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Measuring the Bias of Technological Change

Ulrich Doraszelski

University of Pennsylvania

Jordi Jaumandreu

Boston University

Technological change can increase the productivity of the various fac-
tors of production in equal terms, or it can be biased toward a specific
factor. We directly assess the bias of technological change by measur-
ing, at the level of the individual firm, howmuch of it is labor augment-
ing and how much is factor neutral. To do so, we develop a framework
for estimating production functions when productivity is multidimen-
sional. Using panel data from Spain, we find that technological change
is biased, with both its labor-augmenting and its factor-neutral compo-
nents causing output to grow by about 1.5 percent per year.

I. Introduction

When technological change occurs, it can increase the productivity of
capital, labor, and the other factors of production in equal terms, or it
can be biased toward a specific factor. Whether technological change fa-
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vors some factors of production over others is central to economics. Yet,
the empirical evidence is relatively sparse.
The literature on economic growth rests on the assumption that techno-

logical change increases the productivity of labor vis-à-vis the other factors
of production. It is well known that for a neoclassical growth model to ex-
hibit steady-state growth, either the production function must be Cobb-
Douglas or technological change must be labor augmenting (Uzawa 1961),
andmany endogenous growthmodels point tohumancapital accumulation
as a source of productivity increases (Lucas 1988; Romer 1990). A number
of recent papers providemicrofoundations for the literature on economic
growth by theoretically establishing that profit-maximizing incentives can
ensure that technological change is, at least in the long run, purely labor
augmenting (Acemoglu 2003; Jones 2005). Whether this is indeed the
case is, however, an empirical question that remains to be answered.
One reason for the scarcity of empirical assessments of the bias of tech-

nological change may be a lack of suitable data. Following early work by
Brown and de Cani (1963) and David and van de Klundert (1965), econ-
omists have estimated aggregate production or cost functions that proxy
for labor-augmenting technological changewith a time trend (Lucas 1969;
Binswanger 1974; Kalt 1978; Cain and Paterson 1986; Antràs 2004; Klump,
McAdam, and Willman 2007; Jin and Jorgenson 2010).1 While this line of
research has produced some evidence of labor-augmenting technological
change, the staggering amount of heterogeneity across firms in combina-
tion with simultaneously occurring entry and exit (Dunne, Roberts, and
Samuelson 1988; Davis and Haltiwanger 1992) may make it difficult to in-
terpret a time trend as a meaningful average economy- or sectorwidemea-
sure of technological change. Furthermore, this line of research pays scant
attention to the fundamental endogeneity problem in production func-
tion estimation. This problem arises because a firm’s decisions depend on
its productivity, and productivity is not observed by the econometrician
and may severely bias the estimates (Marschak and Andrews 1944).
While traditionally using more disaggregated data, the productivity

and industrial organization literatures assume that technological change
is factor neutral. Hicks-neutral technological change underlies, either ex-
plicitly or implicitly, most of the standard techniques for measuring pro-
ductivity, ranging from the classic growth decompositions of Solow (1957)
and Hall (1988) to the recent structural estimators for production func-
tions (Olley and Pakes 1996; Levinsohn and Petrin 2003; Doraszelski and
Jaumandreu 2013; Gandhi, Navarro, and Rivers 2013; Ackerberg, Caves,
and Frazer 2015).

1 A much larger literature has estimated the elasticity of substitution using either aggre-
gated or disaggregated data while maintaining the assumption of factor-neutral technolog-
ical change; see Hamermesh (1993) for a survey.
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In this paper, we extend the productivity and industrial organization
literatures and develop a framework for estimating production functions
when productivity is multidimensional and has a labor-augmenting and
a Hicks-neutral component. We use firm-level panel data that are now
widely available to directly assess the bias of technological change bymea-
suring, at the level of the individual firm, how much of technological
change is labor augmenting and how much of it is Hicks neutral.
To tackle the endogeneity problem in production function estimation,

we build on the insight of Olley and Pakes (1996) that if the decisions that
a firm makes can be used to infer its productivity, then productivity can be
controlled for in the estimation. We infer the firm’s multidimensional pro-
ductivity from its input usage, in particular its labor andmaterials decisions.
The key to identifying the bias of technological change is thatHicks-neutral
technological change scales input usagebut, in contrast to labor-augmenting
technological change, does not change the mix of inputs that a firm uses.
A change in the inputmix therefore contains information about the bias of
technological change, provided we control for the relative prices of the var-
ious inputs and other factors that may change the input mix.
We apply our framework to examine the speed and direction of tech-

nological change in the Spanish manufacturing sector in the 1990s and
early 2000s. Spain is an attractive setting for two reasons. First, Spain be-
came fully integrated into the European Union between the end of the
1980s and the beginning of the 1990s. Any trends in technological change
that our analysis uncovers for Spain may thus be viewed as broadly repre-
sentative for other continental European economies. Second, Spain in-
herited an industrial structure with few high-tech industries and mostly
small and medium-sized firms. R&D is widely seen as lacking. Yet, Spain
grew rapidly during the 1990s, and R&D became increasingly important
(European Commission 2001). The accompanying changes in industrial
structure are a useful source of variation for analyzing the role of R&D in
stimulating different types of technological change.
The particular data set we use has several advantages. The broad cover-

age allows us to assess the bias of technological change in industries that
differ greatly in terms of firms’ R&D activities. The data set also has an un-
usually long time dimension, enabling us to disentangle trends in techno-
logical change from short-term fluctuations. Finally, the data set has firm-
level prices that we exploit heavily in the estimation.2

The Spanish manufacturing sector also poses several challenges for
identifying the bias of technological change from a change in the mix of

2 There are other firm-level data sets such as the Colombian Annual Manufacturers Sur-
vey (Eslava et al. 2004), the Prowess data collected by the Centre for Monitoring the Indian
Economy (De Loecker et al. 2016), and the Longitudinal Business Database at the US Cen-
sus Bureau, which contain separate information on prices and quantities, at least for a sub-
set of industries (Roberts and Supina 1996; Foster, Haltiwanger, and Syverson 2008, 2016).
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inputs that a firm uses. First, outsourcing directly changes the inputmix as
the firm procures customized parts and pieces from its suppliers rather
thanmakes them in-house from scratch. Second, the Spanish labormarket
manifestly distinguishes between permanent and temporary labor. We fur-
ther contribute to the literature following Olley and Pakes (1996) by ac-
counting for outsourcing and the dual nature of the labor market.
Our estimates provide clear evidence that technological change is bi-

ased. Ceteris paribus, labor-augmenting technological change causes out-
put to grow, on average, in the vicinity of 1.5 percent per year. While there
is a shift from unskilled to skilled workers in our data, this skill upgrading
explains some but not all of the growth of labor-augmenting productivity.
Inmany industries, labor-augmenting productivity grows because workers
with a given set of skills become more productive over time.
At the same time, our estimates show that Hicks-neutral technological

change plays an equally important role. In addition to labor-augmenting
technological change, Hicks-neutral technological change causes output
to grow, on average, in the vicinity of 1.5 percent per year.
Behind these averages lies a substantial amount of heterogeneity

across industries and firms. Our estimates point to substantial and per-
sistent differences in labor-augmenting and Hicks-neutral productivity
across firms, in line with the “stylized facts” about productivity in Bartels-
man and Doms (2000) and Syverson (2011). Beyond these facts, we show
that, at the level of the individual firm, the levels of labor-augmenting
and Hicks-neutral productivity are positively correlated, as are their rates
of growth.
Our estimates further indicate that firms’R&Dactivities play a key role in

determining the differences in the components of productivity across firms
and their evolution over time. Interestingly, labor-augmenting productivity
is slightlymoreclosely tied tofirms’R&Dactivities than isHicks-neutral pro-
ductivity. Through the lens of the literature on induced innovation and di-
rected technical change (Hicks 1932; Acemoglu 2002), this may be viewed
as supporting the argument that firms direct their R&D activities to con-
serve on labor.
Biased technological changehas consequences far beyond the growth of

output. To illustrate, we use our estimates to show that biased technologi-
cal change is the primary driver of the decline of the aggregate share of la-
bor in the Spanish manufacturing sector over our sample period. Similar
declines have been observed inmany advanced economies in past decades
and have attracted considerable attention in themacroeconomics literature
(Blanchard 1997; Bentolila and Saint-Paul 2004; McAdam and Willman
2013; Karabarbounis and Neiman 2014; Oberfield and Raval 2014).
The starting point of this paper is the recent structural estimators for

production functions. We differ from much of the previous literature by
exploiting the parameter restrictions between the production and input
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demand functions, as in Doraszelski and Jaumandreu (2013). This al-
lows us to parametrically invert from observed input usage to unobserved
productivity and eases the demands on the data compared to the non-
parametric inversion in Olley and Pakes (1996), Levinsohn and Petrin
(2003), and Ackerberg et al. (2015), especially if the input demand func-
tions are high-dimensional.3

Our paper is related to that of Van Biesebroeck (2003). Using plant-
level panel data for the US automobile industry, he estimates a plant’s
Hicks-neutral productivity as a fixed effect and parametrically inverts
from the plant’s input usage to its capital-biased (also called labor-saving)
productivity. Our approach is more general in that we allow all compo-
nents of productivity to evolve over time and in response to firms’ R&D
activities.
Our paper is further related to Grieco, Li, and Zhang (2016) and subse-

quent work in progress by Zhang (2015). Because their data contain the
materials bill rather than its split into price and quantity, Grieco et al.
(2016) build on Doraszelski and Jaumandreu (2013) and parametrically
invert from a firm’s input usage to its Hicks-neutral productivity and the
price of materials that the firm faces.
Finally, our paper touches—although more tangentially—on the liter-

ature on skill bias that studies the differential impact of technological
change, especially in the form of computerization, on the various types
of labor (see Card and DiNardo [2002] and Violante [2008] and the ref-
erences therein). While we focus on labor versus the other factors of pro-
duction, the techniques we develop may be adapted to investigate the
skill bias of technological change, although our particular data set is not
ideal for this purpose.
The remainder of this paper is organized as follows: Section II explains

how we identify the bias of technological change and previews our empir-
ical strategy. Section III describes the data and some patterns in the data
that inform the subsequent analysis. Section IV sets out a dynamic model
of the firm. Section V develops an estimator for production functions
when productivity is multidimensional. Sections VI–IX present our main
results on labor-augmenting and Hicks-neutral technological change.
Section X explores whether capital-augmenting technological change plays
a role in our data in addition to labor-augmenting and Hicks-neutral tech-
nological change. Section XI presents conclusions. The supplementary ap-
pendix contains additional results and technical details.
Throughout the paper, we adopt the convention that uppercase let-

ters denote levels and lowercase letters denote logs. Unless noted other-
wise, we refer to output and the various factors of production in terms of

3 See Doraszelski and Jaumandreu (2013) for details on the pros and cons of the para-
metric inversion.
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quantity and not in terms of value. In particular, we refer to the value of
labor as the wage bill and to the value of materials as the materials bill.

II. Labor-Augmenting and Hicks-Neutral
Productivity

We first show how to separately recover a firm’s labor-augmenting and
Hicks-neutral productivity from its labor and materials decisions. Then
we show that the constant elasticity of substitution (CES) production func-
tion that we use in our application approximates, to a first order, the rela-
tionship between the input mix and labor-augmenting productivity that
arises in a wider class of production functions. To facilitate the exposition,
we proceed in a highly simplified setting. Our application extends the set-
ting to accommodate the institutional realities of the Spanish manufactur-
ing sector.
Consider a firm with the production function

Yjt 5 F Kjt , exp qLjt

� �
Ljt ,Mjt

� �
exp qHjt

� �
exp ejt

� �
, (1)

where Yjt is the output of firm j in period t, Kjt is capital, Ljt is labor, and
Mjt is materials. The labor-augmenting productivity of firm j in period t is
qLjt and its Hicks-neutral productivity is qHjt. Finally, ejt is a random shock.
To relate the input ratio Mjt=Ljt to labor-augmenting productivity qLjt,

we assume that (exp(qLjt)Ljt, Mjt) is separable from Kjt in that the func-
tion F(⋅) in equation (1) is composed of the functions G(⋅) and H(⋅) as

F Kjt , exp qLjt

� �
Ljt ,Mjt

� �
5 G Kjt ,H exp qLjt

� �
Ljt ,Mjt

� �� �
, (2)

whereH(exp(qLjt,Mjt) is homogeneous of arbitrary degree.4 Without loss
of generality, we set the degree of homogeneity to one. Throughout we
maintain that all functions are differentiable as needed. As in Levinsohn
and Petrin (2003), we finally assume that labor and materials are static
(or “variable”) inputs that are chosen each period to maximize short-
run profits and that the firm is a price taker in input markets, where it
faces Wjt and PMjt as prices of labor and materials, respectively.
The input ratioMjt=Ljt is therefore the solution to the ratio of the first-

order conditions for labor and materials

∂H exp qLjtð ÞLjt ,Mjtð Þ
∂Ljt

exp qLjt

� �
∂H exp qLjtð ÞLjt ,Mjtð Þ

∂Mjt

5

∂H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Ljt

exp qLjt

� �
∂H exp qLjt2 mjt2l jtð Þð Þ,1ð Þ

∂Mjt

5
Wjt

PMjt

, (3)

4 Equation (2) immediately implies that F(Kjt, exp(qLjt)Ljt, Mjt) is weakly separable in
the partition (Kjt, (exp(qLjt)Ljt, Mjt)) (Chambers 1988, eq. 1.26). It is equivalent to F(Kjt,
exp(qLjt)Ljt, Mjt) being weakly separable under some additional monotonicity and quasi-
concavity assumptions (Goldman and Uzawa 1964).
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where the first equality uses that H(exp(qLjt)Ljt, Mjt) is homogeneous of
degree one and, recall, uppercase letters denote levels and lowercase let-
ters denote logs.
Equation (3) implies that the input ratio Mjt=Ljt depends on the price

ratio PMjt=Wjt and labor-augmenting productivity qLjt. Importantly, the in-
put ratioMjt=Ljt does not depend on Hicks-neutral productivity qHjt. This
formalizes that themix of inputs that a firm uses is related to—and there-
fore contains information about—its labor-augmenting productivity but
is unrelated to its Hicks-neutral productivity. Intuitively, the labor and
materials decisions hinge on themarginal products of labor andmaterials.
Because the marginal products are proportional to Hicks-neutral produc-
tivity,materials per unit of labor asdeterminedby the ratio of thefirst-order
conditions in equation (3) are unrelated to Hicks-neutral productivity. In
this sense, separating labor-augmenting from Hicks-neutral productivity
does not rely on functional form beyond the separability assumption in
equation (2).5

The following proposition further characterizes the log of the input
ratio mjt 2 ljt .
Proposition 1. The input ratio mjt 2 ljt has the first-order Taylor se-

ries

g0
L 2 j exp q0

Ljt 2 m0
jt 2 l 0jt

� �� �� �
pMjt 2 wjt

� �
1 1 2 j exp q0

Ljt 2 m0
jt 2 l 0jt

� �� �� �� �
qLjt

(4)

around a point (m0
jt 2 ljt0, p0

Mjt 2 w0
jt , q

0
Ljt) satisfying equation (3), where g0

L

is a constant and j(exp(q0
Ljt 2 (m0

jt 2 l 0jt ))) is the elasticity of substitution
between materials and labor in the production function in equation (1).
The proof can be found in appendix A.
Our application uses a CES production function

Yjt 5 bKK
212j

j

jt 1 exp qLjt

� �
Ljt

� ��212j
j 1 bMM

212j
j

jt

n o2 nj
12j

� exp qHjt

� �
exp ejt

� �
,

where n and j are the elasticity of scale and substitution, respectively, and
bK and bM are the so-called distributional parameters.6 Depending on the

5 One can forgo the separability assumption by relying more on functional form. Our em-
pirical strategy generalizes to, e.g., a translog production function that does not satisfy eq. (2).

