Measuring the Complexity of Join Enumeration in Query Optimization

Kiyoshi Ono!, Guy M. Lohman

IBM Almaden Research Center
K55/801, 650 Harry Road
San Jose, CA 95120

Abstract

Since relational databasec management systems typically
support only diadic join operators as primitive opera-
tions, a query optimizer must choose the “best” sc-
quence of two-way joins to achieve the N-way join of
tables requested by a query. The computational com-
plexity of this optimization process s dominated by
the number of such possible sequences that must be
evaluated by the optimizer. This paper describes and
measures the performance of the Starburst join enu-
merator, which can parameterically adjust for cach
query the space of join sequences that are evaluated
by the optimizer to allow or disallow (1) composite
tables (i.e., tables that are themselves the result of a
join) as the inner operand of a join and (2) joins
between two tables having no join predicate linking
them (i.e., Cartesian products). To limit the size of
their optimizer’s search space, most earlier systems ex-
cluded both of these types of plans, which can exccute
significantly faster for some queries. By experimentally
varying the parameters of the Starburst join enumerator,
we have validated analytic formulas for the numbcer of
join sequences under a variety of conditions, and have
proven their dependence upon the “shape” of the query.
Specifically, “linear” queries, in which tables arc con-
nected by binary predicates in a straight linc, can be
optimized in polynomial time. Hence the dynamic
programming techniques of System R and R* can still
be used to optimize lincar queries of as many as 100
tables in a reasonable amount of time!

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the VLDB copyright notice and
the title of the publication and its date appear. and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise. or to republish. requires a fee
and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

Introduction

A query optimizer in a relational DBMS translates
non-procedural queries into a procedural plan for ex-
ccution, typically by generating many alternative plans,
cstimating the exccution cost of each, and choosing
the plan having the lowest estimated cost. Increasing
this set of feasible plans that it cvaluates improves the
chances — but does not guarantec! — that it will find
a better plan, while increasing the (compile-time) cost
for it to optimize the query. A major challenge in the
design of a query optimizer is to ensure that the set of
fcasible plans contains cfficient plans without making
the set too big to be gencrated practically.

Problem: Which join sequences to evaluate?

One of the major decisions an optimizer must make
is the order in which to join the tables referenced in
the query. Since the join operation is implemented in
most systems as a diadic (2-way) opcrator, the optimizer
must generate plans that achicve N-way joins as a
sequence of 2-way joins. When joining morc than a
few tables, the number of such possible sequences is
the dominant factor in the number of alternative plans:
N! different sequences are possible for joining N tables.
Iiven when dynamic programming is used, as System
R |SET 79] and most current products do, theorcticians
have used the cxponential worst case complexity to
argue that heuristic scarch methods should be used.
However, these methods cannot guarantee optimality
of their solution, as can dynamic programming.

For this reason, many existing optimizers usc heuristics
within dynamic programming to limit the join sc-
guences evaluated. One heuristic employed by System
R [SE{1.79] and R* {1.OH&S| constructs only joins in

_which a single table is joined at each step with the

results of previous joins, in a pipelined fashion. This
gencrates plans such as (((T1 04 1T2) B4 T3) B4 T4),
and avoids so-called composite inners (often referred to
as “bushy trees” [GRASBT)), in which the inner table

I Current address: Tokyo Research J.aboratory I1BM Japan, 1.d. 5-19. Sanbancho, Chiyoda-ku Tokyo 102, JAPAN

Introduction

314

(the second operand of the join) is the result of a join
that must be materialized in memory or — if it is too
big — on disk. The heuristic saves this materialization,
but may exclude better plans for certain querics. As
an example, suppose a query with four large tables T1,
T2, T3, and T4 has two predicates T1.Cl = T2.C2
and T3.C3 = T4.C4 that are extremely selective (re-
strictive), and one T2.C6 = T4.C8 that is not. Then
the plan ((T1 D T2) <4 (T3 D1 T4)) with a com-
posite inner (T3 D> T4) is likely to be better than any
plan avoiding the composite inner, such as ((T1 b
T2) <4 T4) D T3, because the intermediate results
of the first plan would all be significantly smaller than
any in the second plan.

Another major heuristic employed by both System R
[SEL79] and INGRIIS [WON76] always defers
Cartesian products as late in the join sequence as pos-
sible, assuming that they result in large intermediate
tables because there is no join predicate that restricts
the result (and hence every row in onc table is joined
with every row in the other table). Again, this heuristic
may exclude the optimal plan for certain queries that
can benefit from Cartesian products. Tor instance, if
the tables to be joined are small, and especially where
they contain only one tuple each, a Cartesian product
is quite inexpensive. And its result may even have
columns forming a composite key for another, much
larger table to be accessed later, thus making the
Cartesian product more advantageous. As an example,
consider a query with three tables T1, T2, and T3, and
two predicates T1.Cl = T2.C2 and T2.C3 = T3.C4.
The plan ((T1 <t T3) < T2) is potentially the best
plan if Tl and T3 are very small (or made so by
additional single-table predicates) and there is a multi-
column index for T2 on columns C2 and C3, even
though it requires the Cartesian product of T'1 and T3.
This will be illustrated concretely in Section 3.1.

To make matters worse, many existing query optimizers
severely restrict the class of predicates that qualify as
these critical join predicates to be simple equijoins of
the form “Column] = Column2”, excluding any predi-
cates that reference more than two tables or involve
arithmetic on the column values. Conscquently, what
may appear to the user as a perfectly good join predicate
is not treated as such by the system {1.OI186], and a
suboptimal join sequence results. For example, for a
query with three tables T1, T2, and T3, and two pred-
icates T1.C1 = T2.C2 and T2.C4 + 3 = T3.C5, the

optimizer treats the latter predicate in a plan such as
(Tt <1 T2) <t 'T3) as a restriction of the Cartesian
product between (T'1 >q T2) and T3, rather than as
a join predicate. Thus, in conjunction with the heuristic
that defers Cartesian products, any plan that might
join T2 and T3 first is not considered, even if it dom-
inates all plans joining 'I'l and T2 first.

