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S U M M A R Y  
We present a method for the retrieval of the phase velocities of surface-wave overtones. 
The ‘single-station’ method is successful for several Love and Rayleigh overtone 
branches (up to at least four) in mode-specific period ranges between 40 and 200 s. I t  
uses mode-branch cross-correlation functions and relies on adjusting the phase and 
amplitude of the mode branches one at a time. A standard statistical optimization 
technique is used. We discuss in detail the apriori information that is added to  stabilize 
the retrieval procedure. In  addition, we present a technique to estimate the reliability of 
individual phase and amplitude measurements. The retrieval method and the technique 
to estimate reliabilities can be used together in a highly automated way, making the 
methods especially suited for studying the large volume of digital data now available. 

We include several applications to synthetic and recorded waveforms. We will discuss 
in detail an experiment with 90 waveforms that have travelled along very similar paths 
from Vanuatu to California. For this path, we will present average overtone phase 
velocities and an  average 1-D velocity structure. 

Key words: seismic tomography, seismology, surface waves, waveform analysis. 

1 INTRODUCTION 

Since the early 1980s, global 3-D models of the mantle have 
been constructed using a variety of data and modelling tech- 
niques (e.g. Masters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1982; Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski 
1984, 1986, 1989; Dziewonski 1984; Giardini, Li & Woodhouse 
1987; Tanimoto 1990; Su, Woodward & Dziewonski 1994; 
Woodhouse & Trampert 1997). As is the case in any modelling 
exercise, resolution is limited, but it improves as further data 
sets are incorporated. Naturally, it is desirable to achieve the 
greatest possible resolution, especially since there are important 
geodynamical questions which can only be addressed using 
more detailed models. At present, for example, global models 
are insufficiently well resolved to allow firm conclusions to be 
drawn concerning the scale lengths and correlation lengths 
associated with mantle convention in the transition zone, 
an issue of great significance in addressing the issue of 
‘whole-mantle’ or ‘layered-mantle’ flow (Jordan et al. 1993). 

A valuable potential source of information is provided by 
surface-wave overtone dispersion. Since overtones, at a given 
period, sample deep structure that is poorly sampled by 
the fundamental mode in retrievable frequency ranges, the 
incorporation of higher-mode dispersion data greatly improves 
the depth resolution (Der, Masse & Landisman 1970) and 
uniqueness (van Heijst, Snieder & Nowack 1994) of earth 
models. Overtones can also provide further information on the 

shallow structure. Since a long-period body-wave seismogram 
can be thought of as a superposition of surface-wave overtones, 
information on overtone dispersion is already incorporated 
into global models using long-period body waveforms as part 
of the data (Woodhouse & Dziewonski 1984, 1986, 1989; 
Tanimoto 1990; Su et al. 1994). However, the modelling of 
waveforms has many inherent difficulties, and the detailed 
dispersion properties of overtones have not yet been measured. 

In particular, in modelling waveforms, the strength with 
which a particular overtone enters into the inversion is 
governed solely by its excitation. Much more refined infor- 
mation could be extracted if it were possible to map the 
dispersion characteristics of the individual overtone branches. 
A further reason for wishing to measure overtone dispersion 
directly is that it would provide a much simpler constraint on 
mantle models than waveforms, which depend upon structure 
in a highly non-linear way. Also, there are difficulties in 
correctly calculating body waveforms in a 3-D earth model. 
The ‘path integral approximation’ (Woodhouse & Dziewonski 
1984), which has been used in many studies, is known to 
be a relatively poor approximation for body-wave phases 
(Woodhouse 1983; Li & Tanimoto 1993) but probably remains 
a good approximation for the low overtone branches. This last 
issue has recently been addressed by incorporating mode 
coupling (Li & Romanowicz 1995) and, in a regional context, 
by Marquering & Snieder (1995). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Unfortunately, measuring higher-mode phase or group 
velocities is far from easy. Whereas the fundamental mode 
branch is often well separated from the other modes in the time 
domain, the higher modes interfere considerably. Overtones 
also overlap in the frequency domain, making the independent 
measurement of their properties difficult. Overtone branches 
can be separated in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( o , k )  domain using an array of 
seismometers, as was first shown by Nolet (1975, 1977) and 
later applied by several others (e.g. Mitchell 1980; Okal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Jo 
1987; Cara 1978). Using array techniques, it is possible to 
measure the average fundamental- and higher-mode phase 
velocities under the array, which can be inverted for structure 
in a straightforward way. Clearly, the use of this method is 
restricted to areas where dense arrays of seismographs are 
available, and cannot be used in global modelling. 

Overtone information has been included in global models 
using full waveform inversion techniques. Full waveform 
methods aim to fit synthetic waveforms to recorded wave- 
forms, including the overtones, to constrain the average 
structure between a source and a receiver. In the alternative 
approach of Lerner Lam & Jordan (1983, 1987), which was 
adopted and extended by Cara & Leveque (1987), path- 
averaged structure is not directly constrained by the full 
waveform. Instead, a path-averaged structure is determined 
from branch cross-correlation functions (bccfs) for several 
mode branches. In essence, the cross-correlations with syn- 
thetic mode branches are used to increase the sensitivity to the 
overtone information. 

Recently, powerful highly automated procedures to retrieve 
fundamental-mode phase velocities have made it possible 
to construct high-resolution global fundamental-mode phase- 
velocity maps in a wide frequency band (Trampert & 
Woodhouse 1995). Inverting phase-velocity maps for upper- 
mantle structure is straightforward, and fundamental-mode 
maps have proved to be powerful constraints on the structure 
of the top of the upper mantle. The automated methods rely on 
making very large numbers of independent phase measure- 
ments (some 60 000 in Trampert & Woodhouse 1996) that are 
not constrained by path-averaged structures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the measure- 
ments are not constrained to correspond to path-averaged 
structures, they can be interpreted not only in terms of local 
phase-velocity perturbations, but potentially also in terms of, 
for instance, ray bending, physical dispersion, source charac- 
teristics and anisotropy. Ideally, we would like to be able to 
make similar measurements for surface-wave overtones. 

So far, only one method has been proposed to measure path- 
averaged dispersion of surface-wave overtones (Stutzmann & 
Montagner 1993, 1994). In this method, several sources at 
different depths in a small area are used to constrain overtone 
phase-velocity perturbations. The requirement of several 
sources at different depths greatly reduces the number of 
available paths. This leads to poor lateral resolution of the 
phase-velocity maps and the derived 3-D earth models. 

In this paper, we introduce a new mode-branch stripping 
method that uses Lerner Lam & Jordan's bccfs. The method 
enables us to measure path-averaged phase velocities and 
amplitude perturbations for the fundamental mode and several 
overtones independently. An essential element of our technique 
is that we are able to assess the quality of the measurements in a 
quantitative way, which enables us to reject or to weight each 
measurement accordingly. This makes a high degree of auto- 
mation possible and allows convenient study of the large 

volume of digital data now available. As will be shown in a 
subsequent contribution, this method can be used to construct 
high-resolution overtone phase-velocity maps. 

2 PRELIMINARIES 

A seismogram in a spherical reference model, in our case 
PREM (Dziewonski & Anderson 198 l), corrected for ellipticity 
and rotation, can be represented as follows: 

where the sum is over all mukiplets k,  Ak representing the 
source- and receiver-dependent amplitudes and wk the complex 
eigenfrequency of a multiplet. 

We approximate a seismogram zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(t) in the heterogeneous 
earth as follows: 

where ak and 6mk are real quantities, ak accounting for 
amplitude and 6wk for phase perturbations of each multiplet. 

