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We put forward a method that allows the experimental determination of the entire spatial mode
spectrum of any arbitrary monochromatic wave field in a plane normal to its propagation direction.
For coherent optical fields, our spatial spectrum analyzer can be implemented with a small number
of benchmark refractive elements embedded in a single Mach-Zender interferometer. We detail an
efficient setup for measuring in the Hermite-Gaussian mode basis. Our scheme should also be feasible
in the context of atom optics for analyzing the spatial profiles of macroscopic matter waves.
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The temporal [1], vectorial [2] and spatial [3] degrees
of freedom of electromagnetic fields with increasing com-
plexity are exploited in applications ranging from com-
munications to medicine. The detailed knowledge of the
spatial mode spectrum of these beams, generally emitted
by laser devices, is fundamental in optimizing applica-
tions as well as in research, both in classical and quantum
optics. Many imaging techniques, for instance, are based
on the possibility to determine transformations induced
by optical elements by knowing the effects on the spatial
spectral component of generic signals [4]. Recently, an in-
tense research activity on multimode light has burgeoned
in quantum information, communication and imaging [5],
with successful demonstrations spanning from nanodis-
placement measurements [6], to parallel information [7]
and high-dimensional entanglement [8]. The use of trans-
verse multimode beams demands, indeed, the develop-
ment of techniques allowing to characterize their spatial
spectrum and to access the information encoded in differ-
ent components. Fourier modes are of immediate access
through a basic lens set-up [4], while rotating elements
allow to determine ’helical’ spectra [9]. To the best of
our knowledge, however, no direct method is known to
measure the Hermite-Gaussian (HG) modes spectrum.
Building on the symplectic formalism to describe first-
order optical transformations, we present in this Letter
a general strategy to find an arrangement of refractive
elements that enables the quantitative measurement of
the transverse spatial spectrum of light beams by using
a single Mach-Zender interferometer. Due to the gener-
ality of our approach, different experimental set-ups can
be implemented to determine the full spatial spectrum
of multimode transverse beams in different basis, includ-
ing Laguerre-Gaussian (LG) modes. Here we focus on the
spatial spectrum analyzer for HG modes, as these are the
most common in laser physics and appear naturally in
devices where astigmatism, strain or slight misalignment
drive the system toward rectangular symmetry [10]. Fur-
thermore, the presented framework is rather suggestive
of analog measurements for matter waves spatial spectra.

Spatial modes are ubiquitous. Sets of modes u satis-
fying the wave equation (i∂η + ∂2

x + ∂2
y)u = 0, describe

broad classes of physical systems. When the evolution
variable is η = 2kz, the sets comprise the optical parax-
ial modes [10] with wave number k propagating along
the z direction. For η = 2mt/!, the sets model instead
the quantum dynamics of free particles of mass m in the
xy plane. Since there are two transverse spatial vari-
ables, each entire set of mode solutions um,n is labeled
by two integers m, n. Relevant examples are the HG and
LG mode bases. Any scalar field ψ obeying the above
wave equation can thus be decomposed in terms of these
modes as ψ =

∑

m,n Cm,num,n. A fundamental question
then arises: How can one measure the mode spectrum
(probabilities) Pm,n = |Cm,n|2 of any given scalar field?

To answer the above question we apply a symplectic in-
variant approach [11–13]. Symplectic methods have been
used in theories of elementary particles, condensed mat-
ter, accelerator and plasma physics, oceanographic and
atmospheric sciences and in optics [14]. Central to our
work is the recognition that any linear passive symplec-
tic transformation S acting on the canonical Hermitian
operators x̂, ŷ, p̂x, and p̂y (whose only nonvanishing com-
mutators are [x̂, p̂x] = [ŷ, p̂y] = iλ), is associated with a

unitary operator Û(S) generated by the following group
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Here, w0 is the width of the spatial modes um,n and
λ = 1/k. The set (1) satisfies the usual SU(2) alge-
bra [L̂a, L̂b] = iεabcL̂c (a, b, c = x, y, z), with N̂ being
the only commuting generator in the group and L̂z de-
scribing real spatial rotations on the transverse xy plane
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(it is proportional to the orbital angular momentum op-
erator along the wave propagation direction [12]). We
can thus represent the most general passive unitary op-
erator Û(S) associated with S by a single exponential of
linear combinations of any of the above generators [13]

Û(S) = exp[−i(φ+ N̂ +Φ− · L̂)], with real scalar φ+ and
vector Φ− parameters. We show below how Û(S) can be
implemented using simple optical elements.