Another limitation in handling predicates is that many
systems do not derive implied predicates, which are not
specified but are implicd by the predicates given by the
user. For instance, two predicates T1.C1 = T2.C2
and T2.C2 = T3.C3 imply a new predicate, T1.Cl =
T3.C3. Without this implied predicate, System R
would avoid joining T'1 with T3 until either had been
joincd with T2, A few systems have relaxed these
limitations somcwhat. For example, commercial
INGRES can generate the join between T'1 and T3 by
using an attribute equivalence class [KOQB80], although
it does not apply the equivalence classes to more gen-
eral forms of predicates — such as T2.C2 = T3.C3 +
1 — to derive an implied predicate T1.C1 = T3.C3 +
1, because join predicates are still restricted to be equal-
ity predicates between two columns.

Solution: An adaptable search space

Although evaluating more plans may find a more ef-
ficient plan for executing some queries, it also increases
the cost of optimizing a given query. Ilence it is
important to be able to adjust the number of alternative
plans considered by the optimizer for specific applica-
tions and queries. For cxample, traditional batch-
oriented applications can tolerate longer optimization
times than can interactive applications, for which the
optimization time is as important as the execution
time. This adaptability (or customizability) of a query
optimizer is even more critical for non-traditional ap-
plications, such as decision support systems and expert
systems, and for queries generated automatically by a
user front end, These applications tend to pose very
complex queries referring to more tables than traditional
applications |[KRI84, SWARR];, without some of the
above heuristics, it might be infeasible to cvaluate all
the possible join sequences?.

liven within a single type of application, certain querics
might benefit more from considering more alternatives
than others. A query whose best plan is expected to

2 Whether the optimizer can accurately estimate the number of rows resufting from such complex queries is an orthogonal issue, and wiil

in any case not preven} applications from posing these queries!

Introduction

run for 15 minutes is more likely to profit substantially
from an additional minute of optimization than is a
query estimated to execute in under a minute! The
space of alternative join sequences must thercfore be
adjustable for each query.

Previous work

Several authors have considered the benefits of increas-
ing ot decreasing the space of possible join sequences
through which the optimizer searches. In the original
{University) INGRES, intermediate rcsults were always
materialized so that the optimizer could assess the next
join to perform based upon the size of the composite
[WON76]. The commercial version of INGRES allows
plans to contain composite inners, but docs not require
them to do so [KOOS80]. Rosenthal’s optimizer
[ROS82] also included plans with composite inners.
However, so far as is known, none of these optimizers
permitted adjusting the search space used by the opti-
mizer. The rule-based optimizer gencrator built by
Graefe for EXODUS was easily adapted to consider
composite inners by changing just a rule or two
|GRAS87]. However, the optimizer so gencrated was
then fixed and could not be adjusted for different que-
ries without generating a new optimizer. Graefe showed
that the number of plans considered by the LXODUS
optimizer? went up dramatically between 4 and 7 joins
per query, but then (surprisingly!) leveled off from 8
to 14. Graefe offered no explanation or analysis for
this apparent anomaly, nor any figures for queries ex-
ceeding 14 joins. Using the EXODUS cost cquations,
Graefe also showed that plans containing composite
inners had significantly improved (estimated) cost only
when the number of joins per query excceded 10.
Since his composites were growing monotonically, he
reasoned that “bushy trees” balanced the workload bet-
ter as the number of joins increased, allowing morc
joins on moderately-sized intermediate results. Swami
[SWAB9] measured the actual execution of a large num-
ber of queries, allowing and disallowing both Cartesian
products and composite inners. Ilis results showed
that a small percentage of the plans in the increased
search space are optimal.

Starburst’s Advances

The Starburst join enumerator improves upon these
earlier efforts by parameterizing the spacc of alternative

join sequences that the optimizer will consider for any
given query, to include or exclude consideration of
composite inners and Cartesian products. Thus, the
level of optimization effort can be tailored individually
to the query, eithcr manually by the user or automat-
ically by the system. In addition, the modular design
of the Starburst join cnumerator, described below, fa-
cilitates the addition or replacement of feasibility criteria
for particular applications, exploits as join predicates
any implied predicates and predicates involving more
than two tables or arithmetic, and places no algorithmic
limit on the number of tables in a query. And unlike
many other optimizers that arc limited to simple
SELECT-PROJECT-JOIN querics, the Starburst op-
timizer correctly processes queries involving nested
subqueries and correlation predicates [I O1184).

These enhancements allowed us to measure the impact
of varying the optimizer’s search space, both upon the
optimization complexity and upon the resulting exe-
cution time. Qur experimental results demonstrate
that the complexity of optimizing a query is largely
dependent: upon the shape of the query graph, where
the shape of a query indicates how tables are conncected
with predicates, as well as the number of tables it
references. Somewhat surprisingly, the number of fea-
sible joins does not increasc cxponcntially with the
number of tables for certain commonly posed queries.
For example, for linear queries, in which tables are
connected by binary predicates in a straight line, the
number of feasible joins 1s a polynomial of the number
of the tablcs, even when composite inners are allowed.
With the same feasibility criteria, the number increases
to an exponential for star queries, in which a table at
the center is connected by binary predicates to each of
the other surrounding tables, the same as for completely
connected query graphs.

