Levine, Michael V.; Rubin, Donald E. Measuring the Appropriateness of Multiple-Choice Test Scores.

AUTHOR
TITLE
INSTITUTION
SPONS AGENCI

REPORT NO
pob Date
NOTE
EDRS PRICE
DESCRIPTORS

IDENTIFIERS
Educational Testing Service, Princeton, N.J. College Entrance Examination Board, New Ycrk, N. Y.; Graduate Record Examinations Board, Prinçton, N.J.

ETS-RB-76-31
Dec 76
31p.
MFO1/PCO2 Flus Postag气.
*ACademic Ability; *AFtitude Tests; College Entrance Examinations; Item Analysis; *Matheratical Formulas; *Multiple Choice Tests; predictive Measurement; Probability; Response Style (Tests); Scores; Senior High Schools; Test Bias; *Test Interpretation; Test Reliability; Test $\begin{aligned} & \text { Validity }\end{aligned}$ Maximum Iikelihood Estimation; Schclastic Aptitude Test

AESTRACT
Appropriateness indexes (statistical formulas) for detecting suspiciously high cr low sccres cn aptitude tests were presented, based on a simulation of the Schclastic Aptitude rest (SAT) With 3,000 simulated scores--2, 800 normal and 200 suspicious. The traditional index--marginal probability--uses a model for the normal examinee's test-taking behavior only, based cn item characteristic curve theory. The other twc indices use a generalization of the traditional index which allows ability to vary during testing. one uses the standard likelihood ratio to quantify the amount of improvement of fit achieved by permitting akility to $v a r y$ across items. The cther index estiates the parameter values of the varying ability madels, and uses estimated parafter values to indicate the degree of aberrance. Files of candidates with $4 \%, 10 \%$, 20\%, and 40\% aberrance vere generated by modifying item scores of normal examinees. Results showed that $20 \%$ aterrance was surprisingly Mell detected for the suspiciously low grap on all three indices. Suspiciously high candidates vere even more easily detected. Results are significant because they suggest that inappropriately scoring candidates (such as low ability students whe cheat or high ability students who isinterpret instructions). can be detecred withou* reference to background variables. (CP)

[^0]THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM DUCE EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN. THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS. ATINGIT POINTS OF VIEW OR OPINIONS.
STATED OO NOT NECESSARILY REPAESTATED OO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIDNALINSTITUTE OF SENT OFFICIAL NATIONAL INSTITUY
EDUCATION POSITION OR POLICY

MEASĽRING THE APPROPRIATENESS OF
MULTIPLE-CHOICE TEST SCORES

Michael V. Levine
and
Donald B. Rubin

- PERMISSION TO REPRODUCE THIS material has been granted by
michael LEvine


TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) AND USERS OF THE ERIC SYSTEM."

This Bulletin is based on research equally supported by the College Entrance Examination Board, Educational Testing Service, and the Graduate Record Examinations Board. The points of view and opinions expressed do not represent official College Board, ETS, or GREB position or policy. The Bulletin is a draft for interoffice circulation. It is ..automatically superseded ! upon formal publication of the material.

Educational I :ing Service<br>Princeton New Jersey<br>December 1.976

MEASUKING THE ADPROFEIATENESS OF MULTIPLE-CHOICE TEST SCのニPS

## Abstreact


#### Abstract

A studerit may $b=s=\equiv \underline{E l i c a l}$ ari unlike other students tha: s  relative ability. We msiner the roblem of $:$ ins tue sudien sattern  an appropriate abi. ty  - 12 = Test.