6 We implicitly set the constant of proportionality b0 to one because it cannot be sepa-
rated from an additive constant in Hicks-neutral productivity qHjt. We estimate them jointly
and carefully ensure that the reported results depend only on their sum. We similarly nor-
malize the distributional parameter bL. Technological change can therefore equivalently
be thought of as letting these parameters of the production function vary by firm and time.
Thenascent literature onheterogeneous production functions (Balat, Brambilla, and Sasaki
2015; Kasahara, Schrimpf, and Suzuki 2015; Fox et al. 2016) explores to what extent it is pos-
sible to let all parameters of the production function vary by firm and time.
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elasticity of substitution, the CES production function encompasses the
special cases of a Leontieff (j→ 0), Cobb-Douglas (j 5 1), and linear
(j→∞) production function.
The ratio of the first-order conditions in equation (3) implies

mjt 2 ljt 5 j ln bM 2 j pMjt 2 wjt

� �
1 1 2 jð ÞqLjt : (5)

Comparing equations (4) and (5) shows that the CES production func-
tion approximates, to a first order, the input ratiomjt 2 ljt arising from an
arbitrary production function satisfying equation (2). This gives a sense
of robustness to the CES production function.7

Our empirical strategy uses equation (5) to recover a firm’s labor-
augmenting productivity from its inputmix. In doing so, wemust control
for other factors besides the relative prices of the various inputs that may
change the input mix, in particular outsourcing and the dual nature of
the Spanish labor market. With labor-augmenting productivity in hand,
we use the first-order condition for labor to recover Hicks-neutral pro-
ductivity. The remainder of our empirical strategy follows along the lines
of Olley and Pakes (1996), Levinsohn and Petrin (2003), Doraszelski and
Jaumandreu (2013), and Ackerberg et al. (2015) by combining the in-
ferred productivities with their laws of motion to set up estimation equa-
tions.
Equation (5) has a long tradition in the literature, although it is used

in a very different way from ours. With skilled and unskilled workers in
place of materials and labor, equation (5) is at the heart of the literature
on skill bias (Card and DiNardo 2002; Violante 2008). With capital in
place of materials, equation (5) serves to estimate the elasticity of substi-
tution j in an aggregate value-addedproduction function (seeAntràs 2004).
More recently, Raval (2013) uses a variant of equation (5) obtained froma
value-added production function with capital- and labor-augmenting pro-
ductivity to estimate j from firm-level panel data.
Equation (5) is typically estimated by ordinary least squares (OLS). The

problem is that labor-augmenting productivity, which is not observed by
the econometrician, is correlated over time and also with the wage. We in-
tuitively expect the wage to be higher when labor is more productive, even
if it adjusts slowly with some lag. This positive correlation induces an up-
ward bias in the estimate of the elasticity of substitution. This is a variant of
the endogeneity problem in production function estimation. Because we
use equation (5) to recover labor-augmenting productivity rather than di-
rectly estimate it, we are able to tackle the endogeneity problem with a

7 It also suggests that our “nonparametric” estimates of labor-augmenting technological
change can be fed into a growth decomposition along the lines of Solow (1957) and Hall
(1988) to obtain a “nonparametric” estimate of Hicks-neutral technological change. We
leave this to future research.
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combination of assumptions on the timing of decisions and the evolution
of the components of productivity.

III. Data

Our data come from the Encuesta Sobre Estrategias Empresariales (ESEE)
survey, a firm-level survey of the Spanish manufacturing sector sponsored
by the Ministry of Industry, and spans 1990–2006. At the beginning of the
survey, 5 percent of firms with up to 200 workers were sampled randomly
by industry and size strata. All firms withmore than 200 workers were asked
to participate in the survey, and 70 percent of them complied. Some firms
vanish from the sample as a result of either exit (shutdown by death or
abandonment of activity) or attrition. These reasons can be distinguished
in the data, and attrition remained within acceptable limits. To preserve
representativeness, newly created firms were added to the sample every
year. We provide details on industry and variable definitions in appendix B.
Our sample covers a total of 2,375 firms in 10 industries when restricted

to firms with at least 3 years of data. Columns 1 and 2 of table 1 show the
number of observations andfirms by industry. Sample sizes aremoderate.
Newly created firms are a large fraction of the total number of firms, rang-
ing from 26 percent to 50 percent in the different industries. There is a
much smaller fraction of exiting firms, ranging from 6 percent to 15 per-
cent and above in a few industries.
The 1990s and early 2000s were a period of rapid output growth, cou-

pled with stagnant or, at best, slightly increasing employment and in-
tense investment in physical capital; see columns 3–6 of table 1. Consis-
tent with this rapid growth, firms on average report that their markets
are slightly more often expanding rather than contracting; hence, de-
mand tends to shift out over time.
An attractive feature of our data is that they contain firm-specific,

Paasche-type price indices for output and materials. We note that the vari-
ation in these price indices is partly due to changes over time in the bundles
of goods that make up output and, respectively, materials (see Bernard,
Redding, and Schott [2010] and Goldberg et al. [2010] for evidence on
product turnover) and that these changes may be related to a firm’s pro-
ductivity. The growth of prices, averaged from the growth of prices as re-
ported individually by each firm, is moderate. The growth of the price of
output in column 7 ranges from 0.8 percent to 2.1 percent. The growth of
the wage ranges from 4.3 percent to 5.4 percent and the growth of the
price of materials ranges from 2.8 percent to 4.1 percent.
Biased technological change.—The evolution of the relative quantities

and prices of the various factors of production already hints at an impor-
tant role for labor-augmenting technological change. As columns 8 and

measuring the bias of technological change 000
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9 of table 1 show, with the exception of industries 7, 8, and 9, the input
ratioMjt=Ljt increases much more than the price ratio PMjt=Wjt decreases.
One possible explanation is that the elasticity of substitution between
materials and labor exceeds one. To see this, recall that the elasticity of
substitution (Chambers 1988, eq. 1.12) is

d ln
Mjt

Ljt

� �
d ln MRTSMLjt

�� ��� � 5 2

d ln
Mjt

Ljt

� �
d ln

PMjt

Wjt

� � ,

where FMRTSMLjtF is the absolute value of themarginal rate of technolog-
ical substitution between materials and labor, and the equality follows
to the extent that it equals the price ratio PMjt=Wjt . However, because
the estimates of the elasticity of substitution in the previous literature
lie somewhere between zero and one (see Chirinko [2008] and the refer-
ences therein for the elasticity of substitution between capital and labor
and Bruno [1984], Rotemberg andWoodford [1996], andOberfield and
Raval [2014] for the elasticity of substitution between materials and an
aggregate of capital and labor), this explanation is implausible. Labor-
augmenting technological change offers an alternative explanation. As
it makes labor more productive, equation (4) implies that it directly in-
creasesmaterials per unit of labor. Thus, labor-augmenting technological
change may go a long way in rationalizing why the change in the input
ratio Mjt=Ljt exceeds the change in the price ratio PMjt=Wjt .
In contrast, columns 10 and 11of table 1 providenoevidence for capital-

augmenting technological change. The investment boom in Spain in the
1990s and early 2000s was fueled by improved access to European and in-
ternational capital markets. With the exception of industries 5, 6, and 8,
the concomitant decrease in the input ratio Mjt=Kjt is much smaller than
the increase in the price ratio PMjt=PKjt , where PKjt is the price of capital as,
however, roughly measured by the user cost in our data. This pattern is
consistent with an elasticity of substitution between materials and capital
between zero and one. Indeed, capital-augmenting technological change
can directly contribute to the decline in materials per unit of capital only
in the unlikely scenario in which it makes capital less productive.
On the basis of these patterns in the data, we focus on labor-augmenting

technological change in the subsequent analysis. We return to capital-
augmenting technological change in Section X. In the remainder of this
section we point out other features of the data that figure prominently in
our analysis.
Temporary labor.—We distinguish between permanent and temporary

labor and treat temporary labor as a static input that is chosen each pe-
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riod to maximize short-run profits. This is appropriate because Spain
greatly enhanced the possibilities for hiring and firing temporary work-
ers during the 1980s and by the beginning of the 1990s had one of the
highest shares of temporary workers in Europe (Dolado, Garcia-Serrano,
and Jimeno 2002). Temporary workers are employed for fixed terms with
no or very small severance pay. In our sample, between 72 percent and
84 percent of firms use temporary labor, and among the firms that do,
its share of the labor force ranges from 16 percent in industry 10 to 32 per-
cent in industry 9; see columns 1 and 2 of table 2.
Rapid expansions and contractions of temporary labor are common:

The difference between the maximum and the minimum share of tem-
porary labor within a firm ranges, on average, from 20 percent to 33 per-
cent across industries (col. 3). In addition to distinguishing temporary
from permanent labor, we measure labor as hours worked (see app. B).
At this margin, firms enjoy a high degree of flexibility: Within a firm,
the difference between the maximum and the minimum hours worked
ranges, on average, from 43 percent to 56 percent across industries, and
the difference between themaximumand theminimumhours per worker
ranges, on average, from 4 percent to 13 percent (cols. 4 and 5).
Outsourcing.—Outsourcing may directly contribute to the shift from

labor to materials that column 8 of table 1 documents as firms procure
customized parts and pieces from their suppliers rather than make them
in house from scratch. As can be seen in columns 6 and 7 of table 2, be-
tween 21 percent and 57 percent of firms in our sample engage in out-
sourcing. Among the firms that do, the share of outsourcing in the ma-
terials bill ranges from 14 percent in industry 7 to 29 percent in industry 4.
While the share of outsourcing remains stable over our sample period, the
standard deviation in column 7 indicates a substantial amount of heteroge-
neity across the firms within an industry, similar to the share of temporary
labor in column 2.
Firms’ R&D activities.—Columns 8–10 of table 2 show that the 10 indus-

tries differ markedly in terms of firms’ R&D activities and that there is
again substantial heterogeneity across the firms within an industry. Indus-
tries 3, 4, 5, and 6 exhibit high innovative activity. More than two-thirds of
firms perform R&D during at least one year in the sample period, with at
least 36 percent of stable performers engaging in R&D in all years (col. 8)
and at least 28 percent of occasional performers engaging in R&D in some
but not all years (col. 9). The R&D intensity among performers ranges, on
average, from 2.2 percent to 2.9 percent (col. 10). Industries 1, 2, 7, and 8
are in an intermediate position. Less than half of firms perform R&D, and
there are fewer stable than occasional performers. The R&D intensity is, on
average, between 1.1 percent and 1.7 percent with a much lower value of
0.7 percent in industry 7. Finally, industries 9 and 10 exhibit low innovative
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activity. About a third of firms perform R&D, and the R&D intensity is, on
average, between 1.0 percent and 1.5 percent.

IV. A Dynamic Model of the Firm

The purpose of our model is to enable us to infer a firm’s productivity
from its input usage and to clarify our assumptions on the timing of deci-
sions that we rely on in estimation.
Production function.—The firm has the CES production function

Yjt 5 bKK
212j

j

jt 1 exp qLjt

� �
L*

jt

� �212j
j 1 bM M*

jt

� �212j
j

n o2 nj
12j

� exp qHjt

� �
exp ejt

� �
,

(6)

where Yjt is the output of firm j in period t, Kjt is capital, qLjt is labor-
augmenting productivity, qHjt is Hicks-neutral productivity, and ejt is a mean
zero random shock that is uncorrelated over time and across firms. Ex-
tending the setting in Section II, L*

jt 5 L(LPjt , LTjt) is an aggregate of per-
manent labor LPjt and temporary labor LTjt and M *

jt 5 G(MIjt ,MOjt) is an
aggregate of in-house materials MIjt and outsourced materials (custom-
ized parts and pieces) MOjt. The aggregators L(LPjt, LTjt) and G(MIjt, MOjt)
accommodate differences in the productivities of permanent and tempo-
rary labor, respectively, in-house and outsourced materials.
The production function in equation (6) is the most parsimonious we

can use to separate labor-augmenting from Hicks-neutral productivity. It
encompasses three restrictions. First, technological change does not affect
the parameters n and j, as we are unaware of evidence suggesting that the
elasticity of scale or the elasticity of substitution varies over our sample pe-
riod. Second, the elasticity of substitution between capital, labor, andmate-
rials is the same.8 We assess this restriction in Section VIII. For now we note
that previous estimates of the elasticity of substitution between materials
and an aggregate of capital and labor (Bruno 1984; Rotemberg andWood-
ford 1996; Oberfield and Raval 2014) fall in the same range as estimates
of the elasticity of substitution between capital and labor (Chirinko 2008).
Third, the productivities of capital and materials are restricted to change
at the same rate and in lockstep with Hicks-neutral technological change.9

Treating capital and materials the same is in line with the fact that both

8 The elasticity of substitution between LPjt and LTjt, respectively, MIjt and MOjt, depends on
the aggregators L(LPjt, LTjt) and Г(MIjt, MOjt) and may differ from j.