This paper is organized as follows. First, a bricef over-
view of the design of Starburst plan optimization is
given, including a discussion of how its join chumerator
can be adapted and cextended. The remainder of the
paper presents analysis and experimental results on the
nurmber of feasible joins for querics containing up to
110 tables, as the scarch space is varied using Starburst’s
parameterized join cnumerator. We show how the
shape affects the number of feasible joins, and how
this adaptability can help balance the number of feasibic
joins and the practicality of optimizing querics that
must jcin that many tables.

3 Actually, the average size at the end of optimization of the data structure, called MESH, which contained plans.

Introduction

Starburst’s Adaptable Join Enumeration

Overview of Starburst’s Plan Optimization
P

This paper deals only with the plan optimization phase
of query processing in Starburst, an extensible relational
database management system being prototyped at the
IBM Almaden Research Center [ITAA90]. An overview
of Starburst query processing can be found in [IHIAAS8S].
For a given query, plan optimization cvaluates altcrna-
tive query execution plans (QIPs), and outputs for
execution the QEP with the least estimated execution
cost. The input to plan optimization is a parsed query
that is stored in an internal database called the Query
Graph Model (QGM). QGM is an internal represen-
tation of the semantics of an SQI. query, including its
various entities, such as tables, quantifiers, and predi-
cates, as well as the relationships among them. A
quantifier corresponds to a join variable in SQL and a
tuple variable in QUIL, and represents a tuple drawn
from a table. The range_over relationship connects the
quantifier to the table from which the tuple is drawn.
Since a single table may be referenced in several dif-
ferent contexts within a single query, several quantifiers
may range over the same table.

The Starburst optimizer generates plans that construct
progressively larger sets of quantifiers (quantifier sets)
by joining pairs of two smaller quantifier sets, starting
initially from plans for single quantifiers. ‘This is the
same inductive (bottom-up) algorithm used in System
R and R*, and enables us at each step to incorporate
into the join plan the optimal plan for cach of its
component quantifier sets (i.e. to usc dynamic pro-
gramming to prune dominated plan fragments), so that
we never have to reconstruct a smaller plan even if its
use in a bigger plan is different.

'The plan optimizer in Starburst differs from System R
and R* however, in that it consists of two scparate
and highly extensible sub-components: the join enu-
merator, which enumerates join orders specifying the
order in which the query’s tables can be joined, and a
rule-based plan generator [1. O118R, 1.ET'88], which gen-
crates alternative QIiPs and evaluatcs their estimated
cost. This separation is similar to that described in
JROSK2]. Within the overall bottom-up algorithm de-
scribed above, the plan generator is first invoked indi-
vidually for each quantifier, in order to generate alter-
native QFEPs that specify execution details such as the
access method, the columns to retricve, and any pred-
icates that can be applied. Next, pairs of quantifier
sets to be joined are enumerated by the join enumerator.

Starburst’s Adaptable Join Fnumecration

317

For each such pair of quantifier sets, the join enumerator
invokes the plan generator to generate and evaluate
alternative QEPs for that join, passing to it the quan-
tificr scts, any join predicates linking those operands,
and any limitations on the order of join (discussed
below). As with the plans for single tables, each join
QP returned by the plan generator specifies execution
details for onc alternative, such as an order and method
of joining the two quantifier sets, the columns that can
be projected out, the plan chosen for producing each
of the two inputs to the join, and any intermediate
operations (such as sorts) that must be inserted to
make the chosen join method work with the chosen
input plans [ILOTI88].

‘The remainder of this paper will concentrate on the
top part of plan optimization, the join enumerator,
whose implementation is summarized next.

Join Enumeration

Starburst’s adaptable join enumerator utilizes a generate
and filter strategy, in which a supersct of feasible joins
are gencrated by a join generator, and infeasible ones
are removed by a sequence of independent filters en-
forcing feasibility criteria, which can be of two kinds:
(1) mandatory, universally valid criteria, and (2) op-
tional, parameterized heuristics for reducing the search
space. The optional criteria, such as the heuristics
deferring Cartesian products and avoiding composite
inners, are paramcterized so that cither the user or the
system can control the number of feasible joins gener-
ated during optimization. We chose this form of ex-
tensibility for the join enumerator over the rule-based
approach of the plan generator because it was suffi-
ciently flexible to enumerate a wide range of potential
join sequences — including those containing composite
inners, Cartesian products, implied predicates, and
predicates on more than two tables — while avoiding
the performance overhead of rule interpretation. Fur-
thermore, which join scquences arc feasible is deter-
mincd by fundamental relational principles, not the
methods by which joins arc implemented, and so are
unlikely to be affected by other extensions to the sys-
tem {e.g., new access paths or join algorithms).

The join gencrator generates progressively larger quan-
tificr sets, starting from scts containing only one quan-
tifier, and storcs information about quantificr scts re-
sulting from feasible joins thus far in the quantifier set
tahle. This process is analogous to mathematical in-
duction. For the N quantifiers in a query, the quantifier
set table is imitialized with N sets containing only one

quantifier. Now, at any point in the algorithm, suppose
we have constructed the optimal plan for all feasible
quantifier sets containing up to k — 1 quantificrs (k > 2)
in the quantifier set table. We can obtain all feasible
joins producing k quantifiers by considering every pair
of quantifier sets having i quantificrs and k — i quan-
tifiers (1 <i<floor (k[2)).

A detailed description of the filters of the default fea-
sibility criteria is given in [ONOS88]. The mandatory
filters are the same as for most systems:

¢ Disjointness: two quantifier sets to be joined must
be disjoint®.

