i.e. the bending

moment M1, at a point, distance x1 from the centre is:

M1 = M−L + S−L(x1 + L)

(10)
−

∫ x1

−L

ρV ω2(x1 − x)dx

where ρ is the line density of the beam, in kg per m

length.

By expandingV using Eq. (7), the integral in Eq. (10)

is easily evaluated to give a series in xn
1 and, equating

the resulting terms in x2
1 and above to those in Eq. (9),

one obtains:

ρ

EI
=

24V4

ω2L4V0
=

120V5

ω2L4V1

=
360V6

ω2L4V2
=

840V7

ω2L4V3
(11)

=
1680V8

ω2L4V4
=

3024V9

ω2L4V5
= . . . etc.

(ω is the vibration frequency in rads/s, L is the (half)

scan length, ρ is the line density, E the Young’s modu-

lus, I the area second moment, and Vn the nth polyno-

mial coefficient.)

And, directly from Eq. (11),

V5 =
V1V4

5V0
, V6 =

V2V4

15V0
, V7 =

V3V4

35V0
,

V8 =
V 2

4

70V0
, V9 =

V1V
2
4

630V 2
0

,

(12)

V10 =
V2V

2
4

3150V 2
0

, V11 =
V3V

2
4

11550V 2
0

,

V12 =
V 3

4

34650V 2
0

, etc.

     Measure Sidebands {S}

     Derive Poly Coeffs

         { } [ ]{ }STV =

Change low-order sidebands to
               Measured Values

      Correct Poly Series
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   Derive new Sidebands

       { } [ ] { }VTS
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Fig. 2. Flow diagram for iterative improvement of measured uni-

form-beam LDV sine-scan data.

In principle therefore, if just five polynomial coeffi-

cients are known, all others may be derived, provided

that the section of beam being scanned may be assumed

to have a uniform cross-section. Note also that Eq. (11)

may be used to derive a value for ρ
EI

which may be

applied to mode shapes which are acquired at any other

vibration frequency.

Equation (12) can also be used to extend sets of ex-

perimental polynomial coefficients, thus providing a

basis for more exact curvature expressions. In fact,

an iterative procedure is appropriate, because the ex-

tended set of polynomial coefficients can then be used

to compute a corresponding set of sideband coefficients

which will be different from the original measured val-

ues. This procedure is outlined in the flow diagram,

Fig. 2. When convergence is achieved, the set of poly-

nomial coefficients conforms to Eq (12), and the lower

sidebands, derived by using Eq. (6), are the same as the

measured values.

Some applications are described below.

2.3. ODS Scaling

If quantitative stress and strain levels are required,

it should be noted that an LDV inherently measures

the vibration velocity of the point addressed, rather

than its displacement. The displacement, wZ , is

given by a modification of Eq. (2), as wz(x, t) =
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Fig. 3. Test set-up for LDV scan on a simple beam.

Table 1

Half-beam scan CSLDV data, Mode 3

1 2 3 4 5 6 7

Order Measured Initial deflection Initial curvature Iterated deflection Iterated curvature Sidebands

sidebands poly. coeffs. poly. coeffs. poly. coeffs. poly. coeffs. (from column 5)

0 61.4 −170.9 1341 −172.2 1392 61.40

1 −5.30 −181.0 1736 −183.9 1721 −5.30

2 100.0 670.7 −3702 696.2 −4599 100.0

3 25.84 289.4 −2324 286.8 −1637 25.84

4 −15.48 −308.5 1210 −383.3 3099 −15.48

5 −1.04 −116.2 1989 −81.86 766 −1.65

6 0.63 40.32 0 103.3 −682 1.28

7 0.37 47.36 0 18.24 −104 0.12

8 0 0 0 −12.19 99 −0.038
9 0 0 0 −1.45 14 −0.002

10 0 0 0 1.10 −7 0.0009

11 0 0 0 0.123 −1 0.0001

12 0 0 0 −0.055 0 0

13 0 0 0 −0.0044 0 0

14 0 0 0 0.0024 0 0

15 0 0 0 0.0002 0 0

p
∑

n=0

(

Van

ω
xn sin(ωt + αn) −

Vbn

ω
xn cos(ωt + αn)

)

,

and this scaling applies equally to the curvature, stress
and strain distributions, if obtained directly from LDV

(velocity) signals. This modification is unnecessary if,

as is often the case, only the distribution of stress and
strain is required; the measured sideband amplitudes

may then be used directly.