Usually the multiplets are thought of in terms of mode 
branches. The mode branch number n is defined as the overtone 
number at a fixed angular order. We write: 

(3) 

where n is the overtone number, starting at 0 for the 
fundamental mode, and I is the angular order. Index q stands 
for toroidal or spheroidal. Henceforth, we omit the index q and 
assume either toroidals or spheroidals. To facilitate their 
measurement, we approximate a; and 6w; as smooth functions 
of I ,  and therefore also w, expanded in cubic splines, such that 

6w;=6wn(w;) and 6wn(w)= C ,xfDl(w), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =  1,M 

where D,(w) are the cardinal or base functions for cubic spline 
interpolation (e.g. Nonweiler 1984) corresponding to the nodes 
of the parametrization, Wi.  M is the number of nodes and basis 
functions and and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl are the coefficients we seek to retrieve 
from a seismogram. 

The physical justification for assuming smoothly varying 
phase and amplitude perturbations is that within the same 
surface-wave overtone branch, multiplets of neighbouring 
angular order have only slightly different depth-dependent 
eigenfunctions and therefore have similar sensitivities to 
heterogeneous structure. For spheroidal modes, the surface- 
wave overtone branches are intersected by Stonely wave and 
core-mode branches. We omit these branches from the over- 
tone numbering scheme, so that constant n corresponds to a 
smooth overtone branch in which neighbouring modes have 
similar physical characteristics (e.g. Okal 1978). We thus 
represent the relevant part of the seismogram as follows: 

The expectation that a surface-wave seismogram in a 3-D 
model can be described in terms of smoothly varying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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amplitude and phase functions is a consequence of surface- 
wave ray theory (see e.g. Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1974; Tromp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dahlen 
1992a,b). Although such theories are valid only for the case in 
which the scale lengths associated with heterogeneity are large 
compared to the wavelength of the surface wave, the spectrum 
of heterogeneity in the Earth seems to be such that surface- 
wave ray theory remains a good approximation even for long- 
period surface waves, to which it has been extensively applied 
(see Zhang & Lay 1996 and references therein). Here, we 
assume surface-wave ray theory to be applicable for the 
surface-wave overtones as well as for the fundamental mode. 

The mode branch seismogram, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,(t), will be defined as the 
contribution to (6) corresponding to a particular spheroidal or 
toroidal branch. We have 

and the complete seismogram can be represented as a sum over 
overtone branches: 

n 

Finally, we introduce a reduced seismogram S-P+.(t): 

(9) 

which is simply the sum of all branches except zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp q  . . . . In the 
following, we shall write S(t) for the data seismogram, thought 
of as being a superposition of branch seismograms un(t), given 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3, (6) and (7) and corresponding to certain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx" and y". 

We pose the problem of estimating x" and y" from the data. 
The corresponding estimated values will be denoted by f "  and 
y'" and the corresponding theoretical seismograms by Gn(t), f", 
etc. 

All the above definitions apply to synthetics as well. Note 
that in the rest of this paper, synthetic seismograms and 
corresponding coefficients such as x" and y" will be denoted 
with a tilde, that is G n ( t )  and 2.". 

3 GENERAL OUTLINE OF THE 
RETRIEVAL ALGORITHM 

In this section we give a general outline of how we retrieve 
the phase and amplitude perturbation coefficients and J J ~ ,  

defined above, from a seismogram. We will illustrate the 
essential steps of the technique with an application to a 
real-data seismogram. 

The objective function that we minimize as a function of the 
amplitude and phase coefficients is a normalized version of 
Lerner-Lam & Jordan's bccf O,(T): 

0 4 7 )  = S(t)*i&(t) - S(t)*U,(t), 

or, writing the dependences on phase and amplitude 
perturbations explicitly, 

Un(z)= 0,(7,20.. . .fnmax, yo . .  . ,-",ax) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
=(S(t)-S(t,fO . . .  2 " " m = x , J 7 0 . . .  y'"maX))*U"(t,.f"","), 

where S(t) represents a real seismogram, Gn(t,.2'",y'") a syn- 
thetic mode-branch seismogram as defined in eq. (7) and 

the full synthetic seismogram. The asterisk denotes cross- 
correlation and nmax is the highest overtone number con- 
sidered in the synthetics. The cross-correlation is used to 
enhance the signal-to-noise ratio and the dependence of O,(T) 

for small lag times on the difference between the assumed 
dispersion for mode branch n and the actual dispersion as 
present in the data (Lerner Lam & Jordan 1983). In the method 
of Lerner Lam & Jordan (1983), bccfs for several mode 
branches are used together in one inversion to constrain the 
average structure along the path between source and receiver. 
Here, on the other hand, we consider only one bccf at a time, in 
order to measure the coefficients 2" and y'" for each branch 
independently. 

For these purposes, we would like O,(z) to be solely 
dependent on the differences between the phase and amplitude 
coefficients of branch n in the synthetic and the data. However, 
eq. (11) is clearly dependent on many more coefficients than 
just the amplitude and phase perturbations for mode n. 

Rewriting eq. (11) in terms of reduced seismograms, and sup- 
pressing dependence on the amplitude and phase coefficients, 
we may write: 

0" (7) = (u,( t )  - G"( t))  *Un( t )  + ( S  - "( t )  - s -"( t))*Un( t )  , (12) 

where u,(t) denotes the 'true' component of S(t) corresponding 
to branch n. Expression (12) has two contributing terms: the 
first represents a function that is solely dependent on mode 
branch n, whereas the second describes the interference of 
branch n with all other branches. Ideally we would like the 
objective function to be independent of branches other than n, 

which corresponds to the second term being zero. There are 
three distinct cases where the influence of the second term is 
negligible: 

(1) branch n happens to be dominant in the seismogram, 
u,( t)  >> s -"( t); 

(2) the reduced synthetic and real seismograms are almost 
equal, ~ - " ( t )  - s-"(t> XO; 

(3) for small lag times, if the interference in the time domain 
between S-"(t) and S-"(t) and &(t)  is small. 

From these three conditions it is evident why resolving the 
phase and amplitude perturbation of the fundamental mode 
will generally be possible, as in most seismograms conditions 
(1) and (3) are both satisfied for the fundamental mode, 
especially for shallow sources (strong excitation of the funda- 
mental) and long paths (little interference). For overtones, 
the situation is usually more difficult, as none of the above 
conditions is automatically satisfied. In our method, we seek 
to satisfy conditions (1) and (2) as well as possible by fitting 
branches in order of decreasing power, as will be explained 
below. Furthermore, we use a frequency-stepping procedure, 
solving and extrapolating from low frequencies to pro- 
gressively higher frequencies. Thus, the difference between 
assumed and true dispersion will be small for most frequency 
steps, rendering the inverse problem more linear and the 
term S-"(t) - s-"(t) small. Moreover, the frequency stepping 
usually prevents the phase-perturbation curve from locking 
into the wrong 2n cycle. 

Schematically, our algorithm consists of the following steps. 

(1) To avoid 2x phase jumps, we do not seek to solve the 
phase perturbations of a mode branch in a wide frequency 
range at once, but instead we start to solve for 6w" at low zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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frequencies, where 2n phase-shifts from the reference model 
are not to be expected. Then, using the inherent smoothness 
of the branches, we trace the phase perturbation to higher 
frequencies step by step. We effectively do this by shifting a 
frequency window from lower to higher frequencies, mini- 
mizing eq. (10) within each window and extrapolating the 
results to higher frequencies. This step ensures locking of the 
branch into the correct 2n cycle, provided we can trace it from 
sufficiently low frequencies. 

(2) Within each frequency window, we seek to minimize 
eq. (10) for as many overtones as possible. We start with the 
strongest branch and solve for other branches in order of 
decreasing power. The power of each branch is estimated 
from synthetics. This generally ensures that the larger part of 
O&) can be attributed to the mode branch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn being retrieved, 
provided the stronger branches have been adequately fitted. 