## MEASURTNG IHE APPROPP:IATENESS OF MULTPTCT-CHOICE TEST SCORES ${ }^{1,2}$

Multiplencoice aftitude test scores intended to measure the relative abilitic, fstudents. 3nt sometimes fail. $\dot{f}$ student can be so mike other = aminees that mis or her test seore cannc- be regarded as an sppropriatesilitミ meesure. Two hypothetice examples are

Example = (Spuriously aica :aro: A lam ability examinee

able nei-gnicr.
Example II (iourinnin, low score): A very able examimes,
fluent in Spenist, isut st yet fluent in English, mistuncer-

 We limit ourselves $t$ rases in which 5 complinasing proces $=-\mathrm{g} \cdot$, selective copying on Low Englasi flue 1cy) tench to produce $\equiv$ n Minual proportion of easy _Jems wrong and hamd itemis right. Thus we do not expect to be able io recognize a higt abilita caeater who cccasinally copies frea another hy andi- examinee bence he will not have many easy items wrong. Similanly, ve do mot exper to reengnize a low ability, low fluency examinee.

Our goal is to desige precticel method for using patterni of item scores to detect aberrant cor appropriateness indices--statistics compumed from the examinee' $\equiv$ item scores that tend to be low ter is an inappropriate measure of the examinee's ability ana hige =herwise. A very low index value opens the question of whether the tessuately measures the examinee.

An essential feature of our approach to testing problems is the use of only the test itself: Appropriateness indices are functions of the examinee's item scores.

In this paper three general types of appropriateness indices are formulated. A representative of each type is evaluated using Monte Carlo data in winich most of the simulated examinees have responded according to the usual aptitude test model while a few aberrant ones have not.

It will be seen that all our indices perform quite well, at least for the test we are now using to evaloate our approach (the Scholastic Aptitude Test) and the types of aberrance we have considered. More specifically, suppose $10 \%$ of the examinees are aberrant and we consider the $5 \%$ of the examinees with the most extreme appropriateness scores. A random rule would yield $10 \%$ aberrant examinees and $90 \%$ normal in the extreme group. Using appropriateness indices, we have designed rules yielding $50 \%$ aberrant., $50 \%$ normal examinees in the extreme group.

We consider these results important because they suggest that examinees for whom a test is not appropriate can be detected without reference to additional background variables such as race, religion, gender, parents' occupation, etc. That is, they suggest there is internal evidence in the examinee's answer sheet indicating whether he or she approaches the test as do other candidates with the same ability.

THREE TYFES OF APPROPRIATHNESS INDICES

In order to presen the intuitions sumporting our inaices we return to Example I, the hypothetical low ability copier. He has an improbeble pattern of responses for a low ability examinee because he has correc-ly answered several hard i.tems. His pattern is also improbañle for a himin ability examinee because many easy items are wrong. His irregular pattern of item scores seems contrary to the customary psychometric assumption that ability is constant during testing. In fact his irregular response pattern may be much better described by a model in which ability is permitted to change somewhat during testing.

We have been investigating three basic types of indices. The reasoning leading to each will be presented now. Later a representative of each type will be formulated more precisely and evaluated.

Our simplest index type, marginal probability, uses a model for the normal examinee's test-taking behavior only. The usual model (reviewed in the next section) for the Scholastic Aptitude Test (SAT) specifies the conditional probability of an observed pattern of item responses, the probability that an examinee randomly chosen from all the examinees with a given ability produces the observed patterr of item responses. The marginal probability of a pattern is obtained by averaging over the distribution of ability in the population of examinees. The marginal probability of an aberrant examinee's pattern is exmected to be relatively low because it is unlikely that a high ability person misses an easy item or a low ability person passes a hard item.

$$
-4-
$$

The =her me dex zypes are generalizations of the wal model than were manathematically tramtable descriptions of the
 b: ae follortin leete us to exper mize of both low ability (easy ttems fal: d) and hige ability (rad 1tems passed). In a sease soon to be minie ecose, the aberrant $\mathrm{c}:$ ngidere jetaves as if his ability were changing thre agheat the tese The : enuect obtain a much better fit of the aberent examinee's date by using a to $\quad$ REry duming testing.

Type II indice (likelihood ratios) use the standard Likelihood ratio tecmaique ts quanti-Ty the amount of improvement of fit achieved by permitting akilety te vary acmoss items. Thus to compute a type In index both the umal modes a sencralization of the usual model are zitted to the eme nee's data by seajecting parameter values that maximize the probability $\dot{\alpha}$. re exainee's pattern of item responses. The ratio $=$ the two pr malities indicates how much better the generalized sodel fits.

