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ABSTRACT

We introduce a method to constrain general cosmologicaletsogsing Baryon Acoustic
Oscillation (BAO) distance measurements from galaxy saspbvering different redshift
ranges, and apply this method to analyse samples drawn @i 8DSS and 2dFGRS. BAO
are detected in the clustering of the combined 2dFGRS and&sShen galaxy samples, and
measure the distance—redshift relation at 0.2. BAO in the clustering of the SDSS luminous
red galaxies measure the distance—redshift relatian-at0.35. The observed scale of the
BAO calculated from these samples and from the combined lesang jointly analysed using
estimates of the correlated errors, to constrain the forthefdistance measu®@y (z) =
[(1+2)2D%cz/H(z)]'/%. HereD 4 is the angular diameter distance, i) is the Hubble
parameter. This gives /Dy (0.2) = 0.1980 & 0.0058 andr, /Dy (0.35) = 0.1094 + 0.0033
(10 errors), with correlation coefficient df.39, wherer, is the comoving sound horizon
scale at recombination. Matching the BAO to have the samesuamned scale at all redshifts
then givesDy (0.35)/Dy(0.2) = 1.812 + 0.060. The recovered ratio is roughly consistent
with that predicted by the higher redshift SNLS supernovaia dor ACDM cosmologies,
but does require slightly stronger cosmological acceilenadt low redshift. If we force the
cosmological model to be flat with constant then we find2,,, = 0.249 4+ 0.018 andw =
—1.004 £ 0.089 after combining with the SNLS data, and including the WMAPasiwement
of the apparent acoustic horizon angle in the CMB.
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1 INTRODUCTION the 2dFGRS and SDSS galaxy samples (Cole et al. 2005; Eisen-
stein et al. 2005; Huetsi 2006). With the latest SDSS santhis
are now detected with sufficient signal to use BAO alone to-mea
sure cosmological parameters (Percival et al. 2007a). fdssem-
phasised the importance of accurate models for BAO in thexgal
power spectrum. On small scales, BAO will be damped due te non
linear structure formation (Eisenstein et al. 2007). Gitlemaccu-
racy of current data, uncertainty in the exact form of thimgang is

not important, but it will become so for future data sets. @ngér
scales, there is currently no theoretical reason to expeters-
atic distortions greater thar 1% in the BAO positions between
the galaxies and the linear matter distribution (Seo & Essgin
2003; Springel et al. 2005; Seo & Eisenstein 2007; Angulol.et a
2007). Claims of> 1% changes in the BAO position have used
non-robust statistical measures of the BAO scale, sucheapdh
sition of the bump in the correlation function, or peak lozas in

the power spectrum (Smith et al. 2007a,b; Crocce & Scoceomar

The physics governing the production of Baryon Acousticillzsc
tions (BAO) in the matter power spectrum is well understoditk(
1968; Peebles & Yu 1970; Sunyaev & Zel'dovich 1970; Bond &
Efstathiou 1984, 1987; Holtzman 1989). These oscillateatdres
occur on relatively large scales, which are still predomthain
the linear regime; it is therefore expected that BAO sholdd he
seen in the galaxy distribution (Meiksin et al. 1999; Speingt al.
2005; Seo & Eisenstein 2005; White 2005; Eisenstein et &l720
Consequently, BAO measured from galaxy surveys can be ssed a
standard rulers to measure the geometry of the Universeighro
the distance—redshift relation (Blake & Glazebrook 2008¢ S
Eisenstein 2003).

BAO have now been convincingly detected at low redshift in
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2007). These are easily affected by smooth changes to thaygal
clustering amplitude as a function of scale. In this paperuse a
more robust approach: the BAO scale is defined via the |latstio
where the BAO cross a smooth fit to the power spectrum.

Ideally we would use the BAO within two galaxy redshift sur-
veys covering different narrow redshift slices to test axalggical
model using the following procedure:

(i) Convert from galaxy redshift to distance assuming the-co
mological model to be tested.

(ii) Calculate the galaxy power spectra for the two samples.

(iif) Measure the oscillations in each power spectrum adahe
known smooth underlying power spectrum shape.

(iv) Test whether the change in scale between the two obderve
BAO positions agrees with that expected for this cosmoklgic
model.

Unfortunately, a number of complications prevent such gplm
procedure from being used. In particular, this method megua
distance—redshift relation to be specified prior to measguthe
BAO positions; but the errors and the effect of the survegaain
function depend on this assumption, and these are commueiti
expensive to measure for many different models. In receafyan
ses (Percival et al. 2001; Cole et al. 2005; Tegmark et al600
a fiducial cosmological model has been used to estimate therpo
spectrum, and the effect of this on the recovered shape giciver
has been tested. However, when providing BAO distance suade
surements we need to allow for the change in the distancghifed
relation. In this paper, we calculate the power spectrunaffidu-
cial cosmology, and interpret these data as if the model obsm
ogy had been analysed (incorrectly) assuming the fiducialeio
therefore allowing for this effect. This procedure givettérenoise
properties for the derived parameters than recalculatiegBAO
for each model.

We test models against the data for general smooth forms of
the distance—redshift relation, parametrised by a smafibau of
nodes. This allows for surveys covering a range of redstaftsl
has the advantage of allowing derived constraints to beiegppd
any model provided that it has such a smooth relation. Owdlid

method also required us to know the power spectrum shape so we

could extract the BAO. In this paper, we do not model this shap
using linear CDM models. To immunise against effects such as
scale-dependent bias, non-linear evolution, or extraipeysuch
as massive neutrinos, we instead model the power spectrape sh
by fitting with a cubic spline.

The method is demonstrated by analysing galaxy samples

2 THE DATA
2.1 The SDSS data

The public SDSS samples used in this analysis are the same as
described in Percival et al. (2007b). The SDSS (York et ab020
Adelman-McCarthy et al. 2006; Blanton et al. 2003; Fukugttal.
1996; Gunn et al. 1998, 2006; Hogg et al. 2001; Ivezic et 8420
Pier et al. 2003; Smith et al. 2002; Stoughton et al. 2002k&uc

et al. 2006) Data Release 5 (DR5) galaxy sample is split into t
subsamples: there are 465789 main galaxies (Strauss €0a) 2
selected to a limiting extinction-corrected magnitude< 17.77,

orr < 17.5 in a small subset of the early data from the survey.
In addition, we have a sample of 56491 Luminous Red Galaxies
(LRGs; Eisenstein et al. 2001), which form an extension ¢ostlr-

vey to higher redshift8.3 < z < 0.5. Of the main galaxies, 21310
are also classified as LRGs, so our sample includes 77801 tRGs
total. Although the main galaxy sample contains signifilamore
galaxies than the LRG sample, the LRG sample covers more vol-
ume. The redshift distributions of these two samples aredfitts
described in Percival et al. (2007b), and the angular magktisr-
mined using a routine based on a HEALPIX (Gorski et al. 2005)
equal-area pixelization of the sphere (Percival et al. BDOmn or-

der to increase the volume covered at low redshift, we ireching:
2dFGRS sample, which for simplicity has been cut to exclude a
gular regions covered by the SDSS samples.

2.2 The 2dFGRS data

The full 2dF Galaxy Redshift Survey (2dFGRS) catalogue @iost
reliable redshifts for 221 414 galaxies selected to an etitin-
corrected magnitude limit of approximately = 19.45 (Colless
etal. 2001, 2003). For our analysis, we only select regiasov-

ered by the SDSS survey, and we do not include the random,fields
a set of 99 random 2 degree fields spread over the full southern
galactic cap. This leaves 143 368 galaxies in total. Thehiétdfis-
tribution of the sample is analysed as in Cole et al. (2008}, a
we use the same synthetic catalogues to model the unclds®re
pected galaxy distribution within the reduced sample.