(3) The retrieval procedure for the most powerful branch, p ,  
is carried out only if the maximum amplitude of the synthetic 
mode-branch seismogram exceeds the average amplitude of 
the data seismogram S(t)  by a pre-set threshold value. If this 
threshold is not met, the frequency window is moved to higher 
frequencies, where step (2) and this step are repeated. This 
condition avoids attempts to fit data that are too noisy. 

(4) If condition (3) is met, O,(T) is calculated and minimized 
for phase in the time domain using a statistical inversion 
technique. 

(5) If step (4) converges, the amplitude perturbations are 
determined. This is a straightforward linear problem, as the 
phase has already been fitted. 

(6) If the minimization of phase and amplitude has been 
accomplished for the most powerful mode branch, p ,  we sub- 
tract the synthetic mode-branch seismogram U p ( t )  from the 
data S(t) and omit it from the 'full' synthetic S(t) in eq. (10). 
This renders the reduced synthetic seismogram S-P(t) and an 
approximate reduced data seismogram % P ( t ) .  

(7) Next, the maximum amplitude of the next strongest 
mode branch, q, is compared as in (3) to the average amplitude 
of the reduced data seismogram, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS-P(t). If the branch is strong 
enough compared to the reduced seismogram, it is likely that 
the previously considered branch has been fitted correctly and 
that the remaining reduced seismogram is clean enough to 
measure the phase and amplitude of this next most powerful 
branch. 

(8) If condition (7) is met, a new objective function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,(z), is 
calculated for branch q using the reduced seismograms. 
Omitting the obvious dependence on other branches, we write: 

which should be predominantly dependent on the amplitude 
and phase perturbations of branch q. 

(9) Now, Oq(7) is minimized for the phase and amplitude 
of branch q, following the same steps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) and (5). After con- 
vergence, the resulting mode branch seismogram is subtracted 
from S-p(t) to give S-Pq(t) and omitted from $ - P ( t )  to give 
%P4( t ) .  The whole process is repeated for the most powerful 
branch remaining, unless condition (7) can no longer be 
satisfied. 

(10) If the threshold value in (7) is not reached, the mini- 
mization attempts within the current frequency window are 
abandoned. We then use the intrinsic smoothness of the phase 

and amplitude perturbations to extrapolate the values of Z(w) 
and 6w"(w) to higher frequencies. After this, the frequency 
window is shifted up to higher frequencies and the whole 
process ( 2 )  to (10) is repeated. 

For both amplitudes and phase, the minimization of eq. (10) 
is carried out within a frequency-dependent lag-time window. 
This accounts for the fact that the cross-correlation at low 
frequencies gives rise to a broader signal in the lag-time 
domain than at high frequencies. The technique, as formulated, 
does not allow for the mode-branch seismograms to contain 
more than a single group arrival (e.g. R1 or R2). Windowing 
in the time domain is carried out in order to minimize 
contamination from other wave groups. 

3.1 An example 

The basics steps of the algorithm are most easily understood 
from an example. In Fig. l(a) we show a vertical-component 
data trace together with the corresponding synthetic calculated 
for PREM. The event, M6.2 at 390 km depth in the Fiji 
region (event 071192A in the Harvard CMT catalogue), was 
registered at station HRV (Harvard). To calculate the syn- 
thetics, we use Harvard CMT solutions, which have proven 
to be sufficiently reliable in fundamental-mode studies 
(Trampert & Woodhouse 1995). We have convolved the syn- 
thetics with the instrument response to allow a comparison of 
data and synthetics. A low-pass filter with a cut-off period of 
approximately 60 s used. 

In Fig. l(b) we show the data together with the synthetics 
after adjusting the phase and amplitude of the lowest eight 
Rayleigh branches in specific frequency ranges using the mode- 
branch stripping technique. The agreement between data and 
synthetics is clearly very good, which means that we have found 
a combination of amplitude and phase perturbations for several 
mode branches that explains the data very well. Whether this 
is the correct and unique solution is an essential question, which 
is very difficult to answer. We will address this question using 
tests on synthetics and data in Sections 6.1, 6.2 and 7. 

In Fig. 2 we show some of the steps that lead to the final 
waveform fit. The most important steps, cross-correlation => 

inversion - subtraction, are shown for three different mode 
branches in one frequency window. In this specific window, 
all traces are bandpass filtered around approximately 110 s. 
Traces are arranged in groups of three seismograms, (data, full 
synthetic and mode-branch synthetic) at the right and two 
corresponding cross-correlations (data * branch synthetic 
and synthetic * branch synthetic, where * denotes cross- 
correlation) at the left. All traces are scaled with respect to 
their maximum amplitude. 

The very top trace in the figure is the real data S(t)  and 
the second trace is $t). The third trace is the mode-branch 
seismogram for the strongest branch in this window, the 
fundamental mode, iio(t). Both synthetic traces are the traces 
before inversion, but after extrapolation of the phase and 
amplitude from lower frequencies. The two cross-correlations 
to the left of the arrow 'cross-correlation' are S(t)*iro(t) 
and below it S(t)*iio(t). In the inversion process (steps 4 and 
5 in the previous section) the difference between these two 
cross-correlations is minimized. The cross-correlations after 
inversion are shown below the arrow 'inversion' . The data and 
the resulting full synthetic and mode-branch seismograms are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I I 

1500 2000 2500 3000 3500 4000 4500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T(s)  

071 192A HRV depth= 393.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

1500 2000 2500 3000 3500 4000 4500 
T(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1. (a) Recording (solid line) at station HRV of surface waves excited by an event in the Fiji region. The corresponding synthetic waveform 
(dotted line) is calculated for PREM using the Harvard CMT source mechanism. The waveforms are both low-pass filtered, cut-off at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT=60 s. 
(b) Same data trace (solid line). The synthetic (dotted line) is obtained after adjusting the phase and amplitude for several mode branches. 

plotted to the right of the arrow ‘result’, in the same order as 
above. The next step after inversion is subtraction: U g ( f )  is 
subtracted from the data and omitted from the synthetic to give 
(an approximation to) S-O(t) and S-O(t), which are the two 
first traces below the arrow ‘subtraction’. These two reduced 
seismograms are cross-correlated (steps 7 and 8) with the next 
most powerful branch, Gl( f ) ,  plotted below the two reduced 
seismograms. For this branch the inversion and subtraction are 
repeated to give S-O’(t) and S-O’(t). Finally, the phase and 
amplitude of the next, second overtone branch are optimized, 
as shown in the bottom 10 traces. As the fourth most powerful 
branch did not pass the condition of step (7) in the previous 
section, the procedure was terminated in this frequency 
window. 

In this example, the frequency stepping works well. The 
phases of the fundamental mode and the first overtone are 
already well matched before inversion, because for both these 
branches, the phase and amplitude have been extrapolated 
from lower frequencies. However, for the second overtone, this 
is the first window that the branch is solved for and clearly the 
phase difference before inversion is much larger for this branch 
than for the other two. 

The reduced data traces look very clean after subtraction of 
the fundamental mode and first overtone and are very similar 
to the synthetic reduced seismograms. Moreover, the bccfs for 
all three branches are very clean, suggesting that the objective 
functions are predominantly dependent on the target mode 
branch. Finally, note from the top trace how weak the second 
overtone signal is compared to the fundamental mode and how 
much the branch stripping enhances the dependence of the 
objective function for this mode branch. 

The procedure outlined above generally ensures the 
locking of phase in the correct cycle. Moreover, it reduces the, 

normally very strong, non-linearity of the inversion at higher 
frequencies, as the frequency stepping and extrapolation result 
in good initial estimates of the phase perturbations. 

4 DETAILED DESCRIPTION OF THE 
RETRIEVAL ALGORITHM 

In this section, we describe several aspects of the retrieval 
algorithm in more detail: frequency stepping, resolving phase 
perturbations, resolving amplitudes, the parametrization, the 
apriori information that is added and smoothness constraints. 

