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Measuring surface charge: Why experimental
characterization and molecular modeling
should be coupled

Remco Hartkamp a, Anne-Laure Biance b, Li Fu b, Jean-François Dufrêche c,
Oriane Bonhomme b, Laurent Joly b,⁎

Surface charge controls many static and dynamic properties of soft
matter and micro/nanofluidic systems, but its unambiguous mea-
surement forms a challenge. Standard characterization methods
typically probe an effective surface charge, which provides limited
insight into the distribution and dynamics of charge across the
interface, and which cannot predict consistently all surface-charge-
governed properties. New experimental approaches provide local
information on both structure and transport, but models are
typically required to interpret raw data. Conversely, molecular
dynamics simulations have helped showing the limits of standard
models and developing more accurate ones, but their reliability is
limited by the empirical interaction potentials they are usually
based on. This review highlights recent developments and limita-
tions in both experimental and computational research focusing on
the liquid-solid interface. Based on recent studies, we make the
case that coupling of experiments and simulations is pivotal to
mitigate methodological shortcomings and address open problems
pertaining to charged interfaces.
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Introduction

When a solid surface meets an aqueous electrolyte, physical or
chemical mechanisms can generate an electric surface charge
[1–4]. Ions in the liquid reorganize to form a nanometric layer
to balance the surface charge, the electrical double layer
(EDL). Surface charge governs the stability and dynamics
of soft matter systems, and as such it is a key property
to characterize. Surface charge also drives the response
of nanofluidic systems to thermodynamic gradients [5]. The
development of new membranes to harvest e.g. blue energy
(the osmotic energy of sea water) [6–8] has led to a renewed
interest for finding new functional interfaces with optimal
surface charge.

In that context, however, it is not clear that all interfacial
properties governed by surface charge can be described with a
single, well-defined quantity. For instance, equilibrium

Current Opinion in Colloid & Interface Science (2018) 37, 101–114 www.sciencedirect.com

Ava i l ab l e on l i ne a t www.sc i enced i r ec t . com

ScienceDirect

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cocis.2018.08.001&domain=pdf
https://doi.org/10.1016/j.cocis.2018.08.001


interactions between colloids depend on the static distribution
of ions in the EDL, but their electrophoretic motion also
depends on interfacial hydrodynamics [9•,10••]. Similarly,
different types of osmotic flows [5] and surface conductivity
[11] might be controlled by a differently defined surface
charge. Consequently, the results of standard characterization
methods might not be easily used to simultaneously predict all
properties governed by surface charge.

In this short review, we will first discuss the difficulty in
defining surface charge. We will then give a brief overview
of standard models and experimental tools (detailed descrip-
tions can be found in textbooks or reviews, e.g. [1–4]), and
discuss their limits. Next, we will give an overview of recent
developments in experimental characterization, and show
how progress in molecular modeling has transformed our
understanding of the EDL. Finally, we will discuss benefits of
coupling state-of-the-art experimental tools with molecular
modeling to obtain a comprehensive picture of the interfacial
structure and dynamics, necessary to accurately predict all
surface-charge-related properties of liquid-solid interfaces.
A complementary point of view can be found in a recent
review focused on water at interfaces [12•].

Surface charge: an ill-defined concept

The concept of surface charge cannot be defined without
ambiguity because liquid-solid interfaces are globally un-
charged, with any surface charge being compensated by an
oppositely charged EDL. It is therefore a question of separating
charges between the surface and the liquid. However, both
the charged species at the surface and those in the EDL can
have complex structure and dynamics. For instance, interfa-
cial charged species can be strongly bound to the solid, or free
to diffuse along the surface [13]. Furthermore, ions in the EDL
can have a reduced mobility, or belong to a hydrodynamic
stagnant layer.

From this complex atomistic picture, different effective
surface charges can be defined and measured, which quantify
different physical phenomena at a larger scale. First, interac-
tions between solid surfaces in solution result from the
long-range distribution of ions between the surfaces. This can
be used to define a static surface charge, which will for
instance control the stability of colloidal systems. One can
also define dynamic surface charges. In particular, the
electroosmotic mobility can be used to define an electro-
kinetic charge [9•,10••]. However, it is not clear that
the same electrokinetic charge can also describe other
osmotic flows, e.g., diffusioosmosis and thermoosmosis.
Finally, surface conductivity [11] can be used to define yet
another surface charge.