9 A production function with capital-augmenting, labor-augmenting, andmaterials-augmenting
productivity that ishomogeneousofarbitrarydegreeisequivalenttoaproductionfunctionwith
capital-augmenting, labor-augmenting, andHicks-neutral productivity.Without loss of generality,
we therefore subsume the common component of capital-augmenting, labor-augmenting,
andmaterials-augmenting technological change intoHicks-neutral productivity.
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are, at least to a large extent, produced goods. In contrast, labor is tradi-
tionally viewed as unique among the various factors of production, and
changes in its productivity are a tenet of the literature on economic
growth. The patterns in the data described in Section III further justify fo-
cusing on labor-augmenting technological change.
Laws of motion: productivity.—The components of productivity are pre-

sumably correlated with each other and over time and possibly also corre-
lated across firms. As in Doraszelski and Jaumandreu (2013), we endog-
enize productivity by incorporating R&D expenditures into the model.
We assume that the evolution of the components of productivity is gov-
erned by controlled first-order, time-inhomogeneous Markov processes
with transition probabilities PLt11(qLjt11jqLjt , Rjt) and PHt11(qHjt11jqHjt , Rjt),
where Rjt is R&D expenditures. Despite their parsimony, these stochastic
processes accommodate correlation between the components of pro-
ductivity.10 Moreover, because they are time-inhomogeneous, they accom-
modate secular trends in productivity.
The firm knows its current productivity when it makes its decisions for

period t and anticipates the effect of R&D on its future productivity. The
Markovian assumption implies

qLjt11 5 Et qLjt11jqLjt , Rjt

� �
1 yLjt11 5 gLt qLjt , Rjt

� �
1 yLjt11, (7)

qHjt11 5 Et qHjt11jqHjt , Rjt

� �
1 yHjt11 5 gHt qHjt , Rjt

� �
1 yHjt11: (8)

That is, actual labor-augmenting productivity qLjt11 in period t1 1 decom-
poses into expected labor-augmenting productivity gLt(qLjt, Rjt) and a ran-
dom shock yLjt11. This productivity innovation by construction ismean in-
dependent (although not necessarily fully independent) of qLjt and Rjt. It
captures the uncertainties that are naturally linked to productivity as well
as those that are inherent in the R&Dprocess such as chance of discovery,
degree of applicability, and success in implementation. Nonlinearities in
the link betweenR&D and productivity are captured by the conditional ex-
pectation function gLt(⋅) that we estimate nonparametrically along with the
parameters of the production function. Actual Hicks-neutral productivity
qHjt11 decomposes similarly.
Laws of motion: capital.—Capital accumulates according to Kjt11 5

(1 2 d) Kjt 1 Ijt , where d is the rate of depreciation. As in Olley and Pakes
(1996), investment Ijt chosen in period t becomes effective in period t1 1.
Choosing Ijt is therefore equivalent to choosing Kjt11.

10 Our empirical strategy generalizes to a jointMarkovprocessPt11(qLjt11, qHjt11jqLjt , qHjt , rjt).
While R&D is widely seen as amajor source of productivity growth (Griliches 1998), our em-
pirical strategy extends to other sources such as technology adoption, learning by import-
ing (Kasahara and Rodrigue 2008), and learning by exporting (De Loecker 2013). Both ex-
tensions are demanding on the data, however, as they increase the dimensionality of the
functions that must be nonparametrically estimated.
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Permanent labor.—Permanent labor is subject to convex adjustment
costs CLP

(LPjt , LPjt21) that reflect the substantial cost of hiring and firing
that the firm may incur (Hamermesh 1993). The choice of permanent
labor thus may have dynamic implications. In contrast, temporary labor
is a static input.
Outsourcing.—Outsourcing is, to a large extent, based on contractual re-

lationships between the firm and its suppliers (Grossman and Helpman
2002, 2005). The ratio of outsourced to in-house materials QMjt 5 MOjt=MIjt

is subject to (convex or not) adjustment costs CQ M
(QMjt11,QMjt) that stem

from forming and dissolving these relationships. The firmmustmaintain
QMjt but may scale MIjt and MOjt up or down at will; in-house materials, in
particular, are a static input.
Output and input markets.—The firm has market power in the output

market, for example, because products are differentiated. Its inverse resid-
ual demand function P(Yjt, Djt) depends on its output Yjt and the demand
shifter Djt.11 The firm is a price taker in input markets, where it faces WPjt,
WTjt, PIjt, and POjt as prices of permanent and temporary labor and in-house
and outsourced materials, respectively.
The demand shifter and the prices that the firm faces in input markets

evolve according to a Markov process that we do not further specify. As a
consequence, the prices that the firm faces in period t 1 1 may depend
on its productivity in period t or on an average industrywide measure of
productivity. Finally, the Markov process may be time-inhomogeneous
to accommodate secular trends.
Bellman equation.—The firm makes its decisions to maximize the ex-

pected net present value of cash flows. In contrast to its labor-augmenting
productivity qLjt and its Hicks-neutral productivity qHjt, the firm does not
know the random shock ejtwhen itmakes its decisions for period t. Letting
Vt(⋅) denote the value function in period t, the Bellman equation for the
firm’s dynamic programming problem is

Vt Qjt

� �
5 max

Kjt11,LPjt ,LTjt ,Q Mjt11,MIjt ,Rjt

P X
2 nj

12j

jt exp qHjt

� �
, Djt

	 

� X

2 nj
12j

jt exp qHjt

� �
m 2 CIðKjt11 2 1 2 dð ÞKjtÞ2WPjtLPjt

2 CLP
LPjt , LPjt21

� �
2 WTjtLTjt 2 PIjt 1 POjtQMjt

� �
MIjt

2 CQM
Q Mjt11,QMjt

� �
2 CR R jt

� �
1

1

1 1 r
Et Vt11 Qjt11

� �jQjt , R jt

� �
,

(9)

11 In general, the residual demand that the firm faces depends on its rivals’ prices. In tak-
ing themodel to the data, onemay replace rivals’ prices by an aggregate price index or dum-
mies, although this substantially increases the dimensionality of the functions that must be
nonparametrically estimated.
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where

Xjt 5 bKK
212j

j

jt 1 exp qLjt

� �
L*

jt

� �212j
j 1 bM M*

jt

� �212j
j ;

m 5 Et exp ejt
� �� �

;

the vector of state variables is

Qjt 5 Kjt , LPjt21,QMjt , qLjt , qHjt ,WPjt ,WTjt , PIjt , POjt , Djt

� �
;

r is the discount rate; and CI(Ijt) and CR(Rjt) are the cost of investment
and R&D, respectively, and accommodate indivisibilities in investment
and R&D projects. The firm’s dynamic programming problem gives rise
to policy functions that characterize its investment and R&D decisions
(and thus the values of Kjt11 or, equivalently, Ijt and Rjt in period t) as well
as its input usage (LPjt, LTjt, QMjt11, and MIjt). The labor and materials de-
cisions are central to our empirical strategy.
Inverse functions.—From the first-order conditions for permanent la-

bor, temporary labor, and in-house materials, we derive functions ~hL(⋅)
and hH(⋅) that allow us to recover unobservable labor-augmenting and
Hicks-neutral productivity from observables. Appendix C contains de-
tailed derivations.
Wemake several assumptions. First, our data have hours worked by per-

manent and temporary workers Ljt 5 LPjt 1 LTjt and the (quantity) share
of temporary labor STjt 5 LTjt=Ljt . To map L*

jt in the production function
in equation (6) to the data, we assume that the aggregator L(LPjt, LTjt) is
linearly homogeneous. This implies L*

jt 5 LjtL(1 2 STjt , STjt). Moreover,
because our data combine the wages of permanent and temporary work-
ers intoWjt 5 WPjt(1 2 STjt) 1 WTjtSTjt , we assume thatWPjt=WTjt 5 l0 is an
(unknown) constant.12

Second, our data have thematerials bill PMjtMjt 5 PIjtMIjt 1 POjtMOjt , the
(value) share of outsourcedmaterials SOjt 5 POjtMOjt=PMjtMjt , and the price
of materials PMjt. To connect the model with the data, we assume PMjt 5
PIjt 1 POjtQ Mjt so that the price of materials is the effective cost of an addi-
tional unit of in-house materials. This implies Mjt 5 MIjt . We further as-
sume that PIjt=POjt 5 g0 is an (unknown) constant and that G(MIjt, MOjt)
is linearly homogeneous. This implies

M *
jt 5 MjtG 1, g0

SOjt
1 2 SOjt

� �
:

We finally normalize G(MIjt , 0) 5 MIjt .
Third, the first-order condition for permanent labor involves a gap Djt

between the wage of permanent workersWPjt and their shadow wage. We

12 In the supplementary appendix, we use a wage regression to estimate wage premia of
various types of labor. We show that the wage premia do not change much, if at all, over
time in line with our assumption that the ratio WPjt=WLjt is constant.
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exploit the fact that we have three first-order conditions to substitute out
for Djt in the inverse functions ~hL(⋅) and hH(⋅). As this presumes interior
solutions for permanent and temporary labor, we exclude observations
with STjt 5 0 and thus LTjt 5 0 from the subsequent analysis.13

Taken together, our assumptions allow us to recover (conveniently re-
scaled) labor-augmenting productivity ~qLjt 5 (12 j)qLjt andHicks-neutral
productivity qHjt as

~qLjt 5 ~gL 1 mjt 2 ljt 1 j pMjt 2 wjt

� �
2 jl2 STjt

� �
1 1 2 jð Þg1 SOjt

� �
; ~hL mjt 2 ljt , pMjt 2 wjt , STjt , SOjt

� �
,

(10)

qHjt 5 gH 1
1

j
mjt 1 pMjt 2 pjt 2 ln 1 2

1

h pjt , Djt

� � !

  1 1 1
nj

1 2 j

	 

xjt 1

1 2 j

j
g1 SOjt
� �

; hH kjt ,mjt , SMjt , pjt , pMjt , Djt , STjt , SOjt
� �

,

(11)

where ~gL 5 2j ln bM , gH 5 2 ln(nbMm), h(pjt, Djt) is the absolute value of
the price elasticity of the residual demand that the firm faces,

Xjt 5 bKK
212j

j

jt 1 bM Mjt exp g1 SOjt
� �� �� �212j

j
1 2 SMjt

SMjt

l1 STjt
� �

1 1

� �
,

and SMjt 5 PMjtMjt=VCjt is the share of materials in variable cost VCjt 5
WjtLjt 1 PMjtMjt . Without loss of generality, we set bK 1 bM 5 1 in what fol-
lows.
We treat l1(STjt), l2(STjt), and g1(SOjt) as (unknown) functions of the

share of temporary labor STjt, respectively, the share of outsourced mate-
rials SOjt, that must be estimated nonparametrically along with the param-
eters of the production function. We thus think of l1(STjt), l2(STjt), and
g1(SOjt) as “correction terms” on labor and, respectively, materials that help
account for the substantial heterogeneity across the firms within an indus-
try. Because we estimate these terms nonparametrically, they can accommo-
date different theories about the Spanish labor market and the role of out-
sourcing. For example, we develop an alternativemodel of outsourcing in the
supplementary appendix that assumes that both in-house and outsourced
materials are static inputs that the firmmay mix andmatch at will, thereby
dispensing with the costly to adjust ratio of outsourced to in-housematerials.

13 Compare cols. 1 and 2 of tables 1 and 3 with cols. 1 and 2 of table 4 for the exact num-
ber of observations and firms we exclude.

000 journal of political economy



V. Empirical Strategy

We combine the inverse functions in equations (10) and (11) with the laws
of motion for labor-augmenting and Hicks-neutral productivity in equa-
tions (7) and (8) into estimation equations for the parameters of the pro-
duction function in equation (6).
Labor-augmenting productivity.—Substituting the inverse function in

equation (10) into the law of motion in equation (7), we form our first
estimation equation

mjt 2 ljt 5 2j pMjt 2 wjt

� �
1 jl2 STjt

� �
2 1 2 jð Þg1 SOjt

� �
1 ~gLt21

~hL mjt212 ljt21, pMjt21 2 wjt21, STjt21, SOjt21

� �
, Rjt21

� �
1 ~yLjt ,

(12)

where the (conveniently rescaled) conditional expectation function is

~gLt21
~hL ⋅ð Þ, Rjt21

� �
5 1 2 jð ÞgLt21

~hL ⋅ð Þ
1 2 j

, Rjt21

� �
and ~yLjt 5 (1 2 j)yLjt .14

We allow ~gLt21(~hL(⋅), Rjt21) to differ between zero and positive R&D ex-
penditures and specify

~gLt21
~hL ⋅ð Þ, Rt21

� �
5 ~gL0 t 2 1ð Þ 1 1 Rjt21 5 0

� �
~gL1 ~hL ⋅ð Þ� �

1 1 Rjt21 > 0
� �

~gL2 ~hL ⋅ð Þ, rjt21

� �
,

(13)

where 1(⋅) is the indicator function and the functions ~gL1(~hL(⋅)) and
~gL2(~hL(⋅), rjt21) aremodeled asdescribed in appendixD.Because theMarkov
process governing labor-augmenting productivity is time-inhomogeneous,
we allow the conditional expectation function ~gLt21(~hL(⋅), Rjt21) to shift
over time by ~gL0(t 2 1). In practice, we model this shift with time dum-
mies.
Compared to directly estimating equation (5) by OLS, equation (12)

intuitively diminishes the endogeneity problem because breaking out
the part of ~qLjt that is observable via the conditional expectation function
~gLt21(⋅) leaves “less” in the error term. This also facilitates instrumenting
for any remaining correlation between the included variables and the er-
ror term.
Inourmodel, labor ljt,materialsmjt, thewagewjt, and the shareof tempo-

rary labor STjt are correlated with the productivity innovation ~yLjt (since
~yLjt is part of ~qLjt). Note that wjt 5 ln(WPjt(1 2 STjt) 1 WTjtSTjt) may be cor-

14 Equation (12) is a semiparametric, partially linear, model with the additional restric-
tion that the inverse function ~hL(⋅) is of known form. Identification in the sense of the abil-
ity to separate the parametric and nonparametric parts of the model follows from standard
arguments (Robinson 1988; Newey, Powell, and Vella 1999).
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related with ~yLjt even though the firm takes the wage of permanent work-
ersWPjt and the wage of temporary workers WTjt as given because STjt may
depend on ~qLjt and qHjt through equations (C1) and (C2) in appendix C.
We therefore base estimation on the moment conditions

