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A b&act Introduction 

Since relational database management systems typically 
support only diadic join operators as primitive opera- 
tions, a query optimizer must choose the “best” sc- 

quence of two-way joins to achieve the N-way join of 

tables requested by a query. The computational com- 

plexity of this optimization process is dominated by 

the number of such possible sequences that must bc 

evaluated by the optimizer. This paper describes and 
measures the performance of the Starburst join enu- 

merator, which can parameterically adjust for each 
query the space of join sequences that arc evaluated 
by the optimizer to allow or disallow (I) composite 

tables (i.e., tables that are themselves the result of a 
join) as the inner operand of a join and (2) joins 
between two tables having no join predicate linking 
them (i.e., Cartesian products). To limit the size of 
their optimizer’s search space, most earlier systems ex- 
cludcd both of these types of plans, which can exccutc 

significantly faster for some queries. Dy experimentally 
varying the parameters of the Starburst join enumerator, 
we have validated analytic formulas for the number of 
join sequcnccs under a variety of conditions, and have 
proven their dependence upon the “shape” of the query. 
Specifically, ‘linear” queries, in which tables arc con- 
nectcd by binary predicates in a straight lint, can hc 
optimized in polynomial time. llence the dynamic 

programming techniques of System R and R* can still 

be used to optimize linear queries of as many as 100 

tables in a reasonable amount of time! 

A query optimizer in a relational DRMS translates 

non-procedural queries into a pr0cedura.l plan for ex- 
ecution, typically hy generating many alternative plans, 
estimating the execution cost of each, and choosing 
the plan having the lowest estimated cost. Increasing 

this set offeasilile plans that it evaluates improves the 

chances - but dots not guarantee! - that it will find 

a bcttct plan, while increasing the (compile-time) cost 
for it to optimize the query. A major challenge in the 
design of a query optimizer is to ensure that the set of 
feasible plans contains cflicient plans without making 
the :set too big to he gcncratcd practically. 

One of Ihe major decisions an optitnizer must make 
is the order in which to join the tahlrs referenced in 

the query. Since the join operation is implemented in 
most systems as a diadic (2-way) operator, the optimizer 
must generate plans that achieve N-way joins as a 
scqucncc of 2-way joins. When joining more than a 

few tables, the numhcr of such possible sequences is 

the dominant factor in tlic number of altcmative plans: 
Ri! diffcrcnt scqucnccs are possible for joining N tables. 
I:vcn ~hcn dynamic programming is used, as Systcrn 
R ISEl 791 and most current products do, thcorcticians 

have, usrd the cxponcntinl worst case complexity to 

argue that heuristic search methods should be used. 
1 Iov:cvl:r, these rncthods cannot guarantee o~firnality 

of their solution. :I? can dynamic programming. 
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I:or ttii!: rcasoti, tii:rtiy existing optimizers use licuristics 

\\ithiii c!):nnmic programming to limit the join sc- 

qt~ericc:; cvalrtatctl. C)nc heuristic ctnploycd by System 

I< ISI’. ,791 and IX* 11 ,OllK5l constructs only joins in 
which :I single tahlc is join4 at each step with the 

results o.,f previous joins. in a pipclincd fashion. This 
gL>rlrratlr:; plans st~h :IS (((Tl I;4 ‘1‘2) r4 '1'3) M '1‘4), 
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as "!wshy trees” ICiRA87]), in which the inner table 
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(the second operand of the join) is the result of a join 

that must be materialized in memory or - if it is too 

big - on disk. The heuristic saves this materialization, 

but may exclude better plans for certain qucrics. As 
an example, suppose a query with four large tables ‘1’1, 
T2, 7’3, and T4 has two predicates Tl.Cl = ‘1’2.C2 
and ‘1’3.C3 = T4.C4 that are extremely selective (rc- 
strictive), and one T2.C6 = T4.C8 that is not. ‘I’hcn 
the plan ((Tl W T2) Cd (T3 fX ‘1’4)) with a com- 
posite inner (T3 W 1’4) is likely to be better than any 
plan avoiding the composite inner, such as ((Tl 00 
‘1’2) W T4) W T3, because the intermediate results 
of the first plan would all be significantly smaller than 
any in the second plan. 

Another major heuristic employed by both System R 
[%I,791 and INURES [WON761 always defers 
Cartesian products as late in the join sequence as pos- 
siblc, assuming that they result in large intermediate 
tables because there is no join predicate that restricts 
the result (and hence every row in one table is joined 
with every row in the other table). Again, this heuristic 
may exclude the optimal plan for certain queries that 

can benefit from Cartesian products. For instance, if 
the tables to be joined are small, and especially where 

they contain only one tuplc each, a Cartesian product 

is quite inexpensive. And its result may even have 

columns forming a composite key for another, much 

larger table to be accessed later, thus making the 

Cartesian product more advantageous. As an example, 
consider a query with three tables T 1, T2, tind T3, and 
two prcdicatcs T1.C 1 = T2.C2 and T2.C3 = T3.C4. 
The plan ((Tl W T3) Bl T2) is potentially the best 
plan if Tl and ‘1’3 are very small (or made so by 

additional single-table predicates) and there is a multi- 
column index for ‘1’2 on columns C2 and C3, even 

though it requires the Cartesian product of ‘1’1 and T3. 
This will be illustrated concretely in Section 3.1. 