Therefore, a suitable characterization method has to
measure the relevant effective surface charge correspond-
ing to a given phenomenon, or to provide a detailed enough
description of the interface, which can be used to evaluate
the adequate effective surface charge. In the second case,
an accurate model of the interface is also needed. The
discrepancy between surface charge measurements, and the

use of macroscopic theories –which are not a priori justified at
the nanometer scale – to interpret them, underline the needs
of coupling experimentalmeasurements tomolecularmodeling
in order to take proper account of the concept of surface
charge. In the following section, we will review the standard
models of the EDL, the standard characterization tools based
on these models, and highlight their limits.

Standard approaches

Standard models

A comprehensive model of a charged interface in an aqueous
electrolyte (but even pure water is one) needs to describe
the distribution of charge, the dynamics of charged species,
and interfacial hydrodynamics (see Fig. 1).

For the charge distribution, models generally separate the
EDL into two regions. Beyond a fewmolecular sizes of the solid
surface, ions can be considered as point charges and one
commonly uses the mean-field Poisson-Boltzmann (PB) equa-
tion to describe their distribution, assuming that the dielectric
permittivity of the solvent is local, isotropic and homogeneous
[1]. This equation predicts that the electric potential and the
local charge density decrease exponentially with the distance
from the charged interface. The decay range is given by the
Debye length λD, which scales as the inverse square root of the
salt concentration (Fig. 1). The PB equation also predicts that
the charge of the EDL can concentrate in a region thinner than
the Debye length with a non-exponential decay. Specifically,
this happens when the so-called Gouy-Chapman length ‘GC,
which scales as the inverse of the surface charge, becomes
smaller than λD. The charge of the EDL then concentrates in a
region of thickness ‘GC (Fig. 1).

Very close to the surface (a few molecular sizes), the
hypotheses underlying the PB equation are especially poorly
justified. One generally introduces the so-called Stern layer to
describe this region [14,15]. The Stern layer is usually assumed
to consist of adsorbed ions – specifically or not, which may be
partially or fully dehydrated. A number of planes and layers
are defined accordingly, e.g., the inner Helmholtz plane
(IHP), below which ions are specifically adsorbed and at least
partially dehydrated, and the outer Helmholtz plane (OHP)
separating the adsorbed hydrated ions and the diffuse layer
obeying the PB equation (Fig. 1). It has also been recognized
that the dielectric permittivity of the solvent below the IHP
can deviate from that beyond the IHP, due to a preferred
orientation of solvent molecules in response to surface charge
[16]. Finally, theoretical models beyond the standard PB
framework have been developed to account explicitly for,
e.g., correlations, image charges, finite-ion-size effects, or
specific adsorption in the Stern layer [1,2].

For hydrodynamics, a local and homogeneous viscosity is
usually assumed, together with a no-slip boundary condition.
A stagnant layer is often introduced, defining the shear
plane where the hydrodynamic velocity vanishes (Fig. 1).
While the stagnant layer does not participate to the flow,
whether its diffusion dynamics is bulk-like, hindered or even
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frozen remains unclear and may depend on the specifics of
the interface. The hydrodynamic shear plane position zs is
not simply related to the “static” IHP and OHP. However,
zs is commonly confused with the IHP or OHP, i.e., the
stagnant layer and the Stern layer are assumed to share
the same boundaries.

Finally, regarding ion mobility, standard models assume
bulk-like diffusion for ions in the diffuse layer [11,17],
and immobile ions in the Stern layer, although a dynamic
Stern layer is sometimes introduced to explain anomalies in
surface conductivity [18–21].

Standard models provide an effective description of the
interface, introducing a limited number of adjustable param-
eters with a simple physical interpretation. These models

can relate macroscopic experimental measurements to micro-
scopic parameters such as surface potential or shear plane
position. They can also be adjusted or extended to consistently
describe different effective surface charges, for instance the
electrokinetic charge or the surface conductivity. However,
being fundamentally effective models, which are not based
on an atomistic description of the interface, they cannot be
expected to provide a comprehensive and consistent prediction
of all the different effective surface charges.