¢ Dependency: no quantifiers in the outer operand of
a join should "depend_on” any quantificrs in the
inner operand. The “depend on” relationship sum-
marizes any restrictions on the relative order in which
quantificrs must be instantiated, duc to semantic
constructs such as correlation predicates, particularly
in nested subquerics [LOII84]. Depend_on relation-
ships are derived from QGM, and their transitive
closure is calculated before optimization begins. If
neither of two given quantifier sets can be the outer,
or if a scemingly-feasible join produces a composite
that will never be joinable with any other quantifier
set5, the two sets cannot form a feasible join (sce
[ONO8S8] for additional examples and details).

Parameterized Control of the Number of
Feasible Joins

The number of feasible joins can be controlled by
parameters that control the join generation and the
filters. There are currently two such paramecters:

¢ Cartesian products: This paramcter enables or dis-
ables a filter requiring at least one eligible join pred-
icate that references quantifiers in the two quantificr
sets to be joined. A join predicate is defined in
Starburst in more general terms than thosc in System
R |SEL.79] to be any multi-table predicate, and in-

cludes implied predicates, i.c. those predicates deriv-
able from predicates given in the query. Starburst
derives and exploits implied predicates in a slightly
morc general approach than does INGRES [KOO80);
for details sec J[ONOZSS|. Including implied predicates
may produce better cxecution plans by allowing
more feasible joins.

e Composite inners: [inumeration of composite inners
can be controlled by a parameter
maximum_size_of _smaller_set to the join generator.
This parameter specifies the maximum size of the
smaller quantifier sct of each join: if it is set to 1,
enumeration of composite inners is disabledS; by set-
ting it to some integer j (1 <j < floor(N /2)), com-
posite inners whose size arc less than or equal to j
arc cnumerated. ‘The larger this parameter, the more
“bushy” any plan can be. For example, when
maximum_size_of smaller_set = 2, compositc inners
can be constructed from individual quantifiers only;
when maximum_size_of smaller_set = floor(N/2),
any composite inner may itsclf be constructed of
composite inners.

Replacing Parts of Join Enumeration

'The modular construction of the Starburst join cnu-
merator facilitates the wholesale replacement of many
of its pieces:

¢ Replacing the join generator: The join generator de-
scribed previously is a general-purpose gencrator,
and can be replaced with a special-purpose generator
for particular feasible join criteria and queries. In
fact, we have implemented an alternative gencration
method, called the Graph Traversal (GT) generator,
that generates only pairs of quantificr sets satisfying
the heuristic requiring a join between the quantifier
sets. It does this by maintaining, for each quantifier
set, a pointer 1o cach quantifier set with which it
shares at least one common join predicate. Although
deriving these pointers requires more work initially,

4 Note that this condition does not exclude joins of a table with itsclf, because two accesses Lo the table arc represented as two different
quantifiers. Recursive joins are specifically detected and excluded from this criterion.

S This conflict occurs when there are some quantificrs upon which the inner depends and which themselves depend upon some quantifiers

in the outer.

6 Actually, the join enumerator only enumerates pairs of quantifier sete, one of which always has a single quantifier if
maximum size of smaller_set is set to 1. In conjunction with the depend_or relationship, the plan generator then decides which quantifier

set is the inner operand of the join in any particular alternative plan.

Starburst’s Adaptable Join I'numeration

318

it reduces the time to enumecrate feasible joins for
certain queries, as shown in Section 3.4.

* Replacing the join feasibility filters: Because cach
join feasibility criterion is an independent Boolean
function, it is easy to change the function to another
Boolean function that decides whether it is advan-
tageous to join two quantifier sets. For instance, the
filter requiring join predicates could be replaced by
a new function that allows joins between any two
sets whose estimated number of tuples are sufficiently
small, even though there might be no join predicates
between the scts.

¢ Rcplacing the entire enumeration algorithm: The en-
tire enumeration method can be replaced as a whole
without affecting the rest of the plan optimizer.
This extension might be beneficial or necessary for
handling very large queries with hecuristic methods,
such as lIterative Improvement [SWAS88] or the
Greedy Algorithm of the 0S/2 Extended Edition
Database Management System [F.OT189].

Experimental Results

Using the Starburst adaptable join enumerator de-
scribed above to vary the search space, we measurcd
the complexity of enumerating the feasible joins for
several sample queries. Since we wanted to concentrate
on the primary factor in optimization cost, namcly the
complexity of enumerating join scquences, we tried to
minimize the impact of what join and access methods
were currently implemented tn our testbed by first just
counting the number of feasible joins. The total opti-
mization time is approximately the product of the
number of feasible joins and the average time to gen-
erate plans for a single feasible join. The latter is the
time for the rule-based plan genecrator to construct
plans for each feasible join, which is an orthogonal
issue unrelated to the question at hand, dependent
upon how many alternative access and join methods
are available to choose from, is not significantly affected
by the characteristics of queries, and thercfore is cssen-
tially constant for all joins. We also measured the
extent to which the Graph Traversal (GT) join gener-
ator reduced the time to enumerate joins.

The number of joins evaluated for a query depends on
two classes of factors: 1) characteristics of the query,

such as the number of quantificrs, the number of pred-
icates, and the shape of the query, indicating how the
quantifiers arc connccted by the predicates, and 2) join
feasibility criteria, such as whether composite inners
arc allowed or not. In the following, unless otherwise
noted, the default join feasibility criterion is used, i.e.,
composite inners arc allowed and the existence of at
least one join predicate is required for each join.

Verifying the Gain of Larger Search Spaces

Although often postulated as “well known” in the lit-
crature, examples from real applications that benefit
from allowing Cartesian products or composite inners
arc rarely documented. Hence we first wanted to verify
empirically that increasing the search space of the join
cnumerator to include Cartesian products and compos-
ite inners produced significantly better plans for some
qucrics.