To make matters worse, many existing query optimizers 
severely restrict the class of prcdicntcs that qualify as 
thcsc critical join predicates to be simple cquijoiris of 
the form “CohtmnI = Cdumn2”, excluding any prctli- 
cates that reference more than two tables or in\olvc 

arithmetic on the column values. Conscqucntly, what 

may appear to the user as a perfectly good join prcdicntc 
is not treated as such by the system [1,01186], and a 
suboptimal join sequence results. For example, for a 
query with three tables 1’1, T2, and ‘1‘3, and two prcd- 
icates Tl.Cl = ‘1’2.C2 and ‘1’2.C4 + 3 = ‘1‘3.C5, the 

optirni;)cr treats the latter predicate in a plan such as 

(‘1’1 M ‘1’2) I‘;d ‘1’3) as a restriction of the Cartesian 

product between (Tl r>a T2) and ‘I’3, rather than as 

a join predicate. ‘t’hus, in conjunction with the heuristic 
that defers Cartesian products, any plan that might 
join T2 and ‘1‘3 first is not considered, even if it dom- 
inates all plans joining ‘I’1 and ‘I’2 first. 

Another limitation in handling predicates is that many 
systems do not derive impliedpredicates, which are not 
specified but arc implied by the predicates given by the 
user. For instance, two predicates Tl.Cl = T2.C2 
and T2.C2 = ‘1‘3.C3 imply a new predicate, Tl.Cl = 
‘1’3.(:3. Without this implied predicate, System R 
would avoid joining ‘1’1 with 1’3 until either had been 

joined with ‘1’2. A few systems have relaxed these 

limitations somewhat. For example, commercial 
INGRI3S can generate the join between Tl and 1’3 by 
using an attribute equivahce c1u.r.r [ KOO80], although 
it does not apply the equivalence classes to more gen- 
eral forms of prcdicatcs - such as T2.C2 = ‘1’3.C3 + 
1 - to derive an impticd predicate 1’1 .Cl = T3.C3 + 
1, bccausc join predicates are still restricted to be equal- 

ity predicates between two columns. 

Solrrtion: An aciaptahie search space 

Although evaluating more plans may find a more ef- 
ficient plan for cxccuting some queries, it also increases 
the cost of optimizing a given query. Ilence it is 
important to bc abtc to adjust the number of alternative 
plans considered by the optimizer for specific applica- 
tions and queries. For example, traditional batch- 
oricntccl applications can totcratc longer optimization 
times than can intcractivc applications, for which the 
optimization time is as important as the execution 

time. This adaptability (or customizability) of a query 
optimizer is even more critical for non-traditional ap- 
plications, such as decision support systems and expert 
systems, and for qucrics gcncratcd automatically by a 
user front end. ‘l‘hcsc applications tend to pose very 
complex queries rcfcrring to more tables than traditional 

applications /KR184, S\VA88]; without some of the 
abol:c heuristics, it might bc infcasiblc to evaluate all 

the possible join scqucnccs2. 

I-vcn within a single 1ypc of application, certain queries 
might tcncfit more from considering more alternatives 

than others. A query whose best plan is expected to 

2 Whether the optimizer can accurately estimate the number of rows rczu!tin;! fr )m sucl~ ccrmplcu cluerics is an orthogonal issue, and will 
in any case not prevenj applications from posing these queries! 
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run for 15 minutes is more likely to profit substantially 
from an additional minute of optimization than is a 

query estimated to execute in under a minute! ‘l‘he 

space of alternative join sequences must thcrcfore be 

adjustable for each query. 

Previous wovli 

Several authors have considered the benefits of increas- 
ing or decreasing the space of possible join scquenccs 
through which the optimizer searches. In the original 

(University) INGRES, intermediate results were always 
materialized so that the optimizer could assess the next 
join to perform based upon the size of the composite 
[WON76]. The commercial version of INGRIS allows 
plans to contain composite inners, but does not rcquirc 
them to do so [KOO80]. Rosenthal’s optimizer 
[ROS82] also included plans with composite inncrs. 
IIowever, so far as is known, none of these optimizers 
permitted adjusting the search space used by the opti- 
mizer. ‘I‘he rule-based optimizer generator built by 
Graefe for EXODIJS was easily adapted to consider 
composite inners by changing just a rule or two 
]GRA87]. IIowever, the optimizer so generated was 
then fixed and could not be adjusted for different que- 
ries without generating a new optimizer. Graefe showed 
that the number of plans considered by the I;,XODIJS 
optimizer3 went up dramatically between 4 and 7 joins 

per query, but then (surprisingly!) leveled off from 8 
to 14. Graefe offered no explanation or analysis for 
this apparent anomaly, nor any figures for queries ex- 

ceeding 14 joins. IJsing the EXODI IS cost equations, 

Graefe also showed that plans containing composite 
inners had significantly improved (estimated) cost only 

when the number of joins per query exceeded 10. 
Since his composites were growing monotonically, tic 
reasoned that “bushy trees” balanced the workload bct- 

ter as the number of joins increased, allowing mom 

joins on moderately-sized intermcdiatc results. Swami 
[SWA89] measured the actual execution of a large num- 

bcr of queries, allowing and disallowing both Cartesian 
products and composite inners. IIis results showed 

that a small percentage of the plans in the increased 

search space are optimal. 