4.1 Frequency stepping and extrapolation 

An essential part of the inversion algorithm is the ‘frequency 
stepping’, as mentioned under (1) in Section 3.1. The window 
that is moved through the frequency domain is defined in terms 
of the nodes of the parametrization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWi, the window length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
and two cosine tapers. The phase and amplitude perturbations 
of all branches are parametrized using the same nodes Wi. 
Denoting a window with a lower frequency limit by W/(W), 
we write: 

W < O /  

l 0  0 2 W l f W  
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214 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvan Heijst and J. Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inversion s 

inversion + 

inversion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

subtraction s 

I 
subtraction 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchematic illustration of the most important steps of the retrieval algorithm. See text for details. 

The 'next' frequency window in the stepping procedure 
is simply given by W / + ~ ( W ) ,  which is the whole window shifted 
up one node in the frequency domain. By moving the 
window up only one node for each step, the perturbations at 
most nodes will be considered several times in overlapping 
frequency windows, allowing a rough determination of the 

solved for. For the phase-velocity perturbations, this becomes, 
explicitly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q=$+w l + w + l < i < M ,  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM is the number of nodes used in the parametrization. 

(15) 

perturbation in the first step and refinement of the measure- 
ment in subsequent steps. Having found phase-velocity and 

4.2 Retrieval of phase-velocity perturbations 

amplitude perturbations, the results are extrapolated to Within each of the frequency windows defined above, we 
higher frequencies. Extrapolating from window Wl(w) to the use a standard statistical optimization technique (Tarantola 
next window W/+,(w), the phase and amplitude perturbations & Valette 1982a,b) to retrieve the phase perturbations. In 
at all higher-frequency nodes are set to be equal to the per- this section, we will refer to the perturbations for a given 
turbations at the highest-frequency node that has already been mode branch, .?", as the 'model'. We define the theoretical 
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Measuring surface-wave overtone phase velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA215 

relationship between data and model as a normalized version 
of the bccf eq. (10). Omitting the dependence on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI" and 
branches other than n, we write: 

where the primes in Y(t) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(t) stand for either full seismo- 
grams or reduced seismograms, which are treated in exactly the 
same way, as discussed in Sections 3 and 3.1. In the lowest- 
frequency window that perturbations for a mode branch 
are solved for, the symbol Po corresponds to the spherical 
reference model. In all the following frequency steps for the 
same branch, Po represents the trial solution as obtained from 
extrapolation. 

After applying a time window in the lag-time domain, we can 
represent the digitized function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2") as a finite-dimensional 
vector y ( f  "). Suppressing the superscript for the branch 
number, n, we define the a priori probability density function 
(pdf) for the 'model' as follows: 

$,,~,,,(P)E exp - -((P -z~)~c; '(P - P ~ ) + I ~ ~ H P )  , 

(17) 

( :  1 
where C, stands for the a priori covariance matrix for the 
model P (see Section 4.3). The factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl.fTHZ (Section 4.4) 
represents a non-dimensional smoothness constraint, which 
stabilizes the retrieval process in the presence of nodes in the 
frequency spectrum (Trampert & Woodhouse 1995). The 
apriori distribution for the theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$&,s and the data is given by 

where Cd represents the covariance matrix of the data. 
Combining eqs (17) and (18) we can define the aposteriori pdf 

hpost =exp - -WP) , (19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@(a) = yT(I)C,- Iy(P) + (2 - Po)TC,-I(2 -20) + I f  T H J  . 

( i  1 
where 

(20) 

The solution to the inverse problem is given by the maximum of 
which is equivalent to a minimum of @(x). We minimize 

@(a) using an iterative scheme: 

2 k + 1  = f k f ( G T C T I G + C i l  +IH)- ' (GTC; l (d- -y( f ) )  

- c; ' (i k -2 0) -1Hf k )  , (21) 

where G is the matrix containing the partial derivatives of y 
with respect to 2. This scheme is iterated until convergence 
is achieved. Note that we require the total perturbation 
with respect to the spherical reference model, 2, to be smooth, 
and not the adjustment within each frequency window, 

We approximate the aposteriori covariance matrix C, by 
f k - 2 0 .  

c;' = G~c,-  G +  c;' , (22) 

which will be used to stabilize the retrieval of phase per- 
turbations at extrapolated frequencies, as will be demonstrated 
in the next section. 

4.3 A priori information 

The inverse problem to retrieve phase perturbations from 
a seismogram, as described above, is strongly non-linear. 
However, the non-linear optimization scheme eq. (21) is 
stabilized by adding a priori information. Unfortunately, 
little is known about the size and character of overtone phase- 
velocity perturbations on a global scale, and to avoid biasing 
results, apriori information has to be included in a careful way. 
In eq. (21), a priori information is added through the a priori 
covariance matrix, C,. This matrix should ideally represent 
the distribution of average phase velocities, for a given mode 
branch, that would be obtained when sampling the Earth along 
random paths. We choose to use the notion of how anomalous 
structure is mapped into phase velocities to estimate C,. 

We denote the spherical reference earth model with 
respect to a specific parametrization by a vector ma. Using 
partial derivatives of the phase-velocity perturbations for 
mode branch n with respect to the model parameters, we can 
approximate to first order the eigenfrequency perturbation due 
to an average model perturbation along the path 6m: 

where j is an index over the model parametrization and I 
represents a specific angular order. Using this expression, we 
can approximate the distribution of phase-velocity perturba- 
tions given a distribution of model perturbations. We express 
the phase-velocity perturbation distribution in terms of J ". 
Only evaluating at the nodes and assuming the linearity in 
eq. (23) holds, we write: 

[cov P"] = K"[covGm](K")T , (24) 

where K" represents the matrix containing the KC, as defined in 
eq. (23), at the nodal frequencies. 

In order to carry out this calculation, we divide the 
mantle into some 110 layers with thicknesses of 2540  km. We 
omit density and Q perturbations from 6m in eq. (24) as it 
is likely that P- and S-velocity variations are the strongest 
influences on the phase-velocity perturbations of a mode 
branch. We assume the anomalous structure in each layer 
to be independent of that in other layers and the P and S 
perturbations to be uncorrelated. Furthermore, we assume 
that the global distribution of perturbations can be charac- 
terized by the same standard deviation, a,", at every depth 
level. For [cov dm], only representing P- and S-velocity 
perturbations, we write: 

[cov 6m1 = . (25) 

Combining eqs (24) and (25), and using kernels calculated 
from the spherical model, we can approximate [cov x"]: 

Thus defined, the off-diagonal elements of [covP"] are deter- 
mined solely by the similarity in sampling of heterogeneous 
structure at different frequencies within the same mode 
branch and not by assumed correlations between structure 
perturbations at different depth levels. 

Definition (26) of the covariance matrix [covZn] is used in 
the lowest-frequency window for which it is attempted to fit a 
certain mode branch. After having found the phase-velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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216 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. J. van Heijst and J. Woodhouse 

perturbations in this window, the result is extrapolated to 
higher frequencies, as explained in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.1. In this extra- 
polation step, the a priori information on the phase-velocity 
perturbations is better than that for the first frequency step, as 
one point along the smooth phase-velocity curve has already 
been found. This extra information needs to be quantified and 
included in the apriori covariance matrix. 

After convergence of the iterative retrieval algorithm 
eq. (21), we use the linear approximation to the a posteriori 

covariance matrix eq. (22) to estimate the standard deviations 
for the retrieved phase perturbations. The standard deviations, 
as defined by the trace of C, in eq. (22), are corrected for the 
estimated frequency-dependent number of free parameters in 
the lag-time window, giving standard deviations a: for the 
coefficients q. The standard deviation for the extrapolated 
phase velocity at 6 ~ 1 + ~ + l  is estimated assuming that at the 
group arrival time, the phase at the extrapolated frequency 
is likely to be correct within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE X ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is a specified small 
parameter (see below). Using group velocities as calculated 
from the reference earth model, this defines the a priori 

standard deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc $ + ~ +  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq+,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ I : 

where U"(w) is the group velocity of branch n and A the epi- 
central distance. This estimate, combined with the corrected 
linear estimates from eq. (22), constitutes a complete set of 
a priori variances for the new frequency window. 