The average weighted galaxy densities in the SDSS and 2dF-
GRS catalogues were calculated separately, and the ovenall
malisation of the synthetic catalogues were matched to eath
alogue separately using these numbers (see, for examplee€Co
al. 2005 for details). The relative bias model described éncP
val et al. (2007b) was applied to the SDSS galaxies and tte bia
model of Cole et al. (2005) was applied to the 2dFGRS galax-

drawn from the combined SDSS and 2dFGRS (Section 5). Resultsjes. These normalise the large-scale fluctuations to theitanig

are presented in Sections 5.3 & 7, and discussed in Sectibms.
application is novel, as we combine the 2dFGRS and SDSSygalax
samples before calculating power spectra (the two datasets-
troduced in Section 2). The blue selection in the 2dFGRS hed t
red selection in the SDSS galaxies emphasise differensedasf
galaxies with different large-scale biases — but these eandiched
using a relative bias model leading to the same large-seaiep
spectrum amplitudes (Cole et al. 2005; Tegmark et al. 20@6; P
cival et al. 2007b). If there is scale-dependent bias, thershape

of the power spectrum calculated from the combined samgle wi

be an average of the two individual power spectra, because we

are selecting a mix of galaxy pairs. The exact mix will change
with scales, but, this is not expected to be a significant eontor

the BAO positions in the power spectra; these should be thne sa
across all data sets, although there will be an effect onahgihg

of BAO on small scales (this is discussed in Section 3).

of L. galaxies, wherd.. is calculated separately for each survey.
We therefore include an extra normalisation factor to theGaS
galaxy bias model to correct the relative biagafgalaxies in the
different surveys. This was calculated by matching the atisa-

tion of the 2dFGRS and SDSS bias corrected power spectra for
k < 0.1 hMpc~'. 2dFGRS galaxies at a single location were all
given the same expected bias, rather than having biaseb@ddic
their individual luminosities. This matches the methodduge the
SDSS, and makes the calculation of mock catalogues easier.

3 BAO IN THE GALAXY POWER SPECTRUM

In this section, we consider the relation between BAO mesabkur
from the galaxy distribution, and BAO in the linear mattestdbu-
tion. We define the linear BAO as
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Bn(6) = g 2 O

which oscillates aroundiin (k) = 1. Trau(k) is the full linear
transfer function, whilely,, osc (k) is the same without the sinu-
soidal term arising from sound waves in the early univensehé
fitting formulae provided by Eisenstein & Hu (1998), thisnter

is given by their equation 13, a modified sinc function. Ndtatt
Tro osc(k) contains the change in the overall shape of the power
spectrum due to baryons affecting the small scale dampimpgef
turbations, just not the oscillatory featurds;;, (k) can be consid-
ered as a multiplicative factor that corrects the smoothgr@pec-
trum to provide a full model.

Within the halo model (Seljak 2000; Peacock & Smith 2000;
Cooray & Sheth 2002), the real-space galaxy power spectsum i
related to the linear power spectrum by the addition of amaext
smooth term, and multiplication by a smooth, possibly scide
pendent, galaxy biasg k)

Pons(k) = b° (k) P(k)1in + P(k)extra- 2

Theb?(k) term can also be thought of as equivalent to the Q-model
of Cole et al. (2005), used to model the transition betweerlith

ear matter power spectrum and observed galaxy power spéhra
form of Equation (2) matches that calculated by Scherrer &nivwe
berg (1998) from a general hierarchical clustering argunigiik)
andP (k)extra are required to be slowly varying functionsiouch
that we can extract the BAO signal as follows. Substitutingi&
tion (1) into Equation (2), and writind?i, (k) = Ak™ [Tﬁ,“(k)]2
gives

Pops(k) = Ab>(k)k" Biin (k) [Tao osc (k)]* + P(E)extra-

@)

©)

We extract BAO from this observed power spectrum by dividigig
a smooth model that, without loss of generality, we can chdos
be

P(K)smootn = Ab* (k)" [Tho osc (k)]” + P(k)exctra, 4)
so the oscillations iPsns (k) / P(k)smooth are
Bous(k) = g(k)Biin(k) + [1 — g(k)], 5)
where
2 n 2
Ab? (K)E™ [Tho osc (k)] ®)

g(k) = Ab2(E)E" [Tho ose(k)]2 4+ P(k)extra

is smooth. Thek-scales whereB,ps(k) 1 occur where
Biin(k) = 1, showing that the oscillation wavelength is unchanged
by the translation given by Equation (2). However, the posg

of the maxima and minima will change a¢k) is expected to be
asymmetric around the extrema. In fact, the detailed shape a
amplitude of this damping term will depend on the cosmolalic
model and on the properties of the galaxies being analyssdnE
stein et al. (2007) have shown thgt) can be approximated as a
Gaussian convolution in position-space with= 10 h~* Mpc for

low redshift galaxies. For our default results presentetispaper,

we fix the damping model to be Gaussian with= 10" Mpc,
which is assumed not to change significantly over the retésbif
galaxy types used in the analysis. We consider variatiorthén
BAO damping model in Section 6.2. Equation (5) shows that the
observed power spectrum is constructed from a smooth coampon
(Equation 4), and a multiplicative damped BAO model (Ecprati
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We modelP(k)smooth @S @ 9 node cubic spline (Press et al.
1992) designed to be able to match the overall shape of thempow
spectrum (i.e. to fit Equation 4), but not the BAO. The 9 nodes
were fixed empirically ak = 0.001, and0.025 < k < 0.375 with
Ak = 0.05. A cubic splinex BAO model with this node separation
was found to be able to fit model linear power spectra by Palrciv
et al. (2007a) and can match all of the power spectra pregsémte
this paper without leaving significant residuals. Tyevalues of
the fits are all within the expected range of values. We also co
sider an offset node distribution in Section 6.2. The sptineve
can be taken as the definition of “smooth”: only effects ttaatrmot
be modelled by such a curve will affect the BAO positions. Whe
fitting the observed BAO, we do not attempt to extract the BAO
and then fit different models to these data, because the thétho
which the BAO are extracted might bias the result. Insteaditve
combined cubic splinexc BAO models to the power spectra, allow-
ing the spline fit to vary with each BAO model tested (thisdals
the method of Percival et al. 2007a).

We now consider how to model the BAO. Blake & Glaze-
brook (2003) suggest modellingin (k) using a simple damped
sinusoidal two-parameter function

1.4
) e () @)
0.1 h Mpc ka

whereks = 27 /r,, andr, is the co-moving sound horizon scale
at recombination at scale factor

Biin(k) =1+ Akexp [— (

. 1 /a* cs da
B HOle/2 0 (a + G’QQ)I/2 .
Here, the amplitudel is treated as a free parameter. In this paper,
we consider unitsh—* Mpc, so working in these unit&l, = 100
in Equation (8). This simple function ignores issues suclthas
propagation of the acoustic waves after recombinatiorhdAlgh
the sound speed drops radically at recombination, acowsties
still propagate until the end of the 'drag-epoch’. This leaadl the
slightly larger sound horizon as measured from the low-zxgal
clustering data than the CMB. To include such effects, weause
BAO model extracted from a power spectrum calculated ugieg t
numerical Boltzmann code CAMB (Lewis et al. 2000), by fitting
with a cubic splinex BAO model. For simplicity, we index our
results based on the sound horizon at recombinatignin prin-
ciple, there could be small errors here (i.e. the largeessalic-
ture to CMB sound horizon ratio could be a function of cosmol-
ogy), but the combination of the current results and WMARadat
mean that we are not looking over that big a range of cosmcdbgi
parameters. To test this, we have applied the spknBAO fit to
CAMB power spectra for flahCDM models with recombination
sound horizon scales covering ther2ange of our best fit numbers
(£6%). We find that the input sound horizon at recombination is re-
covered with less than 1% error from these fits, showing thiat t
approximation is not important to current measurementigi@t

For our default results, we extract the BAO model from a
power spectrum calculated assuming = 0.25, QA% = 0.0223
andh = 0.72. For these parameters = 111.426 h~! Mpc, cal-
culated using formulae presented in Eisenstein & Hu (1988)all
differences of convention in computing the sound horizailescan
be accommodated by simply scaling to match this value faehe
cosmological parameters. If recovered bounds oare to be used

®)

Ts

5). We assume that such a decomposition can be performed forto constrain models where, is not calculated using the formu-

power spectra measured from galaxy samples drawn from e 2d
GRS and SDSS.
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and the model recombination sound horizon scaléXar= 0.25,
Quh? = 0.0223 andh = 0.72.