Starburst’s Advances 

I’he Starburst join enumerator improves upon thcsc 
earlier efforts by parameterizing the space of altcrnntivc 

join scqucnccs that the optimizer will consider for any 
given query, to include or exclude consideration of 
composite inncrs and Cartesian products. Thus, the 

level of optimization effort can be tailored individually 
to the query, either manually by the user or automat- 
ically by the system. In addition, the modular design 
of the Starburst join enumerator, described below, fa- 
cilitates the addition or repiaccmcnt of feasibility criteria 
for particular applications, exploits as join predicates 
any implied prcdicatcs and predicates involving more 
than two tables or arit hmctic, and places no algorithmic 
limit. on the number of tables in a query. And unlike 
many other optimizers that arc limited to simple 
SE1 .E<3’l’-I’I~O.lIJ~T1’-.IOIN queries, the Starburst op- 
timizer correctly processes queries involving nested 
subqucries and correlation predicates ]I 011841. 

‘l‘hese cnhanccmrnts allowed us to measure the impact 
of varying the optimizer’s search space, both upon the 
optimization complexity and upon the resulting exe- 
cution time. Our cxpcrimcntal results demonstrate 
that the complexity of optimizing a query is largely 
depcndent~ upon the .rAtipe qf rhc qrtery gm@, where 
the shape of a query indicates how tables arc connected 
with predicates, as well as the number of tables it 

rcfcrcnccs. Somewhat surprisingly, the number of fca- 
sible joins does not incrcasc exponentially with the 
number of tables for certain commonly posed queries. 
For example, for fincnr guerirs, in which tables arc 
connected by binary prcdicatcs in a straight line, the 
number of feasible joins is a polynomial of the number 
of the tables, rvcn when composite inncrs arc allowed. 

With the same feasibility criteria, the number incrcascs 

to an exponential for stnr qrwics, in which a table at 
the ccntcr is connrctcd by binary prcdicatcs to each of 
the other surrounding tables, the same as for completely 
connected query graphs. 

‘l’hi: paper is organizrti as follows. I?rst, a brief over- 
vicu of the design of Starburst plan optimization is 
given, including a discussion of how its join cnumcrator 
can bc adapted and cxtrndcd. ‘lhc rcmaindcr of the 
paper prcscnts analysis and rxpcrimcntal results on the 
nurnbcr of fcasiblc joins for queries containing up to 
1 10 tables, as the scnrch space is varied using Starburst’s 
pammctcrizcd join enumerator. WC show how the 
shalt affects the number of fcasiblc joins, and how 
this adaptability can help hnlancc the number of fcasiblc 
joins and the practicality of optimizing qucrics that 

must join that many tables. 

3 Actually, the average size at the end of optimlzatinrl of the data Ctructurc, called hll!Sll, which contained plans 
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Starburst’s Adaptable Join Enumeration 

Overview of Starburst’s Plan Optimization 

This paper deals only with the plan optimization phase 
ofquery processing in Starburst, an extensible relational 
database management system being prototyped at the 
IBM Almadcn Research Center [IIhA90). An overview 
of Starburst query processing can be found in llIAA88]. 
For a given query, plan optimization evaluates altcrna- 
tive query execution plans (QEPs), and outputs for 
execution the QEP with the least estimated execution 
cost. ‘I’he input to plan optimization is a parsed query 
that is stored in an internal database called the Query 
Graph Model (QGM). QGM is an internal represcn- 
tation of the semantics of an SQI, query, including its 
various entities, such as tables, quantifiers, and predi- 
cates, as well as the relationships among them. A 
quantifier corresponds to a join variable in SQL and a 
fupke variable in QtJI<I,, and represents a tuple drawn 
from a table. The range-over relationship connects the 
quantifier to the table from which the tuple is drawn. 
Since a single table may be referenced in several dif- 
ferent contexts within a single query, several quantifiers 
may range over the same table. 

The Starburst optimizer generates plans that construct 
progressively larger sets of quantifiers (quantifier sets) 
by joining pairs of two smaller quantifier sets, starting 
initially from plans for single quantifiers. .This is the 
same inductive (bottom-up) algorithm used in System 
R and R*, and enables us at each step to incorporate 
into the join plan the optimal plan for each of its 
component quantifier sets (i.e. to USC dynamic pro- 
gramming to prune dominated plan fragments), so that 
we never have to reconstruct a smaller plan even if its 
use in a bigger plan is different. 

The plan optimizer in Starburst differs from System R 
and R*, however, in that it consists of two scparatc 
and highly extensible sub-components: the join enu- 
merator, which enumerates join orders specifying the 
order in which the query’s tables can be joined, and a 
rule-based pZan generator (I ,OII88, 1 .fXfN], which gcn- 
crates alternative QI’:l’s and evaluates their rstimatcd 
cost. This separation is similar to that dcscrihcrl in 
[ ROS82). Within the overall bottom-up algorithm dc- 
scribed above, the plan generator is first invoked intii- 
vidually for each quantifier, in order to gcncmtc alter- 
native QF,Ps that specify execution details such as the 
access method, the columns to rctricvc, and any prcd- 
icates that can be applied. Next, pairs of quantifirr 
sets to be joined are enumerated by the join cnumcrator. 
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Iqbr eac!l .s&l pair ?f quanii/ier .rels, the join enumerator 
invokes the plan generator to generate and evaluate 
alternative Ql’l’s for that join, passing to it the quan- 
tificr sets, any join predicates linking those operands, 
and any limitations on the order of join (discussed 
below). As with the plans for single tables, each job, 
QEI’ returned by the plan generator specifies execution 
details for one altcrnativc, such as an order and method 
of joining the two quantifier sets, the columns that can 
be projected out, the plan chosen for producing each 
of the two inputs to the join, and any intermediate 
operations (such as sorts) that must be inserted to 
make the chosen join method work with the chosen 
input plans [I ,OI !88]. 