Cartesian products

Database designers often encode wide columns in a
large table (e.g., encode “California” as “CA” or as an
integer), and put the encodings for each column in a
separatc table. This was done in the following example
databasc and query, containing a large (10,000-row)
table drawn from the actual online telephone directory
of IBM employees in the San Josc area. The query
uscs a DEPTS table of only 51 rows to encode the
department namc to a department number, and a
NODES table of only 24 rows to encode the node
name to a nodc identifier’:

Database Schema:
SJDIR: LAST, FIRST, MIDDLE, PHONE,
DEPT, OFFICE, NODEID, USERID
DEPTS: DEPTID, DEPTLOC, DEPTNAME
NODES: NODEID, NODENAME

Index on SJDIR: NODEID, DEPT

Query:
SELECT last, first, dept, c.nodeid

FROM nodes a, depts b, sjdir ¢
WHERE a.nodename = 'STL VM #14'
AND b.deptname = 'DB2 Optimiz.'
AND a.nodeid = c.nodeid

AND b.deptid = c.dept;

This (star-shaped) query was run on Starburst, allowing

7 Of course, these cardinalities do not reflect the actval number of these entitics in the San Jose arca!

Ixperimental Results

319

and disallowing Cartesian products, using 16 buffer
pages that were flushed before cach cxecution. Only
one user was active. "The best plan without Cartesian
products did approximately 8 times the work of the
best plan with Cartesian products, which formed the
Cartesian product of DEPTS and NODES, then ac-
cessed SIDIR using the index:

BEST PLAN DISK PAGE

I/Os [REEFNS.
WITH Cart. prods. 22 46
WITHOUT Cart. prods. 179 364

Effect of Query Characteristics
Effect of the number of quantifiers:

Tor a given set of join feasibility criteria, the number
of feasible joins is determined primarily by two factors:
the number of tables to join and the shape of the query
graph. Figure 1 shows the shapes of three representative
queries with 13 quantifiers and 12 binary predicates.
In the figure, a dot represents a quantificr, and a rec-
tangle represents a binary predicate. In the linear query,
all 13 quantifiers are connected consecutively with 12
predicates. In the star query, the quantifier at the
center is connccted to 12 surrounding quantifiers.

The following two theorems give the relationship be-
tween query shape and number of quantifiers for the
extreme cases of linear and star-shaped queries, when
constructed using dynamic programming. Notc that
these calculations compute the number of feasible joins
(in which the outer and inner quantificr sets are not
distinguished), i.e., the number of times in Starburst
that the plan generator is called; to obtain the number
of join sequences, multiply by 2.

Lineor

6 Branches Star

® Ouantifiar

. Predicote

Figure 1: Examples of Query Shapes

Txperimental Results

Number of Quantiflers

Figure 2: Effect of Number of Quantifiers on Number of
Feasible Joins, for Lincar and Star Queries

THEOREM 1 (Complexity of Lincar Querics with
Composite Inners): Using dynamic programming to op-
timize a linear query with N quantifiers, and allowing
composite inners (bushy trees), réquires evaluating

(N> = N) | 6 feasible joins.

PROOF: Tor a linear query with N quantificrs, each
of the K steps in the dynamic programming algorithm
(2 < K < N) inductively constructs joins of K consec-
utive quantificrs from the best plan fragments contain-
ing I, 2, ..., K — | quantifiers constructed by the previous
iterations. There arc (N — K+ 1) such quantifier scts
having K consccutive quantifiers, and cach of these can
be constructed from (K — 1) different feasible joins, be-
causc there arc exactly (K — 1) places to break the K-
quantifier subgraph into 2 smaller picces to be joined.
Therefore, the total number of feasible joins is:

N
E(K“‘-])(N"- K+1) = (/\/3 -N) /6
K 2

COROLLARY 1A (Complexity of Linear Qucries with-
out Composite Inners): Using dynamic programming to
optimize a linear query with N quantifiers, and disal-
lowing composite inners (bushy trees), requires evalu-
ating (N — 1)? feasible joins.

PROOF: The proof follows from the above, noticing
that there arc only 2 (instead of K-1) ways to break
the K-quantificr subgraph into fragments of size 1 and
K-1. for 3<K <N, and only | way when K = 2.

THEOREM 2 (Complexity of Star Querics): Using
dynamic programming to optimize a star %lcry with N
quantifiers requires evaluating (N— 1)2 -2 Jeasible
Joins.

PROOF: For a star query with N quantifiers, a feasible
quantifier set with K quantifiers is obtained by choosing
(K—1) quantifiers from the (N — 1) quantifiers sur-
rounding the center (or "hub”) quantifier, which must
be included in any join (hence, allowing composite
inners or not makes no difference in the complexity!).
Hence, therc are 12 feasible quantifier sets, cach of
which can be con¥triéted from (K — 1) different joins.
Therefore, the total number of feasible joins is:

N N—1 N=2
;(K—1)<K_l) =(N-1)2

We are intercsted in star queries because, for a given
number of quantifiers and predicates, star queries have
worst case complexity. One can sce this intuitively by
moving any edge between any node j and the hub of
the star so that it connects to any non-hub node k
instead, producing a star having one fewer edge incident
upon its hub, plus edge (k,j). Now there is only onc
way (via k) to join j to the rest of the alterred graph,
yielding fewer choices than when j was linked directly
to the hub.