4 OBSERVING THE BAO SCALE
4.1 Narrow redshift shell surveys

Suppose that a survey samples a narrow redshift shell ohwidt
at redshiftz. Furthermore, suppose that we are only interested in
the clustering of galaxies pairs with small separations.ggiven
pair of galaxiesAz and the angular separatiérare fixed by ob-
servation, and we wish to measure the comoving separatiatiffo
ferent cosmological models. In the radial direction, sapians in
comoving space scale with changes in the cosmological nmaxlel
dre/dz ~ Arc./Az = ¢/H(z), whererq.(z) = fc(l + 2)dt

is the comoving distance to a redshiftIn the angular direction,
the comoving galaxy separation scalesas = A0(1 + z)Da,
whereD 4 is the standard angular diameter distance. Wriipg=

(1 + Z)DA,

i Hore(z)/c if (Qu =0), (9)

|| ~/2 sin[v = Ho re(2) /] if (e < 0).

whereQ, = 1 — Qg and (g is the ratio of total to critical den-
sity today. If we assume that the pairs of galaxies are Statis
cally isotropic, then we can combine the changes in scaletand
leading order, the measured galaxy separations scale lvétbas-
mological model through the distance measire(z) = [(1 +
2)2D%cz/H(z)]'/®. Here, we have introduced a further factor of
z to match the definition oDy by Eisenstein et al. (2005): in-
cluding functions of redshift does not change the deperel@fc
Dy on different cosmological models. The position of feattires
the real space 2-pt functions, the (dimensionless) powertem
and correlation function will approximately scale withgllistance
measure. Itis worth emphasising that this is only an appmakon,
and would additionally be affected by redshift-space di&ins and
other anisotropic effects.

Following these approximations, for a survey covering a nar
row redshift slice, the power spectrufy(k) only needs to be cal-
culated for a single distance-redshift model. This is sasiave

{ ||~/ 2sinh [/ Ho re(2) /] if (S > 0),

assume a flat cosmological model so we can set up a comoving Eu

clidean grid of galaxies where BAO have the same expectée isca
radial and angular directions. The power spectrum for othed-

els can be recovered by simply rescaling the measured paower i
1/Dv (z). Note that we could have instead worked in dimension-
less unitsz/ Dy (z), where the power spectrum is independent of
the comoving distance-redshift relation. The positionhaf BAO

in the power spectrum constrain/ Dy (z), which is analogous to
the peak locations in the Cosmic Microwave Background (CMB)
measuring-s / Sk (z1s) (ignoring the astrophysical dependencies of
the peak phases), whetg is the redshift of the last scattering sur-
face.

4.2 Surveys covering a range of redshift

We now consider what it means to measure the BAO scale in sur-

veys covering a range of redshifts. In this situation, theaging
distance—redshift model assumed in measugiog P (k) becomes
increasingly important. We first consider a simple surveyecimg
two redshift shells, and then extrapolate to more generakygs.

Consider measuring the correlation function as an excess of ' ©

galaxy pairs in a survey covering two redshift shells athéftisz1
andzz. Our estimate of the correlation function from the combined
sample will be the average of the correlation functions miests

in the two redshift bins, weighted by the expected total neinds
pairs in each birlV (z;), and stretched by the distand2y (z;).
BAO in the power spectrum correspond to a “bump” in the carrel
tion function, and the position of the bump scales with thé>B#o-
sition, and therefore measures/ Dy (z;). For two redshift slices,
the position of the bump in the combined correlation functite-
pends on the average position of the bumps in the corretatior-
tions for each slice, weighted by the total number of paireanh
bin. If Dy (z1) is varied, then the same final BAO scale can be
obtained from the combined data provided that(z2) is chosen
such thafW (z1)Dv (z1) + W (z2) Dv (22)] remains constant. Ex-
tending this analysis to a large number of redshift shelks,see
that the measured BAO scale, assuming that this is measuned f
the mean position of the bump in the correlation functiompedels
onr,/Dy where

Dy = / W (2)Dv(z) dz (10)

Here, we do not have to worry about pairs of galaxies where the
galaxies are in different shells because of the small séparas-
sumption. The contributions from different redshifts(z), are cal-
culated from the weighted galaxy redshift distributiona@a. Be-
cause the weights applied to galaxies when analysing ssiteeyl

to upweight low density regions the BAO will, in general, dad

on a wider range of redshift than given by the radial distidouof
galaxies.

Now suppose that an incorrect comoving distance—redshift
model Dy (z) was assumed in the measuremeng of P(k). Fur-
thermore, suppose that this mode|, (z) has a different shape to
the true Dy (z) but the same value aby-. In this situation, our
measurement of, /Dy is unbiased with respect to the true value.
What has changed is that the BAO signal has been washed out:
the recovered BAO in the power spectrum are of lower ampgitud
and the peak in the correlation function broadens, beches@AO
scales measured at different redshifts are not in phaseualh
they sum so that their average has the correct wave-scaie thég
if Dy matches the true cosmological model, then there is no dis-
tortion of the BAO positions.

4.3 Fitting the distance—redshift relation

There are many different ways of parametrizing the distance
redshift relation. For example, we could consider a cublinsfit
tore(z), dr./dz or Dy (z). For A cosmologies the comoving dis-
tance varies smoothly with redshift, afitl, (z), r.(z) anddr./dz
can all be accurately fitted by a spline with a small number of
nodes. In this paper, we fiDv (z) because of its physical mean-
ing in a simplified survey analysis on small scales; but for-flat
cosmologies we cannot uniquely recovefz) from Dy (z). This

is not a problem because we only expect to meaguréz), and
mocks calculated assuming the saie(z), but with different ge-
ometries, should give the same cosmological constrairees&
quently, without loss of generality, we can assume flatnessnw
calculating the comoving distances frah/ (z) in order to create
mock catalogues, and use

z 3 / 1/3
re(z)1 = [3 / %dz’] . (11)
0

(© 0000 RAS, MNRASDOG, 000-000
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Figure 1. The result of fitting toDy (z) using a cubic spline fit with three
nodes atz = 0.0,0.2,0.35 for 0 < z < 0.5. We plot results for three
cosmological models ACDM (2, = 0.25, Q5 = 0.75, solid lines),
SCDM Qm = 1, 25 = 0, dotted lines), and OCDM{, = 0.3, Q5 =
0, dashed lines). The upper panel shows the true valud3yofz) (black
lines) compared with the spline fits (grey lines) with nodedli¢l circles).
The lower panel shows the resulting errors$jnas given by Equation (9).
For the redshift range > 0.15, the error is< 1%.

We now consider some of the practicalities of fitting the
distance—redshift relation. Scaling of the distance-hidelation
can be mimicked by “stretching” the measured power speatra i
k. Consequently, if we parametrize the distance—redshiftlaho
by N numbers, then power spectra only actually need to be cal-
culated for a set ofV — 1 values. For example, if the distance—
redshift model was parametrised by three nobesz1), Dv (z2)

& Dv (z3), power spectra only need to be calculated for different
Dv (z2)/Dv (z1) and Dy (z3)/Dv (z1) values. Working in units

of h~! Mpc and fittingdr./dz, is one way of including such a di-
lation of scale in the analysis: in these units the node at 0 is
fixeddr./dz|.—0 = ¢/Ho, and onlyN — 1 nodes are free to vary.
Allowing such a dilation at = 0, may not be the optimal choice
for the analysis of a survey at higher redshift.