Jpe III indices (estimated ability variation) are obtained by essmang the parameter values of the varying ability mods and using the mated paremeter values to indicate the degree of aberrance.

The obsemtery pattern 0 : =igint and wrong answers on a randomly cimmen answer seet be treated $t=$ outcome of a two stage experimen In the 2 -m" starge, an examizere second Fage a sequence of imiepentent dichotomous random variables $u_{1}, u_{2}, \cdots, \cdots u_{n}$ is generatom. These are the item scores, coded one fomenry at and zero for incomrect.

The usim. model for the SAS is primarily concerned with the relation betwee? ability and item scores fccording to this model the conditional probat -ity tigt $u_{i}$ is one i i continuous, increasing function of ability, $P_{i}\left(\beta_{1}\right)$, called the ir characteristic funation. The conditional probakeity timat a randomly selacted examinee with ability $\theta$ produces the pewern of right and wrone answers corresponding to the vector of item responses $U=\left\langle u_{1}, \ldots L_{i}, \ldots u_{n}\right\rangle$ is then
(1)

$$
f(U \mid \theta)=\prod_{i=1}^{n} P_{i}(\theta)^{u_{i}}\left[1-P_{i}(\theta)\right]^{l-u_{i}}
$$

For a discussion of item characteristic curve theory see Birnbaum (1968).
In this work each item characteristic function is assumed to have the "logistic" functional form

$$
P_{i}(\theta)=c_{i}+\left(1-c_{i}\right)\left\{1+e^{-a_{i}\left(\theta-b_{i}\right)}\right)^{-1}
$$

(2)

$$
0<a_{i} \quad, \quad-\infty<b_{i}<\infty \quad, \quad 0 \leq c_{i}<1
$$

This functional form is used regularly with multiple-mice aptitude tersts. For evidence supporting its adequacy for the tests anm population we wish to study, see Iord (1968) and Levine and Saxe (1976).

This basic model, in whi h examinees differ onl- an gbility, will be called the standard model of item characteristic arrve theory. Various generalizations will be used to describe aberrant exmminees. The major one used in this paper is the Gaussian model in whice assume that a new ability $\theta_{i}$ is sampled for each item. Thus the probability that the $i$-th item is correct becomes $P_{i}\left(\theta_{i}\right)$ insteaci of $P_{i}(\theta)$. In tire Gaussian model, "item abilities" $\theta_{i}$ are assumed to be independent normal random variables with mean $\theta_{0}$ and variance $\sigma^{2}$.

In the first stage of the standard model, an examinee with ability $\theta$ is sampled. In the first stage of the Gaussian moael, on the other inand, an examinee with "central ability" $\theta_{0}$ and "ability variance" $\varsigma^{?}$ is sampled. Thus the Gaussian model can accommodate two kinds of differences between examinees. The standard model can be seen as the limiting case of the Gaussian model with the ability variance $\sigma^{2}$ equal to zero.

The generalization of the conditional probability (l) used to define the standard model becomes

$$
\begin{align*}
& \left.f\left(U \|_{\Xi}, \dot{\sigma}\right)=\int \cdots \int \prod_{i=1}^{n} P_{i}\left(\theta_{i}\right)^{u_{i}} Q_{i}\left(\theta_{i}\right)^{l-u_{i}}\left(\theta_{i}-\theta_{0}\right) / \sigma\right] d \theta_{1} \ldots d \theta_{n}  \tag{3}\\
& =\prod_{i} \int P_{i}(t)^{u_{i_{Q_{i}}}(t)^{l-u_{i_{~}}}\left[\left(t-\theta_{0}\right) / \sigma\right] d t}
\end{align*}
$$

where $\phi(x)$ is the Gaussian density $(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$.
In the disscussion section we will wish to refer to other generalizations of the standard model. Like the Gaussian and standard model, each uses a vector of perrmeters $\Theta$ to characterize the examinee and assumes that a new ability $\theta_{i}$ is independently sampled for each item. The models differ in the specification of the distribution of the $\theta_{i}$ and are defined by a formula of form

