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MEASURING THE- APPROPHIATENFSS OF MULTIPLE-CHOICE TEST SC7'.---,FS

Abstract

A student may b--7, sz and unlike other students that

aptitude test score -.73 be a armpletely ap;:,...mTfrdz-te measur of his

relative ability. We nnIsliliner the -.roblem of z jag tie s-uhen- tattern

of multiple-choice v test am:wars to dec. j-le w the ,ccnn is

an appropriate abi_ty Seretra.:. af apTranria- eness

are formulated and of.mnlation cfr the Schc Rcti:,413ti-

:thitLa-Test.
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MEAWRING THE APPROPRIATEDESS MULLIHOICE '1ST SCORES1'
2

Multiple-voice apt-ittest scores intended to measure the rela-

tive abilities
' f students. But sometimes mmay fail. student can be so

=like other = r_aminees-ttmt ini.s or her test =pre cannc7 be regarded as an

empropriate:toility measure. Two hypotnetice_examples are

Example (Spuria-sly ,care : A lao;:ability Examinee

copies saerm to selw ,e1 o_fficluit -__-7.ens, from a munr more

able nel-gni.:cr.

Example 11 (Lturi.:-_, low score): A very able examima,e,

fluent in Spanish,., yet fluent in English, miztuhder-

stands the w--ti-mg .rf.veral relatLvely easy questaLms.

There= are, cf ===me, man; ether possib:T-laeys or s=-es to fail.

We limit ourselves t: :lanes it khle6h s complate_ing proce

selective copying cr low Englaat flue icy) teada to produce an =usual

proportion of easy _terns wrc-ng and ha=ted item right. Thus we ch, not

expect to be able co reo-Agnize a high abilit;: cheater who cccasLonally

copies from another ht...; eximenee bemnaze he will not have many

easy items wrong. Sinitto,4, 4e do npt expeo., to recognize a low ability,

low fluency examinee.

Our goal is to desigt ft practcal method for using patterns of item

scores to detect aberrant canALAatot. For- this purpose we formulate

appropriateness indices--rtAtistIcs computed from the examinee's item

scores thatlx.nd to be low le test is an inappropriate measure of

the examinee's ability and hikm..=therwise. A very low index value opens

the question of whether the tee adequately measures the examinee.

4
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An essential feature of our approach to testing problems is the

use of only the test itself: Appropriateness indices are functions of

the examinee's item scores.

In this paper three general types of appropriateness indices are

formulated. A representative of each type is evaluated using Monte

Carlo data in which most of the simulated examinees have responded

according to the usual aptitude test model while a few aberrant ones

have not.

It will be seen that all our indices perform quite well, at least

for the test we are now using to evaluate our approach (the Scholastic

Aptitude Test) and the types of aberrance we have considered. More

specifically, suppose 10% of the examinees are aberrant and we consider

the 5% of the examinees with the most extreme appropriateness scores.

A random rule would yield 10% aberrant examinees and 90% normal in

the extreme group. Using appropriateness indices, we have designed

rules yielding 50% aberrant, 50% normal examinees in the extreme group.

We consider these results important because they suggest that

exsininees for whom a test is not appropriate can be detected without

reference to additional background variables such as race, religion,

gender, parents' occupation, etc. That is, they suggest there is

internal evidence in the examinee's answer sheet indicating whether

he or she approaches the test as do other candidates with the same

ability.

5



-3-

THREE TYPES OF APPROPRIMBESS INDICES

In order to press= the intuitions sunnorting our indices we return

to Example I, the hypothetical low ability_copier. He has an improbable

pattern of responses for a law ability examinee because he has correc7.1y

answered several hard items. His pattern is also improbable for a high

ability examinee because many easy items are wrong. His irregular

pattern of item scores seems contrary to the customary psychometric

assumption that ability is constant during testing. In fact his

irregular response pattern may be much better described by a model in

which ability is permitted to change somewhat during testing.

We have been investigating three basic types of indices. The

reasoning leading to each will be presented now. Later a

representative of each type will be formulated more precisely and

evaluated.

