
Measuring temperature-dependent activation energy in thermally
activated processes: A 2D Arrhenius plot method
Jian V. Li, Steven W. Johnston, Yanfa Yan, and Dean H. Levi 
 
Citation: Rev. Sci. Instrum. 81, 033910 (2010); doi: 10.1063/1.3361130 
View online: http://dx.doi.org/10.1063/1.3361130 
View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v81/i3 
Published by the American Institute of Physics. 
 
Additional information on Rev. Sci. Instrum.
Journal Homepage: http://rsi.aip.org 
Journal Information: http://rsi.aip.org/about/about_the_journal 
Top downloads: http://rsi.aip.org/features/most_downloaded 
Information for Authors: http://rsi.aip.org/authors 

Downloaded 13 Oct 2011 to 131.183.220.113. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions

http://rsi.aip.org?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://rsi.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Jian V. Li&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://rsi.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Steven W. Johnston&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://rsi.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Yanfa Yan&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://rsi.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Dean H. Levi&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://rsi.aip.org?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3361130?ver=pdfcov
http://rsi.aip.org/resource/1/RSINAK/v81/i3?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://rsi.aip.org?ver=pdfcov
http://rsi.aip.org/about/about_the_journal?ver=pdfcov
http://rsi.aip.org/features/most_downloaded?ver=pdfcov
http://rsi.aip.org/authors?ver=pdfcov


Measuring temperature-dependent activation energy in thermally activated
processes: A 2D Arrhenius plot method

Jian V. Li,a� Steven W. Johnston, Yanfa Yan, and Dean H. Levi
National Renewable Energy Laboratory, Golden, Colorado 80401, USA

�Received 2 November 2009; accepted 22 February 2010; published online 29 March 2010�

Thermally activated processes are characterized by two key quantities, activation energy �Ea� and
pre-exponential factor ��0�, which may be temperature dependent. The accurate measurement of Ea,
�0, and their temperature dependence is critical for understanding the thermal activation
mechanisms of non-Arrhenius processes. However, the classic 1D Arrhenius plot-based methods
cannot unambiguously measure Ea, �0, and their temperature dependence due to the mathematical
impossibility of resolving two unknown 1D arrays from one 1D experimental data array. Here, we
propose a 2D Arrhenius plot method to solve this fundamental problem. Our approach measures Ea

at any temperature from matching the first and second moments of the data calculated with respect
to temperature and rate in the 2D temperature-rate plane, and therefore is able to unambiguously
solve Ea, �0, and their temperature dependence. The case study of deep level emission in a
Cu�In,Ga�Se2 solar cell using the 2D Arrhenius plot method reveals clear temperature dependent
behavior of Ea and �0, which has not been observable by its 1D predecessors. © 2010 American
Institute of Physics. �doi:10.1063/1.3361130�

I. INTRODUCTION

Accurate measurement of activation energy Ea, pre-
exponential factor �0, and in particular their temperature de-
pendence is critical to understanding thermal activation pro-
cesses such as electronic transitions, glass formation, and ion
diffusion. To date, Ea and �0 are almost exclusively extracted
using the universal Arrhenius equation1

� = �0 exp�− Ea/kBT� , �1�

where kB is the Boltzmann constant, T is the temperature,
and � is the rate measured at T. The standard Arrhenius plot
method performs line fitting to the Arrhenius plot −ln��� ver-
sus 1 /T, to extract Ea and �0 from the slope and intercept,
respectively. Inherently, the standard Arrhenius plot method
assumes that Ea and �0 are invariant over temperature. This
assumption is valid when the Arrhenius plot is linear but it
often fails in non-Arrhenius processes whose hallmark is a
curved Arrhenius plot. The differential activation energy
�DAE� method is commonly used to study such temperature
dependent activation energy.2 However, the differential acti-
vation energy is not the correct measurement of Ea when
either one or both of Ea and �0 vary with temperature. Dif-
ferentiating Eq. �1� shows that