$$
\begin{equation*}
f\left(\left.U\right|_{\Theta}\right)=\pi \int P_{i}(t)^{u_{i}}{Q_{i}(t)^{l-u_{i}} d_{\Theta}(t)} \tag{4}
\end{equation*}
$$

where the definition of $\Theta$ differs from model to model. For example, we have the standard model with $\theta=\langle\theta\rangle$ and all the $\theta_{i}=\theta$, the Gaussian model with

$$
\Theta=\left\langle\theta_{0}, \sigma^{2}\right\rangle \quad, \quad \theta_{i} \sim N\left(\theta_{0}, \sigma^{2}\right)
$$

And finally, as a limiting case, we have the unconstrained model in which the $\theta_{i}$ may be any value and

$$
\theta=\left\langle\theta_{1}, \theta_{2}, \ldots \theta_{i}, \ldots \theta_{n}\right\rangle \quad \text { where } \quad-\infty<\theta_{i}<\infty \quad .
$$

## Type I: Marginal Probabilities

If the (generally unknown) density for the $\theta$ 's is specified and denoted by $g$, then the formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} f\left(U^{*} \mid \theta\right) g(\theta) d \theta \tag{5}
\end{equation*}
$$

can be used to obtain the marginal probability of a vector of item scores U* - The standard model specifies a particular formula for the conditional probability $f\left(J^{*} \mid \theta\right)$. Our different marginal probability indices specify different ability densities $g(\theta)$.

The density $g(\theta)$ summarizes our information about a sampled examinee's ability before scoring the test. Suppose we choose to ignore that information and base our ability estimate only on the examinee's test performance. Nathematically this can be expressed by replacing $g(\theta)$ by a density $\tilde{g}(\theta)$ with a very small variance and centered about $\hat{\theta}$, the maximum likelihood estimate of ability obtained by maximizing $f\left(U^{*} \mid \theta\right)$. As the variance of $\tilde{g}(\theta)$ tends to zero, $\int f\left(U^{*} \mid \theta\right) \tilde{g}(\theta) d \theta$ converges to $f\left(U^{*} \mid \hat{\theta}\right)$. The logarithm of the maximum

$$
l_{0}\left(U^{*}\right)=\log f\left(U^{*} \mid \hat{\theta}\right)
$$

is our representative type I index. We use it basically because it is straightforward to calculate and works well, not because we believe the single point distribution for $g(\theta)$ is reasonable.

Other type I (marginal probability) incices can be obtained by estimating the ability distribution $g(\theta)$ from the observed $\hat{\theta}$ distribution or by true score methods (Lord, 1970). The integration required to compute (5) can be intractable. A more easily computed type I index begins with the observation that the function of $\theta$, $\log f\left(U^{*} \mid \theta\right)$, is ordinarily unimodal and roughly symmetric about $\theta=\hat{\theta}$. This suggests the second order approximation of $\log f\left(U^{*} \mid \theta\right)$

$$
\lambda_{0}+\frac{1}{2}(\theta-\hat{\theta})^{2} l_{2}
$$

where $l_{2}$ is the second derivative of $\log f\left(U^{*} \mid \theta\right)$ evaluated at $\theta=\hat{\theta}$. If the ability density is given by the unit normal density, we then obtain the approximation of marginal probability

$$
\begin{gathered}
\frac{1}{\sqrt{2 \pi}} \int e^{l_{0}} e^{\frac{1}{2}(\theta-\hat{\theta})^{2} l_{2}} e^{-\frac{1}{2} \theta^{2}} d \theta \\
=e^{l_{0}} e^{\frac{1}{2} \hat{\theta}^{2} \frac{l_{2}}{1-l_{2}}\left(1-l_{2}\right)^{-\frac{1}{2}}}
\end{gathered}
$$

or equivalently

$$
l_{0}+\frac{1}{2} \hat{\theta}^{2}\left(\frac{l_{2}}{1-l_{2}}\right)-\frac{1}{2} \log \left(1-l_{2}\right)
$$

## Type II: Likelihood Ratios

In order to use a likelihood ratio as an index of aberrance, we first maximize $f\left(U^{*} \mid \Theta\right)$ given in formula (5) over $\Theta$. In logarithmic form, the likelihood ratio index is
-10-
$\max _{\Theta} \log f\left(U^{*} \mid \Theta\right)-l_{0} \quad$.
Our representative of this type of index is obtained from the Gaussian model, where $f\left(U^{*} \mid \Theta\right)=f\left(U^{*} \mid \theta_{0}, \sigma^{2}\right)$ as given in formula (4).