E ALjt ðz jtÞ~yLjt

� �
5 0, (14)

where ALjt(z jt) is a vector of functions of the exogenous variables z jt as de-
scribed in appendix D.
In considering instruments it is important to keep in mind that equa-

tion (12)models the evolution of labor-augmenting productivity ~qLjt . As a
consequence, instruments have to be uncorrelated with the productivity
innovation ~yLjt but not necessarily with productivity itself. Because ~yLjt is
the innovation to productivity ~qLjt in period t, it is not known to the firm
when itmakes its decisions in period t2 1. All past decisions are therefore
uncorrelated with ~yLjt . In particular, having been decided in period t2 1,
l jt21 andmjt21 are uncorrelated with ~yLjt , although they are correlated with
~qLjt as long as productivity is correlated over time. Similarly, because STjt21

and thuswjt21 5 ln(WPjt21(1 2 STjt21) 1 WTjt21STjt21) are determined in pe-
riod t 2 1, they are uncorrelated with the productivity innovation ~yLjt in
period t. We therefore use lagged labor l jt21, lagged materials mjt21, and
the lagged wage wjt21 for instruments.
In contrast to the wage wjt, in our model the price of materials pMjt 5

ln(PIjt 1 POjtQ Mjt) is uncorrelated with ~yLjt because the ratio of outsourced
to in-housematerialsQ Mjt is determined in period t2 1. For the same rea-
son, the share of outsourced materials SOjt 5 POjtQ Mjt=(PIjt 1 POjtQ Mjt) is
uncorrelated with ~yLjt . We nevertheless choose to err on the side of cau-
tion and restrict ourselves to the lagged price of materials pMjt21 and the
lagged share of outsourcing SOjt21 for instruments. Finally, time t and the
demand shifter Djt are exogenous by construction, and we use them for
instruments.
The reasoning that the timing of decisions and theMarkovian assump-

tion on the evolution of productivity taken together imply that all past de-
cisions are uncorrelated with productivity innovations originates in Olley
and Pakes (1996). The subsequent literature uses it to justify lagged input
quantities as instruments (see, e.g., Ackerberg et al. 2007, sec. 2.4.1). In
Doraszelski and Jaumandreu (2013, 1347–48), we extend this reasoning
to justify lagged output and input prices as instruments. More recently,
De Loecker et al. (2016, 471) do the same to justify the lagged price of
output as instrument.
A test for overidentifying restrictions in Section VI cannot reject the va-

lidity of themoment conditions in equation (14).More targeted tests and
additional checks further suggest that there is limited reason to doubt
that wjt21 and pMjt21 are uncorrelated with ~yLjt .
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Hicks-neutral productivity.—Substituting the inverse functions in equa-
tions (10) and (11) into the production function in equation (6) and
the law of motion for Hicks-neutral productivity qHjt in equation (8), we
form our second estimation equation:

yjt 5 2
nj

1 2 j
xjt 1 gHt21 ðhH ðkjt21,mjt21, SMjt21, pjt21, pMjt21,

Djt21, STjt21, SOjt21Þ, Rjt21Þ1yHjt 1 ejt :

(15)

We specify gHt21(hH(⋅), Rjt21) analogously to ~gLt21(~hL(⋅), Rjt21) in equa-
tion (13).15

Because output yjt, materials mjt, the share of materials in variable cost
SMjt, and the share of temporary labor STjt are correlated with yHjt in our
model, we base estimation on the moment conditions

E ½ AHjt ðzjtÞ ðyHjt 1 ejtÞ� 5 0,

where AHjt(zjt) is a vector of a function of the exogenous variables zjt. As
before, we exploit the timing of decisions and the Markovian assump-
tion on the evolution of productivity to rely on lags for instruments. In
addition, kjt 5 ln((1 2 d)Kjt21 1 Ijt21) is determined in period t 2 1
and therefore is uncorrelated with yHjt.
Estimation.—We use the two-step generalized method of moments

(GMM) estimator of Hansen (1982). Let nLjt(vL) 5 ~yLjt be the residual of
estimation equation (12) as a function of the parameters vL to be estimated
and nHjt(vH) 5 yHjt 1 ejt the residual of estimation equation (15) as a func-
tion of vH. The GMM problem corresponding to equation (12) is

min
vL

1

N oj ALj zj
� �

nLj vLð Þ
" #0 bWL

1

N o
j

ALj zj
� �

nLj vLð Þ
" #

, (16)

where ALj(zj) is a QL � Tj matrix of functions of the exogenous variables
zj, nLj(vL) is a Tj � 1 vector, bWL is a QL � QL weighting matrix, QL is the
number of instruments, Tj is the number of observations of firm j, and
N is the number of firms. We provide further details in appendix D.
The GMM problem corresponding to equation (15) is analogous but

considerably more nonlinear. To facilitate estimation, we impose the es-
timated values of those parameters in vL that also appear in vH. We correct
the standard errors as described in the supplementary appendix. Because

15 Equation (15) is again a semiparametric model with the additional restriction that the
inverse function hH(⋅) is of known form. There are other possible estimation equations. In
particular, one can use the labor and materials decisions in eqq. (C3) and (C5) together
with the production function in eq. (6) to recover ~qLjt , qHjt, and ejt and then set up separate
moment conditions in ~yLjt , yHjt, and ejt. This may yield efficiency gains. Our estimation
eq. (15) has the advantage that it is similar to a CES production function that has been
widely estimated in the literature.
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they tend to bemore stable, we report first-step estimates for equation (15)
and use them in the subsequent analysis; however, we use second-step es-
timates for testing.

VI. Labor-Augmenting Technological Change

From equation (12) we obtain an estimate of the elasticity of substitution
and recover labor-augmenting productivity at the firm level.
Elasticity of substitution and a test for overidentifying restrictions.—Tables 3

and 4 summarize different estimates of the elasticity of substitution. To
compare with the existing literature, we begin by proxying for ~qLjt 5
(1 2 j)qLjt in equation (5) by a time trend ~dLt and estimate by OLS. As
can be seen from columns 3 and 4 of table 3, with the exception of indus-
try 9, the estimates of the elasticity of substitution are in excess of one,
whereas the estimates in the previous literature lie somewhere between
zero and one (Bruno 1984; Rotemberg and Woodford 1996; Chirinko
2008; Oberfield and Raval 2014). This reflects, first, that a time trend is
a poor proxy for labor-augmenting technological change at the firm level
and, second, that the estimates are upward biased as a result of the endo-
geneity problem.
We address the endogeneity problem by modeling the evolution of

labor-augmenting productivity and estimating equation (12) by GMM. To
illustrate the importance of controlling for the composition of inputs in
our empirical strategy, we revert to the setting in Section II and assume that
labor ljt andmaterialsmjt are homogeneous inputs that are chosen each pe-
riod to maximize short-run profits. This implies l1(STjt) 5 1, l2(STjt) 5 0,
and g1(SOjt) 5 0, so that the correction terms on labor andmaterials vanish
and equation (10) reduces to equation (5). Columns 5–10 of table 3 refer
to this simplifiedmodel. As expected, the estimates of the elasticity of sub-
stitution are much lower and range from 0.45 to 0.64, as can be seen from
column 5.With the exception of industries 6 and 8, in which j is either im-
plausibly high or low, we clearly reject the special cases of both a Leontieff
(j→ 0) and a Cobb-Douglas (j 5 1) production function.
Testing for overidentifying restrictions, however, we reject the validity

of the moment conditions in the simplified model at a 5 percent level
in five industries and we are close to rejecting in two more industries (cols. 6
and 7). To pinpoint the source of this problem, we exclude the subset of
moments involving lagged materials mjt21 from the estimation. As can
be seen from columns 8–10, the resulting estimates of the elasticity of
substitution lie between 0.46 and 0.85 in all industries, and at a 5 percent
level we can no longer reject the validity of the moment conditions in any
industry.
To see why the exogeneity of lagged materials mjt21 is violated con-

trary to the timing of decisions in our model, recall that a firm engages
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in outsourcing if it can procure customized parts and pieces from its sup-
pliers that are cheaper or better thanwhat the firm canmake in-house from
scratch. Lumping in-house andoutsourcedmaterials together pushes these
quality differences into the error term. As outsourcing often relies on con-
tractual relationships between the firm and its suppliers, the error term
is likely correlated over time and thus with lagged materials mjt21 as well.
Our leading specification accounts for quality differences between in-

house and outsourced materials, respectively, permanent and temporary
labor, and differences in the use of these inputs over time and across
firms. The correction term g1(SOjt) in equation (12) absorbs quality differ-
ences into the aggregator G(MIjt, MOjt) and accounts for the wedge that
outsourcing may drive between the relative quantities and prices of ma-
terials and labor. The correction term l2(STjt) similarly absorbs quality dif-
ferences into the aggregator L(LPjt, LTjt) and accounts for adjustment
costs on permanent labor. As can be seen in columns 3–5 of table 4, the
correction terms duly restore the exogeneity of lagged materials mjt21 as
we cannot reject the validity of themoment conditions at a 5 percent level
in any industry except for industry 7, in which we (barely) reject it.16 Our
leading estimates of j in column 3 of table 4 lie between 0.44 and 0.80.
Compared to the estimates in column 8 of table 3, there are no systematic
changes, and our leading estimates are somewhat lower in five industries
and somewhat higher in five industries. In short, relaxing the assumption
that labor and materials are homogeneous and static inputs is a key step
in estimating the elasticity of substitution.
Sargan difference tests.—Because the lagged wage wjt21 and the lagged

price of materials pMjt21 play a key role in the estimation of equation (12),
we supplement the omnibus test for overidentifying restrictions with two
Sargandifference tests tomore explicitly validate their use as instruments.
In the case ofwjt21, we compute thedifference in the value of theGMMob-
jective function when we exclude the subset of moments involving pMjt21

and when we exclude the subset of moments involving wjt21 and pMjt21; in
the case of pMjt21, we proceed analogously.17 As can be seen in columns 6–
9 of table 4, the exogeneity assumption on the lagged wage is rejected at
a 5 percent level in three industries, while that on the lagged price of
materials cannot be rejected in any industry. Viewing all these tests in con-
junction, to the extent that a concern about our leading specification is
warranted, it appears more related to labor than to materials.

16 As noted in Sec. IV, we exclude observations with STjt 5 0 and thus LTjt 5 0. Compare
cols. 1 and 2 of tables 1 and 3 with cols. 1 and 2 of table 4 for the exact number of obser-
vations and firms we exclude.

17 To use the same weighting matrix for both specifications and not unduly change var-
iances when we exclude subsets of moments, we delete the appropriate rows and columns
from the weighting matrix for our leading specification.
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Additional checks.—To further probe our leading specification and as-
sess whether quality differences at a finer level play an important role,
we leverage our data on the skill mix of a firm’s labor force. As we show
in the supplementary appendix, in our data the larger part of the varia-
tion in the wage across firms and periods can be attributed to geographic
and temporal differences in the supply of labor and the fact that firms
operate in different product submarkets. This part of the variation is ar-
guably exogenous with respect to ~yLjt . The smaller part of the variation in
the wage can be attributed to differences in the skill mix and the quality
of labor that may potentially be correlated with ~yLjt .18

Our estimates are robust to purging this latter variation from the lagged
wagewjt21. Using ŵQ jt21 to denote the part of the wage that depends on the
skill mix of a firm’s labor force, we replace wjt21 as an instrument by
wjt21 2 ŵQ jt21. Compared to column 3 of table 4, the estimates of the elas-
ticity of substitution in column 10 decrease somewhat in three industries,
remain essentially unchanged in two industries, and increase somewhat
in five industries.19 The absence of substantial and systematic changes
confirms that the variation in wjt21 is exogenous and therefore useful in
estimating equation (12), in line with the test for overidentifying restric-
tions.
Below we further exploit our data on the skill mix to explicitly model

quality differences at a finer level by assuming that the firm faces a menu
of qualities andwages in themarket for permanent labor. Taken together,
these additional checks alleviate concerns about the quality and compo-
sition of labor.
Labor-augmenting technological change.—With equation (12) estimated,

we recover the labor-augmenting productivity qLjt 5 ~qLjt=(1 2 j) of firm
j in period t up to an additive constant from equation (10). In what fol-
lows, we therefore demean qLjt by industry. Abusing notation, we con-
tinue to use qLjt to denote the demeaned labor-augmenting productivity
of firm j in period t.
To obtain aggregatemeasures representing an industry, we account for

the survey design by replicating the subsample of small firms 70 percent/

18 A parallel discussion applies to materials. Kugler and Verhoogen (2012) point to dif-
ferences in the quality of materials whereas Atalay (2014) documents substantial variation
in the price of materials across plants in narrowly defined industries with negligible quality
differences. This variation is partly due to geography and differences in cost and markup
across suppliers that are arguably exogenous to a plant.

19 As we show in the supplementary appendix, not much changes if we isolate the part of
the wage that additionally depends on firm size to try to account for the quality of labor be-
yond our rather coarse data on the skill mix of a firm’s labor force (Oi and Idson 1999).
Compared to col. 3 of table 4, the estimates of the elasticity of substitution decrease some-
what in three industries, remain essentially unchanged in three industries, and increase
somewhat in four industries.
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5 percent 5 14 times before pooling it with the subsample of large firms.
Unless noted otherwise, we report weighed averages of individual mea-
sures, where the weight mjt 5 Pjt22Yjt22=ojPjt22Yjt22 is the share of sales of
firm j in period t 2 2. Using the second lag reduces the covariance be-
tween the weight and the variable of interest.
The growth of labor-augmenting productivity at firm j in period t is

DqLjt 5 qLjt 2 qLjt21.20 In line with the patterns in the data described in
Section III, our estimates imply an important role for labor-augmenting
technological change. As can be seen from column 1 of table 5, labor-
augmenting productivity grows quickly, on average, with rates of growth
ranging from 1.0 percent and 1.7 percent per year in industries 8 and 7 to
14.2percent and 18.3percent in industries 2 and6 and above in industry 5.
Ceteris paribus,

DqLjt ≈
exp qLjt

� �
L*

jt21 2 exp qLjt21

� �
L*

jt21

exp qLjt21

� �
L*

jt21

approximates the rate of growth of a firm’s effective labor force
exp(qLjt21)L*

jt21. To facilitate comparing labor-augmenting to Hicks-neutral
productivity, we approximate the rate of growth of the firm’s output Yjt21

by eLjt22DqLjt , where eLjt22 is the elasticity of output with respect to the
firm’s effective labor force in period t 2 2 (see app. E).21 This output
effect, while on average close to zero in industry 9, ranges from 0.7 per-
cent per year in industry 7 to 3.1 percent, 3.2 percent, and 3.6 percent
in industries 2, 4, and 6; see column 2 of table 5. Across industries, labor-
augmenting technological change causes output to grow by 1.7 percent
per year.
Figure 1 illustrates the magnitude of the output effect of labor-

augmenting technological change and the heterogeneity in its impact
across industries. The depicted index cumulates the year-to-year changes
and is normalized to one in 1991. Technological change appears to have
slowed in the 2000s compared to the 1990s: across industries, labor-
augmenting technological change causes output to grow by 2.1 percent
per year before 2000 and by 1.0 percent per year after 2000.
Dispersion and persistence.—A substantial literature documents disper-

sion and persistence in productivity (see Bartelsman and Doms [2000]

20 Given the specification of ~gLt21(~hL(⋅), Rjt21) in eq. (13), we exclude observations in
which a firm switches from performing to not performing R&D or vice versa between pe-
riods t2 1 and t from the subsequent analysis. We further exclude observations in which a
firm switches from zero to positive outsourcing or vice versa.