− d�ln����/d� = Ea + �dEa/d� − d�ln��0��/d� , �2�

where ��1 /kBT obviously contains two extra terms besides
Ea. The root of difficulties for the classic Arrhenius plot
based methods is the inherent conflict between the 1D nature
of the experimental data ��T� and the need to extract two
independent 1D arrays Ea�T� and �0�T� of the same size as
��T�. To circumvent this limitation, the 1D Arrhenius plot

based methods either completely ignore or impose constrain-
ing temperature dependence to Ea or �0. Without such com-
promise, it is mathematically impossible to solve Ea�T� and
�0�T� independently from the information contained in the
1D Arrhenius plot. Many phenomena have been possible to
understand exactly because of the temperature dependence of
Ea and �0.3,4 The lack of an effective method for studying
arbitrary temperature dependence of Ea and �0 is in drastic
contrast with the prospect that a wealth of physics is hidden
in the vast number of non-Arrhenius processes.

II. METHOD

In this work, we propose a 2D Arrhenius plot method to
overcome this fundamental limitation. Unlike its 1D prede-
cessors, which measure only the first moment �e.g., peak
position� of a measurable quantity X dependent both on T
and � to produce � versus T in the 1D Arrhenius plot, this
method distinctively exploits the second moment of X �e.g.,
the curvature of the peak�. Sweeping X in the temperature-
rate �T-�� plane produces a 2D Arrhenius plot −X�T ,��.
First, Ea at any temperature T is measured explicitly from
matching the second moment of the mutually orthogonal
scanning of X�T ,�� in the T-space and �-space. Then, �0 at
that temperature is uniquely solved according to Eq. �1�. The
unambiguous determination of Ea�T� and �0�T� is made pos-
sible by expanding the raw experimental data from 1D to 2D
and transformation of X�T ,�� scanning from �-space to
T-space due to the T-� duality. A case study of deep level
emission in a Cu�In,Ga�Se2 solar cell demonstrates that the
2D Arrhenius plot approach reveals details of the tempera-
ture dependent behavior of Ea and �0 not possible by the
classic Arrhenius plot based methods. These newly found
details manifest observation of the Meyer–Neldel rule5 bya�Electronic mail: jian.li@nrel.gov.

REVIEW OF SCIENTIFIC INSTRUMENTS 81, 033910 �2010�

0034-6748/2010/81�3�/033910/5/$30.00 © 2010 American Institute of Physics81, 033910-1

Downloaded 13 Oct 2011 to 131.183.220.113. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3361130
http://dx.doi.org/10.1063/1.3361130
http://dx.doi.org/10.1063/1.3361130


varying temperature in a single sample only, in contrast with
previous studies that require either multiple samples or addi-
tional physical quantities besides temperature.

We start with a critical inspection of the classic 1D
Arrhenius plot based methods. In these methods, the rate
quantity � is usually the direct measurable as T is varied. A
third parameter X is sometimes used as the direct measurable
to extract � from the first moment of X �e.g., peak position�
as a function of T via isothermal or isorate scans. Regardless
of how the data are obtained, the information retrievable
from an Arrhenius plot is limited by its 1D nature, which
leads to the aforementioned difficulties in the 1D Arrhenius
plot based methods. Shown in Fig. 1 is a typical Arrhenius
plot of 1D experimental data obtained from admittance
spectroscopy6 of a Cu�In,Ga�Se2 solar cell. Fifty-nine data
centered around 145 K are analyzed using the standard 1D
Arrhenius plot method, which yields Ea=155.0�0.4 meV.
However, if we analyze the upper and lower 30 data points
centered around 166 and 130 K, we would get Ea of
161.6�0.6 and 148.6�0.7 meV, respectively. All fittings
have R�0.9995. Clearly, Ea may vary significantly over
temperature due to a very subtle curvature in the Arrhenius
plot, which is not always easy to detect. Ea obtained by the
DAE method �Fig. 1� exhibits severe scattering due to the
numerical differentiation, from which no detail of tempera-
ture dependence can be deduced. The above analysis shows
that the classic 1D Arrhenius plot based methods cannot un-
ambiguously measure Ea and its temperature dependence.