Our simplest index type, marginal probability: uses a model for

the normal examinee's test-taking behavior only. The usual model

(reviewed in the next section) for the Scholastic Aptitude Test (SAT)

specifies the conditional probability of an observed pattern of item

responses: the probability that an examinee randomly chosen fram all

the examinees with a given ability produces the observed patterm of

item responses. The marginal probability of a pattern is obtained by

averaging over the distribution of ability in the population of examinees.

The marginal probability of an aberrant examinee's pattern is exmected to be

relatively low because it is unlikely that a high ability person misses

an easy item or a low ability person passes a hard item.

6
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Mc. =tier .dex types are generalizations of the modmi

tnac, were -P.',17.1"1 atiate as mathematically tractable descrilgt:ints of the

t-Tmes of atiratime We are now studying. Mese models err suggested

b: follanirmae.mxtrg. The aberrant examinees "c:JaiILLItat4.11* pirocess"

lee:_m_ us to kA:per.T, Inn-Hence of both low ability (easy ±tema -d) and

it me In a semse soon to be late ..,-,ec=ne, the

aberrant cArtilida7e )davas as if his ability were changing tbi5'aghcat the

nos emmert-!to obtain a much better fit of the alrr-la nt eaaminee's

dates-by twang a gezazialization of the test model that allows ability

to -wary duartestestzbig.

Type Irtndice- (likelihood ratios) use the standard 2..ikelihood ratio

tedamique try quantirry the amount of improvement of fit ethieved by permitting

ability tt vary aclvas items. Thus to compute a type I: index both the

nand. model) sad a _generalization of the usual model are=fItted to the

____ nee's data by selecting parameter values that maximP'e the probability

ter:emend-meets pattern of item responses. The ratio =A the two

p7 Almllities indicates how much better the generalized !model fits.

.-pe III indices (estimated ability variation) are -obtained by

essampating the parameter values of the varying ability motels and using

the er5Inated parameter values to indicate the degree of aAberrance.
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7IST THEORY

The obserm,..c_pattern of =igat and wrong answers on a randomly cTisan

answer met be treated ms tie outcome of a two stage experidenz.

In the 't-*" stage, an examine -*121.h ability A is sampled. In the

second:.t-Rfee a sequence of imatn@ndent dichotomous random variables

uruv-- u
n

is generatt-!. These are the item scores, coded

one for==ar :t and zero for incamrect.

Tit7- mstw:_ model for the SA is primarily concerned with the relation

betwee-t abilt!.-,7 and item scores According to this model the conditional

probatty st ui is one i I continuous, Increasing function of

ability/ P1600 called the characteristic function. The conditional

probalitytisat a randomly sdietted examinee with ability A produces

the pemzern of right and wrong7'answers corresponding to the vector of

item responses U = < un > is then

1-u,

(1) f(UIA) = R Mg) - P (0] j.

i=1

For a discussion of item characteristic curve theory see Birnbaum (1968).

In this work each item characteristic function is assumed to have

the "logistic" functional form

(2)

-a (G-b )
i i ,-1Pi(A) = ci + - ci)fl + e

0 < a
i

""3 < bi < 00 , 0 < c <l
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This functional form is used regularly with multiple--nnice aptitude tests.

For evidence supporting its adequacy for the tests antImrpulation we wink

to study, see Lord (1968) and Levine and Saxe (1976).

This basic model, in whiAl examinees differ on17 -in ability, will

be called the standard model of item characteristic theory. Various

generalizations will be used to describe aberrant examinees. The major

one used in this paper is the Gaussian model in whictt we assume that a

new ability Gi is sampled for each item. Thus the probability that

thei-thitemiscorrectbecomesp.(A.3. )insteadcfP.(0)
. In the

Gaussian model, "item abilities" 0i are assumed MD be independent

normal random variables with mean 0
o

and variance a
2

.