By fitting the comoving distance (or a function of it), we hope
to provide measurements that can be easily applied to anyf set
cosmological models, although we only have to analyse alsmal
number of comoving distance—redshift relations. The cdsgical
models that can be tested require that the distance meaipted
can be well matched by the parametrisation used. In thisrpage
model Dy (z) by a cubic spline fit with 2 nodes at = 0.2 and
z = 0.35: consequently the results should only be used to delin-
eate between cosmological models whBxg(z) is well modelled
by such a fit. Fig. 1 shows fits of this form matched to a selactio
of standard cosmological models (assuming a constant vegigh
galaxy distribution with redshift). The error induced oe tomov-
ing distance as a result of fittingy (z) is small for these models.

(© 0000 RAS, MNRASD00, 000—-000
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The boundary conditions of the cubic spline are set so tleasei-
ond derivatives are zero at= 0 andz = 0.35.

4.4 Differential distance measurements

In order to break the degeneracy between distance measuseme
at different redshifts inherent in a single measuremenbh@BAO
scale, we need to analyse the BAO position in multiple poywecs
tra or correlation functions. This is true even if we are nothe
regime where the small separation assumption holds, @ththe
degeneracy would then be a more complicated function of the ¢
moving distance tha®y (Equation 10).

For the analysis of the 2dFGRS and SDSS DR5 galaxies pre-
sented in this paper, the sample is naturally split into nggilax-
ies (2dFGRS and SDSS), SDSS LRGs, and the combination of the
three samples. These samples obviously overlap in voluonies
derived power spectra will be correlated. However, usingriay-
ping samples retains more information than contiguous &snp
which would remove pairs across sample boundaries. There is
double counting as each power spectrum contains new infmma
and correlations between different power spectra aredeclin the
calculation of model likelihoods.

4.5 Basic method

For each distance—redshift relation to be tested usinglibereed
BAO locations, we could recalculate the power spectrum aed-m
sure the BAO positions. However, the likelihood of each nhode
would not vary smoothly between different models becausstiot
noise term in each band-power varies in a complicated waythé
distance—redshift relation. This would give a “noisy” haligh un-
biased, likelihood surface.

An alternative approach is to fix the distance-redshifttiata
used to calculate the power spectra. If this is differenmfrihve
model to be tested, the difference can be accounted for lusiadj
ing the window function - each measured data value has aeliffe
interpretation for each model tested. One advantage of anetp-
proach is that the shot noise component of the data does angeh
with the model tested, leading to a smoother and easierdairgt
likelihood surface. The primary difficulty is that the caation of
the window for each model is computationally intensive. Vg&/n
consider the mathematics behind this approach.

Following Feldman et al. (1994), we define the weighted
galaxy fluctuation field as

f(r) = ~

() ng(r) — ans(r)],
whereng (r) = Zj 0(r —r;) with 7; being the location of thgth
galaxy, andn,(r) is defined similarly for the synthetic catalogue
with no clustering. Herex is a constant that matches the average
densities of the two catalogues (see, for example, Pereival.
2004), andN is a normalization constant defined by

1/2
N = {/dgr [n(r)w('r)]2} .

n(r) is the mean galaxy density, and(r) is the weight applied.
The power spectrum of the weighted overdensity figld) is given
by

(12)

(13)

(14)
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The important term when substituting Equation (12) into
Equation (14) is the expected 2-point galaxy density given b

(ng(r)ng(r')) = a(r)a(r’) [1 +&(F — )| +n(r)dp (r—r').(15)

If we analyse the galaxies using a different cosmologicatieho
to the “true” model, the 2-pt galaxy density dependsraandr,
the positions in the true cosmological model that are mapped
positionsr andr’ when the survey is analysed. Translating from

the correlation functiorg () to the power spectrun® (k) in the
true cosmological model gives

- 1 /P(,j:)efikx(fur*/)dsi67

> 1y —
(r—r)=55
which can be substituted into Equation (15). Combining Equa
(12 - 16) shows that the recovered power spectrum is a triple i
tegral over the true power. ff = r, this reduces to a convolution
of the power spectrum with a “window function” (Feldman et al
1994). If we now consider a piecewise continuous true popecs
trumP(k) = ), P;[©(k) — O(k — k:)], where© (k) is the Heav-
iside function, then the triple integral can be written amadr sum
over P;, (|[F(k)[>) = >, W;P;. Because the radial interpretation
changes between actual and measured clustering, sphesicai-
aging the recovered power is no longer equivalent to coimglv
the power with the spherical average of the window funct@on-
sequently, the window has to be estimated empirically froothkn
catalogues created with different true power spectra aatysed
using a different cosmological model. The empirical windowc-
tion can be calculated including both the change in cosnicébg
model and the survey geometry.

(16)

5 ANALYSIS OF THE SDSS AND 2dFGRS
5.1 The observed BAO

Fig. 2 shows the BAO determined from power spectra calcdlate

o Ml (a) 2dFGRS+SDSS main ]
o -
o \ 7
o
0 u
S u
fo E
g ]
£ 1
g 1
£ 8 .
Ao | ]
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28t ]
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gt , , :
o — —_—— —
S o6 (c)lall I 3
=3 =
o r E
oFr
[To 2o ]
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Figure 2. BAO in power spectra calculated from (a) the combined SDSS
and 2dFGRS main galaxies, (b) the SDSS DR5 LRG sample, artti€c)
combination of these two samples (solid symbols witherrors). The data
are correlated and the errors are calculated from the d@derms in the
covariance matrix. A StandardCDM distance-redshift relation was as-
sumed to calculate the power spectra with, = 0.25, Q5 = 0.75. The
power spectra were then fitted with a cubic splin®AO model, assuming
our fiducial BAO model calculated using CAMB, as describe&éattion

(3). The BAO component of the fit is shown by the solid line inlepanel.

method described in Percival et al. 2007a), and the cowsriara-
trix from the LN catalogues, assuming that the power spédwral

for the combined sample of SDSS main galaxies and 2dFGRS powers are distributed as a multi-variate Gaussian. Thepspec-

galaxies, the SDSS LRG sample, and the combination of tlaese s
ples. The power spectra were calculatedfor= 70 band powers
equally spaced i0.02 < k < 0.3hMpc™" using the method
described in Percival et al. (2007a), assuming aflabsmology
with ©,,, = 0.25. Errors on these data were calculated from 2000
Log-Normal (LN) density fields (Coles & Jones 1991) covering
the combined volume, from which overlapping mock samplaegswe
drawn with number density matched to each galaxy catalobue.
distribution of recovered power spectra includes the &sfetcos-
mic variance and the LN distribution has been shown to be d goo
match to the counts in cells on the scales of intexe$d A~ Mpc
(Wild 2005), so these catalogues should also match the shee n
of the data. The catalogues do not include higher order learre
tions at the correct amplitude for non-linear structurerfation,
which are not included in the Log-Normal model. However, the
BAO signal comes predominantly from large-scales that are e
pected to be in the linear or quasi-linear regimes, so thifsete
should be small. Each catalogue was calculated ¢518)* grid
covering a(4000 = Mpc)?® cubic volume. The recovered power
spectra from these mock catalogues were fitted with cubioesgl
BAO fits as described in Section 3, and the errors on the BA@ wer
calculated after dividing by the smooth component of thdse fi

We have fitted cubic spline BAO models to the SDSS and
2dFGRS power spectra using the method of Percival et al 700
For each catalogue we have calculated the window functigheof
survey assuming a flat cosmology withQ2,, = 0.25 (using the

trum for each sample was then fitted using cubic spline inotudr
excluding the multiplicative BAO model calculated using I8

as described in Section 3 for a flatcosmology with2,,, = 0.25,
Qu,h? = 0.0223 & h = 0.72. All three samples are significantly
better fit by the models including BAO. For the combined data,
—2A1In L = 9.6, forthe LRGs—2A In £ = 7.4, and for the SDSS
main + 2dFGRS galaxies2A In £ = 5.9 for the likelihood ratios
between best-fit model power spectra with BAO and without BAO

Including the 2dFGRS data reduces the error on the derived
cosmological parameters by approximately 25% for our coebi
analysis of three power spectra. The BAO calculated fromthes
SDSS main galaxies and the combination of the SDSS main-galax
ies and the LRGs are shown in Fig. 3. From just the SDSS main
galaxies,—2AIn £ = 4.5 for the likelihood ratios between best-
fit model power spectra with BAO and without BAO. There is no
change in the significance of the BAO detection from the comdbi
SDSS LRG and main galaxy sample from including the 2dFGRS
galaxies.

