
Measuring the Complexity of Join Enumeration in Query Optimization

Kiyoshi Ono I, Guy M. Lehman
IRM Almaden Research Center

KS5/80 I, 650 Harry Road

San ,Josc, CA 95120

A b&act Introduction

Since relational database management systems typically
support only diadic join operators as primitive opera-
tions, a query optimizer must choose the “best” sc-

quence of two-way joins to achieve the N-way join of

tables requested by a query. The computational com-

plexity of this optimization process is dominated by

the number of such possible sequences that must bc

evaluated by the optimizer. This paper describes and
measures the performance of the Starburst join enu-

merator, which can parameterically adjust for each
query the space of join sequences that arc evaluated
by the optimizer to allow or disallow (I) composite

tables (i.e., tables that are themselves the result of a
join) as the inner operand of a join and (2) joins
between two tables having no join predicate linking
them (i.e., Cartesian products). To limit the size of
their optimizer’s search space, most earlier systems ex-
cludcd both of these types of plans, which can exccutc

significantly faster for some queries. Dy experimentally
varying the parameters of the Starburst join enumerator,
we have validated analytic formulas for the number of
join sequcnccs under a variety of conditions, and have
proven their dependence upon the “shape” of the query.
Specifically, ‘linear” queries, in which tables arc con-
nectcd by binary predicates in a straight lint, can hc
optimized in polynomial time. llence the dynamic

programming techniques of System R and R* can still

be used to optimize linear queries of as many as 100

tables in a reasonable amount of time!

A query optimizer in a relational DRMS translates

non-procedural queries into a pr0cedura.l plan for ex-
ecution, typically hy generating many alternative plans,
estimating the execution cost of each, and choosing
the plan having the lowest estimated cost. Increasing

this set offeasilile plans that it evaluates improves the

chances - but dots not guarantee! - that it will find

a bcttct plan, while increasing the (compile-time) cost
for it to optimize the query. A major challenge in the
design of a query optimizer is to ensure that the set of
feasible plans contains cflicient plans without making
the :set too big to he gcncratcd practically.

One of Ihe major decisions an optitnizer must make
is the order in which to join the tahlrs referenced in

the query. Since the join operation is implemented in
most systems as a diadic (2-way) operator, the optimizer
must generate plans that achieve N-way joins as a
scqucncc of 2-way joins. When joining more than a

few tables, the numhcr of such possible sequences is

the dominant factor in tlic number of altcmative plans:
Ri! diffcrcnt scqucnccs are possible for joining N tables.
I:vcn ~hcn dynamic programming is used, as Systcrn
R ISEl 791 and most current products do, thcorcticians

have, usrd the cxponcntinl worst case complexity to

argue that heuristic search methods should be used.
1 Iov:cvl:r, these rncthods cannot guarantee o~firnality

of their solution. :I? can dynamic programming.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distrihutetl fog

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Bahc

Endowment. To copy otherwise. or to republish. requires a fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

I:or ttii!: rcasoti, tii:rtiy existing optimizers use licuristics

\\ithiii c!):nnmic programming to limit the join sc-

qt~ericc:; cvalrtatctl. C)nc heuristic ctnploycd by System

I< ISI’. ,791 and IX* 11 ,OllK5l constructs only joins in
which :I single tahlc is join4 at each step with the

results o.,f previous joins. in a pipclincd fashion. This
gL>rlrratlr:; plans st~h :IS (((Tl I;4 ‘1‘2) r4 '1'3) M '1‘4),
:~ntl nvcbids sc~~llcd composite inntw (often referred to
as "!wshy trees” ICiRA87]), in which the inner table

I Current address: Tokyo Research 1 .ahoralnry I IIM Japan, I.lrJ. 5.10. Snnhnchn Chiyoda-ku Tokyo 102, JAPAN

Introduction
314

(the second operand of the join) is the result of a join

that must be materialized in memory or - if it is too

big - on disk. The heuristic saves this materialization,

but may exclude better plans for certain qucrics. As
an example, suppose a query with four large tables ‘1’1,
T2, 7’3, and T4 has two predicates Tl.Cl = ‘1’2.C2
and ‘1’3.C3 = T4.C4 that are extremely selective (rc-
strictive), and one T2.C6 = T4.C8 that is not. ‘I’hcn
the plan ((Tl W T2) Cd (T3 fX ‘1’4)) with a com-
posite inner (T3 W 1’4) is likely to be better than any
plan avoiding the composite inner, such as ((Tl 00
‘1’2) W T4) W T3, because the intermediate results
of the first plan would all be significantly smaller than
any in the second plan.