In the first stage of the standard model, an examinee with ability 0

is sampled. In the first stage of the Gaussian model, on the other hand,

an examinee with "central ability" 00 and "ability variance" is

sampled. Thus the Gaussian model can accommodate two kinds of differences

between examinees. The standard model can be seen as the limiting case of

the Gaussian model with the ability variance a
2

equal to zero.

The generalization of the conditional probability (1) used to define

the standard model becomes

9
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u. 1-u
= ii...)1 II P.(0 ) 1Q.(0 ) i0[(O -

o
)/o]d0i=iii 1 n

u. 1-u,
I[ j(P.,(t) lqi(t) 10[(t - 00)/oldt
i

2
where (x) is. the Gaussian density (210

-1/2
e
-x /2

In the discussion section we will wish to refer to other generalizations

of the standard model. Like the Gaussian and standard model, each uses

a vector of pm-ammeters 8 to characterize the examinee and assumes that

a new ability Ai is independently sampled for each item. The models differ

in the specification of the distribution of the Ai and are defined by a

formula of form

u.

(4) f(08)
J

P, ( t ) lQi(t) J-c1F19(t)

i

where the definition of 8 differs from model to model. Fbr example,

we have the standard model with 9 = < A > and all the Ai = A , the

Gaussian model with

8 = < Ao, o
?

2 1
> A. y N(9 2a

2
)

And finally, as a limiting case, we have the unconstrained model in which

the A
i

may be any value and

8 = <
11
A
2'

0 O
n
> where -co<0 < co

Yo
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THE INDICES

Type I: Marginal Probabilities

If the (generally unknown) density for the 8 's is specified and

denoted by g then the formula

00

(5) if (U*10)g (o)64

can be used to obtain the marginal probability of a vector of item scores

U* . The standard model specifies a particular formula for the conditional

probability f(U*19) Our different marginal probability indices specify

different ability densities g(G) .

The density g(0) summarizes our information about a sampled

examinee's ability before scoring the test. Suppose we choose

to ignore that information and base our ability estimate only on the

examinee's test performance. Mathematically this can be expressed by

replacing g(o) by a density i(e) with a very small variance and
A

centered about the maximum likelihood estimate of ability obtained

by maximizing f(U*10) . As the variance of g(9) tends to zero,

if(U*10g(0)6; converges to f(U*I6) . The logarithm of the maximum

/00149 = log f(U *16)

is our representative type I index. We use it basically because it is

straightforward to calculate and works well, not because we believe

the single point distribution for g(G) is reasonable.

11
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Other type I (marginal probability) indices can be obtained by

estimating the ability distribution g(A) from the observed

distribution or by true score methods (Lord, 1970). The integration

required to compute (5) can be intractable. A more easily computed

type I index begins with the observation that the function of A ,

log f(U*10) , is ordinarily unimodal and roughly symmetric about

Q.= 6 . This suggests the second order approximation of log f(U*19)

10 (g 43)212

where '2 is the second derivative of log f(U*10) evaluated at

A . If the ability density is given by the unit normal

density, we then obtain the approximation of marginal probability

1 tg-612/ 1 g2
1 fe40 42 2

dO

12-7t

1 1 A2 12 1

g 0 17r % 2
e e 2 kl - g2)

or equivalently

1 ^2 2 . 1

10 + g ( 177 ) g(/ 12)
2

Type II: Likelihood Ratios

In order to use a likelihood ratio as an index of aberrance, we

first maximize f(u*Ie) given in formula (5) over 8 In logarithmic

form, the likelihood ratio index is

1,
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max log f(U*I8) 10
8

Our representative of this type of index is obtained from the

Gaussian model, where f(U*18) = f(U*100,41?) as given in formula (4).

Type III: Degree of Aberrance Estimate

Our best index of this type was obtained from the Gaussian model by

maximizing the probability f(U*1001a2) . The index a is the square

root of the maximum likelihood estimate of the ability variance.