Standard experimental tools

On standard basis, different methods are used to characterize
surface charge. Some are based on transport properties
(Fig. 2a–b), and in particular electrokinetic characteriza-
tion of colloids, porous materials or surfaces. Others rely
on probing static properties of the interface, such as
electrostatic potentials (Fig. 2d).

Transport measurements

Electrokineticmethods have beenwidely used to investigate
the mobile part of electrolyte solutions at the interface with
suspended colloids or in micro/nanochannels. For example, the
electrophoretic mobility is measured, from which an electroki-
netic potential, or ζ-potential, is inferred [9•]. Alternatively,
an electroosmotic plug flow in micro/nanochannels can be
determined, using for example the all-electric current
monitoring method [22] or some fluorescent probe [23].
According to Onsager reciprocal relations, the ζ-potential
can also be determined from the streaming current [24••].

Within the standard description of the EDL, the ζ-potential
can be identified with the value of the electric potential at the
shear plane, separating the stagnant layer from the flowing
liquid [9•], see Fig. 1. This electrostatic potential can in turn be
related to the electrokinetic surface charge, i.e., the total
charge contained behind the shear plane, thanks to the
Grahame equation [15]. This equation is based on the mean-
field PB description of the diffuse EDL, so that it relies on the
assumptions that the shear plane is located outside the Stern
layer and that the dielectric permittivity does not vary beyond
the shear plane.

Another method is to probe the conductivity in porous
materials or nanopores at low salt concentration [3,25,26].
In this regime, a so-called surface conductivity is measured,
which is a signature of the electrostatic environment in the
vicinity of the surfaces. However, surface conductivity also
depends on ion mobility close to the surface, and can include
contributions from the solid or fromquantumcharge transport at
the interface, so that its relation to the bare surface charge is
complex.

Generally, electrokinetic experiments provide no direct
insight into the bare surface properties of a colloid or
channel wall, to which ions are adsorbed. Moreover, despite
the good match between results obtained from streaming
current or electroosmosis experiments, a discrepancy with
the surface charge obtained from surface conductivity

Fig. 1 Standard model of the electrical double layer. From top
to bottom: ion distribution; electric potential profile V (full red
line: true potential; dashed blue line: apparent exponential
potential as seen far from the interface); velocity profile v; ion
diffusion coefficient profile D. Even from this traditional descrip-
tion, a number of surface potentials Vs (represented by magenta
points) and corresponding surface charges can be defined, see
text for details.
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remains [20,27–29], underlining the complexity of the
systems when transport properties are considered.

Static measurements

Static measurements typically either measure the elec-
trostatic surface potential, or the number of ionized groups
at the surface, to determine the surface charge.

Surface potential measurements have been expended in the
1990s by measuring the forces involved between a sphere and a
plane using AFM/SFA-like tools [30–34], see Fig. 2d.

The static surface charge can be measured in various ways.
For example, potentiometric titration is commonly used to
probe the bare charge of a solid surface [35]. Other seminal
techniques involve specific adsorption of organic conjugated
compounds onto the charged surface, which is titrated using
UV–Vis spectroscopy [36]. Similarly, neutron reflectivity is a
powerful tool to determine non-selectively species adsorption
[37] or water structure [38] at interfaces.

Attempts to probe both electrokinetic transport properties
and static properties for the same sample remain scarce due
to the technical constraints of the different measurements
[39•]. For colloids, the relation between static charge
(obtained by titration) and electrokinetic charge depends on
the nature of the surface charge [40]: while electrokinetic and
static potentials are consistent for AgI, for which the charge
results from an excess of the ionically bonded constituents,
the electrokinetic potential is lower than the static potential
for metal oxides, for which the charge arises from the
dissociation of hydroxyl groups.

Latest innovations in experimental
characterization

Recent innovations in determining the structure of liquid-
solid interfaces focused on probing the chemical nature

Fig. 2 Different experimental tools: (a) electrokinetic transport; (b) surface conductivity; (c) X-ray reflectivity or nonlinear optics;
(d) AFM/SFA-like tools. Methods illustrated in (a) and (b) only provide information on ions highlighted in color, while methods illustrated
in (c) and (d) are non-specific.

R Hartkamp et al. 104

Current Opinion in Colloid & Interface Science (2018) 37, 101–114 www.sciencedirect.com



and position of ions in the vicinity of the interface [41],
see Fig. 2c. Among them, specific set-ups based on X-ray
reflectivity represent a powerful tool to investigate the
interfacial ion distribution, for example in the case of
electrolytes in the vicinity of electrodes [42].