Another major heuristic employed by both System R
[%I,791 and INURES [WON761 always defers
Cartesian products as late in the join sequence as pos-
siblc, assuming that they result in large intermediate
tables because there is no join predicate that restricts
the result (and hence every row in one table is joined
with every row in the other table). Again, this heuristic
may exclude the optimal plan for certain queries that

can benefit from Cartesian products. For instance, if
the tables to be joined are small, and especially where

they contain only one tuplc each, a Cartesian product

is quite inexpensive. And its result may even have

columns forming a composite key for another, much

larger table to be accessed later, thus making the

Cartesian product more advantageous. As an example,
consider a query with three tables T 1, T2, tind T3, and
two prcdicatcs T1.C 1 = T2.C2 and T2.C3 = T3.C4.
The plan ((Tl W T3) Bl T2) is potentially the best
plan if Tl and ‘1’3 are very small (or made so by

additional single-table predicates) and there is a multi-
column index for ‘1’2 on columns C2 and C3, even

though it requires the Cartesian product of ‘1’1 and T3.
This will be illustrated concretely in Section 3.1.

To make matters worse, many existing query optimizers
severely restrict the class of prcdicntcs that qualify as
thcsc critical join predicates to be simple cquijoiris of
the form “CohtmnI = Cdumn2”, excluding any prctli-
cates that reference more than two tables or in\olvc

arithmetic on the column values. Conscqucntly, what

may appear to the user as a perfectly good join prcdicntc
is not treated as such by the system [1,01186], and a
suboptimal join sequence results. For example, for a
query with three tables 1’1, T2, and ‘1‘3, and two prcd-
icates Tl.Cl = ‘1’2.C2 and ‘1’2.C4 + 3 = ‘1‘3.C5, the

optirni;)cr treats the latter predicate in a plan such as

(‘1’1 M ‘1’2) I‘;d ‘1’3) as a restriction of the Cartesian

product between (Tl r>a T2) and ‘I’3, rather than as

a join predicate. ‘t’hus, in conjunction with the heuristic
that defers Cartesian products, any plan that might
join T2 and ‘1‘3 first is not considered, even if it dom-
inates all plans joining ‘I’1 and ‘I’2 first.

Another limitation in handling predicates is that many
systems do not derive impliedpredicates, which are not
specified but arc implied by the predicates given by the
user. For instance, two predicates Tl.Cl = T2.C2
and T2.C2 = ‘1‘3.C3 imply a new predicate, Tl.Cl =
‘1’3.(:3. Without this implied predicate, System R
would avoid joining ‘1’1 with 1’3 until either had been

joined with ‘1’2. A few systems have relaxed these

limitations somewhat. For example, commercial
INGRI3S can generate the join between Tl and 1’3 by
using an attribute equivahce c1u.r.r [KOO80], although
it does not apply the equivalence classes to more gen-
eral forms of prcdicatcs - such as T2.C2 = ‘1’3.C3 +
1 - to derive an impticd predicate 1’1 .Cl = T3.C3 +
1, bccausc join predicates are still restricted to be equal-

ity predicates between two columns.

Solrrtion: An aciaptahie search space

Although evaluating more plans may find a more ef-
ficient plan for cxccuting some queries, it also increases
the cost of optimizing a given query. Ilence it is
important to bc abtc to adjust the number of alternative
plans considered by the optimizer for specific applica-
tions and queries. For example, traditional batch-
oricntccl applications can totcratc longer optimization
times than can intcractivc applications, for which the
optimization time is as important as the execution

time. This adaptability (or customizability) of a query
optimizer is even more critical for non-traditional ap-
plications, such as decision support systems and expert
systems, and for qucrics gcncratcd automatically by a
user front end. ‘l‘hcsc applications tend to pose very
complex queries rcfcrring to more tables than traditional

applications /KR184, S\VA88]; without some of the
abol:c heuristics, it might bc infcasiblc to evaluate all

the possible join scqucnccs2.

I-vcn within a single 1ypc of application, certain queries
might tcncfit more from considering more alternatives

than others. A query whose best plan is expected to

2 Whether the optimizer can accurately estimate the number of rows rczu!tin;! fr)m sucl~ ccrmplcu cluerics is an orthogonal issue, and will
in any case not prevenj applications from posing these queries!