13



THE SIMULATION

The indices were evaluated with a simulation of the Scholastic

ARtitude Test using Hambleton and Rovenelli's (1973) programs. To simulate

a "normal" candidate, first an ability @ was sampled from a normal, zero

mean, unit variance population. Then the item scores for the examinee

were simulated as a sequence of independent Bernoulli trials. The success

probability on the i -th trial is Pi(G) as in formula (1) where the

parameters a1 .,b1 . , c.
1

in the formula were obtained from Lord's

(1968) fitting of an SAT-V administration.

Examinees with varying degrees of aberrance were generated by

modifying the item scores of normal examinees. To simulate a spuriously

high examinee cheating on, say, 20% of the test, first a normal

examinee was simulated. Then 20% of the items were sampled without

replacement. The sampled items were then scored correct whether they

previously were correct or not. In this way files of candidates with

4$, 10%, 20%, and 40% aberrance were generated.

To generate a spuriously low examinee forced to guess or say, 20% of

the test we again begin by generating a normal examinee and sampling 20% of

the items. Since the simulated test is a five-alternative multiple-

choice test, we rescore the item as correct with probability 1/5 and

incorrect with probability 4/5. In this way files of spuriously low-

scoring candidates having 4%, 10%, 20%, and 40% aberrance were generated.

See Appendix I for details of the simulation and methods for finding

maximum likelihood estimates. See the discussion section for comments on

the test model and the modelling of aberrance.
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RESULTS

The analogy between an observer in a psychophysics experiment

trying to detect a faint signal and our problem of trying to detect

aberrant candidates from equivocal patterns of item scores led us to

use ROC curves (Green and Swets, 1966) for evaluating indices. To compute

an empirical ROC curve for an index, say for concreteness t
0 /

and a given

group of aberrant examinees, the index is evaluated for a sample of normal

and aberrant examinees. The sampled examinees are then ordered from lowest

to highest appropriateness score. The empirical ROC curve is the

set of points < x(t),y(t) > where

x(t) = the proportion of normal examinees with to < t ,

y(t) = the proportion of aberrant examinees with to < t .

A random rule or a rule based on ,a poor appropriateness index will

give an ROC curve close to the diagonal x = y . A good appropriateness

index gives a curve well above the diagonal. The empirical curve

provides an estimate of the probability that normal candidates

will be incorrectly classified by a rule sufficiently stringent

to detect a given percent of a particular kind of aberrant examinee. For

example, suppose we choose t so that 5% of the population is classified

as aberrant. Further suppose that 10% of the population is aberrant. Thai

the intersection of the curve with the line .9x + .ly = .05 gives the

proportion of aberrant examinees correctly identified and normal examinees

misclassified.

In Figure 1, marginal probability ( 430 ) ROC curves are given for

the various spuriously low groups. Each curve is based on 3,000 examinees:

200 examinees with the same percent aberrance and 2800 normal candidates.

The same normal examinees are used for all ROC curves in this and the

other figures.
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Insert Figure 1 about here

Only the lower parts of the curves are relevant to our immediate

purpose since a rule improperly classifying more than 30% of the normal

candidates is not likely to be used in aptitude testing. The curves show

that 20t aberrance is surprisingly well detected. They also show that

marginal probability does only slightly better than chance for 4% aberrance.

The expected net change in total test score for 4% aberrance turns out to

be very small, although an occasional very bright and very unlucky

candidate may be detected.

Figures 2 and 5 give ROC curves for the likelihood ratio test and

the degree of aberrance index. These curves show the same pattern as

the Figure 1 curves, at least over the. lower part of the curves.

Insert Figures 2 and 3 about here

Figures 4, 5, 6 give the corresponding ROC curves for the spuriously

high group. It can be seen that spuriously high aberrant candidates

are more easily detected than spuriously low candidates. This is to

be expected since the process generating spuriously low candidates

necessarily contains a random component lacking in the spuriously high

process. The spuriously low candidate is forced to guess, but the



spuriously high candidate "knows" the right answer. Simulating high

spuriousness typically results in changing more item scores than

simulating low spuriousness.