21 Because eLjt depends on qLjt as can be seen from eq. (E1), DqLjt is systematically nega-
tively correlated with eLjt and systematically positively correlated with eLjt21. Using eLjt22 dras-
tically reduces the correlation between the constituent parts of the output effect of labor-
augmenting technological change.
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and Syverson [2011] and the references therein). To be able to compare
labor-augmenting productivity to Hicks-neutral productivity, we focus on
eLjt22qLjt . BecauseqLjt is demeaned, eLjt22qLjt measures the labor-augmenting
productivity of firm j in period t relative to the average productivity, suitably
converted into output terms.We thus refer to eLjt22qLjt as labor-augmenting
productivity in output terms in what follows.
Wemeasure dispersion by the interquartile range of eLjt22qLjt . As can be

seen from column 3 of table 5, the interquartile range (IQR) is between
0.24 in industry 9 and 0.72 in industry 6. This is comparable to results in
the existing literature.22 Turning from dispersion to persistence, eLjt22qLjt

is highly autocorrelated (AC; col. 4), indicating that differences in labor-
augmenting productivity between firms persist over time.
Firms’ R&D activities.—As can be seen from column 5 of table 5, firms

that perform R&D have, on average, higher levels of labor-augmenting

FIG. 1.—Output effect of labor-augmenting technological change. Index normalized to
one in 1991.

22 For US manufacturing industries, Syverson (2004) reports an interquartile range of
log labor productivity of 0.66.
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productivity in output terms than firms that do not perform R&D in all
industries. In six industries the output effect of labor-augmenting tech-
nological change for firms that perform R&D, on average, exceeds that
of firms that do not perform R&D (cols. 6 and 7). Overall, our estimates
indicate that firms’ R&D activities are associated not only with higher lev-
els of labor-augmenting productivity but by and large also with higher
rates of growth of labor-augmenting productivity.
Firm turnover.—To assess the impact of firm turnover on the output ef-

fect of labor-augmenting technological change, we classify a firm as a sur-
vivor if it enters the industry in or before 1990 and does not exit in or be-
fore 2006, as an exitor if it enters the industry in or before 1990 and exits
in or before 2006, and as an entrant otherwise. Survivors account formost
of the output effect of labor-augmenting technological change. Their
contribution is 80 percent in industry 6 and above, except for industry 3,
where the contribution of entrants is on par with the contribution of sur-
vivors. In the remaining industries, the contribution of entrants is small.
The contribution of exitors is small in all industries.
Skill upgrading.—In our data, there is a shift from unskilled to skilled

workers. For example, the share of engineers and technicians in the labor
force increases from 7.2 percent in 1991 to 12.3 percent in 2006. While
this shift has to be seen against the backdrop of a general increase of uni-
versity graduates in Spain during the 1990s and 2000s, it presents the
question how much skill upgrading contributes to the growth of labor-
augmenting productivity.
To answer this question—and to further alleviate concerns about the

quality and composition of labor—we exploit that, in addition to the
share of temporary labor STjt, our data have the share of white-collar work-
ers and the shares of engineers, and, respectively, technicians. We assume
that there are Q types of permanent labor with qualities 1, v2,..., vQ and
corresponding wages WP1jt, WP2 jt, ..., WPQ jt. The firm, facing this menu of
qualities and wages, behaves as a price taker in the labor market. In rec-
ognition of their different qualities,

L*
Pjt 5 LP1jt 1 o

Q

q52

vqLPq jt 5 LPjt 1 2 o
Q

q52

vq 2 1
� �

SPq jt

" #

is an aggregate of the Q types of permanent labor, with LPq jt being the
quantity of permanent labor of type q at firm j in period t and SPq jt the cor-
responding share in LPjt 5 oQ

q51LPq jt ; L*
jt 5 L(L*

Pjt , LTjt) is the aggregate of
permanent labor L*

Pjt (instead of LPjt) and temporary labor LTjt in the pro-
duction function in equation (6). Permanent labor is subject to convex
adjustment costs CBP

(BP jt , BP jt21), where BP jt 5 oQ
q51WPq jtLPq jt is the wage

bill for permanent labor. The state vector Qjt in the firm’s dynamic pro-
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gramming problem therefore includes BPjt21, WP1jt, WP2 jt, ..., WPQ jt instead
of LPjt21 and WPjt.
In the supplementary appendix we show that our first estimation equa-

tion (12) remains unchanged except that l2(STjt) is replaced by l2(STjt,
Θjt), where

Θjt 5 1 1 o
Q

q52

WPqjt

WP1jt

2 1

� �
SPqjt

is a quality index. We use a wage regression to estimate the wage premium,
WPqjt=WP1jt 2 1, of permanent labor of type q over type 1 and construct
the quality index Θjt.
The estimates of the elasticity of substitution in column 8 of table 5

continue to hover around 0.6 across industries, with the exception of in-
dustries 4 and 8, in which they are implausibly low. Compared to column 3
of table 4, they decrease somewhat in three industries, remain essentially
unchanged in two industries, and increase somewhat in five industries.
This further supports the notion that quality differences at a finer level
than permanent and temporary labor are of secondary importance for es-
timating equation (12).
We develop the quality indexΘjtmainly to “chip away” at the productiv-

ity residual by improving the measurement of inputs in the spirit of the
productivity literature (Griliches 1964; Griliches and Jorgenson 1967).
As can be seen from column 11 of table 5, skill upgrading indeed explains
some, but by no means all, of the growth of labor-augmenting productiv-
ity. Compared to column 1, the rates of growth stay the same or go down
in all industries. In industries 7, 8, 9, and 10, labor-augmenting produc-
tivity is stagnant or declining after accounting for skill upgrading, indicat-
ing that improvements in the skill mix over time are responsible for most
of the growth of labor-augmenting productivity. In contrast, in industries 1,
2, 3, 4, 5, and 6, labor-augmenting productivity continues to grow after ac-
counting for skill upgrading, albeit often at a much slower rate. In these
industries, labor-augmenting productivity grows also because workers with
a given set of skills become more productive over time.

VII. The Decline of the Aggregate Share of Labor

In many advanced economies the aggregate share of labor in income has
declined in past decades. While this decline has attracted considerable at-
tention in the academic literature (Blanchard 1997; Bentolila and Saint-
Paul 2004; McAdam and Willman 2013; Karabarbounis and Neiman 2014;
Oberfield and Raval 2014) and in the public discussion following Piketty
(2014), its causes and consequences remain contested. We use our esti-
mates to show that biased technological change is the primary driver of
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the decline of the aggregate share of labor in the Spanish manufacturing
sector over our sample period.
Let VCLjt 5 WjtLjt be the wage bill, VCjt 5 WjtLjt 1 PMjtMjt variable cost,

and SLjt 5 VCLjt=VCjt the share of labor in variable cost of firm j in pe-
riod t. Let VCLt 5 ojVCLjt and VCt 5 ojVCjt be the corresponding indus-
trywide aggregates. We focus on the aggregate share of labor in variable
cost

SLt 5
VCLt

VCt

5 o
j

VCLjt

VCjt

VCjt

VCt

5 o
j

SLjtvjt ,

where vjt 5 VCjt=VCt is the variable cost of firm j in period t as a fraction
of aggregate variable cost. As can be seen in figure 2, the aggregate share
of labor in variable cost closely tracks the aggregate share of labor in value
added in the Spanish manufacturing sector in the National Accounts
over our sample period.23

The year-to-year change in the aggregate share of labor in variable cost
is SLt 2 SLt21. Cumulated over our sample period, the decline of the ag-
gregate share of labor ranges from 0.01 and 0.05 in industries 9 and 4 to
0.15 and 0.19 in industries 2 and 5, as can be seen in column 1 of ta-
ble 6.24 To obtain insight into this decline, we build on Oberfield and
Raval (2014) and decompose the year-to-year change as

SLt 2 SLt21 5 o
j

vjt SLjt 2 SLjt21

� �
1o

j

vjt 2 vjt21

� �
SLjt21:

The second term captures reallocation across firms. Our model enables
us to further decompose the first term. Rewriting equation (10) yields

SLjt 5 ½1 1 exp(2~gL 1 1 2 jð Þ ðpMjt 2 wjt 1 qLjtÞ
1 jl2 ðSTjtÞ2 1 2 jð Þg1 ðSOjtÞ�21:

(17)

The first term may thus be driven by a change in the price of materials
pMjt relative to the price of labor wjt, a change in labor-augmenting pro-
ductivity qLjt, a change in the share of temporary labor STjt, and a change
in the share of outsourced materials SOjt. To quantify these drivers, we use
a second-order approximation to SLjt 2 SLjt21 as described in appendix F.
We report the decomposition of the year-to-year change, cumulated

over our sample period, in columns 2–7 of table 6. The small size of

23 Contabilidad Nacional de España, Bases 1986 and 1995, Instituto Nacional de Esta-
distica.

24 We estimate SLt 2 SLt21 as well as the various terms of the decomposition using firms
that are in the sample in periods t and t 2 1.

000 journal of political economy



the residual in column 7 indicates that our second-order approximation
to SLjt 2 SLjt21 readily accommodates nonlinearities. As can be seen in
column 3, biased technological change emerges as the main force be-
hind the decline of the aggregate share of labor. Changes in input prices
in column 2 attenuate the decline. In contrast, the impact of temporary
labor, outsourced materials, and reallocation across firms in the remain-
ing columns is sometimes positive and sometimes negative andmostly small.
We use our model to compute the counterfactual evolution of the ag-

gregate share of labor without biased technological change by zeroing
out the change in labor-augmenting productivity qLjt in the decomposi-
tion of the year-to-year change. As can be seen in figure 2, without biased
technological change, the aggregate share of labor remains roughly con-
stant over our sample period. We emphasize that this counterfactual
holds fixed not only reallocation across firms but also the evolution of
input prices, temporary labor, and outsourced materials. This may be
questionable over longer stretches of time.

FIG. 2.—Aggregate share of labor in value added in National Accounts (left axis) and
aggregate share of labor in variable cost in sample and counterfactual (right axis). The lat-
ter indices cumulate year-to-year changes using level in 1990 as base and average over in-
dustries using their share of total value added in column 4 of table B1 as weight.
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Our conclusion that biased technological change is the primary driver
of the decline of the aggregate share of labor echoes that of Oberfield
and Raval (2014). The authors develop a decomposition of the change
in the aggregate share of labor in value added in the US manufacturing
sector from 1970 to 2010. Perhaps the most important difference be-
tween their decomposition and ours is that we directly measure the bias
of technological change at the level of the individual firm, whereas
Oberfield and Raval treat it as the residual of their decomposition. De-
spite this difference and the different data sets used, the decompositions
are complementary and both point to the overwhelming role of biased
technological change in the decline of the aggregate share of labor.

VIII. Hicks-Neutral Technological Change

From equation (12) we obtain an estimate of the elasticity of substitution
and recover labor-augmenting productivity at the firm level. To recover
Hicks-neutral productivity and the remaining parameters of the produc-
tion function, we have to estimate equation (15).
Distributional parameters and elasticity of scale.—Table 7 reports the distri-

butional parameters bK and bM 5 1 2 bK and the elasticity of scale n.
Our estimates of bK range from 0.07 in industry 8 to 0.31 in industry 6
(col. 1). Although the estimates of the elasticity of scale are rarely signif-
icantly different from one, taken together they suggest slightly decreas-
ing returns to scale (col. 2). We cannot reject the validity of the moment
conditions in any industry by a wide margin (cols. 3 and 4).25

Price elasticity.—Column 5 of table 7 reports the average absolute value
of the price elasticity h(pjt21, Djt21) implied by our estimates. It ranges from
1.79 in industry 9 to 6.04 and 9.11 in industries 5 and 2 and averages 3.20
across industries.26

Elasticity of substitution: Lagrange multiplier test.—The production func-
tion in equation (6) assumes that the elasticity of substitution between
capital, labor, and materials is the same. We compare our leading speci-
fication to the more general nested CES production function

Yjt 5 bKK
2 12tð Þ

t

jt 1 ½exp ðqLjtÞL*
jt �

2 12jð Þ
j

n	
1 bM M*

jt

� �2 12jð Þ
j

o 2j
12j

2 12tð Þ
t

2nt

12t

exp qHjt

� �
exp ejt

� �
,

25 In light of this wide margin, we do not further probe the validity of lagged prices as
instruments.

26 For US manufacturing industries, Oberfield and Raval (2014) report price elasticities
in a somewhat narrower range between 2.91 and 5.22 with a roughly comparable average of
3.91 across industries.
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where the additional parameter t is the elasticity of substitution between
capital and labor, respectively, materials. We show in the supplementary
appendix that our first estimation equation (12) remains unchanged
and generalize our second estimation equation (15). This allows us to
conduct a Lagrange multiplier test for t 5 j. As can be seen in columns 6
and 7 of table 7, we cannot reject the validity of our leading specification
in any industry.
Hicks-neutral technological change.—With equation (15) estimated, we re-

cover the Hicks-neutral productivity qHjt of firm j in period t up to an ad-
ditive constant from equation (11); in what follows, we use qHjt to denote
the demeanedHicks-neutral productivity.We proceed as before to obtain
aggregate measures representing an industry.
The growth of Hicks-neutral productivity at firm j in period t isDqHjt 5

qHjt 2 qHjt21. Ceteris paribus,

DqHjt ≈
X

2 nj
12j

jt21 exp qHjt

� �
exp ejt21

� �
2 X

2 nj
12j

jt21 exp qHjt21

� �
exp ejt21

� �
X

2 nj
12j

jt21 exp qHjt21

� �
exp ejt21

� �
approximates the rate of growth of a firm’s output Yjt21 and is therefore
directly comparable to the output effect of labor-augmenting technolog-
ical change. As can be seen from column 1 of table 8, Hicks-neutral pro-
ductivity grows quickly in five industries, with rates of growth ranging, on
average, from 1.2 percent per year in industry 8 to 4.4 percent in indus-
try 1. It grows much more slowly or barely at all in three industries, with
rates of growth below 0.5 percent per year. While there is considerable
heterogeneity in the rate of growth of Hicks-neutral productivity across
industries, Hicks-neutral technological change causes output to grow by
1.4 percent per year.
Figure3 illustrates themagnitudeofHicks-neutral technological change.