The method proposed here relies on exploiting N̂ , to-
gether with specific combinations of the generators (1b)-
(1d), to construct two commuting unitary operators from
which the associated symplectic matrices and their ex-
perimental implementation can be found relatively easy.
To this end, let |m, n〉 denote the (pure) mode states of
order m + n ≥ 0. We first impose that |m, n〉 be eigen-

states of both N̂ and the operator L̂θ,ϕ ≡ ur · L̂, where
ur = (cosϕ sin θ, sin ϕ sin θ, cos θ) may be conceived as
a radially oriented unit vector in the orbital Poincaré
sphere [15, 16]. The eigenstates |m, n〉 depend on the
choice of θ and ϕ and fulfill N̂ |m, n〉 = [(m + n)/2]|m, n〉
and L̂θ,ϕ|m, n〉 = [(m − n)/2]|m, n〉. For instance, the

eigenvectors of operators L̂x and L̂z are the HG and
LG modes, respectively [12, 16]. Measurements of |ψ〉 =
∑

m,n Cm,n|m, n〉 will involve the action of the unitaries

ÛN = e−iφ+ N̂ and Ûθ,ϕ = e−iφ−L̂θ,ϕ , upon variation
of parameters φ+ and φ−, which can be externally con-
trolled. Notice that ÛN is connected with the Gouy
phase [17], whereas Ûθ,ϕ describes φ−-angle rotations
about ur, thereby changing the mode superpositions.

In order to extract the complete spectrum Pm,n of a
coherent electromagnetic scalar field, an optical scheme
is further developed. We remark that for quantum me-
chanical matter waves (e.g. Bose-Einstein condensates),
a conceptually similar approach to analyze their spa-
tial structure should currently be feasible by exploiting
atom optics: interferometers [18], beam splitters in atom
chips [19], focusing and storage in resonators [20], and
conical lenses [21]. We use here a Mach-Zender interfer-
ometer with built-in refractive components performing
ÛN and Ûθ,ϕ: sets of spherical and cylindrical thin lenses.
For ease of operation, it is desirable to vary φ± in a way
that minimizes the displacements of the optical elements.
We explicitly show below that all the required transfor-
mations in the interferometer can be achieved solely by
rotation and variation of the focal lengths of the lenses.
Translations of the lenses are not necessary, although it
may turn out to be more convenient in certain instances
to carry finite displacements in some of them. In any
case, the arms of the interferometer always remain fixed.

Detection of the light intensity difference ∆I ≡ IB−IA

at the two output ports (A and B) of the interferome-
ter provides the data that enables the reconstruction of
Pm,n. One has ∆I ∝ 〈ψ|(Û †

N Û †
θ,ϕÛC + Û †

CÛN Ûθ,ϕ)|ψ〉,

where ÛC represents the unitary operator for the com-
pensating lens system in the complementary arm of the

interferometer. For clarity, let us assume that ÛC com-
prises a similar lens set as the one for ÛN Ûθ,ϕ (we will
show later that this assumption can be removed), with
equivalent parameters φ′

+ and φ′

−
. The mode spectrum

and the output intensity difference are directly connected
by a double Fourier-like transform

Pm,n ∝

∫ 4π

0

∫ 4π

0

dφ+ dφ− ∆I(φ+ − φ′

+, φ− − φ′

−
)

× ei(m−n)(φ+−φ′

+)/2 ei(m+n)(φ−−φ′

−
)/2, (2)

where the proportionality constant equals (16π2)−1 if
m = n = 0, and (8π2)−1 otherwise. Note that ∆I pos-
sess the symmetry properties ∆I(φ+ ± 2π, φ− ± 2π) =
∆I(φ+ ± 2π, φ− ∓ 2π) = ∆I(φ+, φ−). Our proposed
scheme nontrivially generalizes that of Ref. [9], aimed
to reveal the quasi-intrinsic nature of the orbital angular
momentum degree of freedom for scalar waves. There,

by means of the measurement Û = e−iφL̂z , implemented
with Dove prisms, the azimuthal index spectrum of spiral
harmonic modes could readily be accessed. In our case,
we explore the entire transverse mode space labeled by
the indices m and n. Hence, the combined effect of the
two nonequivalent measurements ÛN and Ûθ,ϕ is crucial,
and would allow us to measure, for instance, either the
full spectrum of HG or LG modes.