The remainder of this paper will concentrate on the 
top part of plan optimization, the join enumerator, 
whose implementation is summarized next. 

JoBt Emrmera tion 

Starburst’s adaptahlc join enumerator utilizes a generate 
and.fifter strategy, in which a supcrsct of feasible joins 
are generated by a join generator, and infeasible ones 
are removed by a sequence of independent filters en- 
forcing feasibility criteria, which cati be of two kinds: 
(1) mandatory, universally valid criteria, and (2) op- 
tional, paramcterized heuristics for reducing the search 
space. The optional criteria, such as the heuristics 
deferring Cartesian products and avoiding composite 
inners, arc paramctcrized so that either the user or the 
system can control the number of feasible joins gener- 
atcd during optimization. We chose this form of ex- 
tensibility for the join enumerator over the rule-based 
approach of the plan gcncrator because it was suffl- 
cicntly flcxiblc to enumerate a wide range of potential 
join sequences - including those containing composite 
inncrs, Cartesian products, impticd predicates, and 
predicates on more than two tables - while avoiding 
the pcrformancc overhead of rule interpretation. Fur- 
thermore, which join scqucnccs arc feasible is dcter- 
mined by fundamental rrlational principles, not the 
methods by Lvhich joins arc implcmcnted, and so arc 
unlikcl>~ to bc affcctcd by other cxtcnsions to the sys- 
tem (e.g., ncn access p:tths or join algorithms). 

‘l‘hc join gcncrator gcnrmtcs progrcssivcly larger quan- 
tificr sets, starting from sets containing only one quan- 
tilicl, and stores information about quantifier sets re- 
sulting from fcasihlc joins thus far in the quanti$er set 
ta/S. l‘his process is analogous to mathematical in- 
duction. l;or the N quantifiers in a query, the quantifier 
set t&l;: is initialized with /V sets containing only one 



quantifier. Now, at any point in the algorithm, suppose 
we have constructed the optimal plan for ail fcasihlc 
quantifier sets containiilg up to k - I quantifiers (k 2 2) 

in the quantifier set table. We can obtain ail feasible 
joins producing k quantifiers by considering every pair 
of quantifier sets having i quantifiers and k - i quan- 

tifiers (1 I i 5 floor (k / 2)). 

A detailed description of the filters of the default fca- 
sibility criteria is given in [ONOSX]. ‘I’he mandatory 
filters are the same as for most systems: 

Disjointncss: two quantifier sets to bc joined must 
be disjoint4. 

Dependency: no quantifiers in the oufer operand of 

a join should “dcpcnd-on” any quantifiers in the 
inner operand. ‘I’he “depend-on” relationship sum- 
marizes any restrictions on the relative order in which 

quantifiers must be instantiated, due to semantic 

constructs such as correlation predicates, particularly 
in nested subquerics [LOII84]. Dcpcnd-on rciation- 
ships are derived from QGM, and their transitive 
closure is calculated before optimization begins. If 
neither of two given quantifier sets can he the outer, 
or if a seemingly-feasible join produces a composite 

that will never be joinable with any other quantifier 

sets, the two sets cannot form a feasible join (see 

[ON0881 for additional examples and details). 

Pavameterized Control of the Number qf 
Feasible Joins 

The number of feasible joins can bc controiicd by 
parameters that control the join generation and the 

filters. There are currently two such parameters: 

l Cartesian products: This parameter enables or dis- 
ables a filter requiring at least one eligible join prcd- 
icate that references quantifiers in the two quantifier 
sets to be joined. A join predicate is dcfinctl in 
Starburst in more general terms than those in Sygtcm 
R lSEI,79] to be any multi-table prcdicafc. and in- 

cludes imphd pr-cdicatcs, i.e. those predicates deriv- 
ahlc from predicates given in the query. Starburst 

dcrivcs and exploits implied predicates in a slightly 

more general approach than does INURES [K0080]; 
for details see IONO881. lnclading implied predicates 
may product bcttcr execution plans by allowing 

more feasible joins. 

l Composite inncrs: Enumeration of composite inncrs 
can be controlled by a parameter 
m~imlrmn~.~iz~_of~.rmn(ler_set to the join generator. 
This parameter specifies the maximum size of the 
smalicr quantifier set of each join: if it is set to I, 
enumeration of composite inners is disabled”; by set- 
ting it to some intcgcr j (I <j I floor(N / 2)), com- 
posite inncrs whose size arc less than or equal to j 

arc cnumcratcd. ‘I‘hc larger this parameter, the more 

5ushy” any plan can bc. For example, when 
r?laximlLtn-.~iz~-c~~.~)na~I~r-,~~l = 2, composite inners 
can be constructed from individual quantifiers only; 

when mnxirnttrn_.rizeof_snla~l~r-.~~t = floor( N/2), 
any composite inner may itself be constructed of 

composite inncrs. 

Replacing Parts qf’ Join Emme~ation 

‘I’he modular construction of the Starburst join cnu- 

merator facilitates the wholesale replacement of many 
of its pieces: 

l R,rplacing the join gcncrator: The join generator dc- 
scrihcd prcviousiy is a general-purpose generator, 
and can bc rcplaccd with a special-purpose generator 
for particular fcasibie join criteria and queries. In 
fact, WC have impicmcnted an alternative generation 
method, calicd the Graph Traversal (G7’) generator, 
that gcneratcs only pairs of quantiticr sets satisfying 
the heuristic requiring a join between the quantifier 
sets. It dots this by maintaining, for each quantifier 
set, a pointrr to each quantifier set with which it 
shares at icast (WC common join prrdicatc. Although 
cicriving these pointers rcq”ircs more work initially. 