Introduction
315

run for 15 minutes is more likely to profit substantially
from an additional minute of optimization than is a

query estimated to execute in under a minute! ‘l‘he

space of alternative join sequences must thcrcfore be

adjustable for each query.

Previous wovli

Several authors have considered the benefits of increas-
ing or decreasing the space of possible join scquenccs
through which the optimizer searches. In the original

(University) INGRES, intermediate results were always
materialized so that the optimizer could assess the next
join to perform based upon the size of the composite
[WON76]. The commercial version of INGRIS allows
plans to contain composite inners, but does not rcquirc
them to do so [KOO80]. Rosenthal’s optimizer
[ROS82] also included plans with composite inncrs.
IIowever, so far as is known, none of these optimizers
permitted adjusting the search space used by the opti-
mizer. ‘I‘he rule-based optimizer generator built by
Graefe for EXODIJS was easily adapted to consider
composite inners by changing just a rule or two
]GRA87]. IIowever, the optimizer so generated was
then fixed and could not be adjusted for different que-
ries without generating a new optimizer. Graefe showed
that the number of plans considered by the I;,XODIJS
optimizer3 went up dramatically between 4 and 7 joins

per query, but then (surprisingly!) leveled off from 8
to 14. Graefe offered no explanation or analysis for
this apparent anomaly, nor any figures for queries ex-

ceeding 14 joins. IJsing the EXODI IS cost equations,

Graefe also showed that plans containing composite
inners had significantly improved (estimated) cost only

when the number of joins per query exceeded 10.
Since his composites were growing monotonically, tic
reasoned that “bushy trees” balanced the workload bct-

ter as the number of joins increased, allowing mom

joins on moderately-sized intermcdiatc results. Swami
[SWA89] measured the actual execution of a large num-

bcr of queries, allowing and disallowing both Cartesian
products and composite inners. IIis results showed

that a small percentage of the plans in the increased

search space are optimal.

Starburst’s Advances

I’he Starburst join enumerator improves upon thcsc
earlier efforts by parameterizing the space of altcrnntivc

join scqucnccs that the optimizer will consider for any
given query, to include or exclude consideration of
composite inncrs and Cartesian products. Thus, the

level of optimization effort can be tailored individually
to the query, either manually by the user or automat-
ically by the system. In addition, the modular design
of the Starburst join enumerator, described below, fa-
cilitates the addition or repiaccmcnt of feasibility criteria
for particular applications, exploits as join predicates
any implied prcdicatcs and predicates involving more
than two tables or arit hmctic, and places no algorithmic
limit. on the number of tables in a query. And unlike
many other optimizers that arc limited to simple
SE1 .E<3’l’-I’I~O.lIJ~T1’-.IOIN queries, the Starburst op-
timizer correctly processes queries involving nested
subqucries and correlation predicates]I 011841.

‘l‘hese cnhanccmrnts allowed us to measure the impact
of varying the optimizer’s search space, both upon the
optimization complexity and upon the resulting exe-
cution time. Our cxpcrimcntal results demonstrate
that the complexity of optimizing a query is largely
depcndent~ upon the .rAtipe qf rhc qrtery gm@, where
the shape of a query indicates how tables arc connected
with predicates, as well as the number of tables it

rcfcrcnccs. Somewhat surprisingly, the number of fca-
sible joins does not incrcasc exponentially with the
number of tables for certain commonly posed queries.
For example, for fincnr guerirs, in which tables arc
connected by binary prcdicatcs in a straight line, the
number of feasible joins is a polynomial of the number
of the tables, rvcn when composite inncrs arc allowed.

With the same feasibility criteria, the number incrcascs

to an exponential for stnr qrwics, in which a table at
the ccntcr is connrctcd by binary prcdicatcs to each of
the other surrounding tables, the same as for completely
connected query graphs.

‘l’hi: paper is organizrti as follows. I?rst, a brief over-
vicu of the design of Starburst plan optimization is
given, including a discussion of how its join cnumcrator
can bc adapted and cxtrndcd. ‘lhc rcmaindcr of the
paper prcscnts analysis and rxpcrimcntal results on the
nurnbcr of fcasiblc joins for queries containing up to
1 10 tables, as the scnrch space is varied using Starburst’s
pammctcrizcd join enumerator. WC show how the
shalt affects the number of fcasiblc joins, and how
this adaptability can help hnlancc the number of fcasiblc
joins and the practicality of optimizing qucrics that

must join that many tables.