To show an explicit application of the above approach,
we proceed with the characterization and design of an
optical system that enables the reconstruction of the HG
mode spectrum Pnx,ny

of a light beam (nx, ny ≥ 0). In
this scenario, one needs to consider the unitary opera-

tors ÛN and Ûθ=π/2,φ=0 = e−iφ−L̂x . By resorting to the
Stone-von Neumann theorem [11, 12], the symplectic ma-
trices S+ and S− associated to these unitaries are

S± =









c± 0 z0s± 0
0 c± 0 ±z0s±

−s±/z0 0 c± 0
0 ∓s±/z0 0 c±









, (3)

where c± = cos(φ±/2), s± = sin(φ±/2), and z0 =
w2

0/(2λ) is the Rayleigh range. Here, w0 provides the
characteristic width of the HG modes in which the input
beam is to be decomposed. From matrices S± it is then
possible to obtain the corresponding integral transforms
that govern the propagation (along the z-direction) of
any input paraxial wave ψ(x, y) traversing each system.
These transforms follow from the general Collins integral
representation [11] and lead, in our case, to the kernels

K±(x, y; x′, y′) =
1

πi|s±|w2
0

exp

[

−2i(xx′ ± yy′)

w2
0s±

]

× exp

[

i(x2 ± y2 + x
′2 ± y

′2)c±
w2

0s±

]

. (4)

The output wave functions after S± thus result from
ψ±(x, y) =

∫

dx′dy′K±(x, y; x′, y′)ψ(x′, y′). Kernels (4)
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FIG. 1: (Color online) (a) Schematic of the optical imple-
mentation to measure the Hermite-Gaussian mode spectrum.
Transformations S+ and S

−
are performed using symmetric

sets of three fixed spherical lenses with varying focal lengths
and three pairs of rotating cylindrical lenses, respectively.
The compensating system involves two settings with four and
two spherical lenses, respectively. (b) Detail of one of the as-
sembled pairs of cylindrical lenses required for S

−
. (c) and

(d) Operation curves for S+ and S
−

, respectively (see text).

exhibit the structure of those for the fractional Fourier
transform [22]. The singular cases, arising when s± = 0,
can easily be handled too. Integral transforms associated
to the unitary operator generated by L̂y (rather than L̂x)
have been formulated and lead to the, so-called, gyrator
transform [23]. They allow for the full meridian-rotation
on the orbital Poincaré sphere and, in particular, for the
reciprocal conversion between HG and LG modes.

The two proposed optical systems for S± are symmet-
ric and illustrated in Fig. 1(a). For S+, three fixed spher-
ical lenses with varying radii of curvature Rj (linked to
the focal lengths fj by Rj = (ñj − 1)fj , ñj being the
refractive indexes), and placed at equal distances z0, are
sufficient. They fulfill R1 = R3 = z0/[1 − cot(φ+/4)]
and R2 = z0/(2 − s+). Tunable-focus liquid crystal
spherical lenses controlled by externally applied voltages
have been demonstrated, displaying a wide range of focal
lengths [24]. Figure 1(c) shows the operation curve de-
scribing the dependence between R1, R3 and R2 needed
to cover the interval π ≤ φ+ < 3π. These values can be
attained with the lenses of Ref. [24]. For S−, three pairs
of cylindrical lenses are required [see Fig. 1(a)]. Each
pair of assembled cylindrical lenses is rotated in a scissor

fashion with α = −β [Fig. 1(b)]. The corresponding an-
gles satisfy α1 = α3 = (π − Ω)/4 and α2 = (3π − φ−)/4.
The operation curve in Fig. 1(d) represents the variation
of the rotation angles in accordance with the constraint
imposed by cot(φ−/4) = −2 sin(Ω/2). This equation is
satisfied when π ≤ φ− ≤ 3π and −(π/3) ≤ Ω ≤ (π/3),
which lead to 0 ≤ α2 ≤ (π/2) and (π/6) ≤ α1 ≤ (π/3).