Type III: Degree of Aberrance Estimate
Our best index of this type was obtained from the Gaussian model by maximizing the probability $f\left(U^{*} \mid \theta_{0}, \sigma^{2}\right)$. The index $\hat{\sigma}$ is the square root of the maximum likelihood estimate of the ability variance.

The indices were evaluated with a simulation of the Scholastic Aptitude Test using Hambleton and Rovenelli's (1973) programs. To simulate a "normal" candidate, first an ability $\theta$ was sampled from a normal, zero mean, unit variance population. Then the item scores for the examinee were simulated as a sequence of independent Bernoulli trials. The success probability on the $i$-th trial is $P_{i}(\theta)$ as in formula ( 1 ) where the parameters $a_{i}, b_{i}, c_{i}$ in the formula were obtained from Lord's (1968) fitting of an SAT-V administration.

Examinees with varying degrees of aberrance were generated by modifying the item.scores of normal examinees. To simulate a spuriously high examinee cheating on, say, $20 \%$ of the test, first a normal examinee was simulated. Then $20 \%$ of the itens were sampled without replacement. The sampled items were then scored correct whether they previously were correct or not. In this way files of candidates with $4 \%, 10 \%, 20 \%$, and $40 \%$ aberrance were generated.

To generate a spuriously low examinee forced to guess on, say, $20 \%$ of the test we again begin by generating a normal examinee and sampling $20 \%$ of the items. Since the simulated test is a five-alternative multiplechoice test, we rescore the item as correct with probability $1 / 5$ and incorrect with probability $4 / 5$. In this way files of spuriously lowscoring candidates having $4 \%, 10 \%, 20 \%$, and $40 \%$ aberrance were generated.

See Appendix I for details of the simulation and methods for finding maximum likelihood estimates. See the discussion section for comments on the test model and the modelling of aberrance.

The analogy between an observer in a psychophysics experiment trying to detect a faint signal and our problem of trying to detect aberrant candidates from equivocal patterns of item scores led us to use ROC curves (Green and Swets, 1966) for evaluating indices. To compute an empirical ROC curve for an index, say for concreteness $l_{0}$, and a given group of aberrant examinees, the index is evaluated for a sample of normal and aberrant examinees. The sampled examinees are then ordered from lowest to highest appropriateness score. The empirical ROC curve is the set of points $<x(t), y(t)>$ where
$x(t)=$ the proportion of normal examinees with $l_{0} \leq t$, $y(t)=$ the proportion of aberrant examinees with $l_{0} \leq t$.

A random rule or a rule based on a poor appropriateness index will give an ROC curve close to the diagonal $x=y$. A good appropriateness index gives a curve well above the diagonal. The empirical curve provides an estimate of the probability that normal candidates will be incorrectly classified by a rule sufficiently stringent to detect a given percent of a particular kind of aberrant examinee. For example, suppose we choose $t$ so that $5 \%$ of the population is classified as aberrant. Further suppose that $10 \%$ of the population is aberrant. Then the intersection of the curve with the line $.9 x+.1 y=.05$ gives the proportion of aberrant examinees correctly identified and normal examinees misclassified.

In Figure 1, marginal probability ( $C_{0}$ ) ROC curves are given for the various spuriously low groups. Each curve is based on 3,000 examinees: 200 examinees with the same percent aberrance and 2800 normal candidates. The same normal examinees are used for all ROC curves in this and the other figures.