3 Actually, the average size at the end of optimlzatinrl of the data Ctructurc, called hll!Sll, which contained plans

Introduction
316

Starburst’s Adaptable Join Enumeration

Overview of Starburst’s Plan Optimization

This paper deals only with the plan optimization phase
ofquery processing in Starburst, an extensible relational
database management system being prototyped at the
IBM Almadcn Research Center [IIhA90). An overview
of Starburst query processing can be found in llIAA88].
For a given query, plan optimization evaluates altcrna-
tive query execution plans (QEPs), and outputs for
execution the QEP with the least estimated execution
cost. ‘I’he input to plan optimization is a parsed query
that is stored in an internal database called the Query
Graph Model (QGM). QGM is an internal represcn-
tation of the semantics of an SQI, query, including its
various entities, such as tables, quantifiers, and predi-
cates, as well as the relationships among them. A
quantifier corresponds to a join variable in SQL and a
fupke variable in QtJI<I,, and represents a tuple drawn
from a table. The range-over relationship connects the
quantifier to the table from which the tuple is drawn.
Since a single table may be referenced in several dif-
ferent contexts within a single query, several quantifiers
may range over the same table.

The Starburst optimizer generates plans that construct
progressively larger sets of quantifiers (quantifier sets)
by joining pairs of two smaller quantifier sets, starting
initially from plans for single quantifiers. .This is the
same inductive (bottom-up) algorithm used in System
R and R*, and enables us at each step to incorporate
into the join plan the optimal plan for each of its
component quantifier sets (i.e. to USC dynamic pro-
gramming to prune dominated plan fragments), so that
we never have to reconstruct a smaller plan even if its
use in a bigger plan is different.

The plan optimizer in Starburst differs from System R
and R*, however, in that it consists of two scparatc
and highly extensible sub-components: the join enu-
merator, which enumerates join orders specifying the
order in which the query’s tables can be joined, and a
rule-based pZan generator (I ,OII88, 1 .fXfN], which gcn-
crates alternative QI’:l’s and evaluates their rstimatcd
cost. This separation is similar to that dcscrihcrl in
[ROS82). Within the overall bottom-up algorithm dc-
scribed above, the plan generator is first invoked intii-
vidually for each quantifier, in order to gcncmtc alter-
native QF,Ps that specify execution details such as the
access method, the columns to rctricvc, and any prcd-
icates that can be applied. Next, pairs of quantifirr
sets to be joined are enumerated by the join cnumcrator.

Starburst’s Adaptable .loin Enumeration
317

Iqbr eac!l .s&l pair ?f quanii/ier .rels, the join enumerator
invokes the plan generator to generate and evaluate
alternative Ql’l’s for that join, passing to it the quan-
tificr sets, any join predicates linking those operands,
and any limitations on the order of join (discussed
below). As with the plans for single tables, each job,
QEI’ returned by the plan generator specifies execution
details for one altcrnativc, such as an order and method
of joining the two quantifier sets, the columns that can
be projected out, the plan chosen for producing each
of the two inputs to the join, and any intermediate
operations (such as sorts) that must be inserted to
make the chosen join method work with the chosen
input plans [I ,OI !88].

The remainder of this paper will concentrate on the
top part of plan optimization, the join enumerator,
whose implementation is summarized next.

JoBt Emrmera tion

Starburst’s adaptahlc join enumerator utilizes a generate
and.fifter strategy, in which a supcrsct of feasible joins
are generated by a join generator, and infeasible ones
are removed by a sequence of independent filters en-
forcing feasibility criteria, which cati be of two kinds:
(1) mandatory, universally valid criteria, and (2) op-
tional, paramcterized heuristics for reducing the search
space. The optional criteria, such as the heuristics
deferring Cartesian products and avoiding composite
inners, arc paramctcrized so that either the user or the
system can control the number of feasible joins gener-
atcd during optimization. We chose this form of ex-
tensibility for the join enumerator over the rule-based
approach of the plan gcncrator because it was suffl-
cicntly flcxiblc to enumerate a wide range of potential
join sequences - including those containing composite
inncrs, Cartesian products, impticd predicates, and
predicates on more than two tables - while avoiding
the pcrformancc overhead of rule interpretation. Fur-
thermore, which join scqucnccs arc feasible is dcter-
mined by fundamental rrlational principles, not the
methods by Lvhich joins arc implcmcnted, and so arc
unlikcl>~ to bc affcctcd by other cxtcnsions to the sys-
tem (e.g., ncn access p:tths or join algorithms).