The power spectra plotted in Fig. 2 are clearly not indepen-
dent. Some of the deviations between model and data in the com
bined catalogue can be traced back to similar distortioresthrer
the main galaxy or LRG power spectra. The LRGs have a greater
weight when measuring the clustering of the combined sample
large-scales compared with the lower redshift galaxieslewthe
low redshift galaxies have a stronger weight when measitihiag
clustering on smaller scales. The combined sample incladds

(© 0000 RAS, MNRASDOG, 000-000
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Figure 3. As Fig. 2, but for power spectra calculated from (a) the com-
bined SDSS DR5 LRG and main galaxy sample, (b) the SDSS mé&iryga
sample.
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Figure 4. Two possible ways of changing the distance—redshift medt
against the data. Dilating the scale can be achieved by gisgalling the
measured power spectra and windows, while changing the fdrtine
distance-redshift relation requires recalculation ofviredows.

tional galaxy pairs where the galaxies lie in different saubples.
All three samples also cover different redshift ranges. issubssed
in Section 4 this means that they all contain unique cosnicébg
information. By simultaneously analysing all three poweecra,
allowing for the fact that they may be correlated, we canefoee
extract more cosmological information than by analysingngle
power spectrum.
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2dFGRS+SDSS main

Window

Figure 5. The window function linking the input power spectrum with
an observed band-power At = 0.08 h Mpc~! (calculated assuming a
ACDM model), for the SDSS LRG and 2dFGRS + SDSS main galaxy cat-
alogues. Window functions are plotted for 9 distance—ridstodels with

Dy (0.2) = 550 h~1 Mpc and800 < Dy (0.35) < 1200 h~! Mpc.

For the LRGs, the peak-value of the power that contributes to this mea-
sured band—power decreases with increagiqg(0.35).

5.2 Fitting the distance—redshift relation

We test distance-redshift models that are given by a cubiicesp
fit to Dy, with one node fixed aDy (0.2) = 550 k™' Mpc and
41 equally separated values of another nodéat(0.35) with
800 < Dy (0.35) < 1200 h~" Mpc. Dy (0) = 0 is assumed for
each model. These models are shown in the top panel of Fige4. W
also allow the distances to be scaled, which is shown in thero
panel of Fig. 4 for fixedDv (0.35)/Dyv (0.2). This scaling can be
accomplished without recalculation of the power spectiagaws
or covariances, which can all be scaled to match the newndista
redshift relation. In the spling BAO model that we fit to the data,
we allow the spline nodes to vary with this scaling, so thatspline
nodes always match the same locations in the power spectra.

Fig. 2 shows that we can detect BAO in three catalogues:
SDSS LRG, SDSS main + 2dFGRS and combined SDSS + 2dF-
GRS. We now provide some of the practical details of how we con
strain the fit toDv (z) using these data. For each model value of
Dv(0.35)/Dv (0.2), the measured power spectra are a convolu-
tion of the true power, based on the survey geometry and the di
ference between the model cosmology and the cosmology used
to calculate the power. In order to calculate the window func
tion for each convolution, we have calculated 10000 Gauossia-
dom fields, allowing the phases and input power spectra tp var
We assume that the true power is piecewise continuous in bins
of width 0.002 h Mpc~! between0 < k < 0.4hMpc~!. We
calculated 50 fields where power was only added in one of these
200 bins. Each field was calculated or{%2)* grid covering a
(4000 = Mpc)?® cubic volume. Each Gaussian random field was
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then translated onto a grid assuming a distance-redskuafiame
following the fiducial ACDM cosmology, and is then sampled and
weighted to match the actual survey. The average recovergdrp
spectrum from each set of 50 realisations then gives parhef t
window function of the data given each model, and combining
data for all 200 bins allows the full window function to beiest
mated. Fig. 5 shows a few of the resulting window functions fo
the recovered band-power at= 0.08 h Mpc~!. These models
were calculated withDy (0.2) = 550 A~ Mpc and 9 values of
Dy (0.35) with 800 < Dy (0.35) < 1200 k™" Mpc with sepa-
ration 50 h~! Mpc. These numerically determined window func-
tions include both the effects of the volume covered by theesy
and the different distance—redshift relation. For the LR@Gn we
analyse the data assumind&DM cosmology, if the true value of
Dy (0.35) increases, the scales contributing to a given band-power
also increase, and the peak value in the window functidnspace
decreases. The corresponding window functions for theroeas:
shift data plotted in the upper panel of Fig. 5 do not show such
significant change because the nod®at(0.2) remains fixed.

We calculate the expected covariances from the LN catafogue
described in Section 5.1. These catalogues were calcuddited-
ing for overlap between samples, and power spectra wer@-calc
lated as for the actual data. Covariances (internal to &4¢éh and
between different power spectra) were recovered assumatgtte
power spectra are distributed as a multi-variate Gausianthe
set of models tested, we do not change the covariance mathix w
Dy (0.35)/Dv (0.2) (the change in models shown in the top panel
of Fig. 4), because the recovered data power spectra do angeh
when altering this parameter combination. Consequemilyhiis
direction, it is the correlations between data points thaharily
change. Tests with different matrices show that this hagytigie
ble effect across the set of models, but recalculating thariance
matrices for each model introduces significant noise ingolitte-
lihood surfaces. We do scale the covariance matrix with tite d
when we dilate in scale (the change in models shown in thetmott
panel of Fig. 4).

5.3 Reslults

In this section, we present likelihood surfaces calcul@teéitting
models to the BAO detected in power spectra from the differen
samples. In order to remove small likelihood differencassea by
different fits to the overall shape of the power spectrum, uigract
the likelihood of the best-fit model without BAO from eachdik
hood before plotting. The likelihood differences betweeodeis
with no BAO is caused by the effect of the different window dun
tions on allowed shapes of the spline part of the model.

Fig. 6 presents likelihood surfaces calculated by fitting cu
bic spline x BAO models to power spectra calculated from dif-
ferent sets of data. The upper row of panels show likelihoods
plotted as a function of the 2 parameters used in the anal-
ysis, Dy (0.35)/Dv(0.2), and rs/Dv(0.2) which is used to
parametrise the dilation of scale. The lower panels shovsdnee
likelihood surfaces after a change of variables 6D+ (0.2) and
rs/Dyv(0.35). BAO within the SDSS main galaxy and 2dFGRS
power spectrum primarily fix the distance to the= 0.2, while
the LRG power spectrum measures the distance te- 0.35.
When we jointly analyse the power spectra from the low retshi

of 0.39. The likelihood surface is well approximated by treating
these parameters as having a multi-variate Gaussianhdistm
with these errors (the left panel of Fig. 7 shows this appnation
compared with the true contours). For completeness, th@adet
for likelihood calculation is described in Appendix A.

For our conventions:s = 111.426 h~! Mpc for Q., = 0.25,
Qph? = 0.0223 andh = 0.72. Hence, ifQ,h? = 0.13 and
Q,h? = 0.0223, we find Dy (0.2) = 564 + 23k~ Mpc and
Dyv(0.35) = 1019 4 42 h~! Mpc; one can scale to other values
of Qmh? andQ,h? using the sound horizon scale formula from
Equation (8).

Without the 2dFGRS data, the low-redshift result reduces to
rs/Dv(0.2) = 0.1982 + 0.0067, while thez = 0.35 result is
unchanged: as expected, the 2dFGRS data primarily helpnfo li
the distance—redshift relation at~ 0.2. We can ratio the high
and low redshift BAO position measurements to remove the de-
pendence on the sound horizon scale From all of the data, we
find Dy (0.35)/Dv(0.2) = 1.812 £ 0.060. This is higher than
the flat ACDM value, which forQ2,, = 0.25 andQx = 0.75 is
Dy (0.35)/Dy (0.2) = 1.66.