The depicted index cumulates the year-to-year changes and is normalized
to one in 1991.27 The heterogeneity in the impact of Hicks-neutral techno-
logical change across industries clearly exceeds that of the output effect
of labor-augmenting technological change (see again fig. 1). Once again,
technological change appears to have slowed in the 2000s compared to
the 1990s: across industries,Hicks-neutral technological change causes out-
put to grow by 2.7 percent per year before 2000 and to shrink by 0.6 percent
per year after 2000.
Dispersion and persistence.—We measure dispersion by the interquartile

range of qHjt. As can be seen from column 2 of table 8, the interquartile
range is between 0.37 in industry 3 and 0.98 in industry 4.28 Hicks-neutral
productivity appears tobe somewhatmoredisperse than labor-augmenting

27 In industry 9, in line with col. 1 of table 8, we trim values ofDqH below20.25 and above 0.5.
28 For Chinese manufacturing industries, Hsieh and Klenow (2009) report an inter-

quartile range of log total factor productivity of 1.28.
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productivity in output terms. Once again, qHjt is highly autocorrelated
(col. 3), indicating that differences in Hicks-neutral productivity between
firms persist over time.
Firms’ R&D activities.—As can be seen from column 4 of table 8, firms

that perform R&D have, on average, higher levels of Hicks-neutral pro-
ductivity than firms that do not perform R&D in six industries but lower
levels of Hicks-neutral productivity in four industries. While there is prac-
tically nodifference in industry 10, the rate of growthofHicks-neutral pro-
ductivity for firms that perform R&D, on average, exceeds that of firms
that donotperformR&D infive industries (cols. 5 and6).Overall, our esti-
mates indicate that firms’ R&D activities are associated with higher levels
and rates of growth of Hicks-neutral productivity, although firms’ R&D
activities seem less closely tied to Hicks-neutral than to labor-augmenting
productivity. This is broadly consistent with the large literature on induced
innovation that argues that firmsdirect their R&Dactivities to conserve the
relatively more expensive factors of production, in particular, labor.29

FIG. 3.—Hicks-neutral technological change. Index normalized to one in 1991.

29 More explicitly testing for induced innovation is difficult because we do not observe
what a firm does with its R&D expenditures. One way to proceedmay be to add interactions
of R&D expenditures and input prices to the laws of motion in eqq. (7) and (8). We leave
this to future research.
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Firm turnover.—Similarly to the output effect of labor-augmenting tech-
nological change, survivors account for most of Hicks-neutral technolog-
ical change. Their contribution is 61 percent in industry 9 and above.
While the contributions of entrants and exitors are small in most indus-
tries, they are negative andmore sizable in industries 2, 5, 7, 8, and 10. As
a result, in these industries the rate of growth of Hicks-neutral produc-
tivity is 0.7 percent, 3.0 percent, 1.2 percent, 1.7 percent, and 1.2 percent
among survivors compared to 0.5 percent, 2.0 percent, 0.1 percent,
1.2 percent, and 0.2 percent for all firms (see again col. 1 of table 8).
Total technological change and its components.—As productivity is multidi-

mensional, we take total technological change to be eLjt22DqLjt 1 DqHjt .
Taken together, labor-augmenting andHicks-neutral technological change
cause output to grow by, on average, between 0.7 percent in industry 7 and
7.2 percent and7.8 percent in industries 4 and6, as canbe seen in column7
of table 8. Across all industries, total technological change causes output to
grow by 3.1 percent per year.
The output effects of labor-augmenting technological change eLjt22DqLjt

and Hicks-neutral technological change DqHjt are positively correlated in
nine industries, while the correlation is slightly negative in one industry
(col. 8). The correlation between labor-augmenting productivity in out-
put terms eLjt22qLjt and Hicks-neutral productivity qHjt is positive in all in-
dustries. Overall, our estimates not only provide evidence that productiv-
ity is multi- instead of single-dimensional but also suggest that the various
components of productivity are intertwined.

IX. An Aggregate Productivity Growth Decomposition

In quantifying labor-augmenting and Hicks-neutral technological change
in Sections VI and VIII, we leverage our firm-level panel data to follow in-
dividual firms over time. In this section, we complement our findings by
analyzing the aggregate productivity of the Spanish manufacturing sector
and its growth over our sample period. To obtain insight into the drivers of
growth, we decompose aggregate productivity growth along the lines of
Olley and Pakes (1996).
Aggregate productivity ft 5 ojmjtfjt in period t is a weighted average

of the productivity of individual firms, where fjt is a measure of the pro-
ductivity of firm j in period t and mjt is its weight. We separately examine
labor-augmenting productivity in output terms eLjt22qLjt , Hicks-neutral
productivity qHjt, and total productivity eLjt22qLjt 1 qHjt . Throughout the
weight mjt 5 (pjt 1 yjt)=oj(pjt 1 yjt) is the share of the log of sales of firm
j in period t.
The growth in aggregate productivity from period t1 to period t 2 is

Df 5 ft2 2 ft1 . FollowingOlley and Pakes (1996) andMelitz and Polanec
(2015), we decompose this growth as
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Df 5 DfS 1 mE
t 2 f

E
t 2 2 fS

t 2ð Þ 1 mX
t 1 f

S
t 1 2 fX

t1ð Þ

5 D�fS 1 N SDCov
m

mS , f

� �
1 mE

t 2 f
E
t 2 2 fS

t 2ð Þ 1 mX
t1 fS

t 1 2 fX
t 1ð Þ,

(18)

where S, E, and X index the group of survivors, entrants, and exitors, re-
spectively; mG

t 5 oj∈Gmjt is the total weight of group G in period t ; fG
t 5

oj∈G(mjt=mG
t )fjt is the weighted average restricted to group G; �fG

t 5
(1=N G)oj∈Gfjt is the unweighted average restricted to group G; NG is
the number of firms in group G; and DCov(m=mS , f) is short for

Cov
mjt2

mS
t2

, fjt2

� �
2 Cov

mjt1

mS
t1

, fjt1

� �
:

In the first line of the decomposition, the first term captures the contri-
bution of survivors to aggregate productivity growth, the second that of
entrants, and the third that of exitors. The second line furtherdecomposes
the contribution of survivors to aggregate productivity growth into a shift
in the distribution of productivity (first term) and a change in covariance
that captures reallocation (second term).
As the decomposition pertains to the population of firms, applying it

to the sample of firms in our firm-level panel data is subject to a caveat.
As before we account for the survey design by replicating the subsample
of small firms. We classify a firm as a survivor if it enters the industry in or
before period t 1 and does not exit in or before period t 2. We further clas-
sify a firm as an entrant if it enters the industry after period t 1 and as an
exitor if it exits the industry in or before period t 2. Because of attrition
and the periodic addition of new firms to the sample, we observe pro-
ductivity for a subset of survivors in period t 1 and for another subset of
survivors in period t 2. Because we average over potentially quite different
subsets of firms, especially if periods t 1 and t 2 are far apart, our estimates
of the various terms in the decomposition may be noisy.
We report the change in aggregate productivity and its decomposition

in table 9 for the period 1992–2006 and the three subperiods 1992–96,
1997–2001, and 2002–6. The change in aggregate productivity in col-
umn 1 in table 9 is consistent with our findings in Sections VI and VIII.
Aggregate labor-augmenting productivity in output terms grewby 21.7 per-
cent for the period 1992–2006 or about 1.6 percent per year. Aggregate
Hicks-neutral productivity grew by 19.7 percent or about 1.4 percent per
year and aggregate total productivity by 41.6 percent or about 3.0 percent
per year. For the later subperiods, technological change appears to have
slowed down, in particular, in the case of aggregateHicks-neutral and total
productivity.
We report the various terms of the decomposition in the first line of

equation (18) in columns 2, 5, and 6 of table 9 and those in the second
line in columns 3, 4, 5, and 6. Turning to columns 2, 5, and 6, survivors
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account formost of the change in aggregate total productivity and its com-
ponents, again in line with our findings in Sections VI and VIII.30 With the
possible exception of entrants for the subperiod 1992–96, the contribu-
tion of entrants and exitors appears to be limited. Homing in on survivors
and further decomposing their contribution, shifts in the distribution of
productivity in column 3 are substantially more important than changes
in the covariance in column 4. The contribution of reallocation to the
change in aggregate total productivity and its components is sometimes
positive and sometimes negative and mostly small.

X. Capital-Augmenting Technological Change

As discussed in Section III, the evolution of the relative quantities and prices
of the various factors of production provides no evidence for capital-

30 Survivors account for less of the change for the period 1992–2006 than for the three
subperiods simply because the definition of survivor is more demanding if periods t 1 and t 2
are further apart.

TABLE 9
Aggregate Productivity Growth Decomposition

Period t12t 2

Change in

Aggregate

Productivity
a,b

Df

Decomposition
c

Survivors

Entrants
mE
t2 (f

E
t2 2 fS

t2 )
Exitors

mX
t1 (f

S
t1 2 fX

t 1 )
Total
DfS

Shift
D�fS

Covariance
NSDCov(⋅)

(1) (2) (3) (4) (5) (6)

Labor-Augmenting Productivity in Output Terms eL,22qL

1992–2006 .217 .153 .133 .020 .024 .040
1992–96 .110 .092 .081 .011 .023 2.005
1997–2001 .063 .057 .057 .001 .007 2.002
2002–6 .056 .051 .058 2.007 .000 .004

Hicks-Neutral Productivity qH

1992–2006 .197 .150 .151 2.001 .030 .017
1992–96 .098 .062 .060 .002 .036 .001
1997–2001 .051 .055 .055 2.001 2.007 .003
2002–6 2.003 2.012 2.005 2.007 .001 .008

Total Productivity eL,22qL 1 qH

1992–2006 .416 .307 .283 .023 .059 .050
1992–96 .204 .163 .141 .021 .049 2.008
1997–2001 .095 .090 .087 .003 2.001 .006
2002–6 .055 .040 .057 2.017 .001 .013

a We trim 1 percent of observations at each tail of the productivity distribution separately
for survivors, entrants, and exitors but pooled across the start and end year.

b Changes over subperiods do not add up because of trimming and because subperiods
do not overlap. Without trimming, changes over subperiods almost add up for eL,22qL; with
overlapping subperiods (1992–96, 1997–2001, and 2002–6), changes over subperiods al-
most add up for qH.

c Columns 2, 5, and 6 correspond to the first line of eq. (18) and add up col. 1; cols. 3, 4, 5,
and 6 correspond to the second line of eq. (18) and add up col. 1.
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augmenting technological change. Our leading specification therefore
restricts the productivities of capital and materials to change at the same
rate and in lockstep withHicks-neutral technological change. Amore gen-
eral specification allows for capital-augmenting productivity qKjt so that
the production function in equation (6) becomes

Yjt 5 bK exp qKjt

� �
Kjt

� �212j
j 1 exp qLjt

� �
L*

jt

� �2 12j
j

n
1 bM M *

jt

� �212j
j

o2 nj
12j

exp qHjt

� �
exp ejt

� �
:

(19)

We explore the role of capital-augmenting technological change in our
data in two ways.
First, we follow Raval (2013) and parts of the previous literature on es-

timating aggregate production functions (see Antràs [2004] and the ref-
erences therein) and assume that capital is a static input that is chosen
each period to maximize short-run profits. In analogy to equation (10), we
recover (conveniently rescaled) capital-augmenting productivity ~qKjt 5
(1 2 j)qKjt as

~qKjt 5 ~gK 1 mjt 2 kjt 1 j ðpMjt 2 pKjtÞ1 1 2 jð Þg1 ðSOjtÞ
; ~hK ðmjt 2 kjt , pMjt 2 pKjt , SOjtÞ,

(20)

where ~gK 5 2j ln(bM=bK), andwe use the user cost in our data as a rough
measure of the price of capital PKjt. Using our leading estimates from Sec-
tionVI, we recover the capital-augmenting productivityqKjt 5 ~qKjt=(1 2 j)
of firm j in period t up to an additive constant; in what follows, we use
qKjt to denote the demeaned capital-augmenting productivity.31 Ceteris
paribus,

DqKjt ≈
exp qKjt

� �
Kjt21 2 exp qKjt21

� �
Kjt21

exp qKjt21

� �
Kjt21

in column 1 of table 10 approximates the rate of growth of a firm’s effec-
tive capital stock exp(qKjt21)Kjt21 and eKjt22DqKjt in column 2 approximates
the rate of growth of the firm’s output Yjt21, where eKjt22 is the elasticity
of output with respect to the firm’s effective capital stock (see app. E). As
can be seen from column 1, capital-augmenting productivity grows slowly,

31 As an alternative to plugging our leading estimates from Sec. VI into eq. (20), in the sup-
plementary appendix we use eq. (20) to form the analogue to our first estimation eq. (12):

mjt 2 kjt 5 2j pMjt 2 pKjt
� �

2 1 2 jð Þg1 SOjt
� �

1 ~gKt21
~hK mjt21 2 kjt21, pMjt21 2 pKjt21, SOjt21

� �
, Rjt21

� �
1 ~yKjt :

Consistent with measurement error in pKjt, the resulting estimates of j are very noisy and
severely biased toward zero.
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on average, with rates of growth of 0.8 percent per year in industry 6,
2.2 percent in industry 10, and 5.6 percent in industry 1. The rate of
growth is negative in the remaining seven industries. The growth of capital-
augmenting productivity is especially underwhelming in comparison to
the growth of labor-augmenting productivity (see again col. 1 of table 5).
The output effect of capital-augmenting technological change in column 2
is also close to zero in all industries, although this likely reflects the fact
that capital is not a static input. As the user cost excludes adjustment costs,
it falls short of the shadow price of capital, and using it drives down the
elasticity of output with respect to the firm’s effective capital stock.
Second, we return to the usual setting in the literature following Olley

and Pakes (1996) and allow the choice of capital to have dynamic impli-
cations. We follow parts of the previous literature in estimating aggregate

TABLE 10
Capital-Augmenting Technological Change

Industry

DqK eK,22DqK

GMM

bK (SE) n (SE) dK (SE) x2 (df) p -Value
(1) (2) (3) (4) (5) (6) (7)