‘l‘hc join gcncrator gcnrmtcs progrcssivcly larger quan-
tificr sets, starting from sets containing only one quan-
tilicl, and stores information about quantifier sets re-
sulting from fcasihlc joins thus far in the quanti$er set
ta/S. l‘his process is analogous to mathematical in-
duction. l;or the N quantifiers in a query, the quantifier
set t&l;: is initialized with /V sets containing only one

quantifier. Now, at any point in the algorithm, suppose
we have constructed the optimal plan for ail fcasihlc
quantifier sets containiilg up to k - I quantifiers (k 2 2)

in the quantifier set table. We can obtain ail feasible
joins producing k quantifiers by considering every pair
of quantifier sets having i quantifiers and k - i quan-

tifiers (1 I i 5 floor (k / 2)).

A detailed description of the filters of the default fca-
sibility criteria is given in [ONOSX]. ‘I’he mandatory
filters are the same as for most systems:

Disjointncss: two quantifier sets to bc joined must
be disjoint4.

Dependency: no quantifiers in the oufer operand of

a join should “dcpcnd-on” any quantifiers in the
inner operand. ‘I’he “depend-on” relationship sum-
marizes any restrictions on the relative order in which

quantifiers must be instantiated, due to semantic

constructs such as correlation predicates, particularly
in nested subquerics [LOII84]. Dcpcnd-on rciation-
ships are derived from QGM, and their transitive
closure is calculated before optimization begins. If
neither of two given quantifier sets can he the outer,
or if a seemingly-feasible join produces a composite

that will never be joinable with any other quantifier

sets, the two sets cannot form a feasible join (see

[ON0881 for additional examples and details).

Pavameterized Control of the Number qf
Feasible Joins

The number of feasible joins can bc controiicd by
parameters that control the join generation and the

filters. There are currently two such parameters:

l Cartesian products: This parameter enables or dis-
ables a filter requiring at least one eligible join prcd-
icate that references quantifiers in the two quantifier
sets to be joined. A join predicate is dcfinctl in
Starburst in more general terms than those in Sygtcm
R lSEI,79] to be any multi-table prcdicafc. and in-

cludes imphd pr-cdicatcs, i.e. those predicates deriv-
ahlc from predicates given in the query. Starburst

dcrivcs and exploits implied predicates in a slightly

more general approach than does INURES [K0080];
for details see IONO881. lnclading implied predicates
may product bcttcr execution plans by allowing

more feasible joins.

l Composite inncrs: Enumeration of composite inncrs
can be controlled by a parameter
m~imlrmn~.~iz~_of~.rmn(ler_set to the join generator.
This parameter specifies the maximum size of the
smalicr quantifier set of each join: if it is set to I,
enumeration of composite inners is disabled”; by set-
ting it to some intcgcr j (I <j I floor(N / 2)), com-
posite inncrs whose size arc less than or equal to j

arc cnumcratcd. ‘I‘hc larger this parameter, the more

5ushy” any plan can bc. For example, when
r?laximlLtn-.~iz~-c~~.~)na~I~r-,~~l = 2, composite inners
can be constructed from individual quantifiers only;

when mnxirnttrn_.rizeof_snla~l~r-.~~t = floor(N/2),
any composite inner may itself be constructed of

composite inncrs.

Replacing Parts qf’ Join Emme~ation

‘I’he modular construction of the Starburst join cnu-

merator facilitates the wholesale replacement of many
of its pieces:

l R,rplacing the join gcncrator: The join generator dc-
scrihcd prcviousiy is a general-purpose generator,
and can bc rcplaccd with a special-purpose generator
for particular fcasibie join criteria and queries. In
fact, WC have impicmcnted an alternative generation
method, calicd the Graph Traversal (G7’) generator,
that gcneratcs only pairs of quantiticr sets satisfying
the heuristic requiring a join between the quantifier
sets. It dots this by maintaining, for each quantifier
set, a pointrr to each quantifier set with which it
shares at icast (WC common join prrdicatc. Although
cicriving these pointers rcq”ircs more work initially.

4 Note that this condition does not exclude joins of a table \v;lh itself, Ix!ca~~sc two accccsc~ lo lhr tnhlc are rrprcscnted as two different

quantifiers. Recursive joins are specifically dctcclod and excluded from this criterion.

5 This conflict occurs when there are some qtlanlificrs upon which the inner dcp:rtdc and nh~ch ~hcn~cIvcs depend upon some quantifiers

in the outer.