3. Experimental investigation

To check on the accuracy of the curvature and de-
flection measurements for straight-line CSLDV scans,

measurements have been made on a simple, free-free
steel beam, 32 mm wide, 10 mm thick and 950 mm

long, as illustrated in Fig. 3.

The beam was supported by thin cords and excited
by a small shaker attached to its centre, as shown. Exci-

tation at a natural frequency was ensured by monitoring

the input force with a piezoelectric force gauge, the fre-

quency being adjusted until the force signal was mini-

mal. At this condition, the response could be virtually

guaranteed to be in a pure natural mode-shape. Two

scan positions were employed, as indicated in Fig. 3,

one between the mid-point and one end, the other be-

tween points A and B in the Figure.

Table 1 lists sideband amplitudes and polynomial co-

efficients, derived from the CSLDV data, for excitation

at the third mode natural frequency, 313.6 Hz, with a

scan over the right-hand half of the beam. The response

mode shape, plotted from this 7th order polynomial

(column 3 in Table 1), is compared with the theoret-

ical mode-shape in the left-hand side of Fig. 4. The

two curves are gratifyingly similar. (The theoretical

Mode 3 deflection mode shape is of the form:

y = ( cos 2.749(x+ 3) + cosh 2.749(x+ 3))

−0.9999665(sin2.749(x+ 3) (13)

+ sinh 2.749(x+ 3)),

an equation derived from standard theory [3].)
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On taking second differentials, the measured poly-

nomial inevitably gave a 5th order polynomial, with

the coefficients listed in Table 1, column 4. The re-

sulting fifth-order curve shows considerable error from

the theoretical solution (dashed line on right-hand side

of Fig. 4). A corrected polynomial series, extended

and iterated as described above, is included in Table 1

column 5, and the second differential curvature series

coefficients in column 6. The curvature distribution,

plotted from the column 6 coefficients, is greatly im-

proved, as indicated by the dotted line on the right hand

side of Fig. 4.

100 iterations were applied to ensure convergence

on an optimum solution. The sidebands equivalent to

this final estimate were obtained using Eq. (6), and are

listed in Table 1, column 7, for comparison with the

original measured sidebands (column 2). It may be

noted that the first five of these are, as they should be,

identical with the original measurements. These five

sidebands are the only data used to derive the curva-

ture distribution in this procedure; the accuracy there-

fore depends on the accuracy with which they were

measured initially.

Lest the half-span scan be thought to be a special

case, Fig. 5 illustrates a similar measurement with a

scan over a different region of the beam, A–B in Fig. 3.

Again, the uncorrected deflection mode shape appears

to be quite satisfactory, but there are considerable errors

in the curvature distribution, which are removed by the

iterative series-extension process.

3.1. A low-order mode – a special case

A similar process has been applied, using a half-span

scan, with the beam vibrating in its lowest free-free

bending mode, at 57.9 Hz. The theoretical Mode 1

deflection mode shape is:

y = ( cos 1.1825(x+ 3) + cosh 1.1825(x+ 3))

−0.9825(sin1.1825(x+ 3) (14)

+ sinh 1.1825(x+ 3))

Measured sideband amplitudes and derived polyno-

mial series coefficients are listed in Table 2.

As before (Fig. 6) the approximation to the deflec-

tion response mode shape is quite satisfactory, but the

derived curvature is poor. In fact, since the experi-

mental measurement produced a cubic equation for the

mode-shape, only two terms remain after double dif-

ferentiation, and the curvature distribution is, on this

basis, necessarily a straight line, as it would be for a

static deflection situation in which there is no dynamic,

inertia loading.

The procedure used to improve the curvature mea-

surement for Mode 3 cannot be directly employed in

this case because only four polynomial terms were ob-

tained from the scan measurement, and five are needed

if Eq. (12) are to be used. However, the Mode 3 results

were used, with Eq. (11), to establish a value for L4ρ
EI

.

Specifically, for Mode 3, 24 V4

V0
= 53.32 and, therefore,

for Mode 1, 24 V4

V0

= 53.32 × 57.92

313.62 = 1.8177, V4 =
1.8177V0

24 and V5 = 1.8177V1

5×24 .

The polynomial series could now be extended and

iterated as before.

The final result, although a considerable improve-

ment, is not as good as for the Mode 3 results. The

final data can, of course, be no better than the initial

sideband data.

3.2. Identification of beam section properties

Equation (11) may be used to check the section prop-

erties of a simple beam, experimentally. In the case-

study covered in this paper these are easily calculated,

but in other situations, with built-up beams, or with

beams of complicated cross section, density and sec-

ond moments of area may be less certain and there

may be some merit in being able to check them by an

experimental procedure.