The analytic formulas of the above theorems were then
verified by using Starburst to optimize queries that
varied each factor individually. Since the number of
feasible joins for linear and star querics arc the minimum
and maximum numbers, respectively, of feasible joins
for a query with a given number of quantifiers, we
show in Figure 2 the number of joins, on a logarithmic
scale, as a function of the number of quantifiers, for
both lincar and star queries. The lines denote the
number of joins predicted by Theorems 1 and 2, and
the dots and squares indicate experimental confirmation
of this analysis using Starburst’s adaptable join enu-
merator. Iixactly as predicted, the number of joins for
star queries increascs exponentially, while the number
for linear queries increases polynomially, as the number
of quantificrs increases. ['rom this, we can conclude
that our join enumeration algorithm, as well as any
other enumeration algorithm bascd upon dynamic pro-
gramming, can remain practical for linear queries much
larger than currently allowed by most relational
DBMSs, but becomes impractical for large star querics.

Effect of query shape: To quantify the relationship
between complexity and query shape, we held the num-

Experimental Results

321

.lﬂlh “:"
2 v
[
2
® 3 000
2
§ R
l"llﬂ-
]
10008 -
a,0m 4200 ﬂ
_ . H ﬂ 1 Bl Ok 3] k 5
L} Ll L L 1 i L T T T
Linear 3 4 B 8 W0 1 Star

5 8 7
Number of Branches

Figure 3: FEffect of Query Shape on Number of Joins

ber of quantifiers and predicates constant at 13 and 12,
respectively, and just varied the shape of the query.
Figure 3 shows how fast the number of feasible joins
increased as the shape of the queries varied from linear
to star, cven though all queries have 13 quantifiers and
12 binary predicates. The abscissa measures the number
of branches in the query graph, varying from 1 branch
(a lincar query) to 12 of them (a star query).

Effect of Feasiblity Criteria

For a given query, varying the join enumerator’s pa-
rameters can drastically alter the number of joins con-
sidered, as demonstrated by the following experiments.

Effect of composite inners for linear querics: Figure 4
shows how the number of feasible joins for linear que-
rics increases as the maximum size of the smaller quan-
tifier sct. In the figure, the total number of quantifiers
in a query is parameterized by N, and the abscissa
represents Starburst’s composite inner parameter,
maximum_size_of smaller_set, the maximum number
of quantificrs allowed in the smaller quantifier set. This
parameter may vary from one, wherc no composite
inners arc allowed, to the floor of N | 2, where composite
inners of any size arc allowed. Again, the lines in the
figure arc obtained by our combinatorial analysis, and
the squares indicate experimental confirmation of this
analysis by cxecuting the query on Starburst. As pre-
dicted, the observed number of joins without composite
inners is significantly smaller than that with composite
inners. Note that thc measured number of feastble
joins for 110 quantificrs without composite inners was
less than the number of joins for 50 quantifiers with
composite inncrs. Thercfore, we can optimize a larger

N=110
1E+08 ‘/.~’/,‘,.. ——————— N=190
77 a a s N=70

-
/5
" |/ e * N=50
3 R
'31:100-1. p |
= ,-
L L " N=
5 P . N=30
= 7
-4 ’
* '
Lo jevor
N = toial number of quantifiers
~mN=10
1esozd S
T Al T L L L T L) T L
-] 5 10 135 20 23 X M 440 45 %

Maximum Size of Smallar Quantifier Sef

Figure 4: Effect of Composite Inncr on Feasible Joins, for
Linear Query

linear query in the same amount of time as that for
smaller linear queries, if we disable composite inners
for the larger query. This is precisely what System R
and R did for all queries, but, in Starburst, our pa-
rameterized adaptability gives the user control over
how many joins are enumerated. With Starburst’s flex-
ible enumeration method, we can set the maximum
number of quantifiers in the smaller set to any integer
between one and N | 2 to control the number of feasible
joins.

Effect of composite inners for star queries: One of the
operands of a feasible join for a star query must be a
single quantifier, because two sets of more than two
quantifiers will share the quantifier at the center, thus
violating the disjointness feasibility criterion for those
two quantifier sets. Therefore, the number of feasible
joins for a star query is the same regardless of whether
enumeration of composite inners are cnabled or dis-

abled.

Effect of Cartesian products: When Cartesian products
between two quantifier sets arc allowed, regardless of
the existence of a join predicate between the sets, the
number of feasible joins for a query arc the same,
independent of the shape of the query. The number
of feasible joins for this case is interesting because it
gives the maximum number of feasible joins for the
query. For a query with N quantifiers, the number is
(3N— 2V 4 1))2 with composite inners, and
N2V=' - N(N + 1) | 2 without composite inners. It is
also interesting to note that the number of feasible
joins for a query with N quantificrs allowing Cartesian
products but not composite inners is the same as the

Experimental Results

322

number of feasible joins for a star query with N+ 1
quantifiers, less N(N+1)/2. This can be explained
intuitively as follows: for a star query with N + 1 quan-
tifiers, any surrounding quantifier is connected to any
other quantifier through the quantifier at the center.
Therefore, the N surrounding quantifiers become fully
connected after quantifier sets containing two quanti-
fiers are formed. The number of ways to make the
i }\'J}ial '(,Jvin adds the minor term N(N + 1)/ 2, which is

. { . This result further confirms our use of star
4{: ries a$ a worst case when join predicates are required.

CPU Time for Enumeration

The time to enumcrate joins can be reduced substan-
tially by reducing the number of potential joins coming
from the join generator. Figure 5 and Figure 6 show
that exploiting the algorithm’s adaptability by changing
the join generation part of the algorithm reduced the
time to enumerate feasible joins. In both cases, the
number of potential joins coming from the join gen-
crator was reduced without affecting the set of feasible
joins. In the first case, where lincar queries were op-
timized, the alternative (GG'T) generator was used. In
the second casc, where star querics were optimized,
composite inners were disabled. The CPU time was
measured on an IBM RT/PC model 6150 with 4MB
of memory, running the AIX version 2.1.2 Operating
System. Note once again that the time shown is only
the time to enumerate feasible joins, and intentionally
excludes the time to construct and cvaluate actual plans
for the feasible joins.