To construct the a priori covariance matrix using the 
standard deviations defined above, we need to know how the 
perturbations at different frequencies are correlated. We define 
a correlation matrix V" in terms of the covariance matrix 
[covf"], eq. (26), for mode branch n as calculated from the 
spherical reference model: 

Now, combining the estimated standard deviations with 
the correlation matrix V", the covariance matrix, after 
extrapolation for the window W1+], is given by: 

(30) 

where no contraction over i and j is understood and 
i=  I +  1 ,  I +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw +  1 and j=  l+ 1 ,  I + w +  1 .  This defines the apriori 
information on the phase-velocity perturbations used for the 
extrapolation steps in the iterative retrieval procedure. 

The 'data' covariance matrix Cd in eqs. (18) and (21) is taken 
to be proportional to the identity matrix: 

C" IJ = 1 J vr V '  

C d  = flI1k,xI > (31) 

where ymax is the maximum element of the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, /3 is an 
empirically determined real number and I is the identity matrix. 
The a priori data covariance thus defined is recalculated for 
every iteration in the iterative scheme given by eq. (21). 

4.4 Parametrization and smoothness 

An important aspect of any inverse problem is the para- 
metrization. In this case, we seek to parametrize the phase 

perturbations, as defined by the nodes W i ,  such that the 
expected variability within each branch is approximately 
evenly sampled. In this case, sampling is approximately even 
when the correlations between neighbouring nodes are similar 
at all frequencies. We define the parametrization by 

where T,,, and T,,, are the upper and lower limits of 
the parametrization in the frequency domain, expressed as 
periods, M is the number of nodes and ci is a parameter that is 
adjusted to optimize the parametrization. The optimum ci 

is determined by plotting and comparing the correlation 
matrices, as defined by eq. (28), for different values of ci for 
several mode branches. 

Imposing a smoothness constraint on the measured phase- 
velocity curves, as in eq. (17), implicitly imposes constraints 
on the variability with depth of earth models that are to be 
constructed using these measurements. We seek to minimize 
possible bias in such a model and define the smoothness to 
be non-dimensional with respect to the optimum para- 
metrization. Assuming that the nodes in the frequency space 
are equidistant with respect to a new variable $, which is 
simply linear in the node numbering, the smoothness s of a 
phase-velocity perturbation curve 6w as a function of $ is 
given by 

(33) 

Following Trampert & Woodhouse (1995), we write eq. (33) in 
terms of the model f : 

where 

(35) 

which defines the factor L f T H f  in eq. (21). 

4.5 Retrieving amplitude perturbations 

Having retrieved the phase perturbations for branch n 
within a given frequency window, the algorithm attempts to 
fit the amplitudes as well. This is essential, as we seek to 
remove branch n from the data by fully fitting and then sub- 
tracting the synthetic mode-branch seismogram, as outlined in 
Section 3. 

Combining eqs ( 5 )  and (7) we can write: 

I =  l.M 

where sy(t), which we will call a node seismogram, is simply a 
waveform basis function with respect to the amplitude para- 
metrization. We denote the estimate (from extrapolation in all 
windows, except for the lowest-frequency window) for j f  
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Measuring surface-wave overtone phase velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA217 

before inversion for amplitudes by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: and define 

(37) 

The objective function we now seek to minimize for window 
Wl(w) in terms of the amplitude adjustments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl is given by 

where the prime denotes a seismogram or a reduced seismo- 
gram, as in eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14). We use the algorithm eq. (21) to minimize 
eq. (38) as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9". In this case, eq. (21) does not have 
to be iterated, because eq. (38) is simply linear in g". 

To stabilize the retrieval algorithm, a priori information 
needs to be added, as discussed above. However, very little is 
known about the size and character of overtone amplitude 
perturbations and no simple approximate relation between 
amplitude perturbations and heterogeneous structure can be 
used to estimate the distribution of amplitude perturbations. 
Therefore, we choose to add empirical a priori information 
which is very similar to that added for the retrieval of the phase: 
the smoothness constraint in eq. (21) is omitted ( A = O )  and we 
assume the amplitude perturbations of multiplets to be cor- 
related in the same way as the phase perturbations. We define 
the initial a priori amplitude covariance by 

(39) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoo is chosen to optimally fit some trial data and V' is the 
correlation matrix as defined by eq. (28). Extrapolation of the 
a priori covariance is identical to that followed for phase 
velocities (eqs 27-30), except for the definition of (T;+,+,. Here 
we define 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, is empirically chosen. 

5 RELIABILITY OF MEASUREMENTS 

An essential part of making measurements is assessing 
their reliability. In the case of waveform inversions, this is 
very difficult, in part because of the strong non-linearity 
of the inverse problem. In most surface-wave studies to 
date, measurements are either regarded as reliable and 
further used to constrain earth models, or deemed unreliable 
and discarded. When measuring properties of several mode 
branches independently from a single seismogram, there is the 
additional problem that after having completed the fitting 
procedure, we can only compare the waveform fit of the whole 
synthetic seismogram with the real data, as it is obviously 
impossible to determine the waveform fit of the individual 
mode-branch seismograms. Furthermore, the linear estimates 
from the a posteriori covariance matrix eq. (22 )  are useful in 
regularizing the inversion, but they are of limited use in 
establishing actual measurement errors. 

Therefore, we have developed a method that helps to assess 
the reliability of the independent mode-branch measurements. 
The method is not theoretically rigorous, and absolute errors 
for the measurements cannot be determined. However, it 
defines a quantitative measure of reliability for each amplitude 
and phase measurement that can be used either to reject or to 
weight data. 

First, we define the relative power, p", of a synthetic mode 
branch by 

p" is a measure of how much a synthetic mode-branch 
seismogram contributes to the total synthetic seismogram. 
It varies between 0 (no contribution) and 1 (only branch n 

contributes). We also define 

which is simply a measure of how similar the full synthetic 
and the recorded waveforms are. Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, we define a new 
quantity f :  

(43) 

where f varies between 0 (no fit) and 1 (perfect fit). In all 
examples shown in this paper, p has been set to 11. This implies 
that a synthetic waveform that results in a variance reduction 
of 80 per cent is only about half as well 'fit', according to measure 
f ,  as a waveform that renders 100 per cent variance reduction. 

The relative strength of a mode branch with respect to 
all other branches is strongly dependent on the group velocity 
and frequency windows considered. To account for this 
dependence, both p" and f are bandpass filtered around 
the nodal frequencies 0, to give pi,, and f & ,  and then calculated 
in N adjacent group-velocity windows. This defines two vectors, 
&, and f where each element of the vectors corresponds 
to a specific group-velocity window. Using these two vectors, 
we define the reliability i$, of the amplitude and phase 
measurements of mode branch n at nodal frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, by 

Doing this for all nodal frequencies, we can write: 

(44) 

(45) 

where i is the index of the frequency nodes and j the time- 
interval index. Pi is a matrix with the vectorsp", as rows and Fv 
is a matrix with the vectors f Lu, as rows. Eq. (45) is visualized in 
Fig. 3 for the first overtone as retrieved in the example shown 
in Section 3.2. The reliability Y E , ,  as defined above, combines 
information about how much a synthetic mode branch 
actually contributes to the seismogram in the (w, t )  domain 
with how well the full data seismogram is fitted by a sum of 
all synthetic overtones in the same domain. This reliability 
estimate proves to be a very useful tool, as will be shown in the 
next section. 