4 Note that this condition does not exclude joins of a table \v;lh itself, Ix!ca~~sc two accccsc~ lo lhr tnhlc are rrprcscnted as two different 

quantifiers. Recursive joins are specifically dctcclod and excluded from this criterion. 

5 This conflict occurs when there are some qtlanlificrs upon which the inner dcp:rtdc and nh~ch ~hcn~cIvcs depend upon some quantifiers 

in the outer. 

6 Actually, the join enumerator only enumerates pairs of qunnlificr Xl! , one of which always has a single quantifier if 

maximum size of smaller-set is set to I. In conjunction with the dcprndor. relationship, Ihc plan generator then decides which quantifier - -. 
set is the kner operand of the join in any particular allernatlvc plan. 
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it reduces the time to enumerate feasible joins for 
certain queries, as shown in Section 3.4. 

l Replacing the join feasibility filters: Because each 
join feasibility criterion is an independent Boolean 
function, it is easy to change the function to another 
Boolean function that decides whether it is advan- 
tageous to join two quantifier sets. For instance, the 
filter requiring join predicates could be replaced by 
a new function that allows joins between any two 
sets whose estimated number of tuplcs arc sufficiently 
small, even though there might be no join predicates 
between the sets. 

l Replacing the entire enumeration algorithm: The cn- 
tire enumeration method can bc replaced as a whole 
without affecting the rest of the plan optimizer. 
This extension might be beneficial or necessary for 
handling very large queries with heuristic methods, 
such as Iterative Improvement [SWA88] or the 
Greedy Algorithm of the OS/2 Extended I’dition 
Database Management System [ 1,011891. 

Experimental Results 

IJsing the Starburst adaptable join enumerator de- 
scribed above to vary the search space, we measured 
the complexity of enumerating the feasible joins for 
several sample queries. Since we wanted to concentrate 
on the primary factor in optimization cost, namely the 
complexity of enumerating join scqucnccs, we tried to 
minimize the impact of what join and access methods 
were currently implemented in our testbed by first just 

counting the number of feasible joins. The total opti- 
mization time is approximately the product of the 
number of feasible joins and the average time to gcn- 
erate plans for a single feasible join. ‘I’he latter is the 
time for the rule-based plan generator to construct 
plans for each feasible join, which is an orthogonal 
issue unrelated to the question at hand, depcndcnt 
upon how many alternative access and join methods 
are available to choose from, is not significantly affcctcd 
by the characteristics of queries, and therefore is csscn- 
tially constant for all joins. We also measured the 
extent to which the Graph Traversal ((IT) join gcncr- 
ator reduced the time to enumerate joins. 

The number of joins evaluated for a query dcpcnds on 
two classes of factors: 1) characteristics of the query, 

such as the numhcr of quantifiers, the number of pred- 
icatcs, and the shape of the query, indicating how the 
quantifiers arc connected by the predicates, and 2) join 
feasibility criteria, such as whether composite inners 
arc allowed or not. In the following, unless otherwise 
noted, the de$zuIt join fiasihility criterion is used, i.e., 
composite inncrs arc allowed and the existence of at 
least one join predicate is required for each join. 

Verifying the Gain qf Larger Search Spaces 

Although often postulated as “well known” in the lit- 
erature, examples from real applications that beneftt 
from allowing Cartesian products or composite inners 
arc rarely documcntcd. llcnce we first wanted to verify 
empirically that increasing the search space of the join 
cnumcrator to include Cartesian products and compos- 
ite inncrs produced significantly bcttcr plans for some 
qucrics. 

Cartesian products 

Database designers often encode wide columns in a 
large table (e.g., encode “California” as “CA” or as an 
integer), and put the encodings for each column in a 
separate table. This was done in the following example 
database and query, containing a large (iO,OOO-row) 
table drawn from the actual online telephone directory 
of IBM employees in the San Jose area. The query 
uses a JXP’I‘S table of only 51 rows to encode the 
department name to a department number, and a 
NOl>J3 table of only 24 rows to encode the node 
name to a node idcntilier’: 

Database Schema: 
SJOIR: LAST, FIRST, MIDDLE, PHONE, 

OEPT, OFFICE, NOOEIO, USER10 
OEPTS: OEPTIO, OEPTLOC, OEPTNAME 
NODES: NOOEIO, NOOENAME 

Index on SJOIR- NOOEIO, OEPT ----.L 

Query: 
;ibiCT last, first, dept, c.nodeid 

nodes a, depts b, sjdir c 
WHERE a.nodename = 'STL VM #14' 
AND b.deptname = 'OBZ Optimiz.' 
AND a.nodeid = c.nodeid 
AND b.deptid = c.dept; 

‘l‘hic (star-shaped) query was run on Starburst, allowing 

7 Of course, these cardinalities do not reflect the actual numhcr of ~hcsc entities in the San .IOSC area! 
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and disallowing Cartesian products, using 16 buffer 
pages that were flushed before each cxccution. Only 
one user was active. The best plan without Cartesian 
products did approximately 8 titnes the work of the 
best plan with Cartesian products, which formed the 
Cartesian product of DEI’TS and NODI3S, then ac- 
cessed SJDIR using the index: 

l@xt qf Query Chavactefistics 

Effect of the number of quantifiers: 

Figure: 2: Effect of Numhcr of Quantifiers on Number of 
Fcasihlc .loins, for linear and Star Queries 

For a given set of join feasibility criteria, the number 
of feasible joins is determined primarily by two factors: 
the number of tables to join and the shape of the query 
graph. Figure 1 shows the shapes of three rcprcsentativc 
queries with 13 quantifiers and 12 binary prcdicatcs. 
In the figure, a dot represents a quantifier, and a rec- 

tangle represents a binary predicate. In the finenr qucrv, 
all 13 quantifiers are connected consecutively with 12 
predicates. In the star query, the quantifier at the 
center is conncctcd to 12 surrounding quantiticrs. 