6 TESTING THE METHOD
6.1 Therange of scales fitted

Fig. 7 shows the effect of changing the rangekefalues fitted
on the likelihood surface. Reducing the upper limit frdm=
0.3hMpc~tto k = 0.2hMpc~! does not change the signif-
icance of the best fit, compared to the no-BAO solution. How-
ever, this reduction in the range é&fvalues fitted increases the
possibility of the BAO model fitting spurious noise becauke t
0.2 < k < 0.3hMpc~* data provide a long lever arm to fix the
overall power spectrum shape. Increasing the lowiémit consid-
ered in the fit fromk = 0.02 h Mpc~! to k = 0.05 h Mpc~! does
reduce the significance of the BAO detection, because the 8O
nal is strongest on large scales. However, there is only d sifia
set in the position of the likelihood maximum if we do thisdan
the recovered ratidy (0.35)/Dv (0.2) is unchanged. This gives
us confidence that we are picking up the oscillatory BAO digna
and that the large scale features of the BAO, which depentien t
details of the BAO production, do not contribute signifidand the

fit.

6.2 The splinex BAO model

Fig. 8 shows likelihood surfaces calculated by fitting theame
sured power spectra with different spline BAO models. We
have considered offsetting the nodes of the spline curve to
0.001 A Mpc~—! and 8 nodes witlh.05 < & < 0.4 Mpc~! and
separationAk = 0.05 h Mpc~". Using this form for the spline
curve alters the best-fit parametersrig/ Dy (0.2) = 0.1956 +
0.0068 andr, /Dy (0.35) = 0.1092 + 0.0039. This spline fit is a
better match to the BAO signal on scales< 0.1 h Mpc~!, lead-
ing to a smaller difference between likelihoods for spkiAO
models and models with just a spline curve, and larger ewors
the recovered parameters.

Fig. 8 shows that there is a small systematic change in the dis

data, the LRGs and the combination of these samples, we findtance ratioDv (0.35)/Dyv (0.2) when the amplitude of the BAO

rs/Dv(0.2) = 0.1980 4 0.0058 andr/ Dy (0.35) = 0.1094 +
0.0033 (unless stated otherwise all errors given in this paper are
1-0). These constraints are correlated with correlation cmefit

damping is altered. Increasing the width of the Gaussianpdam
ing model too, = 20 A~ Mpc for the BAO fitted to the three
power spectra decreases the best-fit ratib1q0.35) /Dy (0.2) =

(© 0000 RAS, MNRASDOG, 000-000
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Figure 6. From left to right: Likelihood surfaces calculated fromifig a cubic splinex BAO model to a single power spectrum calculated from the doeth
main SDSS galaxy + 2dFGRS sample, to a single power spectilaulated using for SDSS LRG sample, and to both these pgweetrs and the additional
power spectrum calculated from the combined catalogue.rg\Vimere than one power spectrum is fitted, we allow for catedl@rrors between the power
spectra. Likelihood contours were plotted feRIn £ = 2.3, 6.0, 9.2, corresponding to two-parameter confidence of 68%, 95% 8@t for a Gaussian
distribution. In the upper row, we plot the contours as a fiancof s / Dy, (0.2), calculated by dilating the scales of the power spectradeirs and covari-
ances, andy (0.35) /Dy (02), for which different windows were calculated. These likebds are plotted as a functionf/ Dy, (0.2) andrs /Dy (0.35)

in the lower row of this figure. Here the dashed lines showithid of the parameter space tested.
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Figure 7. Likelihood surfaces as plotted in Fig. 6, but now fitting téfefient ranges irk-space (solid contours). As a reference, the dotted comtshow
the Gaussian approximation to the)2 < k < 0.3 hMpc~! likelihood surface which hass/Dy (0.2) = 0.1980 4 0.0058 andrs /Dy (0.35) =
0.1094 =+ 0.0033, and correlation coefficient @f.39. Dashed lines show the limit of the parameter ranges coresides shown in Fig. 6.

1.769 £ 0.079. Removing the small-scale BAO damping for all scales than predicted by our fiducilCDM model, where
models increases the ratio 0y (0.35)/Dv(0.2) = 1.858 + Dv(0.35)/Dv(0.2) = 1.66. By increasing the strength of the
0.051. When changing the damping term, the best fit value damping, we reduce the significance of the small-scale kigad-
of rs/Dv(0.2) does not change significantly, and the change ing to increased errors and & (1o) systematic shift to smaller
in the ratio comes almost entirely from different fitted \esu Dv(0.35)/Dv (0.2).

of r,/Dv(0.35), which is most strongly limited by the LRG
power spectrum. To help to explain this effect, Fig. 9 shows
BAO models with different values oDy (0.35)/Dy (0.2) and

If we include o, as a fitted parameter with a uniform prior,
allowing o4 to vary between power spectra, we obtain best-fit

_ -1 i
damping strength, compared with the observed LRG BAO. The values gy = 7.3 + 4.3h" " Mpc for the low redshift data,

. og 1.4 £ 2.2h~ ! Mpc for the LRGs, ando, = 4.7 +
BAO observed in the LRG power spectrum occur on larger 2.6 L~ Mpc for the power spectrum of the combined sample.
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10 W.J. Percival et al.

T T
offset spline nodés no BAO damping”
Id Id
7
-
= L . i
: : -
o o ,
7
— — . —
kS kS . kS
S — s < [7 o
e FOF s
g 0o g 0o g
~ ~ ~
= = =
- -
o o[
L
0. 0.16 0.18
r./Dy(0.2) r./Dy(0.2) r./Dy(0.2)
T T T
best—fit o, 7 7,=10+/-5 n™'Mpe 7g=10+/-2 n™'Mpe
Id Id
o
- i
o
= = =
ez e e
] g g
~ ~ ~
= = =
-
s e
L bl

0.16

r_/Dy(0.2)

r_/Dy(0.2)

r_/Dy(0.2)

Figure 8. Likelihood surfaces as plotted in Fig. 6, but now calculdtdohg the measured power spectra with different spinBAO models (solid contours).
Other lines are as in Fig. 7. Top row, from left to right: we siofer a spline curve with nodds= 0.001 h Mpc~—! andk = 0.05 + n0.05 h Mpc~! with

n =1,2,...,7, which are offset ik compared with our default separation. We use our defauliesfit, but remove the small-scale BAO damping. We use the
default spline fit, but increase the position-space BAO dagio be a Gaussian withy = 20 h~! Mpc. Bottom row: likelihood surface calculated allowing
the damping term, parametrised by, to float with a uniform prior, and with Gaussian prierg = 10 + 5 h~! Mpc oroy = 10 & 2h~! Mpc.

'(a)' No small-scale BAO 'dai'np'ing'

0 ;

ot 3

o 1

o {

S f :
19 E
£ ————————————+—

&\" g (b) damping with o, =10h""Mpc ]
Sk E
N o b + t 1
= 8F 3
~ C|5 E * + E
o F 4
W —————+——]
=t 0 (c) damping with o,=20h™ Mpc ]

S é‘ + + ' E

o —

0 F * + + E

ot 1

o F =

! E | | E

0.1 0.2
k / h Mpe™!

Figure 9. As Fig. 2, but only for the LRG power spectrum, plotted agiins
BAO models with different levels of small-scale BAO dampif@) no
damping, (b)og = 10 A~ Mpc, (c) oy = 20 h~! Mpc. The solid line

is for Dy (0.35) /Dy (0.2) = 1.82, while the dashed line is calculated for
Dy (0.35)/Dy (0.2) = 1.66. Dy (0.2) = 568, matching the values of

our fiducial ACDM model.