Thermodynamic adsorption energies have been measured
using resonant anomalous X-ray reflectivity [43,44•], and
specific adsorption of chloride versus iodide near hydrophilic
surfaces has been observed with X-ray standing waves [45•].
A more sophisticated method based on X-ray photoelectron
spectroscopy applied to a microjet containing silica nano-
particles was used to determine precisely the influence
of ion specificity on the surface potential and on the
Stern layer composition [46••]. This method has also been
compared to other, more standard, surface potential deter-
mination [47]. However, most of the experimental results in
the above-mentioned studies require support of modeling
(density functional theory [43,44•], molecular dynamics [45•],
analytical [46••]) to get a full picture of the processes taking
place at the interface. Moreover, X-ray based techniques are
limited because they can only identify the chemical nature of
the ion and not its ionization state and electrostatic
environment. For instance, these techniques are blind to
hydroxide and hydronium ions, which have a strong impact on
the structure and dynamics of charged interfaces.

The electrostatic potential of interfaces has also been
probed using nonlinear optics, sum frequency generation
(SFG) [48–50] – evidencing a cationic specific Stern layer
structure – and second harmonic generation (SHG) [51].
Furthermore, surface potential measurements in recent ion-
sensitive field-effect transistor (ISFET) studies have pro-
vided new insight into the effect of pH and salinity of various
electrolytes on the EDL structure and found that standard
complexation models cannot explain the observed behavior
[52–54]. Here also, molecular simulations have been used to
interpret the results [55,56].

More direct probing techniques have also been used to gain
insight into the interfacial fluid structure. Following huge
improvement of AFM resolution, it became possible to probe
the structure of the interface [57•,58,59], and even the
residence time of single ions in the Stern layer [60•,61].

Radically different approaches also focused on the determi-
nation of ion repartition at interfaces using transport property
characterization. Beyond standard electrokinetic characteriza-
tion, newelectrokinetic properties have been investigated, and
in particular the diffusiophoretic [62,63] and diffusioosmotic
[6,64] response to ion concentration gradients in solution.
Whereas the ζ-potential measured from diffusioosmotic and
electroosmotic velocities coincide for KI, LiI and NaI salts
in the vicinity of a silica interface [64], discrepancies are
observed when considering the diffusioosmotic current of a
KCl solution flowing through a membrane formed by boron
nitride nanotubes [6]. In the latter, the surface potential is in
good agreement with the one measured by surface conduc-
tivity, rather than the one calculated from electrokinetic
mobility. A similar discrepancy between the ζ-potential
and the thermophoretic mobility was recently highlighted for
functionalized polystyrene particles [65].

To disentangle the couplings between static and transport
properties of interfacial ions, a few attempts to measure both
the electrokinetic response of the interface together with its
structure have been documented [66]. For example, Jalil
and Pyell [67] combined their own standard electrokinetic
measurements with X-ray spectrometry data of Brown et al.
[46••] to get a more refined picture of the EDL for monovalent
electrolyte solutions in contact with silica nanoparticles. In a
more direct approach, in situ SFG experiments at liquid-solid
interfaces under flow have shown a signature of the flow on
the surface potential [68••]. Conversely, SHG experiments
performed at liquid-gas interfaces evidenced no modification
of the signal when electroosmotic flow was generated [69].
Recent experiments coupling SHG and streaming potential at
hydrophilic and hydrophobic solid-liquid interfaces also did
not observe any effect of the flow [70]. These contradicting
observations underline the complexity of the mechanisms
involved and indicate that the relation between the EDL
structure and dynamics depends on the chemical nature of the
interface.

Latest developments in molecular modeling

Whereas state-of-the-art experiments revealed new infor-
mation on the structure and dynamics of the EDL, molecular
simulations have highlighted the limits of standard models
[71–78], and can help refining models using a bottom-up
approach. Molecular dynamics (MD) simulation is a partic-
ularly powerful tool to explore the structure and dynamics
of the EDL. MD provides an explicit description of the
atomic structure of the liquid-solid interface, with its
time evolution computed based on empirical interaction
potentials between atoms. MD simulations provide accurate
control over environmental conditions and full access to
microscopic information that is inaccessible in experiments.
As such, simulations can be used to explain experimental
observations, or to improve models and assumptions for
interpreting experimental measurements [79].