Only the lower parts of the curves are relevant to our immediate purpose since a rule improperly classifying more than $30 \%$ of the normal candidates is not likely to be used in aptitude testing. The curves show that $20 \%$ aberrance is surprisingly well detected. They also show that marginal probability does only slightly ketter than chance for $4 \%$ aberrance. The expected net change in total test score for $4 \%$ aberrance turns out to be very small, although an occasional very bright and very unlucky candidate may be detected.

Figures 2 and 3 give ROC curves for the likelihood ratio test and the degree of aberrance index. These curves show the same pattern as the Figure 1 curves, at least over the lower part of the curves.

## Insert Figures 2 and 3 about here

Figures 4, 5, 6 give the corresponding ROC curves for the spuriously high group. It can be seen that spuriously high aberrant candidates are more easily detected than spuriously low candidates. This is to be expected since the process generating spuriously low candidates necessarily contains a random component lacking in the spuriously high process. The spuriously low candidate is forced to guess, but the
spuriously high candidate "knows" the right answer. Simulating high spuriousness typically results in changing more item scores than simulating low spuriousness.

Insert Figures 4, 5, and 6 about here

We recomputed the likelihood ratio ROC curve for the $20 \%$ spuriously low group using only those candidates with more than $10 \%$ of the item scores actually changed. The resulting curre, computed from 102 examinees, (Figure 7) appears comparable to the spuriously high curves.

The curious crossover in Figure 4 arises because according to the standard model the probability that a very able examinee answers all items correctly is nearly one. Thus if we begin with an able candidate with item score vector $U^{*}$ and sample $40 \%$ of his items and make them correct, we obtain a new vector $U^{* *}$ which may have all or all but a few very hard items right. When this happens the probability $e^{l_{0}\left(U^{* *}\right)}$ will be very nearly one and frequently larger than $e^{l_{0}\left(U^{*}\right)}$ The larger the proportion of sampled items the more frequently $l_{0}$ (U**) will be abnormally large. In fact for some large proportion of sampled items, the $l_{0}$ FOC curve should pass, as observed, beneath the diagonal. Since rules that improperly classify large numbers of normal candidates cannot be used, the observed anomaly is inconsequential. Furthermore,
-15-
it does not appear with the likelihood ratio test. This is probably attributable to the fact that the increment in $\mathcal{C}_{0}\left(U^{* *}\right)$ is accompanied by a comparable increment in $l_{n}\left(U^{* *}\right)$, the likelihood under the Gaussian model.

## DISCUSSION

We consider our work important because it demonstrates that in at least some cases there is internal evidence in an examinee's answer sheet for the appropriateness of a test. We do not, however, feel committed to our present indices or aberrance models. We might have just as well worked with the posterior mean of $\sigma^{2}$ from the Gaussian model as an aberrance index or an aberrance model in which the examinee fluctuates between two abilities. For example, there is the aberrance model in which the examinee has constant probability $p$ of cheating on an item and performing as if he has infinite ability defined by the equation

$$
\begin{align*}
& f(U \mid<p, \theta>)=\prod_{i}\left[(1-p) P_{i}(\theta)+p\right]^{u_{i}}\left[(1-p) Q_{i}(\theta)\right]^{l-u_{i}}  \tag{6}\\
& 0 \leq p \leq 1
\end{align*}
$$

The observation that item characteristic curve theory--with its local independence assumption--may be too rudimentary to provide an adequate descripision of the stochastic structure of the SAT is by no means fatal to our main point, the point that answer sheets contain internal evidence of aberrance. In fact it can be argued that departures from a more specific model could be more easily detected.

In addition to studying other indicators and types of aberrance we feel that the following questions should be explored:

1. What is the effect (on aberrance indices) of using estimated item parameters?
2. What is the effect of estimating item parameters from samples containing aberrant examinees?
3. Can omitted and not reached items be used to increase the power of aberrance indices?
4. Can the interrelations between various items and subtests be incorporated in the test model and used to detect aberrance?
5. Do aberrance indices indentify a relatively large proportion of examinees in samples of candidates speaking English as a second language, in samples of candidates with moderately high test scores but very low socioeconomic status, in samples of known cheaters?