Here Dy (0.35)/Dv (0.2) = 1.827 + 0.061. However, the in-
clusion of these extra parameters increases the noise iikétie
hood surfaces. This likelihood surface is shown in Fig. 8ead
ing a spur at constant;/Dy (0.35) following models with ex-
treme damping of the low redshift data, weakening the caimtr
onrs/Dy(0.2). The extra minima at, /Dy (0.35) < 0.1 is due
to models with strongly damped BAO fitted to both the low red-
shift and combined power spectra. Likelihood surfacesutated
assuming that, has a Gaussian prior with, = 10+ 5h ™! Mpc
oro, = 10 =2 h~! Mpc are also plotted in Fig. 8. As expected,
there is a smooth transition between these likelihood sasfgand
allowing a small error irr, does not change the likelihood signifi-
cantly from the fixedr, = 10 h~! Mpc form.

We have also considered how using approximations to the
BAO model affects the fits. Fig. 10 shows the likelihood of-dif
ferent r, /Dy (0.2) and r,/Dv (0.35) values, with BAO mod-
els calculated using the Eisenstein & Hu (1998) fitting folawey
and the simple model of Blake & Glazebrook (2003), as given
by Equation (7). The BAO models have been damped assuming
gy = 10~ Mpc for a Gaussian position-space convolution as
described in Section 3. For the Eisenstein & Hu (1998) fitting
formulae, we have considered two approaches to calcul#tiag
likelihood: either using a fiducial BAO model (calculated fbe
same cosmological parameters as our standard CAMB model) an
stretching this model in amplitude and scale, or allowfhg to
vary to match the desired comoving sound horizon scale, knd a
lowing 2/, to fix the BAO amplitude. The second approach
allows the BAO model on scalds < 0.05 hMpc~" to change
with cosmological parameters for fixed valueldf (0.2). Ideally,
in order to accurately model the BAO on large scales we should
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Figure 10. Likelihood surfaces as plotted in Fig. 6, but now calculatsithg different BAO models (solid contours). Other lines as in Fig. 7. From left
to right: we use the transfer function fits of Eisenstein & HA@48) to model the BAO, calculated for our fiducial cosmolegyl stretched in amplitude and
scale as for the standard CAMB model. We again use the fitssgfnigtein & Hu (1998) but now allof2,,, to change to fix the sound horizon scale, and
marginalise over the amplitude parametrised hy/Qm. We model the BAO using the simple model of Equation (7).

separate s and the distance scale in the fits. However, there is little
change in the recovered parameters between these two appspa
demonstrating that this level of complexity is not requifedcur-
rent data precision. There is a change in the recovered péeesn
of order < 1o, with best-fit parameters for the Eisenstein & Hu
(1998) fitsrs / Dy (0.2) = 0.2020 + 0.0060 andrs/Dy (0.35) =
0.112040.0033 with correlation coefficient ofi.41. For the Blake

& Glazebrook (2003) fitsys /Dy (0.2) = 0.2011 + 0.0058 and
rs/Dv(0.35) = 0.1104 £ 0.0034 with correlation coefficient of
0.37. The definition ofr; is built into the Blake & Glazebrook
(2003) fit, and will have a different fiducial value to the atffiés.

We might expect the ratidy (0.35)/Dv (0.2) to be more

robust to changes in the BAO model as it measures the rela-
tive positions of the BAO at the different redshifts. In esss
by considering this ratio, we are testing how well the BAO
from low and high redshift match. Our standard CAMB fit gave
Dy (0.35)/Dv (0.2) 1.812 £ 0.060. Using the Eisenstein &
Hu (1998) BAO fitting formulae givesDy (0.35)/Dyv (0.2)
1.800+0.066, while using the Blake & Glazebrook (2003) fit gives
Dy (0.35)/Dv(0.2) = 1.827 £+ 0.061. These are all consistent at
lo.

7 COSMOLOGICAL CONSTRAINTS

We consider three ways of using the BAO scale measurements
to restrict cosmological models. Using just the observedi-po
tion of the BAO in the power spectra analysed, we can mea-
sure Dy (0.35)/Dv (0.2). Alternatively, we can compare these
distance scales with the apparent acoustic horizon angteein
CMB: The WMAP experiment has measured this @s
0.5952 =+ 0.0021° (Spergel et al. 2007). For simplicity, we ig-
nore the0.4% error on this measurement, which is negligible com-
pared with the large-scale structure distance errors, ssuthae that
7s/SK(1098) = 0.0104. Including this measurement to remove the
dependence on; givesS;(1098) /Dy (0.2) = 19.04 £+ 0.58 and
S%(1098) /Dy (0.35) = 10.52 % 0.32. The third possibility is that
we model the co-moving sound horizon scale, and simply use th
derived bounds om, /Dy (0.2) andr, /Dy (0.35). This relies on
fitting the comoving sound horizon scale at recombinatioadn
dition to the distance—redshift relation, and has addiigarame-
ter dependencies dm k2 andQuLA2. In order to calculates for
each cosmological model tested, we assumeSthat® = 0.0223
andQ,h? = 0.1277, matching the best-fit WMAP numbers for
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Figure 11. Three different ways of using BAO to test cosmological medel
The panels from top to bottom show the constraintsSp1098) /Dy (z),
rs/Dy, andDy (z)/ Dy (0.2) (solid circles withlo errors). For many of
the data points the errors are smaller than the symbolseTdaa are com-
pared with three cosmological models€CDM (2, = 0.25, Qx = 0.75,
solid lines), SCDM Qm = 1, Q4 = 0, dotted lines), and OCDM
(Qm = 0.3, Qx = 0, dashed lines), as plotted in Fig. 1. In order to
calculaters and hencers /Dy, we used the fitting formulae of Eisen-
stein & Hu (1998), assumin@,h2 = 0.0223 and Qmh? = 0.1277,
matching the best-fit WMAP numbers f&f«CDM cosmologies (Spergel et
al. 2007). Although the best-fiDy-(0.35) /Dy, (0.2) appears to be further
from the ACDM model than in the other panels, this is just a consequence
of rs /Dy (0.2) being greater than and, /Dy (0.35) being less than the

ACDM model.
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Q

'm

Figure 12. Top panel: Likelihood surfaces assumingAZZDM model
parametrised by, andQ2,. Contours and delineations between shaded
regions are plotted for—2In£ = 2.3, 6.0, 9.2. The shaded re-
gions show the likelihood given jusDy (0.35)/Dy (0.2). The solid
contours were calculated by modelling; and using constraints on
rs/Dy (0.2) andrs/Dy (0.35), and the dashed contours by including
the CMB peak position measurement, and 94€1098)/Dy (0.2) and
S1(1098)/Dy (0.35). The dotted line shows the locus of flat models. Bot-
tom panel: likelihood contours calculated using the sante, dat now for
flat cosmological models with constant dark energy equatiostate pa-
rameterw. Here the dotted line shows = —1.

ACDM cosmologies (Spergel et al. 2007). We do not includersrro
on these parameters, so our recovered errors from fittifdy
will be underestimated. The distance ratibs (0.35)/Dv (0.2)
andS; (1098) /Dy are independent éf and(2;,. These three possi-
ble ways of using the large-scale structure data are shofigiil,
where we compare to three cosmological models.

Including SNLS constraints

ol vy
0 0.1 0.2 0.3 0.4

Including SNLS constraints

Figure 13. As Fig. 12, but now additionally using the SNla data presgnte
in Astier et al. (2006) in the Likelihood calculation. Theasled region,
dashed and solid contours were calculated using the BACdhasasure-
ments described in the caption to Fig. 12. The dot-dashetbemshow
the likelihood surface calculated from just the SNLS data.

to vary fromw = —1. Here,w < —1 is favoured at a significance
of 1.4¢, from the Dy ratio assuming a flat prior o1, .