Indeed, the suitability of standard models becomes ques-
tionable when screening lengths compare with the molecular
size, aswell as typical values for surface roughness. In fact, both
the Debye length and the Gouy-Chapman length can easily
reach 1 nm for realistic salt concentrations (N10−2 M) or surface
charges (N40 mC/m2). In that situation, standard models can
fail to describe the EDL in many ways and a more sophisticated
description is needed.

First, it is possible that the ion distribution does not follow
the mean-field Boltzmann law, especially when only electro-
static interactions are taken into account. Here, MD can
provide information on specific interactions that need to be
included in the Boltzmann factor [80–82••,83–85•,86–89].
Furthermore, ion-ion correlations, which are particularly
important with multivalent species and concentrated solu-
tions, can strongly affect the ion distribution, and even
reverse the apparent surface charge as seen far from the
interface [90]. Also here, MD can help to refine the existing
models [91–94•].
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More importantly, the dielectric permittivity of the solvent
can become inhomogeneous and anisotropic near the inter-
face, or the local permittivity approximation can break down
[89,95–97••,98–100]. Extended theories need to be used in
those cases, although it has been shown that simple effective
models, with just a step in permittivity at a given distance
from the wall, can reproduce static and electrokinetic charges
obtained bymolecular simulations (whichmake no assumption
on the dielectric permittivity) [97••]. Whether such simple
models can also predict the surface response to other
thermodynamic gradients (e.g. osmotic or thermal) remains
to be explored.

The standard picture for hydrodynamics, with a stagnant
layer followed by a liquid with constant viscosity, has also been
questioned byMD simulations at the nanoscale [101•,102]. First,
the no-slip boundary condition fails on some surfaces [103].
The electrokinetic mobility is then amplified by hydrodynamic
slip for a given surface charge [104,105•,106]. In turn, the
amplitude of slip depends on surface charge [83,107–109].
Corrected continuumdescriptions [110,111] describeMD results
well [105•,107], and the amplification effect of slip was
confirmed by two independent experiments [39•,112]. Hydro-
dynamic slip is for instance key to understanding anomalous
electrokinetic charge in foam films [113,114]. Other osmotic
flows can be strongly affected by slip [115–117], and more
generally by nanoscale dynamics [118].

Second, the stagnant layer concept has been questioned by
MD results. For instance, no stagnant layer was observed
on amorphous silica [94•], beyond a monolayer of strongly
adsorbed water molecules, whose thickness was comparable
to the roughness of the disordered surface. Zhang et al. [119]
also did not observe a stagnant layer on silica, but instead they
showed that viscosity increased smoothly near the surface.
Smoothly increasing viscosity profiles were also observed by
others near hydrophilic surfaces [87,97••,120••], but not
near hydrophobic surfaces [97••]. More generally, various
simulation studies have indicated that viscosity can be
inhomogeneous [87,120••,121,122•,123] and even nonlocal
[124]. Continuum theory taking the viscosity profile into
account can predict electroosmotic flow rates [119]. The
complex viscosity profiles can also be described through
effective sharp boundary models, for instance by a constant
viscosity combined with a few angstroms thick stagnant
layer on silica [119], by a constant viscosity on slipping
surfaces, or by the inclusion of a step in viscosity on non-
slipping surfaces [97••]. Although such simple descriptions
can be convenient, their parametrization hinges on detailed
insight into the interfacial region. Moreover, because
these effective descriptions do not correspond to the real
microscopic picture, their transferability to describe all
surface-charge-governed properties is not guaranteed.

MD simulations have also given new insight into the
diffusion dynamics of ions in the different subsections of the
EDL [125]. In their pioneering work, Lyklema et al. [126]
used MD to confirm the emerging picture of a stagnant layer
behaving like a gel, in which the ions can diffuse almost
freely, but which does not flow globally. This picture explains
the large possible differences between the surface charge one

can extract from electrokinetic or surface conductivity
measurements [20,27–29]. Recent MD simulations on amor-
phous silica [94•] found that the standard decomposition of
the EDL into a Stern and a diffuse layer was inadequate. The
EDL was instead decomposed into a mobile and an immobile
ion population, of which the distribution overlaps. The
diffusion coefficient of free ions continuously decreases
close to the wall, an effect that can be described by
continuum hydrodynamics [127], and can dramatically affect
surface conductivity. Finally, on hydrophobic surfaces where
the surface charge is carried by specifically adsorbed ions, the
surface mobility of these ions can affect the electrokinetic
response of the interface [13].