100 %00
[]
180
-]
[
£
‘:m— Join Generator
E)
E 700- ® Default -
c -o Nternothe
O
3= 1504
‘g 117
£ 1004] ’,'.
3 i
L = -
.- -
ey - ——._,—’
.::_,—."——
0“— T T T T T ¥ T 1
1w 15 20 25 30 3B 40 43 5 S5 e 6 N

Number of Quontifiers

Figure S: Reduction of Enumeration Time by the Graph
Traversal Generation Method, for Linear Queries

Reduction of enumeration time for linear queries: Figure
5 shows that the Graph Traversal (GT) join generator
reduced the time to enumerate the same set of feasible
joins for lincar queries by a factor of 2.7 on average,
and by a factor of 3.5 (from 390.0 seconds to 111.7
seconds) for a query with 70 quantifiers, in particular.
In addition, the GT join generator handled larger que-
rics as efficiently as smaller queries, because its average
time to enumerate each feasible join was constant at
about 1.8 milliseconds for all queries, whereas the av-
erage time for the default method increased from 1.8
milliseconds (for N=10) to 6.8 milliseconds (for
N =70). The reason for these improvements is that
the GT join generator generates fewer pairs of potential
quantifier sets than the default method, so fewer must
be filtered. For instance, for the query with 70 quan-
tifiers, the GT generator generates only 139,265 pairs,
of which almost half (57,155) were fcasible joins, com-
pared with 2,542,470 pairs by the default method.

However, the GT join generator worked poorly for
star queries because the feasibility criterion requiring a
join predicate — which the GT generator exploits — is
vacuously satisfied in star queries for all pairs containing
two or more quantifiers. In fact, for star queries, the
number of potential joins coming from the GT join
generator actually increases, because every quantifier
set 1s put into entrics for every predicate in the modified
quantifier set table. For instance, for a star query with
13 quantificrs, the GT generator increased the number
of potential joins from 3,566,678 to 14,717,640, increas-
ing the total enumeration time from 164.0 seconds to
680.0 scconds. Tor this reason, the GT join generator
is invoked only for linear queries in Starburst. This
illustrates how adaptability of our join enumeration
algorithm for a particular query reduces the time to
enumerate feasible joins.

Reduction of cnumcration time for star queries: The
time to enumerate feasible joins for star queries was
reduced by disabling the enumeration of composite
inners, as shown in Figure 6. Note that a logarithmic
scale is used for the ordinate to show the exponential
increase of the time as the number of quantificrs in a
star query increases, and that all times less than 0.1
seconds are shown to be 0.1 scconds in the figure
because the resolution of the CPU clock was 0.1 sce-
onds. Recall that disabling the enumeration of com-
posite inners for star queres does not reduce the sct
of feasible joins, since one of the opcrands must be a
single quantifier anyway. For a star query with 13
quantifiers, the enumcration time was reduced by a
factor of 6.8 (from 164.0 seconds to 24.0 seconds), and

Conclusions

323

1
»n
1240
) o
4
I.
‘:u«n- Compssite inner ' o
E -® Enubled ./
= @ Divobled y R4
c R
o Y 4
. ’ ‘
ve+00 o
.." ”
3 o’
- e
i
$,
'E‘MH—"—"‘_' T T T T T T 1
2 3 4 5 [] 7] [1 1 12 13
Number of Quonfifiers

Figure 6: Reduction of Enumeration Time (on a Logarithmic
Scale) by Disabling Composite inners for Star Queries

this reduction factor increased as the number of quan-
tifiers increased.

Conclusions

Enumeration of the join sequences for a query is the
dominant factor in both the optimization time for the
query and the quality of resulting execution plans. To
generate better exccution plans, the join enumeration
algorithm in this paper cnlarges the set of feasible
plans. The resulting plans can contain composite in-
ners, and Cartesian products can occur at any place in
join sequences, not necessarily at the end. Furthermore,
by generalizing join predicates to include non-equality
predicates, implied predicates, and predicates on more
than two tables, the Starburst optimizer can generate
more cfficient plans that exploit these predicates as join
predicates, rather than having to resort to Cartesian
products.

Although enlarging the sct of feasible joins generally
makes the optimization time larger, we can balance
the number of feasible plans with the optimization
time by varying the number of feasible joins using our
paramelerized feasible join criteria. This kind of adapt-
ability is important so that some queries may be op-
timized cxtensively into an cxtremely cfficient plan,
and complex queries can be optimized at all.

Our cexperimental results on the number of feasible
joins show that we can find the optimal plan using
dynamic programming for a complex query referring

to as many as 100 tables if the shape of the query is
linear or almost lincar. For lincar querics, the number
of feasible joins can also be controlled by a paramc-
terized feasible join criterion on composite inners that
controls the maximum size of smaller quantificr sets
for a join. It can be set to any integer from one (no
composite inners) to the maximum, which is half of
the total number of quantifiers (full composite inners).
Although intuitively the linear shape secms to be the
most common shape of queries, it would be an inter-
esting future study to examine shapes of queries in rcal
applications, classify the shapes, and obtain cmpirical
formulas for typical shapes, because the shape of a
query largely determines the number of feasible joins
for the query and, thus, the practicality of optimizing
it.

We also measured the join enumeration time, and
found that adaptability in changing part of the enu-
meration method allows us to reduce the enumeration
time for queries of various shapes and sizes; there
seems to be no single join enumeration method that
works best for all queries. Using our Graph Traversal
join generator for linear queries, and disabling com-
posite inners for star queries, we reduced the time to
enumerate joins without reducing the number of re-
sulting feasible joins.