Insert Figures 4, 5, and 6 about here

We recomputed the likelihood ratio ROC curve for the 20% spuriously

low group using only those candidates with more than 10% of the item

scores actually changed. The resulting curve, computed from 102 examinees,

(Figure 7) appears comparable to the spuriously high curves.

Insert Figure 7 about here

The curious crossover in Figure 4 arises because according to the

standard model the probability that a very able examinee answers all

items correctly is nearly one. Thus if we begin with an able candidate

with item score vector U* and sample 40% of his items and make them

correct, we obtain a new vector U** which may have all or all

but a few very hard items right. When this happens the probability

efo PH') will be very nearly one and frequently larger than e
10(

11°

*)

The larger the proportion of sampled items the more frequently fo(U**)

will be abnormally large. In fact for some large proportion of sampled

items, the
0 ROC curve should pass, as observed, beneath the diagonal.

Since rules that improperly classify large numbers of normal_candidates

cannot be used, the observed anomaly is inconsequential. Furthermore,

17
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. it does not appear with the likelihood ratio test. This is probably

attributable to the fact that the increment in 40(U**) is accompanied

by a comparable increment in in(U**) , the likelihood under the

Gaussian model.
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DISCUSSION

We consider our work important because it demonstrates that in

at least some cases there is internal evidence in an examinee's answer

sheet for the appropriateness of a test. We do not, however, feel com-

mitted to our present indices or aberrance models. We might have just as

well worked with the posterior mean of a
2

from the Gaussian model as an

aberrance index or an aberrance model in which the examinee fluctuates

between two abilities. For example, there is the aberrance model in

which the examinee has constant probability p of cheating on an item

and performing as if he has infinite ability defined by the equation

(6)
u. 1-u.

f(UI < 1),9 )) = II P)Pi(g) P]11(1 PNi(0)] 1

0 < p < 1

The observation that item characteristic curve theory--with its

local independence assumption--may be too rudimentary to provide an

adequate descript'n of the stochastic structure of the SAT is by no

means fatal to our main point, the point that answer sheets contain

internal evidence of aberrance. In fact it can be argued that departures

ftom a more specific model could be more easily detected.

In addition to studying other indicators and types of aberrance

we feel that the following questions Should be explored:
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1. What is the effect (on aberrance indices) of using estimated

item parameters?

2. What is the effect of estimating item parameters from samples

containing aberrant examinees?

3. Can omitted and not reached items be used to increase the

power of aberrance indices?

4. Can the interrelations between various items and subtests be

incorporated in the test model and used to detect aberrance?

5. Do aberrance indices indentify a relatively large proportion

of examinees in samples of candidates speaking English as a

second language, in samples of candidates with moderately high

test scores but very low socioeconomic status, in samples

of known cheaters?

These questions form a rich and fertile area for future research.

20
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Appendix

Technical details on the computations are collected and listed below:

1. During the simulation of normal examinees a Tausworthe generator

(Whittlesey, 1968) was used to generate item scores. To obtain

Gaussian distributed abilities Pike's (1965) algorithm was applied

to numbers obtained from the Tausworthe generator.

2. During the simulation aberrant examinees Learmonth and Lewis's

(1973) algorithm was used to generate numbers uniformly dis-

tributed on the unit interval. To sample a proportion of

items without replacement, 1 + (number of items) x (uniformly

distributed number) was truncated to obtain an integer. This

process was repeated (with new uniformly distributed numbers)

until the desired number of items was selected. The uniformly

distributed numbers were also used to modify the item scores

of the sampled items for the spuriously low scoring aberrant

candidates. A sample item was scored "correct" if a uniformly

distributed number was < .2 .

3. To compute Lb was first estimated with MOIST (Wood,

Wingersky and Lord, 1976). Estimated 9 's less than -5

were set equal to -5.

4. To compute Ln and a , the steepest descent method in

Gruvaeus and J8reekog (1970) was used to maximize the likelihood

function for the Gaussian model. The starting point was

9 = LOGIST estimated 9 and a = .1 0 Only the steepest descent
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