In Fig. 13 we have included constraints from the set of super-
novae given in Astier et al. (2006). The tightest bounds odet®
are obtained if we include the ratio of the sound horizoneseal
recombination to the angular diameter distance to lastesoag
calculated from CMB data, which then give a likelihood degren
acy that is approximately orthogonal to the supernovadilii@ed
degeneracy. Including the CMB data giv@s, = 0.252 + 0.027
andQa = 0.743 + 0.047 for ACDM models. The curvature is
found to beQ2, = —0.004 + 0.022. For flat models, with constant

We demonstrate the consistency of the BAO measurements byeguation of state parameter, we find 2, = 0.249 4 0.018 and

considering how they restrict two sets of cosmological nemdehe
top panel of Fig. 12 shows likelihood contours for standa@DM
cosmologies, parametrised b}, and{2,. The three ways of us-
ing the large-scale structure data that we have considerestrain
different parameter combinations, and the location ofrtpeak
likelihoods do not coincide, although their 95% confidenuer-
vals do overlap. In the lower panel we consider flat modelk ait
constant dark energy equation of state paramettrat is allowed

w = —1.004 £ 0.089.

8 DISCUSSION

We have introduced a general method for providing conggain
the distance—redshift relation using BAO measured fronagal
power spectra. The method can be applied to different gadaxy
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veys, or to subsamples drawn from a single survey that cafler d  sound horizon scale at recombination then the likelihoa®ome

ferent redshift ranges. At the heart of the method is a likesld complementary. These two approaches provide differemiftigs-
calculation, matching data and model power spectra, assuttnat rameters, although they are consistent at théelel. For ACDM
these have a multi-variate Gaussian distribution. We noxeve models,, = 0.266 + 0.015 if we model the sound horizon scale,
the components required for this calculation: or O, = 0.252 £ 0.027 including the CMB data. Similarly, for

flat models with constanb, we findw = —1.045 4 0.080 if we
model the sound horizon scale,or= —1.004 =+ 0.088 including
the CMB data.

For flat models with constanit, the differential distance mea-
surementDy (0.35) /Dy (0.2) favoursw < —1. However, it is
worth noting that Fig. 12 shows that the total densi®.¢) and
w are highly coupled, so allowing curvature to vary would gign
cantly weaken this conclusion (Clarkson et al. 2007). Th& SN
supernovae data favour ~ —1, hinting at a discrepancy be-
tween low and high redshift. Fitting to the SNLS SNla dateegiv
Dy (0.35)/Dv (0.2) = 1.666 £ 0.010 for the set ofACDM mod-
els considered, oDy (0.35) /Dy (0.2) = 1.665 £ 0.010 for flat
models with constant dark energy equation of state.

The tests presented in Section 6.2 show that the measured dis
tance ratio from the current BAO data is sensitive to the dagp
model. This is clear from Fig. 9, where it is apparent thateahe
a small offset between all models and the positions of thedird
second peaks in the LRG BAO. By increasing the BAO damping,
we decrease the significance of the second peak comparetheith
first, and change the fitted ratioy (0.35) /Dy (0.2). However, our
default choice of the damping model — a Gaussian convolution
position space witlr, ~ 10 A~ Mpc — is well motivated by cur-
rent simulation results (Eisenstein et al. 2007; Anguld.e2@07).
This givesDy (0.35)/Dv (0.2) = 1.812 £ 0.060, which is off-
set by2.40 from the SNla results. If this is not a case of extreme
bad luck, we must therefore consider at least one of theviiotigp

PARAMETERS The distance—redshift relation is paramettrize
using a spline fitinDy (z) with a small number of node#)v (z;).

We can simply scale measured power spectra to follow a nlialip
tive shift of all Dv (z;), so we take as parametdps- (z;)/Dv (z;),

i # j, and Dy (z1) (this was discussed in Section 4). This
parametrization allows the results to be used to constraireml
cosmological models that have such a smdoth(z), without hav-
ing to specify the set of models before the start of the aislys

DATA The galaxies are split into subsamples covering dffer
(possibly overlapping) redshift ranges. The power spdotrthese
samples are calculated assuming a fiducial cosmologicalemod
(Section 4). The position of the BAO in each power spectrum de
pends on a weighted integral of the distance-redshiftiogldor
the range of redshifts covered by the sample from which theepo
spectrum is calculated. Consequently, by fitting power spémm
different samples, we can measure the ratio of distancaffé¢oeht
redshifts.

BAO MODEL BAO are extracted from a model power spectrum
calculated using CAMB, by fitting with a spline BAO model,
as fitted to the observed galaxy power spectra. These BAO are
stretched to allow for varyings /Dy (z1) (Section 5.1).

MODEL The model is formed from a smooth spline curve multi-
plied by the BAO model (Section 5.1). This is convolved witke t
window function, which corrects for both the survey geomeind
the difference between the fiducial cosmology (at which tagd
power spectra were calculated), and the cosmological ntodss

tested (Section 4.5). The window functions were calculaigidg options:
realisations of Gaussian random fields. (i) The damping model needs to be revised and made more so-

ERRORS Covariance matrices for the power spectra were cal- phisticated;
culated from Log-Normal realisations of galaxy distrilouis. Co- (i) The data/analysis is flawed in a way that evades the tests
variances between the different power spectra of diffegaexy have performed so far;
samples were included. (iii) The simpleA model is wrong.

NUISANCE PARAMETERS The spline nodes giving the shapes ) )
of the power spectra were fixed at their best fit values for each _ For the Gold supermnovae data set (Riess et al. 2004), the sig-
model tested. We are therefore left with a likelihood measents nificance of any evidence fapr < —1 at low redshift would in-
for a set ofr. /Dy (z1) andDy (z;) /Dy (z;), i # j values. crease because this SNla dataset also favours strong dendgyen

atz < 0.3 — so it is conceivable that this discrepancy could be

This analysis method has been used to jointly analyse sample genuinely cosmological in origin. However, in this paper ovgy
of galaxies drawn from the SDSS and 2dFGRS. BAO were cal- compare with the SNLS data because of the benefits of conzider
culated by fitting a fiducial power spectrum calculated by CBM  homogeneous data. It will be interesting to recalculate shjnifi-
(Lewis et al. 2000). We have considered using fitting forrauta cance when the SDSS supernova survey (Nichol 2007) is coenple
calculate the BAO (Eisenstein & Hu 1998; Blake & Glazebrook as it focuses or < 0.5, and should either confirm or reject any
2003), and find changes in the recovered BAO scale of atder  deviations from a simpla CDM model at these low redshifts.

Such a dependence was also found recently by Angulo et af. 200
when fitting simulated data, and it is clear that the combi>eie-
GRS+SDSS data now reveal the BAO with sufficient accurady tha
we need to take care when modelling the BAO.

The BAO scale measurements were used to set limits on two
sets of cosmological models: Standakdmodels, and flat mod- WJP is grateful for support from a PPARC advanced fellowship
els with constant dark energy equation of state. When weys@al ~ WJP acknowledges useful conversations with Sanjeev Seaimla
flat ACDM models, we find similar errors on the matter density constructive comments from David Weinberg on an early dvhft
to those obtained by Percival et al. (2007a), where theseelmod this manuscript. Simulated catalogues were calculatedazwadt
were directly compared with the data. The SNla data fromeksti  ysed using the COSMOS Altix 3700 supercomputer, a UK-CCC
et al. (2006) provide cosmological constraints that havéma- s facility supported by HEFCE and PPARC in cooperation with
lar degeneracy direction to the lower redshift BAO constrain CGl/Intel.

Dy (0.35)/Dv (0.2). However, if we include the information from The 2dF Galaxy Redshift Survey was undertaken using the
the position of the peak in the WMAP CMB data, or model the Two-degree Field facility on the 3.9m Anglo-Australian &stope.
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APPENDIX A: LIKELIHOOD CALCULATION

The best fit parameters from our analysis of BAO are
rs/Dy(0.2) = 0.1980 £ 0.0058 andrs /Dy (0.35) = 0.1094 +
0.0033, with correlation coefficient 0§.39. A multi-variate Gaus-
sian likelihood can be estimated from using these numbe&engi
model values ofr; /Dy (0.2) andr,/Dv(0.35) as —2In £ «
X~1Vv~1X, where

=T —(.1980
_ Dy (0.2)
X ( 7Dv€8»35) —0.1094 ) ’ (A1)
-1 35059  —24031
v o < —24031 108300 > (A2)
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