For the test beam, the line density, ρ, was 2.5 kg/m

and the second moment of area, I , was 2.683 ×

10−9 m4, based on an assumed density of 7800 kg/m3

and measured dimensions. These, together with an as-

sumed Young’s modulus of 207 GPa, give an estimated

value of ρ/EI of 0.00450 s2m−4.

Each ratio in Eq. (11) should give the same value

for ρ/EI when based on iterated polynomial deflec-

tion coefficients, because this is, effectively, the con-

vergence criterion for the iteration. The data in Ta-

ble 1, with a (half) scan length of 0.2375 m, and a fre-

quency ω = 2π × 313.6 Hz, give a value of ρ/EI of

0.00433 s2m−4. The scan data on which Fig. 5 is based

gave ρ/EI = 0.00451. It may be noted that a previous

attempt [4], to identify beam properties in this way was

rather unsuccessful because no iteration process was

employed and the polynomial coefficients were hence

not sufficiently accurately determined.
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Fig. 4. Mode 3 deflected form (LHS) and curvature (RHS) for a Free-Free Beam. LDV scan between the centre and the tip: Theoretical (full

line), Initial measurement (dashes), Final iteration (dotted).
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Fig. 5. Mode 3 deflected form (LHS) and curvature (RHS) for a Free-Free Beam. LDV scan A–B: Theoretical (full line), Initial measurement

(dashes), Final iteration (dotted).

Table 2

Half-beam scan CSLDV data, Mode 1

1 2 3 4 5 6 7

Order Measured Initial deflection Initial curvature Iterated deflection Iterated curvature Sidebands

sidebands poly. coeffs. poly. coeffs. poly. coeffs. poly. coeffs. (from column 5)

0 12.71 −22.6 141.0 −22.7 143.9 12.71

1 100.0 219.4 −155.5 220.5 −180.1 100.0

2 17.64 70.6 0 71.94 −20.6 17.64

3 −3.24 −25.9 0 −30.0 66.8 −3.24

4 0 0 0 −1.72 10.8 −0.074

5 0 0 0 3.34 −2.7 0.101

6 0 0 0 0.363 −0.1 0.0056

7 0 0 0 −0.065 0.1 −0.0005
8 0 0 0 −0.0019 0 0

9 0 0 0 0.002 0 0

4. Plate vibration

The basic principle described above can, in principle,

be extended to plate vibration. A CSLDV rectangular

area scan will give ODS deflection coefficients Vn,m

for a vibration velocity polynomial series of the form:

vz(x, y, t) =
∑

{Van,mxnym cos(ωt + αn)
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Fig. 6. Mode 1 deflected form (LHS) and curvature (RHS) for a Free-Free Beam. LDV scan between the centre and the tip: Theoretical (full

line), Initial measurement (dashes), Final iteration (dotted).

+Vbn,mxnym sin(ωt + αn)}

Real and imaginary ODS polynomial coefficients for

the deflection w(x, y, t), are
Van,m

ω
and −

Vbn,m

ω
.

From classical theory [5], the normal strains in x-

and y-direction at the surface of an isotropic plate are:

εx = z
∂2w

∂x2
εy = z

∂2w

∂y2

and the shear strain is: γxy = 2z
∂2w

∂x∂y

z being the plate half-thickness. If the scan lengths are

±LX in the x direction, and ±LY in the y direction,

then

∂2w

∂x2
=

1

ω2L2
X

∑

n,m

n(n− 1)Vn,m

(

x

LX

)n−2 (

y

LY

)m

∂2w

∂y2
=

1

ω2L2
Y

∑

n,m

m(m− 1)Vn,m

(15)
(

x

LX

)n (

y

LY

)m−2

∂2w

∂x∂y
=

1

ω2LXLY

∑

n,m

nmVn,m

(

x

LX

)n−1 (

y

LY

)m−1

where x and y define the position on the plate, from the

centre of the scan. The strains at x, y are therefore:

εx =
z

ωL2
X

∑

n,m

n(n− 1)Vn,m

(

x

LX

)n−2 (

y

LY

)m

εy =
z

ωL2
Y

∑

n,m

m(m− 1)Vn,m

(16)
(

x

LX

)n (

y

LY

)m−2

γxy =
2z

ωLXLY

∑

n,m

nmVn,m

(

x

LX

)n−1 (

y

LY

)m−1

and the stresses are:

σx =
E

1 − ν2
(εx + νεy),

σy =
E

1 − ν2
(εx + νεx), (17)

τxy =
E

2(1 + ν)
γxy

E is the Young’s modulus and ν the Poisson’s ratio.
The stresses and strains can thus all be computed

quite straight-forwardly from the measured polynomial
series for the deflection, just as they can for a simple
beam, but with the same reservation that the series is
almost certainly inaccurate, especially the higher-order
terms.