However, our proposed 2D Arrhenius plot method is
able to overcome the limitation of the 1D Arrhenius plot
method. The key to our new method is to identify a measur-
able quantity X that depends on both T and �. A 2D Arrhen-
ius plot is obtained from the X�T ,�� surface acquired via a
matrix scan of X in the T-� plane. The physical information
contained in X�T ,��, a 2D array of size N�M �N and M are
the number of T and � data points, respectively�, is more
than sufficient for solving two independent size-N 1D arrays

Ea�T� and �0�T�. The solution of Ea�T� and �0�T� hinges on
this redundancy of information which has its origin in the
T-� duality. We first rearrange Eq. �1� into

T = Ea/kB�ln��0� − ln���� , �3�

where � is an experimental control parameter �i.e., not a
mere measurable� independent of T. Equation �3� shows that
sweeping in �-space results in equivalently sweeping in T
space, and visa versa. Consequently, varying either � or T
while keeping the other constant leads to equivalent variation
of X in both the first and second moments. Consider two
types of scans: �i� the isothermal scan X��� as � is scanned
with T=Tfix fixed, and �ii� the isorate scan X�T� as T is
scanned with �=�fix fixed. These two scans independently
delineate the activation behavior of the same quantity X and
are probes of the same thermally activation process. There-
fore one can use Eq. �3� to transform the isothermal scan
X��� in �-space to an equivalent scan X�T�� in T-space. Since
the two physical unknowns Ea and �0 used in this �-T trans-
formation are related by Eq. �1� �T=Tfix , �=�fix� and they
are reduced to just one unknown. Assume Ea is the remain-
ing unknown in the �-T transformation, we recognize that
the curvature in X�T�� varies with the value of Ea. The
unique dependence of X on the intrinsic activation process
described by Eq. �1� requires that the transformed scan X�T��
and the isorate scan X�T� agree with each other near T=Tfix

in T-space. That is, there is not only agreement in the first
moment, X�T�=Tfix�=X�T=Tfix�, but also agreement in the
second moment �curvatures of X�T�� and X�T� near T=Tfix�.
The measurement of Ea at T=Tfix is then accomplished by
matching the curvatures of X�T� to X�T�� without other arbi-
trary constraints such as invariance over temperature. Only
the X�T ,�� data satisfying �T−Tfix��Tfix and ��−�fix���fix

should be used for the matching since X�T� reflects Ea and �0

at all T, whereas X�T�� only reflects Ea and �0 at T=Tfix.
Since the two scans are performed on physically independent
variables, i.e., mutually orthogonal, they do not have mea-
surement related correlations. Once Ea is measured, �0 is
solved from Eq. �1�. The 2D Arrhenius plot method thus
unambiguously resolves Ea and �0 at T=Tfix. Repeating the
above procedure for different Tfix yields the temperature de-
pendent Ea�T� and �0�T�.

The 2D Arrhenius plot method is general since the dual-
ity between the activating energy source �kBT� and the acti-
vated quantity ��� is not specific to any physical process or
experiment. However, it may not apply to certain processes
where a measurable quantity X that depends on both T and �
cannot be identified or the rate � cannot be experimentally
controlled independent of T. The 2D Arrhenius plot method
is readily applicable to transient capacitance techniques,7

where X is the transient capacitance and the T-� duality has
been thoroughly discussed.8 Other exemplar choices of mea-
surable quantity X may include the permittivity,9 the specific
heat,10 and mechanical susceptibility,11 to name a few. Notice
that the actual formula of X�T ,�� need not be explicitly
known. The generality of the 2D Arrhenius plot method is
further extended if one applies it to other activated process
where the energy source is not of thermal nature, e.g., elec-
tric field F �T-� duality changes to F-� duality�.
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FIG. 1. The Arrhenius plot of the admittance spectroscopy data ��� taken
from a Cu�In,Ga�Se2 solar cell and the line fitting �line�. The activation
energies extracted by the standard 1D Arrhenius plot method from 30+ data
points with midpoint temperature at Tmid�130, 145, and 166 K are Ea

=148.6, 155.0, and 161.6 meV, respectively. The activation energy data
extracted by the DAE method ��� barely show some temperature depen-
dence but no detail can be extracted due to severe scattering.
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We shall also make a distinction between the 2D Arrhen-
ius plot method and the time-temperature superposition
principle12 method. The latter relies on the translational in-
variance of two isothermal scans �e.g., the frequency depen-
dence of the elastic modulus of a polymer� taken at two
different temperatures and matches one to the other �shifted
in the abscissa by a shift factor� to construct a master curve.
Its primarily purpose is to extend the total range of measure-
ment time or frequency. In the less common cases where the
William–Landel–Ferry equation12 is not applicable, an acti-
vation energy can further be determined from the tempera-
ture dependence of the shift factor, that is, also using the 1D
Arrhenius plot method. The 2D Arrhenius plot method, on
the other hand, matches the isothermal scan to the isorate
scan at a common �T ,�� point and therefore requires no
translational invariance of isothermal �or isorate� scans.