6 TESTS A N D  RESULTS 

We have tested our algorithm extensively using a large number 
of synthetic and real data traces. In this section we present 
some representative results. 

6.1 Synthetic tests 

Synthetic tests are very useful to investigate to what extent 
phase and amplitude properties for several overtones can be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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retrieved independently from a single seismogram. Although 
several assumptions, such as the absence of noise and the 
applicability of eq. (2), are made, synthetic tests give an 
indication of how the method will perform using real data. 
Furthermore, the tests shed light on the degree of uniqueness 
with which overtone properties can be retrieved. 

In the example presented here, we use a synthetic vertical- 
component Rayleigh ‘data’ seismogram using input phase per- 
turbations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxf,, as calculated for the upper-mantle model M84C 
(Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dziewonski 1984). Random amplitude per- 
turbations are also incorporated. The path and source used are 
the same as in the example in Section 3.1 and the ‘data’ seismo- 
gram is calculated using eq. (6) The synthetic seismogram thus 
constructed is used as input for the retrieval algorithm. 

In this specific example, we consider only the eight lowest 
Rayleigh branches in the waveform fitting. The phase and 
amplitude perturbations are parametrized at 29 nodes between 
Tm,,= 1000 s and Tmi,=30 s (eq. 32). The optimum para- 
metrization parameter c( in eq. (32) is set to 0.0017, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAom = 1 per 
cent (eq. 25) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe =  1 / 10 (eq. 27). The smoothness parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 (eqs 17, 20, etc.) is set to %lo5. In Fig. 4(a) we show the 
waveform as predicted by PREM and the ‘data’ (both low-pass 
filtered, cut-off at T = 40 s). Clearly, there are significant phase 
and amplitude differences, especially in the arrivals just before 
the fundamental mode. However, after adjusting the phase and 
the amplitude of individual mode branches following the pro- 
cedure outlined above, the agreement between synthetic and 
data is almost perfect, as shown in Fig. 4(b). 

Having achieved agreement between the two waveforms, the 
question arises whether the underlying phase and amplitude 
perturbations have been retrieved correctly. In Fig. 5 we show 
the input and retrieved phase and amplitude perturbations for 

the fundamental mode, the second overtone and the fourth 
overtone, together with the corresponding reliability as a 
function of frequency as defined by eq. (45). The figure shows 
that, in specific frequency ranges, the phase and amplitude 
perturbations are retrieved correctly, whereas they are hardly 
retrieved in other ranges. The fact that phase and amplitude 
only have to be adjusted in specific frequency ranges to achieve 
good agreement between ‘data’ and synthetic demonstrates 
that mode branches only contribute significantly to the wave- 
form in limited frequency bands. Importantly, the frequency 
bands of high reliability coincide with the frequencies for which 
the underlying perturbations are retrieved within acceptable 
errors, demonstrating the utility of the reliability estimates. 

We have performed a great number of similar synthetic 
tests for both Rayleigh and Love waves with different 
smoothness requirements, different parametrizations, etc. In 
frequency bands where the reliability exceeds approximately 1 
for overtones and 5 for the fundamental mode, perturbations 
are generally retrieved within small error bounds, largely 
independent of the a priori information used. This means that 
under specific assumptions, such as the existence of only fairly 
small and smooth (as a function of frequency) perturbations, 
probably only one set of phase and amplitude adjustments can 
be found in high-reliability frequency bands that explains the 
data. In that case, ‘reliably’ measured values seem likely to 
represent the true underlying perturbations. 

6.2 Application to real data: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori information 

In this section, we demonstrate the stability of the retrieval 
process with respect to the added a priori information in an 
application to real data. We have applied the algorithm to the 

-1 ’ I I I I I 

1500 2000 2500 3000 3500 4000 4500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lo4 

.I.- 

-1 ‘ I 
I 1 

1500 2000 2500 3000 3500 4000 4500 
T(s) 

Figure 4. (a) Synthetic waveform ‘data’ that is used as input for our algorithm (dotted line). Source and path are the same as in the previous 
examples. Phase and amplitude perturbations are added as explained in the text. The solid line represents the starting waveform as calculated for 
the spherical reference model, PREM. (b) Final waveform fit obtained after adjusting the phase and amplitude of eight mode branches in specific 
frequency ranges. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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0.0 

4thovertone - 4.2 E 
3 4 . 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.6 

3 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.5 

2.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s 1.5 

1 .o 

0.5 

8.0 - 

6.0 - 

4.0 - 

2 0  - 

... I 1 

0.02 0.03 0.00 0.01 
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Figure 5.  Input and retrieved phase-velocity and amplitude perturbations underlying the waveforms in Fig. 4(b). Results are shown for three mode 
branches (fundamental, second overtone, fourth overtone). The corresponding reliability is also shown. Note the good agreement between input and 
retrieved perturbations in frequency ranges where the reliability is high 

same real seismogram as in Section 3.1, using a great variety 
of settings for the parameters that determine the a priori 
information. Ideally, we want the measurements to be com- 
pletely independent of the a priori information and therefore 
completely determined by the data. Of all the different types 
of a priori information applied, we present results for six 
representative cases, which are listed in Table 1. 

After adjusting the phase and the amplitudes, the waveform 
fits for all but case 6 are good and comparable to the fit shown in 

Table 1. Six combinations of parameters used in the algorithm as 
applied to the recorded waveform of Fig. I .  The numbers in brackets 
correspond to the equations where each parameter is introduced. The 
first overtone amplitude and phase-velocity perturbations retrieved for 
these cases are shown in Fig. 6 .  

run nr' 1 om (%) (25) 1 6  (27) I (T, (39) I (40) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX (17) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw (14) 
1 I .4  I .1 I .1 I 0 1  5 

Fig. 1 .  In Fig. 6 the phase and amplitude measurements and the 
corresponding reliability estimate are shown for all six cases for 
the first overtone. At frequencies lower than 0.005 Hz, the 
phase and amplitude measurements are clearly not well con- 
strained and are very sensitive to the regularization imposed, 
which is due to the fact that the signal-to-noise ratio is low at 
these long periods. In the frequency range 0.005-0.017 Hz, both 
the phase and the amplitude perturbations are much better 
constrained and largely independent of the apriori information 
added. As in the synthetic case, this range coincides very well 
with higher values of the reliability parameter. Note, however, 
that the phase measurement for case 6 deviates significantly 
from the other measurements for frequencies higher than 
0.012 Hz. This deviation is not warranted by the data as the 
waveform fit for case 6 is worse than that for the other five cases, 
which is well reflected in the lower reliability for case 6. For all 
cases, at frequencies higher than 0.017 Hz the contribution of 
the first overtone to the waveform is small and the phase and the 
amplitude of the first overtone become poorly constrained, 
which is also clearly shown by the reliability parameter. Similar 
observations can be made about the relation between the 
amplitude measurements and the reliability estimate. 

In this experiment and many others for both toroidals 
and spheroidals, the retrieved perturbations are largely 
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Measuring surface-wave overtone phase velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA221 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1  

Harv. CMT cat. 
030396D 
030596B 
0 3 0 9 9 6 C 
031696C 

Amplitude perturbation 
3 . 0 ,  I I , 

longitude latitude depth (km) MO (dyne-cm) strike,dip,rake 
-87.31 11.76 38.9 1.27 95,120,63 
122.08 23.94 24.0 3.59 ,1025 134,70,75 
148.00 43.56 20.0 1.55 . lo25 112,33,77 
139.12 29.12 477.9 10.53 .loz5 -163,322,84 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-1.0 I I , 1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.00 0.01 0.02 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.03 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f (fi) 

Reliability 
8.0 I , I I -:i 2.0 0.0 

0.00 0.01 0.02 0.03 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
f (&) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Phase-velocity and amplitude perturbations and reliability for the first overtone as determined for the six cases listed in Table 1 from the 
seismogram in Fig. 1. See text for details. 

independent of the a priori information in high-reliability 
frequency ranges. This shows that the measurements are 
constrained by the data and not by a priori information. 