The following two theorems give the relationship be- 
tween query shape and number of quantifiers for the 
extreme cases of linear and star-shaped queries, when 
constructed using dynamic programming. Note that 
thcsc calculations compute the number of feasible joins 

(in which the outer and inner quantifier sets arc not 
distinguished), i.c., the number of times in Starburst 

that the plan generator is called; to obtain the numhcr 
of join sequences, multiply by 2. 

Linear 

TIIIX)REM I (Complrxity of Linrar @cries with 

Composite Inncrs): Ilsing dpnmic programming to op- 

timize a linear qucty with N qunntiflcrs, nnd allowing 

composite inncrs (bushy trees) , rkquircs eva~imting 

(iv” - w / 6 fcnrihle joins. 

PROOF: I;or a linear q~~ery with N quantifiers, each 
of the K steps in the dynamic programming algorithm 
(2 I K < N) inductively constructs joins of K consec- 
utivc quantifiers from the best plan fragments contain- 
ing I, 2, . . . . K - 1 quantifiers constructed by the previous 
iterations. ‘I‘hrrc arc (N - K + 1) such quantifier sets 
having K consccutivc quantifiers, and each of these can 
bc c:mstructcd from (K - 1) different feasible joins, bc- 
cause thcrc arc exactly (K - I) places to break the K- 
quantifier subgraph into 2 smaller pieces to bc joined. 
‘I’hcrcforc, the total number of fcasihlc joins is: 

N 

L 
‘(K-- 1)(/V---K+ 1) =(,V”-~)/h 

K 2 

6 Branchee Star 

% ~ “,‘:~~,,i’~,:’ # 

Figure I: Examples of Query Shapes 

(‘OROI.I,ARY 14 ((‘omplcxity of Linrar Qucrics with- 

out Compositr Innrrs): 1 Ising dynnmic progrnmming to 

optimize n M query with N qunnt@rs, and di.vaI- 

lowing cnmpositc inncr.5 (hush]) trrcs) , requires cmlu- 

ntinr: (N - V2 .fin.~ihf~ bins. 

PROOF: ‘I‘hc proof follows from the above, noticing 
that thcrc arc only 2 (instead of K-l) ways to break 
the K-quantifier subgraph into fragments of size 1 and 

K-l for 3 <K 5 N. and only 1 way when K = 2. 
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THEOREM 2 (Complexity of Star Qucrics): [ising 
a’ynamic programming to optimize a star auczv with N 

quantifiers requires evaluating (N - I)2 - ,fcasihle 

joins. 

PROOF: For a star query with N quantifiers, a feasibic 
quantifier set with K quantifiers is obtained by choosing 
(K - 1) quantifiers from the (N - 1) quantifiers sur- 
rounding the center (or “huh”) quantifier, which must 
be included in any join (hence, allowing composite 
inners or not mak;.sfo difference in the complexity!). 
Flence, there are feasible quantifier sets, each of 
which can be c z con, I-’ ru ted from (K - 1) different joins. 
Therefore, the total number of feasible joins is: 

&K- l)(;I ;) = (N- 1)2N-2 IGgure 3: FXcct nf Query Shape on Numher of Joins 

We are intcrcsted in star queries because, f%r a given 
number of quantijiers and predicales, star queries have 
worst case complexity. One can see this intuitively by 
moving any edge between any node j and the hub of 
the star so that it connects to any non-hub node k 
instead, producing a star having one fewer edge incident 
upon its hub, plus edge (k,j). Now there is only one 
way (via k) to join j to the rest of the aiterrcd graph, 
yielding fewer choices than when j was linked directly 
to the hub. 

The analytic formulas of the above theorems were then 
verified by using Starburst to optimize queries that 
varied each factor individually. Since the number of 
feasible joins for linear and star queries arc the minimum 
and maximum numbers, rcspectivcly, of feasible joins 
for a query with a given number of quantifiers, WC 
show in Figure 2 the number of joins, on a logarithmic 
scale, as a function of the number of quantifiers, for 
both linear and star queries. The lines denote the 
number of joins predicted by Theorems 1 and 2, and 
the dots and squares indicate experimental confirmation 
of this analysis using Starburst’s adaptabic join enu- 
merator. IJxactly as predicted, the number of joins for 
star queries increases exponentially, while the number 
for linear queries increases poiynomiaiiy, as the number 
of quantifiers increases. From this, WC can conciudc 
that our join enumeration algorithm, as wcii as any 
other enumeration algorithm based upon dynamic pro- 
gramming, can remain practical for linear queries much 
larger than currently allowed by most relational 
DBMSs, but becomes impractical for large star qucrics. 

Effect of query shape: To quantify the relationship 
between complexity and query shape, we hcid the num- 

her of quantifiers and predicates constant at 13 and 12, 
rcspcctively, and just varied the shape of the query. 
Figure 3 shows how fast the number of feasible joins 
increased as the shape of the queries varied from linear 
to star, even though ail queries have 13 quantifiers and 
I2 binary predicates. The abscissa measures the number 
of branches in the query graph, varying from 1 branch 
(a iincar query) to 12 of them (a stdr query). 