III. RESULTS

We now show our case study for electronic transitions in
Cu�In,Ga�Se2. The 2D Arrhenius plot method is applied to
admittance spectroscopy to investigate the deep level emis-
sion in a Cu�In,Ga�Se2 solar cell. Since the emission rate of
a deep level � is related to the frequency � at which the
admittance is measured, we use ���0� in place of ���0�. The
conventional admittance spectroscopy analysis plots �max,
the frequency at which the differential capacitance
dC /d�ln���� peaks, against 1 /Tfix and uses the Arrhenius
plot to extract the activation energy and the attempt-to-
escape frequency, as shown in Fig. 1. The capacitance C �or
conductance G� due to the deep levels is a function of both
the temperature T and frequency �. The same is true for
derivatives and combinations of capacitance and conduc-
tance, such as dC /d�ln����, dC /dT, and G /�.

Figure 2 shows the 2D Arrhenius surface plot of
dC /d�ln���� displayed in the T-� plane. The experimental
data are taken from a Cu�In,Ga�Se2 solar cell fabricated us-

ing the three-stage process.13 To minimize the temperature
error, the temperature of the device is taken from a silicon
diode attached directly to the top of the device. The admit-
tance is measured using an Agilent 4294A impedance ana-
lyzer. Let us denote the isothermal scan �T=Tfix� X��� and
the isofrequency scan ��=�fix� X�T�. X��� is transformed
into the T space to generate X�T�� via Eq. �3� where Ea

varies freely and �0 varies accordingly due to Eq. �1� with
T=Tfix, �=�fix. For analysis convenience, Tfix and �fix are
chosen to be at the peak of X�T ,��. Ea is determined by
adjusting Ea so that the curvatures of X�T� and the trans-
formed scan X�T�� match each other as shown in Fig. 3. �0

for T=Tfix is then solved from Eq. �1� with �=�fix. Repeat-
ing this procedure for different Tfix yields the temperature
dependent Ea�T� and �0�T�.

In Fig. 4 we show the Ea�T� and �0�T� for the same
Cu�In,Ga�Se2 sample extracted by the 2D Arrhenius plot
method. The deep level energy Ea, as well as �0, depends
strongly on temperature. The capture cross section increases
almost exponentially with temperature even after considering
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the T2 dependence embedded in �0 due to the effective den-
sity of states and thermal velocity of carriers. This suggests
that multiphonon emission, as opposed to Auger and cascade
mechanisms, is the most probable capture mechanism.3 Since
�0 extracted by the 2D Arrhenius plot method already in-
cludes its temperature dependence due to the corresponding
capture mechanism, as opposed of being forced independent
of temperature in a 1D Arrhenius plot method, Ea does not
include contribution from the energy barrier that a carrier has
to overcome during filling.3 The temperature dependence of
Ea still contains contribution of 2kBT due to the effective
density of states and thermal velocity of carriers. After dis-
counting 2kBT, Ea still increases significantly with tempera-
ture. This is possibly due to the lattice dilation15 in a Cu-poor
nonstoichiometric Cu�In,Ga�Se2. It should be noted that the
previous studies on temperature dependent Ea and capture
cross section all employ a separate experiment,3,14,15 i.e.,
such information is not obtainable from 1D Arrhenius plot
method alone.