The radii of curvature of the cylindrical lenses are R1 =
R2 = R5 = R6 = z0/2 and R3 = R4 = z0/4. The
distance between consecutive pairs is z0/2. With this
scheme, the covered values for φ− ∈ [π, 3π]. The fact
that both φ+ and φ− are restricted to the interval [π, 3π],
rather than to [0, 4π], does not constitute a fundamental
limitation. It can be circumvented by employing the com-
pensating system [see Fig. 1(a)] and the symmetry prop-
erties of ∆I. If two sequences of measurements are made,
each having a different compensating system performing
transformations with φ′

+ = φ′

−
= 0 (identity matrix) and

φ′

+ = 0, φ′

−
= 2π (minus identity matrix), respectively,

then Eq. (2) can be cast (m → nx and n → ny) as

Pnx,ny
∝

∫ 3π

π

∫ 3π

π

dφ+ dφ−

[

(−1)nx+ny ∆I(φ+, φ− − 2π)

+ ∆I(φ+, φ−)]cos

[

(nx − ny)φ+ + (nx + ny)φ−

2

]

.

(5)

The proportionality constant equals (8π2)−1 if nx =
ny = 0, and (4π2)−1 otherwise. The integration inter-
vals in (5) now display the accessible ranges for φ±. The
first and second sequences of measurements can be car-
ried out with a compensating system made of four iden-
tical and two identical spherical lenses, respectively. By
properly choosing their focal lengths, it is not necessary
to displace the S± systems nor the interferometer arms.

To demonstrate that our data analysis scheme is fea-
sible and does not require a large number of measure-
ments for each φ±, we have numerically simulated the
transformation and processing of several input coherent
waves. Figure 2 depicts the light profiles entering into the
interferometer: an strongly astigmatic Gaussian beam
[Fig. 2(a)], an hexapole necklace beam [Fig. 2(d)] and an
anisotropic multiring beam [Fig. 2(g)]. Their exact HG
mode weight distributions are displayed in the central
column of histograms [Fig. 2(b), (e), (h)]. The right col-
umn in Fig. 2 represents the weights Pnx,ny

from Eq. (5)
retrieved after the traversing of the input beams through
the system. To simulate the evolution of the various
beams, we have used the transformation kernels (4) to
calculate the ∆I in Eq. (5) for 10 different values (in
equal increments) per each φ± ∈ [π, 3π]. The recon-
structed weights (right column) agree well with the exact
weights (central column). In analogy with the Whittaker-
Shannon sampling theorem in Fourier analysis [4], input
beams that are mode-band-limited can be exactly recon-
structed via our scheme [compare Figs. 2(e) and 2(f)].
That is, if the sampling increments for φ± are smaller
than the inverse of the highest contributing mode num-
bers, reconstruction will be exact. Misalignment of the
optical elements is expected to be the main source of
errors. The effect on the weights Pnx,ny

, due to lens dis-
placements (tolerances) δ with respect to the beam axis,
introduces a correction term ∼ (δ/w0)

2, which is smaller
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FIG. 2: Mode spectrum analysis. Left column: input beam
profiles (a), (d), and (g). Central and right columns: Hermite-
Gaussian mode weight distributions. (b), (e), and (h) exact
weights from (a), (d), and (g), respectively. (c), (f), and (i)
reconstructed weights Pnx,ny

via Eq. (5).

than 1% for typical values δ ! 10µm and w0 ≥ 100µm.
In conclusion, we have proposed a spatial spectrum an-

alyzer for waves with arbitrary profiles based on a simple
set-up of lenses in a Mach-Zender interferometer. The
measurement of the modes spectrum of optical beams is
fundamental not only to achieve control of laser beam
profiles but also to access information encoded in this
degree of freedom of the electromagnetic field, in the con-
text of spatial multiplexing. The generality of the pre-
sented theoretical analysis encompasses different modes
basis and suggests the measurements strategy also for
matter waves. The specific set-up for Hermite-Gaussian
spectra is presented with details in view of a more im-
mediate experimental realization. Retrieval of the com-
plete spatial mode spectrum of any monochromatic opti-
cal field would become an attractive tool for signal analy-
sis and processing when combined with novel holographic
recording materials used for modal tailoring and multi-
plexors. In this respect, amorphous photopolymerizable
glasses, exhibiting high refractive index modulation in
experimental demonstrations of the optical Pendellösung
effect [25], are well suited for this purpose.
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