&@xt qf Feasihlity Criteria 

For a given query, varying the join enumerator’s pa- 
ramoters can drastically alter the number of joins con- 
sidcrcd, as demonstrated by the following experiments. 

Effcrt of composite inncrs for linear queries: Figure 4 
shows how the number of feasible joins for linear que- 
rics increases as the maximum size of the smaller quan- 
tifier set. In the figure, the total number of quantifiers 
in a query is parametcrized by N, and the abscissa 
rcprcscnts Starburst’s composite inner parameter, 
r?lnwirntan_sizeof_smalr-.~~I, the maximum number 
of quantifiers allowed in the smaller quantifier set. This 
paramctcr may vary from one, whcrc no composite 
inncrs arc allowctl, to the floor of N / 2, whcrc composite 
inncrs of any sizr arc allowed. Again, the iincs in the 
figure arc obtained by our combinatorial analysis, and 
the :;quarcs indicate cxpcrimcntai confirmation of this 
analysi: by executing the query on Starburst. As pre- 
dictcd, the obscrvcd number of joins without composite 
inncrs is sibmificantiy smalicr than that with composite 
inners. Note that the measured number of feasible 
joins for 110 quantifiers Icithout composite inners was 
icss than the number of joins for SO quantifiers wilh 
compo:itc inncrs. ‘i’hcrcfore, WC can optitnize a larger 

Experimental Results 
321 



N=llO 

: 

.-..-..-. 

..fi 
,,-..L” 

L,,_,,_.. -..-..-. 

lE- 

:’ RY 
-.------- 

------u=gO 

,y, ., .~.. . . . . . . . .. . . N = 70 

!/,.’ 

2 
1,’ /.-.*’ -.-.* NZ60 

= ill 
f 

: p' 
7 

l 
3 

a,/’ *‘----N N = 30 

5 
II 6. 

#I 

Z1E ; 

0 6 10 15 P363636404550 
Yaxlmum Slzm of Smallmr Puonttflrr Sat 

Figure 4: FAT&t af Compasite Inner on Feasible Joins, fur 

Linear Query 

linear query in the same amount of time as that for 
smaller linear queries, if we disable composite inncrs 
for the larger query. This is precisely what System R 
and R* did for aN queries, but, in Starburst, our pa- 
rameterized adaptability gives the user control over 
how many joins are enumerated. With Starburst’s flcx- 
ible enumeration method, we can set the maximum 
number of quantifiers in the smaller set to any integer 

between one and N / 2 to control the number of feasible 

joins. 

Effect of composite inners for star queries: One of the 
operands of a feasible join for a star query must he a 
single quantifier, because two sets of more than two 

quantifiers will share the quantifier at the ccntcr, thus 
violating the disjointness feasibility criterion for those 

two quantifier sets. Therefore, the number of feasible 

joins for a star query is the same rcgardlcss of whcthcr 
enumeration of composite inners are enabled or dis- 

abled. 

Effect of Cartesian products: When Cartesian products 
between two quantifier sets arc allowed, rcgardlcss of 

the existence of a join predicate bctwccn the sets, thr 
number of feasible joins for a query arc the samr, 

independent of the shape of the query. The numbrr 
of feasible joins for this case is interesting hccausc it 
gives the maximum number of feasible joins for the 
query. For a query with N quantifiers, the numhcr is 
(3N- 2N+’ + 1) / 2 wit/z composite inncrs, and 

N2N-’ - N(N + 1) / 2 without composite inncrs. It is 
also interesting to note that the number of fcnsiblc 
joins for a query with N quantifiers al/owing (‘artcsian 
products but not composite inncrs is the same as the 

number, of fcasihlc joins for a star query with N + 1 

quantifiers, less N(N + 1) / 2. This cab be explained 

intuitively as follows: for a star query with N + 1 quan- 

tificrs, any surrounding quantifier is connected to any 
othrr quantifier through the quantifier at the center. 

‘I’hcrefore, the N surrounding quantifiers become fully 
connected after quantifier sets containing two quanti- 
ficrs arc formed. The number of ways to make the 

adds the minor term N(N + 1) / 2, which is 
This result further confirms our use of star 
worst case when join predicates are rcquircd. 

CPU Time! . fos Enurnevntion 

‘I‘he time to cnumcrate joins can be reduced substan- 
tially by reducing the number of potential joins coming 
from the join gcncrntor. IGgurc 5 and Figure 6 show 
that exploiting the algorithm’s adaptability by changing 
the join gcncration part of the algorithm reduced the 
time to cnumerntc feasible joins. In both cases, the 
number of potential joins coming from the join gen- 
crater was. reduced without affecting the set of feasible 
joins. In the first case, where linear queries were op- 
timized, the altcrnativc (<ST) generator was used. In 

the second cast, where star qucrics were optimized, 
composite inners wcrc disabled. ‘I‘hc 017 time was 

mcasurcd on an IRM RT/I’C model 6150 with 4MD 
of memory, running the AIX version 2.1.2 Operating 

System. Note once again that the time shown is only 
the time to enumerate fcasiblc joins, and intentionally 
cxcludcs the time to construct and evaluate actual plans 
for the fcasiblc joins. 
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Reduction of enumeration time for linear queries: Figure 

5 shows that the Graph Traversal (GT) join generator 
reduced the time to enumerate the same set of feasible 
joins for linear queries by a factor of 2.7 on average, 
and by a factor of 3.5 (from 390.0 seconds to 111.7 
seconds) for a query with 70 quantifiers, in particular. 
In addition, the GT join generator handled larger que- 
ries as efficiently as smaller queries, because its average 
time to enumerate each feasible join was constant at 
about 1.8 milliseconds for ail queries, whereas the av- 
erage time for the default method increased from 1.8 
milliseconds (for N = 10) to 6.8 milliseconds (for 
N = 70). The reason for these improvements is that 
the GT join generator generates fewer pairs of potential 
quantifier sets than the default method, so fewer must 
be filtered. J:or instance, for the query with 70 quan- 
tifiers, the GT generator generates only 139,265 pairs, 
of which almost half (57,155) were feasible joins, com- 
pared with 2,542,470 pairs by the default method. 