Using third order polynomial fitting to estimate the tem-
perature derivative of Ea and �0, we are able to predict Ea

and �0 values extracted by the DAE method according to Eq.
�2�. As shown in Fig. 4, the predicted DAE values are very
close to those measured by the 1D Arrhenius plot method at
130 and 145 K. This is an explicit demonstration of how the
temperature variations in Ea and �0 result in the discrepancy
in the estimate of Ea by the classic 1D Arrhenius plot
method. It also provides a direct confirmation that Ea�T� and
�0�T� determined by the 2D Arrhenius plot method contains
the true temperature dependence of these quantities in that
temperature range and can be used to correct the intrinsic
error due to the classic 1D Arrhenius plot method. The large
discrepancy between the predicted DAE values and those
measured by the 1D Arrhenius plot method at 166 K is pos-
sibly due to the lower signal-noise ratio �hence poorer peak
fitting quality� and the fact that the measured data are in fact
averaged across a wide range 167�15 K.

Furthermore, using the Ea and �0 data extracted by the
2D Arrhenius plot method, a linear relationship is observed
between ln��0� and Ea �shown in Fig. 5�. This is a manifes-
tation of the Meyer–Neldel rule for a deep level in the same
sample �Tiso=139�4 K� with only temperature changed, in
contrast with previous studies5 where the activation energy is
usually varied either by specially preparing a number of dif-
ferent samples or by varying certain parameters other than
temperature on the same sample. The 2D Arrhenius plot
method therefore dramatically simplifies study of Meyer–
Neldel rule related phenomena, which hitherto required ei-
ther multiple samples or additional measurements of quanti-
ties besides temperature. Due to the same poor signal-noise
ratio at higher temperatures seen in Fig. 4, a slight sublinear
deviation from the Meyer–Neldel rule is observed at high
activation energies.

It is clear from the above discussion that the 2D Arrhen-
ius plot method has substantial advantages over the classic
1D Arrhenius plot method, particularly for non-Arrhenius
processes. In Arrhenius processes, in which the temperature
dependence of Ea is small, both the 1D and 2D Arrhenius
plot methods give similar results, validating the 2D Arrhen-

ius plot method. For example, we also applied the 2D
Arrhenius plot method to a GaAsN solar cell, which exhibits
little non-Arrhenius behavior, and obtain the deep level en-
ergy of 336.4�5.3 meV between 175 and 245 K �data not
shown�. This is consistent with that obtained from the 1D
Arrhenius plot method �338.4�3.4 meV�. The deep level in
the single crystalline GaAsN material is probably due to a
discrete defect �hence a single emission rate� whereas those
in the polycrystalline CIGS material may be due to a broad-
ened distribution of defects �hence a distribution of emission
rates�. If the measurable quantity X fully reflects such distri-
bution in the defect energy, then the temperature depen-
dences of Ea and �0 are expected to contain contribution, or
skewed, due to this nondiscrete nature. In the GaAsN and
CIGS admittance spectroscopy data studied in this work, we
observe full-width-half-maximum widths of the defect den-
sity of states �40 and 30 meV, respectively. These values are
close to the sampling width ��2kBT� in energy imposed by
the admittance spectroscopy experiment.16 The intrinsic en-
ergy linewidths of defect distribution in both materials are
smaller than the measured values, which preclude a detailed
study on the contribution of nondiscrete energy distribution
to the non-Arrhenius activation using the existing data. A
further investigation on thermal activation behavior due to
broader energy distribution is underway.

IV. CONCLUSIONS

In conclusion, we formulated a 2D Arrhenius plot
method to resolve the temperature dependent Ea and �0 of a
thermally activated process. Through a temperature-rate
transformation based on the Arrhenius equation, Ea for a
specific temperature is measured by matching the first and
second moments of the isothermal and isorate scans of an
observable X�T ,��. �0 at that temperature is then solved from
the Arrhenius equation. In the case study of a Cu�In,Ga�Se2

solar cell, our new method reveals that both the deep level
energy and the attempt-to-escape frequency increase signifi-
cantly with temperature. Such accurately detailed behavior
could not possibly be obtained by the classic 1D Arrhenius
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FIG. 5. The attempt-to-escape frequency plotted against the deep level en-
ergy �from Fig. 4� indicates that the Meyer–Neldel rule is obeyed with
Tiso=139�4 K derived from linear fitting �solid line� except for some de-
viation at high temperature.
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plot based methods. Furthermore, the relationship between
the temperature dependent Ea and �0, obtained from a deep
level in the same sample by temperature variation only, pro-
vides a significantly simplified method to study the Meyer–
Neldel rule.
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