Even though simulations have proven valuable in the
study of EDL properties, classical MD simulations are
reaching their limits, because of two strong weaknesses.
First, interactions between atoms are based on empirical
force fields. By definition, these force fields are built to
reproduce a given set of data, and their transferability
to different situations is questionable. Specifically, most
standard force fields are designed to reproduce equilibrium
structural properties of bulk systems, and there is no
guarantee that they can correctly describe the dynamical
and transport properties of interfaces. A striking example
concerns the effect that ions have on water diffusion and
viscosity [128]. While some salts enhance water diffusion,
most empirical force fields predict a systematic decrease in
diffusion with increasing ion concentration [129,130••].
However, recently developed force fields have been able to
qualitatively reproduce the effect of large ions [131], and to
quantitatively describe the effect of small ions [132–134]
on water diffusion.

The second major weakness of force field-based simulations
is related to the systems described. Indeed, the atomic wall
structure and charge distribution need to be constructed before
the simulation can be run, often from limited information.
Notably, the surface charge is usually imposed by assigning
partial charges to the atoms in the substrate, conform the
force field employed. These partial charges are kept constant
throughout a classical simulation – rendering the bare surface
charge unaffected by the rearrangement of interfacial ions or
solvent molecules.

Alternatively, surface reactivity is considered by using
reactive force fields [135–138] and ab initio methods
[139•,140,141]. Such reactive simulations are important to
investigate, for example, charge regulation [142,143],
which occurs in narrow channels due to overlapping EDLs.

Ab initiomolecular dynamics (AIMD) has been used to explore
the structure and dynamics ofwater-oxide interfaces [144–159].
In particular, AIMD can be used to compute vibrational spectra
and non-linear optical response [147,160–164•], and as such
is a key tool to help interpret experimental observations.
Recently, liquid-solid friction has been characterized with AIMD
[165•,166], opening perspectives for the investigation of other
transport properties with these methods.

At present, however, ab initio methods are typically based
on density functional theory, and take electronic exchange and
correlations into account through an approximate functional.
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This limits the accuracy of ab initio methods to describe the
structure and dynamics of water-solid interfaces [139•]. Most
AIMD works also do not take quantum nuclear effects into
account. Finally, the computational cost of reactive and ab
initio simulations is very large – effectively limiting the
accessible simulation time and the number of atoms. These
restrictions are currently prohibitive for studying rare events,
dilute electrolytes, or for simulating a sufficiently large system
to accurately represent the structure and heterogeneous
charge distribution of amorphous surfaces.

Size restrictions can be mitigated drastically with primitive-
model simulations, in which the solvent is included implicitly
[167]. For instance, such an approach was used to investigate
the origin of surface charge on graphene and boron nitride
[168•]. However, Lee et al. [169] found that various
physical quantities that depend on the orientation of
solvent molecules were not accurately predicted by the
primitive model approach. Additionally, Vangara et al.
[170] recently showed, by comparing explicit and implicit
solvent DFT models, that both the solvent and the ions
contribute to the chemical balance between surface groups
and the solution.

Apart from the importance of solvent molecules and
dissolved salts, various experiments have revealed intricate
effects of pH on for example specific ion adsorption [171,172].
Furthermore, local enhancement of proton mobility affects
the Stern conductivity [173], but may also have important
consequences for surface reactivity. Simulations are, in
principle, suitable for elucidating the molecular-level mech-
anisms responsible for such pH dependence, but current
computing power does not permit explicitly accounting
for near-neutral pH in molecular simulation because of the
immense system size required. Interestingly, this numerical
difficulty echoes the limits of experimental methods based on
X-rays, which are blind to hydronium and hydroxide ions and
hence unable to provide insight on the role of pH.

Explicit-pH simulations and large-scale quantum-based
simulations are currently beyond the feasible. However, with
the continuous improvement of computing power, ab initio
simulations should progressively be able to tackle an increas-
ingly large panel of problems. Meanwhile, the information
obtained from small ab initio simulations is already trans-
ferred to classical simulations using ab initio-based force fields
[174–178].