These questions form a rich and fertile area for future research.

## References

Birnbaum, A. Some latent trait models and their use in infer:
an examinee's ability. In F. M. Lord and M. R. Novick, Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968. Chapters 17-20.

Green, D. M. and Swets, J. A. Signal detection theory and psychophysics. New York: Wiley, 1966.

Hambleton, R. K. and Rovenelli, R. A. A FORTRAN IV program for Frnerating response data from logistic test models. Behavioral Beience, 1973, 18, 74.

Levine, M. V. and Saxe, D. The use of periodic functions to measure the difficulty of aptitude test items. Research Bulletin 76-17. Princeton, N.J.: Educational Testing Service, 1976.

Lord, F. M. An analysis of the Verbal Scholastic Aptitude Test using Birnbaum's three-parameter logistic model. Educational and Psychological Measurement, 1968, 28, 989-1020.

Lord, F. M. Item characteristic curves estimated without knowledge of their mathematical form--a confrontation of Birnbaum's logistic model. Psychometriika, 1970, 35, 43-50.
-19-

Footnotes
$1_{\text {This }}$ research has been partially supported by grants from the Graduate Record Examination Board and the College Entrance Examination Board. The points of view and opinions expressed do not represent official ETS, GREB or CEEB position or policy.
${ }^{2}$ We are grateful to. Frederic M. Lord and Ingram Olkin for technical advice and for comments on an earlier draft of this paper and to Dorothy Thayer for the computations and a critical review of other aspects of the work.


FIGURE 1


FIGURE 2


FIGURE 3


FIGURE 4


FIGURE 5


FIGURE 6
-26-


## Appendix

Technical details on the computations are collected and listed below:

1. During the simulation of normal examinees a Tausworthe generator (Whittlesey, 1968) was used to generate item scores. To obtain Gaussian distributed abilities Pike's (1965) algorithm was applied to numbers obtained from the Tausworthe generator.
2. During the simulation aberrant examinees Learmonth and Lewis's (1973) algorithm was used to generate numbers uniformly distributed on the unit interval. To sample a proportion of items without replacement, $1+$ (number of items) $\times$ (uniformly distributed number) was truncated to obtain an integer. This process was repeated (with new uniformly distributed numbers) until the desired number of items was selected. The uniformly distributed numbers were also used to modify the item scores of the sampled items for the spuriously low scoring aberrant candidates. A sample item was scored "correct" if a uniformly distributed number was $\leq .2$.
3. To compute $I_{0}, \theta$ was first estimated with LOGIST (Wood, Wingersky and Lord, 1976). Estimated $\theta$ 's less than -5 were set equal to -5.
4. To compute $L_{n}$ and $\sigma$, the steepest descent method in Gruvaeus and Jلreakog (1970) was used to maximize the likelihood function for the Gaussian model. The starting point was $\theta=10 G I S T$ estimated $\theta$ and $\sigma=.1$. Only the steepest descent

## References

Gruvaeus, G. T. and JZreskog, K. G. A computer program for minimizing a function of several variables. Research Bulletin 70-14. Princeton, N.J.: Educational Testing Service, 1970.

Learmonth, G. P. and Lewis, P. A. W. Random number generator package LLRANDOM. Report no. NPS55LW73061A. Monterey, Calif.: Naval Postgraduate School, 1973.

Pike, M. C. Algorithm 267. Random normal deviate Communications of the ACM, 1965, 8, 606.

Whittlesey, John R. B. A comparison of the correlational behavior of random number generators for the IBM 360. Cormunications of the ACM, 1968, 11, 641-644.

Wood, R L, Wingersky, M. S., and Lord, F. M. IOGIST - A computer program for estimating examinee ebility and item characteristic curve parameters. Research Memorandum '/6-6. Princeton, N.J.: Eiucational Testing Service, 1976.


ERİC

$\mathrm{ERIC}_{\text {anime }}^{0}$


[^0]:    ***********************************************************************
    Re productions supplied by EDRS are the best that can be made * from the origiral document.