1. Metals and metal
products .056 .004 .254 .903 .036 2.555 .923

(.129) (.055) (.061) (7)
2. Nonmetallic

minerals 2.010 .007 .236 .906 .010 3.979 .782
(.102) (.072) (.072) (7)

3. Chemical products 2.018 .001 .125 .942 2.031 .598 .999
(.068) (.041) (.092) (7)

4. Agricultural and
industrial machinery 2.020 .000 .182 .801 .031 9.026 .340

(.177) (.081) (.122) (8)
5. Electrical goods 2.078 .000 .129 .845 2.004 2.493 .981

(.041) (.054) (.056) (9)
6. Transport
equipmenta .008 .005 .115 .981 2.143

(.088) (.050) (.138)
7. Food, drink, and
tobacco 2.005 .002 .282 .918 2.045 2.279 .943

(.286) (.058) (.204) (7)
8. Textile, leather,
and shoes 2.085 2.002 .080 .971 .053 2.714 .951

(.143) (.047) (.135) (8)
9. Timber and
furniturea .035b .000b .088 .924 2.021

(.119) (.067) (.059)
10. Paper and

printing products .022 .007 .229 .935 .005 3.066 .879
(.089) (.033) (.045) (7)

All industries 2.038 .001

a We have been unable to compute the second-step GMM estimate.
b We trim values of DqK, respectively, eK,22DqK, below 20.5 and above 0.5.
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production functions and proxy for qKjt by a time trend dKt. Our second
estimation equation (15) remains unchanged except that

Xjt 5 bK exp dK tð ÞKjt

� ��2 12j
j

1 bM Mjt exp g1 SOjt
� �� �� �212j

j
1 2 SMjt

SMjt

l1 STjt
� �

1 1

� �
:

Columns 3–7 of table 10 summarize the resulting estimates of bK, v, and
dK. The estimates of bK and v are very comparable to those in table 5.
Moreover, the insignificant time trend leaves little room for capital-
augmenting technological change in our data.
In sum, in linewith the patterns in thedata described in Section III, there

is little, if any, evidence for capital-augmenting technological change in
our data. Of course, our ways of exploring the role of capital-augmenting
technological change are less than ideal in that they either rest on the as-
sumption that capital is a static input or abstract from firm-level heteroge-
neity in capital-augmenting productivity. An important question is there-
fore whether our approach can be extended to treat capital-augmenting
productivity on par with labor-augmenting andHicks-neutral productivity.
Recovering a third component of productivity, at a bare minimum, re-

quires a third decision besides labor and materials to invert. Investment
is a natural candidate. In contrast to the demand for labor andmaterials,
however, investment depends on the details of the firm’s dynamic pro-
gramming problem. There are two principal difficulties. First, one has
to prove that the observed demands for labor and materials along with
investment are jointly invertible for unobserved capital-augmenting, labor-
augmenting, and Hicks-neutral productivity. Second, the inverse functions
~hK(⋅), ~hL(⋅), and hH(⋅) are high-dimensional. Thus, estimating these func-
tions nonparametrically is demanding on thedata. In ongoingwork, Zhang
(2015) proposes combining a parametric inversion that exploits the param-
eter restrictions between production and input demand functions similarly
to our paper with a nonparametric inversion of investment similarly to
Olley and Pakes (1996).

XI. Conclusions

Technological change can increase the productivity of capital, labor, and
the other factors of production in equal terms, or it can be biased toward a
specific factor. In this paper, we directly assess the bias of technological
change by measuring, at the level of the individual firm, how much of
technological change is labor augmenting and how much of it is Hicks
neutral.
To this end, we develop a dynamic model of the firm in which produc-

tivity is multidimensional. At the center of the model is a CES produc-
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tion function that parsimoniously yet robustly relates the relative quan-
tities of materials and labor to their relative prices and labor-augmenting
productivity. To properly isolate and measure labor-augmenting produc-
tivity, we account for other factors that affect this relationship, in partic-
ular, outsourcing and adjustment costs on permanent labor.
We apply our estimator to an unbalanced panel of 2,375 Spanish man-

ufacturing firms in 10 industries from 1990 to 2006. Our estimates indi-
cate limited substitutability between the various factors of production.
This calls into question whether the widely used Cobb-Douglas produc-
tion function with its unitary elasticity of substitution adequately repre-
sents firm-level production processes.
Our estimates provide clear evidence that technological change is bi-

ased. Ceteris paribus, labor-augmenting technological change causes out-
put to grow, on average, in the vicinity of 1.5 percent per year. While skill
upgrading explains some of the growth of labor-augmenting productivity,
in many industries labor-augmenting productivity grows because workers
with a given set of skills become more productive over time. In short, our
estimates cast doubt on the assumption of Hicks-neutral technological
change that underlies many of the standard techniques for measuring
productivity and estimating production functions.
At the same time, however, our estimates donot validate the assumption

that technological change is purely labor augmenting that plays a central
role in the literature on economic growth. In addition to labor-augmenting
technological change, our estimates show that Hicks-neutral technological
change causes output to grow, on average, in the vicinity of 1.5 percent per
year.
While we areprimarily interested inmeasuringhowmuchof technolog-

ical change is labor augmenting and how much of it is Hicks neutral, we
also use our estimates to illustrate the consequences of biased technolog-
ical change beyond the growth of output. In particular, we show that it is
the primary driver of the decline of the aggregate share of labor in the
Spanish manufacturing sector over our sample period. An interesting av-
enue for future research is to investigate the implications of biased techno-
logical change for employment. Recent researchpoints to biased technolog-
ical change as a key driver of the diverging experiences of the continental
European,US, andUKeconomies during the 1980s and 1990s (Blanchard
1997; Caballero and Hammour 1998; Bentolila and Saint-Paul 2004; Mc-
Adam andWillman 2013). Our estimates lend themselves to decomposing
firm-level changes in employment intodisplacement, substitution, andout-
put effects and to compare these effects between labor-augmenting and
Hicks-neutral technological change. Thismay be helpful for better under-
standing and predicting the evolution of employment as well as for de-
signing labor market and innovation policies in the presence of biased
technological change.
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Appendix A

Proof of Proposition 1

Rewriting the ratio of first-order conditions (3) yields

0 5 ln
∂H exp qLjt 2 mjt 2 ljt

� �� �
, 1

� �
∂Ljt

1 qLjt

2 ln
∂H exp qLjt 2 mjt 2 ljt

� �� �
, 1

� �
∂Mjt

1 pMjt 2 wjt

5 f mjt 2 ljt , pMjt 2 wjt , qLjt

� �
:

Differentiating the so-defined function f(⋅) yields

∂f mjt 2 ljt , pMjt 2 wjt , qLjt

� �
∂ mjt 2 ljt
� �

5 2

∂ 2H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂L2

jt

∂H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Ljt

1

∂ 2H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Mjt∂Ljt

∂H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Mjt

264
375exp qLjt 2 mjt 2 ljt

� �� �

5
H exp qLjt 2 mjt 2 ljt

� �� �
, 1

� � ∂ 2H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Mjt∂Ljt

∂H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Ljt

∂H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Mjt

5
1

j exp qLjt 2 mjt 2 ljt
� �� �� � ,

where the second equality uses that H(exp(qLjt)Ljt, Mjt) is homogeneous of de-
gree one and the third equality uses that the elasticity of substitution between ma-
terials and labor (Chambers 1988, eq. 1.13) for the production function in equa-
tion (1) simplifies to

j exp qLjt 2 mjt 2 ljt
� �� �� �

5

∂H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Ljt

∂H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ
∂Mjt

H exp qLjt 2 mjt 2 ljt
� �� �

, 1
� � ∂2H exp qLjt2 mjt2ljtð Þð Þ,1ð Þ

∂Mjt∂Ljt

:

Similarly,

∂f mjt 2 ljt , pMjt 2 wjt , qLjt

� �
∂ pMjt 2 wjt

� � 5 1,

∂f mjt 2 ljt , pMjt 2 wjt , qLjt

� �
∂qLjt

5 2
1

j exp qLjt 2 mjt 2 ljt
� �� �� � 1 1:

By the implicit function theorem, around a point (m0
jt 2 l 0jt , p

0
Mjt 2 w0

jt , q
0
Ljt) satis-

fying f (m0
jt 2 l 0jt , p

0
Mjt 2 w0

jt , q
0
Ljt) 5 0, there exists a continuously differentiable
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functionmjt 2 ljt 5 g(pMjt 2 wjt , qLjt) suchthat f (g(pMjt 2 wjt , qLjt), pMjt 2 wjt , qLjt)5
0 and

∂g p0
Mjt 2 w0

jt , q
0
Ljt

� �
∂ pMjt 2 wjt

� � 5 2

∂f m0
jt2l0jt ,p

0
Mjt2w0

jt ,q
0
Ljtð Þ

∂ pMjt2wjtð Þ
∂f m0

jt2l0jt ,p
0
Mjt2w0

jt ,q
0
Ljtð Þ

∂ mjt2ljtð Þ
5 2j exp q0

Ljt 2 m0
jt 2 l 0jt

� �� �� �
,

∂g p0
Mjt 2 w0

jt , q
0
Ljt

� �
∂qLjt

5 2

∂f m0
jt2l 0jt ,p

0
Mjt2w0

jt ,q
0
Ljtð Þ

∂qLjt

∂f m0
jt2l 0jt ,p

0
Mjt2w0

jt ,q
0
Ljtð Þ

∂ mjt2ljtð Þ
5 1 2 j exp q0

Ljt 2 m0
jt 2 l 0jt

� �� �� �
:

The first-order Taylor series for mjt 2 ljt 5 g(pMjt 2 wjt , qLjt) around the point
(m0

jt 2 l 0jt , p
0
Mjt 2 w0

jt , q
0
Ljt) follows immediately.

Appendix B

Data

We observe firms for a maximum of 17 years between 1990 and 2006. We restrict
the sample to firms with at least 3 years of data on all variables required for estima-
tion. The number of firms with 3, 4, . . . , 17 years of data is 313, 240, 218, 215, 207,
171, 116, 189, 130, 89, 104, 57, 72, 94, and 160, respectively. Table B1 gives the in-
dustry definitions along with their equivalent definitions in terms of the ESEE, Na-
tional Accounts, and International Standard Industrial Classifications (ISIC; cols. 1–
3). On the basis of the National Accounts in 2000, we further report the shares of
the various industries in the total value added of the manufacturing sector (col. 4).

In what follows we define the variables we use for our main analysis.

• Investment. Value of current investments in equipment goods (excluding build-
ings, land, and financial assets) deflated by the price index of investment. The
price of investment is the equipment goods component of the index of in-
dustry prices computed and published by the Spanish Ministry of Industry.

• Capital. Capital at current replacement values ~Kjt is computed recursively from
an initial estimate and the data on current investments in equipment goods ~Ijt .
We update the value of the past stock of capital by means of the price index of
investment PIt as

~Kjt 5 1 2 dð Þ PIt

PIt21

~Kjt21 1 ~Ijt21,

where d is an industry-specific estimate of the rate of depreciation. Capital
in real terms is obtained by deflating capital at current replacement values
by the price index of investment as Kjt 5 ~Kjt=PIt .

• Labor. Total hours worked computed as the number of workers times the av-
erage hours per worker, where the latter is computed as normal hours plus
average overtime minus average working time lost at the workplace.

• Materials. Value of intermediate goods consumption (including raw materi-
als, components, energy, and services) deflated by a firm-specific price index
of materials.
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• Output. Value of produced goods and services computed as sales plus the
variation of inventories deflated by a firm-specific price index of output.

• Wage. Hourly wage cost computed as total labor cost including social secu-
rity payments divided by total hours worked.

• Price of materials. Firm-specific price index for intermediate consumption.
Firms are asked about the price changes that occurred during the year for
rawmaterials, components, energy, and services. The price index is computed
as a Paasche-type index of the responses.

• Price of output. Firm-specific price index for output. Firms are asked about
the price changes they made during the year in up to five separate markets
in which they operate. The price index is computed as a Paasche-type index
of the responses.

• Demand shifter. Firms are asked to assess the current and future situation of
the main market in which they operate. The demand shifter codes the re-
sponses as 0, 0.5, and 1 for slump, stability, and expansion, respectively.

• Share of temporary labor. Fraction of workers with fixed-term contracts and no
or small severance pay.

• Share of outsourcing. Fraction of customized parts and pieces that are manu-
factured by other firms in the value of the firm’s intermediate goods pur-
chases.

• R&D expenditures. R&D expenditures include the cost of intramural R&D ac-
tivities, payments for outside R&D contracts with laboratories and research
centers, and payments for imported technology in the form of patent licens-
ing or technical assistance, with the various expenditures defined according
to the OECD Oslo and Frascati manuals.

We next turn to additional variables that we use for descriptive purposes, exten-
sions, and robustness checks.

• User cost of capital. Computed as PIt(rjt 1 d 2 CPIt), where PIt is the price in-
dex of investment, rjt is a firm-specific interest rate, d is an industry-specific
estimate of the rate of depreciation, and CPIt is the rate of inflation as mea-
sured by the consumer price index.

• Skill mix. Fraction of nonproduction employees (white-collar workers), work-
ers with an engineering degree (engineers), andworkers with an intermediate
degree (technicians). Available in the year a firm enters the sample and every
subsequent 4 years; assumed to be unchanging in the interim.

• Region. Dummy variables corresponding to the 19 Spanish autonomous
communities and cities where employment is located if it is located in a
unique region and another dummy variable indicating that employment
is spread over several regions.

• Product submarket. Dummy variables corresponding to a finer breakdown of
the 10 industries into subindustries (restricted to subindustries with at least
five firms; see col. 5 of table B1).

• Technological sophistication. Dummy variable that takes the value one if the
firm uses digitally controlled machines, robots, CAD/CAM, or some combi-
nation of these procedures.
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• Identification between ownership and control. Dummy variable that takes the
value one if the owner of the firm or the family of the owner hold manage-
ment positions.

• Age. Years elapsed since the foundation of the firm with a maximum of
40 years.

• Firm size. Number of workers in the year the firm enters the sample.