The augmentation and iteration process, described
in 2.2 for a uniform beam, can be adapted to uniform-
thickness plates. Proceeding as before, the bending
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moment intensities at point x, y in a plane, parallel to

the x- and y axes are

Mx = −D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

and

My = −D

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

.

and the twisting moment is:

Mxy = −D(1 − ν)
∂2w

∂x∂y
(18)

Where D = 2Ez3

3(1−ν2) is the flexural rigidity.

Equations (18) are analagous to Eq. (8) for a simple

beam, and can be expanded in the same way, using the
polynomial coefficients. Moment intensity equations

at the point x, y, similar to Eq. (10) can be derived in

terms of the vibratory inertia loading:

My1 + Mx1y1

= M−Ly + S−Ly(y1 + Ly)

−

∫ ly1

−Ly

2ω2ρwLx(y1 − y)dy and

(19)
Mx1 + Mx1y1

= M−Lx + S−Lx(x1 + Lx)

−

∫ lx1

−Lx

2ω2ρwLy(x1 − x)dx

Equations (18) and (19) can be evaluated and solved

to give the fifth-order ODS polynomial terms, and

above, in terms of the lower terms V0,0 to V4,4. The
formulae are more complicated than those in Eq. 12,

for beams. As examples:

V0,5 =
−1

60V0,0
(12V0,0V1,4(1 − ν)

+6νV0,0V2,3 − 3V0,1V1,3

−2νV0,1V2,2 + 3νV0,1V1,3

−12V0,1V0,4)
(20)

V1,5 =
−1

60V0,0
(24V0,0V2,4(1 − ν)

+18νV0,0V3,3 − 3V1,1V1,3

−2νV1,1V2,2 + 3νV1,1V1,3

−12V1,1V0,4)

The iteration outlined in Fig. 2 may be used for plates

as well as beams, though the arithmetic is obviously

more extensive.

The practical need for a stress distribution derivation

process is probably less for plates than it is for beams.

There are, arguably, relatively few structures in which

there are uniform plates, subject to vibration, with clear

areas devoid of connections to other components, stiff-

ening ribs, etc., which would invalidate the analysis

assumptions. On the other hand, free uniform beams

are relatively frequently employed as components in

structural assemblies.

5. Concluding comments

Stress and strain distributions due to sinusoidal bend-

ing vibration of beams and plates can be derived from

second spatial derivatives of displacement ODSs and

this process is, in principle, particularly simple if the

ODS mode shape is available as a spatial polynomial

expression – which is the case if a CSLDV is used.

This possibility has been explored for the case of a

uniform free-free beam. A straight-line sine-scan LDV

was used. LDV output spectrum data: amplitude and

phase at the centre frequency and at sideband pairs,

were processed to give polynomial coefficients. Unfor-

tunately, higher terms which are too small to be mea-

sured have a crucial influence on stress and strain dis-

tributions, particularly in the outer 25% of the scanned

line, which is often the most highly stressed part of the

beam.

The deflection polynomial coefficients for a clear

span of a uniform beam are linked by simple relation-

ships, and an iterative process has been devised, on

this basis, which converges on a polynomial series that

gives a much-improved curvature distribution. (The fi-

nal result can never, of course, be better than that dic-

tated by the accuracy of the original measurements.) If

the correction process is not applied, deflection ODSs

may be measured with good accuracy, but curvature,

bending moment, stress or strain distributions, derived

from second differentials, will never be reliable. The

iterative process described here is applicable only to

bending modes of straight, uniform, slender beams, to

which Euler beam theory applies. It is also a require-

ment that the beam segment scanned is free, that is to

say, there must be no external forces due to attached

structures, within the scanned line. The beam may,

however, be constrained in any way at the ends of the

scanned line.

The iteration technique fails if the mode-shape ap-

proximates to a static deflection (cubic) curve. How-



A.B. Stanbridge et al. / Measuring strain response mode shapes with a continuous-scan LDV 27

ever, data from another ODS can be used, in this case,

to improve the estimate of curvature distribution.

A similar, but more complicated, processing tech-

nique can also be applied to vibration modes of flat

uniform plates.
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