6.3 

An important question that arises when using our overtone 
phase-velocity perturbation measurement technique is whether 
the retrieved absolute phase velocities are independent of the 
starting model that is used. To investigate whether this is the 
case, we apply our technique for a range of starting models to 
data (Fig. 7, 205 paths) recorded for four randomly chosen 
earthquakes (Table 2) .  To test the stability of the method with 
respect to the starting model, we use, apart from PREM, four 

Application to real data: starting models 

Table 2. Source parameters for the four sources used in Section 6.3. 

different 3-D starting models that are derived from a realistic 
global 3-D model, R3d (Woodhouse 1993). For each path, we 
use the eigenfrequencies that are perturbed according to the 
average structure in the 3-D starting model along that path as 
values for fi& in eq. (2). To mimic the use of starting models 
ranging from very good to very bad, we use as starting models 
the 3-D model itself (+ 1 case), half the heterogeneity of the 
starting model (+ 1/2 case), PREM, minus half the hetero- 
geneity of the 3-D model (- 1/2 case) and minus one times the 
heterogeneity of the 3-D model ( -  1 case). These five different 
starting models are intended to cover the widest possible range 
of starting models. In each case the relative measurements are 
converted to absolute measurements by adding the model 
perturbation to the relative perturbation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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222 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. van Heijst and J. Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe 205 great-circle paths used for the experiment with different starting models described in Section 6.3. 

In Fig. 8 we compare the retrieved absolute phase velocities 
(expressed in terms of percentage perturbations relative to 
PREM) for three representative modes: the first overtone at 
100 s; the second overtone at 56 s; and the fourth overtone at 
47 s. Importantly, we plot only measurements with a reliability 
higher than 0.5 and for epicentral distances between 50" and 
160". In Fig. 8 all eigenfrequencies retrieved using the four 
starting models based on R3d are plotted on the y-axis against 
those retrieved using PREM as a starting model on the 
x-axis. Although some scatter can be observed, especially for 
the shorter-period high overtones, the same absolute phase 
velocities are retrieved to very good approximation, even for 
the worst case, the -1 starting model. The scatter falls well 
within reasonable observational errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(< f0 .5  per cent). The 
outliers that are observed are probably associated with 2.n 
phase shifts. 

To conclude, this experiment demonstrates the stability of 
the measurement process with respect to the starting model at 
moderately high reliabilities. As for the previous tests, this 
demonstrates that our measurements are constrained by data 
properties rather than anything else. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 SIMILAR PATHS 

As deviations from the spherical structure are relatively small 
in the Earth, one expects average phase-velocity perturbations 

to be similar for similar paths. Therefore, another way to test 
whether our algorithm is capable of retrieving the underlying 
phase-velocity perturbations is to apply it to a set of waveforms 
that have travelled along very similar paths. 

In this example, we apply the algorithm to 90 vertical- 
component traces recorded in California. We have selected 
all 14 events with a moment larger than loz5 that occurred 
between 1990 and May 1995 in the region of Vanuatu and 
Santa Cruz islands. In Table 3 the Harvard CMT catalogue 
numbers and some relevant event parameters are listed. 
In Fig. 9 the corresponding great-circle paths are shown. 
We consider only vertical-component seismograms and we 
set a,=0.5 per cent, ~ = 1 / 4  and i=1x106 (compare with 
Section 6.1) and use PREM as the starting model. All traces are 
resampled at 4 s, detrended and have the mean removed. 
Source parameters are taken from the Harvard CMT 
catalogue. The parametrization of the phase and amplitude 
perturbations is the same as in all previous examples. 

After application of the mode-branch stripping technique, 
the synthetics match the recorded waveforms very well. In 
Fig. 10 waveform fits are shown for three representative events: 
052792A (large and shallow); 0915921 (small and deep); and 
032595C (small and intermediate). Waveform fits are excellent 
for all but a few traces. The traces that are not explained well 
are clearly noisy. In comparison to the clean traces, the noisy 
traces show anomalous amplitudes and waveforms. As there 

Table 3. Source parameters for the 14 sources used in Section 7. 

Harv. CMT cat. I longitude 1 latitude I depth (km) I MO (dyne-cm) 1 strike,dip,rake 
092890B I 166.84 I -13.47 I 185.30 I 1.20 . lo26  I 173-5333 

082294F I 166.46 1 -11.62 I 150.40 I 1.99 .lo25 I 356,47,98 
032595C I 165.91 I -11.05 I 81.50 I 2.05 . lo25  180,57,61 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Measuring surface-wave overtone phase velocities 223 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
First overtone: 100 s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 -2 -1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 2 
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Fourth overtone: 47 s 

-2 -1 0 1 2 
PREM 

-2 -1 0 1 2 
PREM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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PREM 

PREM 

are many free parameters, it is essential that the inverse 
problem is constrained so that bad data cannot be fit; a good fit 
to bad data would almost certainly contribute erroneous phase 
and amplitude measurements. 

Importantly, when we apply the u priori constraints men- 
tioned above to waveforms for random globally distributed 
paths, we do  not find considerably better fits for some regions 
than for others. Waveform fits for good data are usually 
excellent, whatever region of the Earth is sampled. This implies 
that the inverse problem is not overconstrained by unrealistic 
u priori information or  hampered by assumptions inherent in 
the theory. 

In  Fig. 11 we present a scatter plot of reliability against 
retrieved phase velocity for the first Rayleigh-wave overtone at  
100 s. Each circle represents a 'measurement' from one of 
the 90 seismograms. Not all of these circles represent actual 
measurements; most of the values that are clustered around 
the origin are from traces that the first overtone at  this period 
was not inverted for because it did not meet the threshold 
mentioned under (7) in Section 3. In Fig. 11 the scatter in 
the phase-velocity perturbations decreases with increasing 
reliability, with the high-reliability measurements clustering 
around -0.7 per cent. As the measurements are independent, 
this distribution is highly significant, suggesting that we have 
indeed succeeded in measuring the underlying phase-velocity 
perturbations. 

In Fig. 12(a) we show average phase-velocity pertur- 
bations for the fundamental-mode Rayleigh wave and the first 
four overtones as a function of frequency. The averages are 
calculated at  the nodes of the parametrization from all mea- 
surements with a reliability higher than 0.5 for the overtones 
and higher than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 for the fundamental mode. The number of 
measurements (out of a maximum of 90) that passes the 
reliability threshold and that is used to constrain the averages 
is also shown. The error bars, denoting one standard deviation, 
represent the scatter of the measurements at  each node. The 
error bars show that well-constrained averages are obtained 
in a wide frequency range. Note that the phase-velocity per- 
turbations for the overtones are smaller in size than those for 
the fundamental mode. This is not unexpected because the 
strongest heterogeneity in the Earth is found at  shallow depths 
where the fundamental mode has a stronger sensitivity than the 
overtones. 