Currently, these adaptability mechanisms are controlled
by a user at a terminal. For instance, the user must
disable composite inners and select the alternative join
generation method based on the shape and size of the
query at hand. It should be straightforward to automate
these decisions in the future, so that the enumerator
itself decides the best options based on the submitted
query. We also hope to derive a repertoire of heuristic
join enumeration methods for very large queries with
hundreds of tables.

Acknowledgements

The authors wish to thank Laura Haas, John
McPherson, and Pat Selinger for reviewing an carlier
draft of this paper, significantly improving its readabil-
ity. The implementation of the join enumerator was
facilitated considerably by the well-designed QGM data
structures developed by Hamid Pirahesh, who gener-
ously explained and adapted them when necessary for
the join enumeration algorithm. We are grateful to
Laura Haas for her technical as well as managerial
guidance and support. Hanh Nguyen and George
Lapis provided invaluable programming support for

Bibliography

324

some of the empirical results. The work reported in
this paper was done while the primary author was on
assignment from IBM’s Tokyo Research Laboratory.
He wishes to express his thanks to the members of the
Starburst project for providing a stimulating and sup-
portive working cnvironment during that assignment
at the Almaden Research Center.

Bibliography
|GRA87} G. Gracfe., Rule-Based Query Optimiza-
tion in FExtensible Database Systems,
Computer Sciences Tech. Report #724

(PhD thesis) (Univ. of Wisconsin, Mad-

ison, WI, Nov. 1987).

[TIAARS] [.M. Ilaas, W.I'. Cody, S. Finkelstein,
J.C. Freytag, G. Lapis, B.G. Lindsay,
G.M. 1.ohman, K. Ono, and 11. Pirahesh.,
An Extensible Processor for an Ixtended

Relational Query Language, IBM Re-
search Report RJ6182, IBM Almaden Re-
search Center, San Jose, CA (Apr. 1988).

JTTAAS0] ..M. Haas, W. Chang, G.M. Lohman, J.
McPherson, P.F. Wilms, G. Lapis, B.
Lindsay, I1. Pirahesh, M. Carey, and E.
Shekita, Starburst Mid-I'light: As the
Dust Clears, IEEE Trans. on Knowledge
and Data Fngineering (March 1990). Also

available as IBM Rescarch Report

RJ7278, San Jose, CA, Jan. 1990.

[KOO80] R.P. Kooi, The Optimization of Querics

on Relational Databases, Report No.

CES-80-8, Case Western Reserve Univer-

sity, Cleveland, Ohio (Sept. 1980).

R. Krishnamurﬂ1y, H. Boral, and C.
Zaniolo, Optimization of Nonrecursive
Queries, Procs. of VI.DB (1984).

[KRIS4|

{1 EX:8R] M.K. Tec, J.C. Freytag, and G.M.
I.ohman, Implementing an Interpreter for
F'unctional Rules in a Query Optimizer,
Procs. of 14th VI.DB (1 ong Beach, August

1988) pp. 218—229.

G.M. Lohman, D. Daniels, L.M. Haas,
R. Kistler, and P.G. Selinger, Optimiza-
tion of Nested Queries in a Distributed

[LOII84|

[LOHSS)

[LOHR&6]

(LOTISS]

{1.O1189]

Relational Database, Procs. of 10th VLDB
(August 1984) pp. 403—415.

G.M. Lohman, C. Mohan, L.M. Ilaas,
B.G. Lindsay, P.G. Selinger, P.F. Wilms,
and D. Daniels, Query Processing in R*,
Query Processing in Database Systems
(Kim, Batory, & Reiner {(eds.), 1985) pp.
31—-47. Springer-Verlag, Heidelberg. Also
available as IBM Research Report
RJ4272, San Jose, CA, April 1984,

G.M. Lohman, Do Semantically Equiv-
alent SQL Queries Perform Differently?,
Procs. of IEEE Data Engineering (Febru-
ary 1986) pp. 225—226.

G.M. Lohman, Grammar-like FFunctional
Rules for Representing Query Optimiza-
tion Alternatives, Procs. of ACM-
SIGMOD (June 1988).

G.M. Lohman, Is Query Optimization a
‘Solved” Problem? (extended abstract),
Workshop on Database Query Optimiza-
tion (CSE Tech. Report 89-005) (Oregon
Graduate Center, Portland, OR, June
1989).

Bibliography

325

|[ONOSS]

[ROS82]

[SEL79]

[SWASS]

[SWABS9]

[WONT76)

K. Ono and G.M. Lohman, Extensible
FEnumeration of Feasible Joins for Rela-
tional Query Optimization, IBM Research
Report RJ6625 (San Jose, CA, Dec. 1989).

A. Rosenthal and D. Reiner, An Archi-
tecture For Query Optimization, Procs.
of ACM-SIGMOD (1982).

P.G. Selinger, M.M. Astrahan, D.D.
Chamberlin, R.A. Lorie, and T.G. Price,
Access Path Selection in a Relational Da-
tabase Management System, Procs. of
ACM-SIGMOD (1979).

A. Swami and A. Gupta, Optimization of
lLarge Join Queries, Procs. of ACM-
SIGMOD (June 1988).

A. Swami, Optimization of Large Join
Querics: Distributions of Query Plan
Costs, Tech. Report HPL-SAL-89-24
(Hewlett-Packard Labs, Palo Alto, CA,
June 1989).

II. Wong and K. Youssefi,, Decomposi-
tion -- a Strategy for Query Processing,
ACM Transactions on Database Systems
1,3 (September 1976) pp. 223—241.