TABLE B1
Industry Definitions and Equivalent Classifications

Industry

Classifications

Share of

Value

Added

Number of

SubindustriesESSE
National
Accounts

ISIC
(Rev. 4)

(1) (2) (3) (4) (5)

1. Ferrous and nonferrous
metals and metal products 12113 DJ C 24125 13.2 11

2. Nonmetallic minerals 11 DI C 23 8.2 8
3. Chemical products 9110 DG–DH C 20121122 13.9 7
4. Agricultural and industrial
machinery 14 DK C 28 7.1 7

5. Electrical goods 15116 DL C 26127 7.5 13
6. Transport equipment 17118 DM C 29130 11.6 7
7. Food, drink, and tobacco 11213 DA C 10111112 14.5 10
8. Textile, leather, and shoes 415 DB–DC C 13114115 7.6 11

9. Timber and furniture 6119
DD–
DN 38 C 16131 7.0 6

10. Paper and printing
products 718 DE C 17118 8.9 4

All industries 99.5 84

Appendix C

Inverse Functions

The first-order conditions for permanent and temporary labor are

nmX
2 11 nj

12jð Þ
jt exp qHjt

� �
exp 2

1 2 j

j
qLjt

� �
L*

jt

� �21
j
∂L*

jt

∂LPjt

5
WPjt 1 1 Djt

� �
Pjt 1 2 1

h pjt ,Djtð Þ
� � ,

(C1)

nmX
2 11 nj

12jð Þ
jt exp qHjt

� �
exp 2

1 2 j

j
qLjt

� �
L*

jt

� �21
j
∂L*

jt

∂LTjt

5
WTjt

Pjt 1 2 1
h pjt ,Djtð Þ

� � ,
(C2)
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where, by the envelope theorem, the gap between the wage of permanent work-
ers WPjt and the shadow wage is

Djt 5
1

WPjt

∂CLP
LPjt , LPjt21

� �
∂LPjt

2
1

1 1 r
Et

∂Vt11 Qjt11

� �
∂LPjt

jQjt , Rjt

� �
 �

5
1

WPjt

∂CLP
LPjt , LPjt21

� �
∂LPjt

1
1

1 1 r
Et

∂CLP
LPjt11, LPjt

� �
∂LPjt

jQjt , Rjt

� �
 �
:

Equations (C1) and (C2) allow the mix of permanent and temporary labor to
depend on the firm’s productivity and the other state variables (through Djt).

Our assumption that L(Lpjt, LTjt) is linearly homogeneous implies L*
jt 5

LjtL(1 2 STjt , STjt), ∂L*
jt =∂LPjt 5 LP(12 STjt , STjt), and ∂L*

jt =∂LTjt 5 LT (12 STjt , STjt).
Using Euler’s theorem to combine equations (C1) and (C2) yields

nmX
2 11 nj

12jð Þ
jt exp qHjt

� �
exp 2

1 2 j

j
qLjt

� �
L

21
j

jt L 1 2 STjt , STjt
� �2 12j

j

5

Wjt 1 1 Djt

1 1
WTjt

WPjt

STjt
12STjt

� �
Pjt 1 2 1

h pjt ,Djtð Þ
� � 5

Wjt

LP 12STjt ,STjtð Þ
LT 12STjt ,STjtð Þ 1

STjt
12STjt

WPjt

WTjt
1

STjt
12STjt

 !

Pjt 1 2 1
h pjt ,Djtð Þ

� � ,

(C3)

where the second equality follows from dividing equations (C1) and (C2) and
solving for Djt. Our assumption that WPjt=WTjt 5 l0 is an (unknown) constant im-
plies that

LP 12STjt ,STjtð Þ
LT 12STjt ,STjtð Þ 1

STjt
12STjt

l0 1
STjt

12STjt

5 l1 STjt
� �

as an (unknown) function of STjt.
Turning from the labor to the materials decision, because the firmmust main-

tain the ratio of outsourced to in-house materials Qmjt, the first-order condition for
in-house materials is

nbMmX
2 11 nj

12jð Þ
jt exp qHjt

� �
M *

jt

� �2 1
j
dM *

jt

dM Ijt

5
PMjt

Pjt 1 2 1
h pjt ,Djtð Þ

� � , (C4)

where PMjt 5 PIjt 1 POjtQMjt is the effective cost of an additional unit of in-house
materials.

Our assumption that G(MIjt, MOjt) is linearly homogeneous implies

M *
jt 5 MIjtG 1,

PIjt

POjt

SOjt
1 2 SOjt

� �
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and

dM *
jt

dM Ijt

5 G 1,
PIjt

POjt

SOjt
1 2 SOjt

� �
:

Rewriting equation (C4) yields

nbMmX
2 11 nj

12jð Þ
jt exp qHjt

� �
M

21
j

jt G 1,
PIjt

POjt

SOjt
1 2 SOjt

� �212j
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5
PMjt

Pjt 1 2 1
h pjt ,Djtð Þ

� � :
(C5)

Our assumption that PIjt=POjt 5 g0 is an (unknown) constant implies that

ln G 1, g0

SOjt
1 2 SOjt

� �
5 g1 SOjt

� �
as an (unknown) function of SOjt.32

Solving equations (C3) and (C5) for ~qLjt 5 (1 2 j)qLjt and qHjt yields equa-
tions (10) and (11), where

l2 STjt
� �

5 ln l1 STjt
� �

L 1 2 STjt , STjt
� �12j

j

	 

:

Appendix D

Estimation

Unknown functions.—The functions ~gL1(~hL(⋅)), ~gL2(~hL(⋅), rjt21), gH1(hH(⋅)), and
gH2(hH (⋅), rjt21) that are part of the conditional expectation functions ~gLt21(~hL(⋅), Rjt21)
and gHt21(hH (⋅), Rjt21) are unknown and must be estimated nonparametrically, as
must be the absolute value of the price elasticity h(pjt, Djt) and the correction terms
l1(STjt), l2(STjt), and g1(SOjt). We model an unknown function q(v) of one variable v
by a univariate polynomial of degree Q. We model an unknown function q(u, v)
of two variables u and v by a complete set of polynomials of degree Q. Unless other-
wise noted, we omit the constant in q(⋅) and set Q 5 3 in the remainder of this
paper.

Starting with the conditional expectation functions, we specify ~gL1(~hL(⋅)) 5
q(~hL(⋅)2 ~gL), ~gL2(~hL(⋅), rjt) 5 q0 1 q(~hL(⋅) 2 ~gL, rjt), gH1(hH (⋅))5 q(hH (⋅) 2 gH ),
and gH2(hH (⋅), rjt) 5 q0 1 q(hH (⋅) 2 gH , rjt), where q0 is a constant and the func-
tion q(⋅) is modeled as described above. Without loss of generality, we absorb
~gL and gH into the overall constants of our estimation equations. Turning to
the absolute value of the price elasticity, to impose the theoretical restriction
h(pjt , Djt) > 1, we specify h(pjt , Djt)5 11 exp(q(pjt , Djt)), where the function q(⋅)
is modeled as described above except that we suppress terms involving D2

jt and
D3

jt . Turning to the correction terms, we specify l1(STjt) 5 q(ln STjt) and l2(STjt) 5

32 Equation (C5) presumes an interior solution for in-house materials; it is consistent
with a corner solution for outsourced materials. Indeed, without outsourcing eq. (C5) re-
duces to the first-order condition for in-house materials.
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q(ln STjt) in industries 2, 3, and 10 and l1(STjt) 5 q(ln(1 2 STjt)) and l2(STjt) 5
q(ln(1 2 STjt)) in the remaining industries.33 Finally, we specify g1(SOjt) 5 q(SOjt);
this ensures that g1(SOjt) 5 0 if SOjt 5 0 in line with the normalization G(MIjt , 0) 5
MIjt .

Parameters and instruments.—Our first estimation equation (12) has 36 param-
eters: the constant, j, 15 parameters in ~gL0(t 2 1) (time dummies), three param-
eters in ~gL1(~hL(⋅)), 10 parameters in ~gL2(~hL(⋅), rjt21), three parameters in l2(STjt),
and three parameters in g1(SOjt).

Our instrumenting strategy is adapted from Doraszelski and Jaumandreu (2013);
we refer the reader to that study and the references therein for a discussion of
the use of polynomials for instruments. We use the constant, 15 time dummies,
the dummy for performers 1(Rjt21 > 0), the demand shifter Djt, and a univariate
polynomial in ln SOjt21 1 mjt21 interacted with 1(SOjt21 > 0) (three instruments).
We further use a complete set of polynomials in ljt21, mjt21, and pMjt21 2 wjt21 inter-
acted with the dummy for nonperformers 1(Rjt21 5 0) (19 instruments). In indus-
tries 5 and 8 we replace pMjt21 2 wjt21 by pMjt21 in the complete set of polynomials.
Finally, we use a complete set of polynomials in ljt21, mjt21, and pMjt21 2 wjt21 and
rjt21 interacted with the dummy for performers 1(Rjt21 > 0) (34 instruments). This
yields a total of 74 instruments and 74 2 36 5 38 degrees of freedom (see col. 4
of table 4).

After imposing the estimated values from equation (12), our second estimation
equation (15) has 40 parameters: the constant, bK, v, 15 parameters in gH0(t 2 1)
(time dummies), three parameters in gH1(hH(⋅)), 10 parameters in gH2(hH (⋅), rjt21),
three parameters in l1(STjt), and six parameters in h(Pjt, Djt).

As before, we use polynomials for instruments. We use the constant, 15 time
dummies, the dummy for performers 1(Rjt21 > 0), the demand shifterDjt, a univar-
iatepolynomial inpjt21 (three instruments), aunivariatepolynomial inpMjt21 2 pjt21

(three instruments), and a univariate polynomial in kjt (three instruments). We
also use a complete set of polynomials in Mjt21½(1 2 SMjt21)=SMjt21� and Kjt21 inte-
racted with the dummy for nonperformers 1(Rjt21 5 0) (nine instruments). Fi-
nally, we use a complete set of polynomials in Mjt21½(1 2 SMjt21)=SMjt21� and Kjt21

(nine instruments) and a univariate polynomial in rjt21 interacted with the dummy
for performers 1(Rjt21 > 0) (three instruments). This yields a total of 48 in-
struments and 48 2 40 5 8 degrees of freedom in industries 1, 2, 3, 6, 7, 9, and
10 (see col. 3 of table 7). In industries 4, 5, and 8, we add a univariate polynomial
in ln(1 2 STjt21) (three instruments). We replace the univariate polynomial in kjt by
kjt in industries 4 and 8 and we drop Djt in industry 5.

Estimation.—From the GMM problem in equation (16) with weighting matrix

bWL 5
1

N o
j

ALj zj
� �

ALj zj
� �0" #21

,

33 To incorporate skill upgrading, we instead specify l1(STjt ,Θjt)5 q(ln STjt , lnΘjt) and
l2(STjt ,Θjt) 5 q(ln STjt , lnΘjt) in industries 2, 3, and 10 andl1(STjt ,Θjt)5 q(ln(12 STjt), lnΘjt)
and l2(STjt ,Θjt)5 q(ln(12 STjt), lnΘjt) in the remaining industries, where the function q(⋅)
is modeled as described above except that we suppress terms involving (lnΘjt)

2 and (lnΘjt)
3.
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we first obtain a consistent estimate v̂L of vL. This first step is the nonlinear two-
stage least-squares estimator of Amemiya (1974). In the second step, we compute
the optimal estimate with weighting matrix

ŴL 5
1

N o
j

 ALj zj
� �

nLj v̂L
� �

nLj v̂L
� �0

ALj zj
� �0" #21

:

Throughout the paper, we report standard errors that are robust to heteroske-
dasticity and autocorrelation. We further correct standard errors as described in
the supplementary appendix to reflect the fact that our estimates of equation (15)
are conditional on those of equation (12).

Implementation.—We use Gauss 14.0.9 and Optmum 3.1.7. To reduce the num-
ber of parameters to search over in the GMM problem in equation (16), we “con-
centrate out” the parameters that enter it linearly as described in the supplemen-
tary appendix. To guard against local minima, we have extensively searched over
the remaining parameters, often using preliminary estimates to narrow down the
range of these parameters.

Testing.—The value of the GMM objective function for the optimal estimator,
multiplied by N, has a limiting x2 distribution with Q2 P degrees of freedom, where
Q is the number of instruments and P the number of parameters to be estimated.
We use it as a test for overidentifying restrictions or validity of the moment con-
ditions.

Appendix E

Output Effect

Direct calculation starting from equation (6) yields the elasticity of output with
respect to a firm’s effective labor force:

eLjt 5
∂Yjt

∂ exp qLjt

� �
L*

jt

exp qLjt

� �
L*

jt

Yjt

5
n exp qLjt

� �
L*

jt

� ��212j
j

bKK
212j

j

jt 1 exp qLjt

� �
L*

jt

� ��212j
j 1 bM M *

jt

� �212j
j

:

(E1)

Using equation (10) to substitute for qLjt and simplifying, we obtain

eLjt 5
n
12SMjt

SMjt
l1 STjt
� �

bK

bM

Kjt

Mjt exp g1 SOjtð Þð Þ
� �2 12j

j

1 12SMjt

SMjt
l1 STjt
� �

1 1

: (E2)

Recall from equation (C3) that

l1 STjt
� �

5 1 1
Djt

1 1 WTjt

WPjt

STjt
12STjt

,
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where Djt is the gap between the wage of permanent workersWPjt and the shadow
wage. To facilitate evaluating equation (E2), we abstract from adjustment costs
and set l1(STjt) 5 1.

Direct calculation starting from equation (19) also yields the elasticity of output
with respect to a firm’s effective capital stock:

eKjt 5
∂Yjt

∂ exp qKjt

� �
Kjt

exp qKjt

� �
Kjt

Yjt

5
n exp qKjt

� �
Kjt

� �2 12j
j

exp qKjt

� �
Kjt

� �2 12j
j 1 exp qLjt

� �
L*

jt

� �2 12j
j 1 bM M *

jt

� �212j
j

5
n

1 1 PMjtMjt

PKjtKjt

12SMjt

SMjt
l1 STjt
� �

1 1
h i ,

(E3)

where we use equations (10) and (20) to substitute for qLjt and qKjt, respectively.
As with equation (E2), we set l1(STjt) 5 1 to evaluate equation (E3).

Appendix F

Second-Order Approximation

Let

Ujt 5 2~gL 1 1 2 jð Þ pMjt 2 wjt 1 qLjt

� �
1 jl2 STjt

� �
2 1 2 jð Þg1 SOjt

� �
and DUjt 5 Ujt 2 Ujt21. Using equation (17) we write

SLjt 2 SLjt21 5 2SLjt 1 2 SLjt21

� �
exp DUjt

� �
2 1

� �
≈ 2SLjt 1 2 SLjt21

� �
DUjt 1

1

2
DUjt

� �2� �
,

where we replace exp(DUjt) 2 1 by its second-order Taylor series approximation
around DUjt 5 0. We allocate the interactions in (DUjt)

2 in equal parts to the var-
iables involved.
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