JJowever, the GT join generator worked poorly for 
star queries because the feasibility criterion requiring a 
join predicate - which the GT generator exploits - is 
vacuously satisfied in star queries for ail pairs containing 
two or more quantifiers. In fact, for star queries, the 
number of potential joins coming from the GT join 
gcncrator actually increases, because every quantifier 
set is put into entries for every predicate in the modified 
quantifier set table. For instance, for a star query with 
13 quantifiers, the GT generator increased the number 
of potential joins from 3,566,678 to 14,7 17,640, increas- 
ing the total enumeration time from 164.0 seconds to 
680.0 seconds. For this reason, the GT join generator 
is invoked only for linear queries in Starburst. This 
illustrates how adaptability of our join enumeration 
algorithm for a particular query rcduccs the time to 
rnumcrate feasible joins. 

Reduction of enumeration time for star queries: ‘I‘he 
time to enumerate fcasibie joins for star queries was 
reduced by disabling the enumeration of composite 
inncrs, as shown in Jiigurc 6. Note that a logariliunic 
scale is used for the ordinate to show the cxponcntini 
increase of the time as the number of quantifiers in a 
star query increases, and that ail times less than 0.1 
seconds are shown to be 0.1 seconds in the ligurc 
because the resolution of the CI’JJ clock was 0. I scc- 
ends. Recall that disabling the cnumcration of rom- 
posite inners for star queries does not rcducc the set 
of feasible joins, since one of the operands must bc a 
single quantifier anyway. For a star query with 13 
quantifiers, the enumeration time was rcduccd by a 
factor of 6.8 (from 164.0 seconds to 24.0 seconds), and 
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Fignrc 6: Reduction of Ennmeration Time (on a Logarithmic 

Scale) hy Disabling <‘omposite inners for Star Queries 

this reduction factor increased as the number of quan- 
tifiers increased. 

Conclusions 

Enutneration of the join sequences for a query is the 
dominant factor in both the optimization time for the 
query and the quality of resulting execution plans. To 
generate better execution plans, the join enumeration 
algorithm in this paper cniargcs the set of feasible 
plans. The resulting plans can contain composite in- 
ncrs, and Cartesian products can occur at any place in 
join scquenccs, not ncccssariiy at the end. Furthermore, 
by gcncraiizing join predicates to include non-equality 
predicates, impiicd predicates, and predicates on more 
than two tabics, the Starburst optimizer can generate 
more cfficicnt plans that exploit these predicates as join 
predicates, rather than having to resort to Cartesian 
product,s. 

Although enlarging fhc set of fcasibic joins gcncrally 
mnkcs the optimization tirnc larger, we can balance 
the number of fcasiblc plans with the optimization 
time by varying the number of feasible joins using our 
pnrame~crizcci fcasibic join rritcria. ‘J‘his kind of adapt- 
ability is important so that some queries may be op- 
tiinircd cxtcnsivrly into an cxtrcmciy cfficicnt plan, 
and complex qucncs can bc optimized at ail. 

Our cxpcrimcntal rrsults on the number of feasibic 
joins show that ivc can find the optimal plan using 
dynamic programming for a coinpicx query referring 

Conclusions 



to as many as 100 tables if the shape of the query is 
linear or almost linear. For linear qucrics, lhc number 
of feasible joins can also bc controlled hy a paramc- 

terized feasible join criterion on composite inncrs that 
controls the maximum size of smaller quantifirr sets 
for a join. It can be set to any intcgcr from one (no 
composite inners) to the maximum, which is half of 
the total number of quantifiers (full composite inncrs). 
Although intuitively the linear shape seems to bc the 
most common shape of queries, it would be an inter- 
esting future study to examine shapes of queries in real 
applications, classify the shapes, and obtain empirical 
formulas for typical shapes, because the shape of a 
query largely determines the number of feasible joins 
for the query and, thus, the practicality of optimizing 
it. 

We also measured the join enumeration time, and 
found that adaptability in changing part of the enu- 
meration method allows us to reduce the enumeration 
time for queries of various shapes and sizes; thcrc 

seems to be no single join enumeration method that 
works best for all queries. Using our Graph Traversal 
join generator for linear queries, and disabling com- 
posite inners for star queries, we reduced the time to 
enumerate joins without reducing the number of rc- 
suiting feasible joins. 

Currently, these adaptability mechanisms are controlled 
by a user at a terminal. For instance, the user must 
disable composite inners and select the alternative join 
generation method based on the shape and size of the 
query at hand. It should be straightforward to automate 
these decisions in the future, so that the enumerator 
itself decides the best options based on the submitted 
query. We also hope to derive a repertoire of heuristic 
join enumeration methods for very large queries with 
hundreds of tables. 
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