Why coupling experiments and modeling is
needed, and recent attempts

Despite recent developments in experimental characterization
and molecular modeling, the study of local structure and
dynamics at the solid-electrolyte interface remains restricted
by the inherent limitations of the respective methods. The
ambiguity in what quantity is measured by each method is a
considerable limitation, making it difficult to form a unified
understanding of the EDL by combining data from multiple
experimental techniques. Ambiguity or uncertainty of

measurements can even propagate when combining tech-
niques. For example, the charge held within the Stern layer
can be estimated by combining titration experiments to
determine the bare surface charge density and electroki-
netic experiments to infer the charge contained in the
mobile region [10••]. However, the latter relies on the
assumption that the electrokinetic charge equals the charge
held in the diffuse layer, i.e., the shear plane is assumed to
coincide with the OHP.

Similarly, the difference between the static and electroki-
netic potentials has been used to estimate the Stern layer
thickness, assuming a constant permittivity across the Stern
layer [179]. The calculated thickness depends linearly on the
assumed Stern-layer permittivity and on the approximated
potential drop between the surface potential and the electro-
kinetic potential, which were obtained using two different
techniques and material samples. Furthermore, this approach
again assumes that the shear plane marks the outside of the
Stern layer. Evidently, inferred quantities, such as the Stern
layer thickness and its charge, can be highly sensitive to
assumptions and models.

On the other hand, simulations can help to interpret and
complement experiments, without the need for assumptions or
theoretical models. However, direct and quantitative compar-
ison between experiments and simulations is often difficult
for two major reasons: first, due to empirical force fields in
classical MD, or approximations in ab initio methods, and
second, because atomistically-detailed computations are lim-
ited to short simulation times and small systems, whereas many
experiments are limited by their spatial and temporal resolu-
tion. Direct coupling between simulations and experiments thus
presents a major challenge. Yet, combining these disciplines
can help to leverage their complementary strengths. Specifi-
cally, experiments are essential to validate simulation results
and to improve simulation force fields, while accurate
simulations are helpful to interpret and explain experimental
measurements.

Thus far, few studies have combined experiments
and simulations to gain deep understanding of interfacial
fluid properties [38,42,44•,54–57•,60•,70,85•,164•,180•,181•,
182–184•,185–190••,191,192]. For example, Předota et al.
[186] performed MD simulations and titration experiments for
different electrolytes near a hydroxylated (110) rutile surface.
The simulations suggested that different slopes in the titration
curves were caused by different adsorption mechanisms.

In a recent study, Bourg et al. combined X-ray reflectivity,
MD simulation, and complexation theory to provide detailed
insight into the interfacial structure of 0.1 M alkali chloride
solutions on a muscovite mica surface [190••]. The authors
showed that the structure of the first molecular layer of water
was determined predominantly by interactions with the
surface, whereas the structure of the second layer depended
also on interactions with adsorbed interfacial ions. Water
beyond the first two monolayers exhibited density layering,
but showed no evidence of sensitivity to short-range interac-
tions with either the surface or adsorbed ions. With the
exception of Li+, the experimentally and computationally
measured ion exchange energies were in close agreement.
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The trend in the exchange energy of different ions suggested
that not only the hydration free energy was important,
but also the match between the surface structure and the
hydration structure of the ions.

Combined experiments and simulations were also used to
understand the mechanisms underlying charge inversion
[90]. Labbez and coworkers combined surface titration
measurements, electrophoretic experiments, and implicit-
solvent grand canonical Monte Carlo simulations to study the
charging behavior of calcium silicate hydrate [181•,183]. The
authors found that the apparent charge inversion observed for
concentrated divalent solutions decreased, or even disap-
peared, upon the addition of monovalent electrolytes to
the electrolyte mixture. This contrasts the idea that charge
inversion increases with ion concentration. Using MD simula-
tions and electrophoresis experiments, Calero et al. observed
charge inversion for large organic monovalent ions near a
hydrophobic colloid, but not near a hydrophilic surface [85•].
This demonstrated that charge inversion can occur also when
ion-ion correlations are negligible. Semenov et al. [185]
calculated the electrokinetic mobility of a single latex
colloid in a trivalent electrolyte solution from implicit-
solvent MD simulations combined with hydrodynamic theory.
Electrostatic and specific adsorption were both essential to
predict the mobility reversal observed in their optical tweezer
experiments.