In Fig. 12(b) similar averages are shown, but for 
reliabilities higher than 2 for overtones and higher than 10 
for the fundamental mode. Although the averages in 12(b) 
are very similar to those in 12(a), the standard deviations are 

~ ~ 

Figure 8. (a) Comparison of absolute phase velocities (reliability 
higher than 0.5) retrieved for the first overtone at 100 s using PREM as 
a starting model (x-axis) with those retrieved using the four other 
starting models described in Section 6.3 (paxis). The graphs corre- 
spond to (clockwise) the + 1/2 R3d case, the + 1 R3d case, the - 1/2 
R3d case and the -1  R3d case. The absolute phase velocities are 
given in per cent perturbation with respect to PREM. Each point 
corresponds to one specific seismogram. The line plotted on the graph 
is the line x=y. Clearly, the retrieved phase absolute phase velocities 
are largely independent of the starting model. (b) Same as (a) but for 
the second overtone at 56 s. (c) Same as (a) but for the fourth overtone 
at 47 s. 
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Figure 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGreat-circle paths used in a similar paths experiment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 10. (a) Recorded (solid line) and synthetic (dotted line) waveforms for event 052792A. A group-velocity window (7.2-2.7 km s-I) and a low- 
pass filter (cut-off at 60 s) are applied. Phase and amplitude have been adjusted for up to eight mode branches. Station names are shown on the left, the 
amplitude scale is shown on the right. (b) Same as (a) but for event 0915921. (c) Same as (a) but for event 032595C. For this event some waveforms 
cannot be fitted. The waveforms that are not well explained are clearly noisy: BAR-anomalous amplitudes and waveform; CALB-very large 
amplitudes at the beginning and end of the trace; DGR-anomalous amplitudes due to spike in signal; VTV-very small and noisy signal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 11. Reliability plotted against phase-velocity perturbation for 
the first overtone at 100 s from all 90 traces. The higher reliability 
measurements cluster around -0.7 per cent, whereas the lower 
reliability measurements show a much larger scatter. 

significantly smaller in (b). This again indicates a relation 
between the reliability parameter and the quality of the mea- 
surements. 

Similar to the experiment in Section 6.2, we have applied 
the algorithm to the set of 90 waveforms using different 
a priori information. The average phase-velocity perturbations 
obtained of sufficiently reliable measurements are largely 
independent of the apriori information, confirming the validity 
of the approach. 

The average amplitude perturbations that correspond to the 
phase data shown in Fig. 12(a) are shown in Fig. 13 with their 
respective standard deviations. Most striking are the positive 
amplitude perturbations for the second and third overtones 
at relatively short periods. It is very hard to interpret these 
anomalies because of the large number of factors that influence 
surface-wave amplitudes. Among the factors that could 
explain the amplitude measurements are anomalous mode 
branch excitations and a path-averaged Q structure different 
from that of PREM. 

In Fig. 14 we compare our absolute phase-velocity 
measurements with those of Cara (1979) for the same path and 
phase velocities calculated for PREM. Both our and Cara's 
overtone phase velocities are slower than those of PREM, 
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Figure 12. (a) Left column: average phase-velocity perturbations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d In o) as a function of frequency. Averages are calculated at the nodes of the 
parametrization. Only measurements with a reliability higher than 5 for the fundamental mode and 0.5 for the overtones are used to constrain the 
averages. The error bars show the standard deviation for each average. Right column: Number of measurements used to constrain each average as a 
function of frequency. (b) Same as (a) but for measurements with a reliability higher than 10 for the fundamental mode and higher than 2 for the 
overtones. The averages obtained are very similar to those in (a), but the averages are better constrained, despite the fact that the number of 
measurements used (right column) is considerably smaller. This is indicative of the relation between the reliability and the quality of a measurement. 

but the size of the perturbations is quite different; our per- as well as the average phase velocities between 60 and 150 s 
turbations are about half the size of Cara’s and outside the calculated from the maps of Ekstrom, Tromp & Larson 
errors reported in his study. Interestingly, a similar discrepancy (1997) and those calculated from a regional study by 
is observed for the fundamental mode. For comparison, we Nishimura & Forsyth (1988) (both not plotted), agree very 
plot the path-averaged phase velocities calculated for the path well with our measurements. The unexpected discrepancy, 
between Vanuatu and California from the phase-velocity maps however, between our fundamental mode measurements and 
of Trampert & Woodhouse (1996). These predicted averages, those of Cara suggests that a more detailed comparison of 
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Figure 12. (Continued.) 

the overtone phase-velocity measurements is probably not 
warranted. 

As a final test of our measurements, we investigate to 
what extent the average phase velocities of all branches 
together can be explained by a simple path-averaged shear- 
velocity structure. We use the averaged phase-velocity pertur- 
bations weighted with respect to their respective variance 
reductions as data. Using a standard damped-least-squares 
technique, we invert these data for combined P- and S-wave 
velocity (d In up = 0% In us ). We parametrize the depth depen- 
dence of the model with 21 spline basis functions (Woodhouse 
& Trampert 1997). The resulting model (model A), expressed in 

percentage perturbation with respect to PREM, is shown in 
Fig. 15. The variance reduction for the average phase-velocity 
perturbations is very high at 85 per cent. This indicates that the 
phase velocities of the different branches form a consistent set 
of measurements. Furthermore, the model exhibits exactly 
the features one would expect for a predominantly oceanic 
path: a fast oceanic lithosphere and a slow asthenosphere. To 
illustrate the effect of adding overtone phase velocities, we 
show a model constructed from only fundamental-mode phase 
velocities (model B, Fig. 15). The most striking difference 
between the two models is the extent of the low-velocity zone. 
This observation agrees very well with a previous study (Van zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 13. Average amplitude factors for the first three mode branches. The same reliability thresholds are used as in Fig. 12(a). The fundamental-
mode amplitudes do not differ significantly from I. Amplitudes for the first and second overtones, however, are significantly greater than 1 for 
frequencies higher than 0.015 Hz. Comparison with Fig. 12(a), right column, shows that the anomalous amplitudes occur at periods where the 
number of measurements constraining the averages decreases. 

Heijst eta!. 1994), which showed that a considerable degree of 
non-uniqueness exists when a velocity structure with a low-
velocity zone is constrained by fundamental-mode phase 
velocities only. Therefore, unsurprisingly, model A explains the 
fundamental-mode data nearly as well as model B, whilst 
fitting the overtone data much better. 

8 DISCUSSION 

Using the new mode-branch stripping waveform-fitting tech-
nique presented in this paper, it is possible to find a set of 
phase-velocity and amplitude perturbations for several mode 
branches independently that explains both real and synthetic 
Rayleigh and Love waveforms well for periods down to 
approximately 35 s. Synthetic experiments show that in 
frequency bands where the reliability is high, the measured 
perturbations agree well with the values underlying the wave-
form. Moreover, synthetic tests and experiments with real data 
show that the technique is not very sensitive to the a priori 

information or the starting model used. In all the examples 
presented, the reliability parameter proves to be a very useful 
tool in assessing the quality of the measurements. Moreover, 
the experiments with real and synthetic data demonstrate that 
a high degree of uniqueness is achieved in frequency bands of 
high reliability r. 

The experiment using 90 recorded waveforms that 
have travelled along very similar paths, demonstrates that 
overtone phase-velocity measurements agree well at high 
reliabilities. This encourages us to believe that true underlying 
phase-velocity perturbations are retrieved. 

Finally, the new method has several advantages over 
methods that aim to retrieve path-averaged structures: 
branch-dependent off-great-circle propagation can be studied; 
measurements can be interpreted in terms of anisotropy; 
and the weighting of different mode branches as constraints 
on 3-D earth models can be done in a much more trans-
parent way. Moreover, scaling of the waveform amplitudes is 
not required before inversion, allowing for mode-branch-
dependent amplitude perturbations. These amplitude pertur-
bations, apart from being essential for the mode subtraction, 
contribute further interesting data that can be interpreted in 
terms of attenuation and focusing. 
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Figure 14. Absolute phase velocities for the Vanuatu-California path from PREM, from this study, from the phase-velocity maps of Tram pert & 
Woodhouse (1996) and from the study by Cara (1979). See text for details. 
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Figure 15. Average velocity perturbations with respect to PREM 
for the Vanuatu-California path. Model A is constrained using both 
fundamental and overtone phase velocities. Model B is constrained by 
fundamental-mode phase velocities alone. Model A shows stronger 
perturbations than model B below 300 km. These structures at greater 
depth can be resolved because overtone data is included. 
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