The insights obtained in the studies described above
could not be obtained solely using experiments, due to the
need for non-invasive measurements with a sub-nanometer
resolution, or detailed insight into the interactions between
individual atoms. On the other hand, only modeling the
problem would also be unsatisfactory, as the validity of the
results is not guaranteed.

Conclusions and outlook

A complete understanding of the dynamics and structure of
ions repartition near surfaces requires first a full experimental
investigation. Most of the techniques nowadays rely on
determining charge transport properties (probing electroki-
netics mainly) or static properties such as surface potential or
ion repartition structure. However, most recent advances show
that both are intimately coupled; transport can indeed change
the ion repartition and vice versa. Only a full characterization
of the liquid structure near the interface while electrokinetic
transport takes place, under a range of conditions, would
allow giving realistic inputs in this subject. Another direction
that needs to be tackled is the identification of specific
solid systems. Indeed, most oxide surfaces, especially silica,
are complex: their properties depend a lot on the preparation
and despite huge efforts in developing methodology in the
experimental community, results are poorly reproducible from
one group to the other. Identifying robust model materials
would be a real asset.

Molecular simulations can be a valuable tool in the quest
for identifying suitable model materials and the coupling
between static and transport properties. Leveraging the

strengths of AIMD, and combining this with computationally
cheaper tools, may hold much promise for the future of
computational molecular research. In fact, AIMD has adopted
an increasingly important role in the study of molecular fluids
and fluid-solid interfaces in recent years. The main drawback
of this technique has thus far been its large computational
cost, which strongly limits the accessible simulation time
and system sizes. Although the accessible time scale in AIMD
is insufficient to directly probe transport properties, AIMD
could instead be used to explore free energy profiles
[193,194]. Alternatively, the limitation of accessible time
scales can be mitigated using machine learning, e.g., to
predict infrared spectra [195]. Machine learning was also
key to mitigate high computational costs to calculate
free energy differences in a classical MD system [196].
Machine learning, combined either with classical or quan-
tum simulation, can be a powerful tool in the development
of more versatile and transferable simulation force fields,
which require optimization against a large set of conditions
and variables. Particularly, fingerprint algorithms, an aspect
of machine learning, were recently suggested as a ‘useful

building block for constructing data-driven next generation

force fields’ [197]. In addition to the potential speedup to
be achieved with machine learning, the arrival of quantum
computing may hold promise for drastically accelerating
molecular simulations. Finally, advanced techniques capable
of taking quantum nuclear effects into account are increas-
ingly accessible [184•,198–200] and could help improving the
description of water-based systems.

In conclusion, both experimental characterization and
numerical modeling of charged interfaces have vastly
progressed over the past years, and current developments
give hope for a bright future. MD does not only help to
understand the microscopic phenomena; it also helps to
extend the validity of the experimental measurements.
Indeed, numerous macroscopic parameters that are nec-
essary to interpret the measurements (adsorption con-
stant, slip length, etc.) can be calculated from MD, so that
the treatment of experimental data is facilitated. Fur-
thermore, very often, simulations and experiments can be
directly compared without requiring the use of ill-defined
concepts such as ζ-potential or effective surface charges.
This does not mean that such macroscopic parameters are
not useful anymore. Any macroscopic theory needs such
average quantities. It means that thanks to this direct
comparison between experiments and simulations, one can
decide which effective quantity is relevant for a given
system.

New, more efficient models have been developed in recent
years, but there is still room for improvement. For instance,
future models could go beyond traditional assumptions of
distinct layers separated by sharp interfaces. In particular,
the complex 3D structure and dynamics of the EDL due to
surface roughness and chemical heterogeneities could be
taken explicitly into account. Such 3D models could indeed
provide more insight into the discrepancy between static
and dynamic surface charge, and identify parameters control-
ling this discrepancy. Coupling experiments and atomistic
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modeling is the best method to assess the value of recent and
future models.

We hope we have convinced the reader that major
advances in the understanding and detailed characterization
of surface charge(s) will come from the coupling between
state-of-the-art experiments and molecular simulations.
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