6 Actually, the join enumerator only enumerates pairs of qunnlificr Xl! , one of which always has a single quantifier if

maximum size of smaller-set is set to I. In conjunction with the dcprndor. relationship, Ihc plan generator then decides which quantifier - -.
set is the kner operand of the join in any particular allernatlvc plan.

Starburst’s Adaptable Join I’numcration
318

it reduces the time to enumerate feasible joins for
certain queries, as shown in Section 3.4.

l Replacing the join feasibility filters: Because each
join feasibility criterion is an independent Boolean
function, it is easy to change the function to another
Boolean function that decides whether it is advan-
tageous to join two quantifier sets. For instance, the
filter requiring join predicates could be replaced by
a new function that allows joins between any two
sets whose estimated number of tuplcs arc sufficiently
small, even though there might be no join predicates
between the sets.

l Replacing the entire enumeration algorithm: The cn-
tire enumeration method can bc replaced as a whole
without affecting the rest of the plan optimizer.
This extension might be beneficial or necessary for
handling very large queries with heuristic methods,
such as Iterative Improvement [SWA88] or the
Greedy Algorithm of the OS/2 Extended I’dition
Database Management System [1,011891.

Experimental Results

IJsing the Starburst adaptable join enumerator de-
scribed above to vary the search space, we measured
the complexity of enumerating the feasible joins for
several sample queries. Since we wanted to concentrate
on the primary factor in optimization cost, namely the
complexity of enumerating join scqucnccs, we tried to
minimize the impact of what join and access methods
were currently implemented in our testbed by first just

counting the number of feasible joins. The total opti-
mization time is approximately the product of the
number of feasible joins and the average time to gcn-
erate plans for a single feasible join. ‘I’he latter is the
time for the rule-based plan generator to construct
plans for each feasible join, which is an orthogonal
issue unrelated to the question at hand, depcndcnt
upon how many alternative access and join methods
are available to choose from, is not significantly affcctcd
by the characteristics of queries, and therefore is csscn-
tially constant for all joins. We also measured the
extent to which the Graph Traversal ((IT) join gcncr-
ator reduced the time to enumerate joins.

The number of joins evaluated for a query dcpcnds on
two classes of factors: 1) characteristics of the query,

such as the numhcr of quantifiers, the number of pred-
icatcs, and the shape of the query, indicating how the
quantifiers arc connected by the predicates, and 2) join
feasibility criteria, such as whether composite inners
arc allowed or not. In the following, unless otherwise
noted, the de$zuIt join fiasihility criterion is used, i.e.,
composite inncrs arc allowed and the existence of at
least one join predicate is required for each join.

Verifying the Gain qf Larger Search Spaces

Although often postulated as “well known” in the lit-
erature, examples from real applications that beneftt
from allowing Cartesian products or composite inners
arc rarely documcntcd. llcnce we first wanted to verify
empirically that increasing the search space of the join
cnumcrator to include Cartesian products and compos-
ite inncrs produced significantly bcttcr plans for some
qucrics.

Cartesian products

Database designers often encode wide columns in a
large table (e.g., encode “California” as “CA” or as an
integer), and put the encodings for each column in a
separate table. This was done in the following example
database and query, containing a large (iO,OOO-row)
table drawn from the actual online telephone directory
of IBM employees in the San Jose area. The query
uses a JXP’I‘S table of only 51 rows to encode the
department name to a department number, and a
NOl>J3 table of only 24 rows to encode the node
name to a node idcntilier’:

Database Schema:
SJOIR: LAST, FIRST, MIDDLE, PHONE,

OEPT, OFFICE, NOOEIO, USER10
OEPTS: OEPTIO, OEPTLOC, OEPTNAME
NODES: NOOEIO, NOOENAME

Index on SJOIR- NOOEIO, OEPT ----.L

Query:
;ibiCT last, first, dept, c.nodeid

nodes a, depts b, sjdir c
WHERE a.nodename = 'STL VM #14'
AND b.deptname = 'OBZ Optimiz.'
AND a.nodeid = c.nodeid
AND b.deptid = c.dept;

‘l‘hic (star-shaped) query was run on Starburst, allowing

7 Of course, these cardinalities do not reflect the actual numhcr of ~hcsc entities in the San .IOSC area!

Experimental Results
319

and disallowing Cartesian products, using 16 buffer
pages that were flushed before each cxccution. Only
one user was active. The best plan without Cartesian
products did approximately 8 titnes the work of the
best plan with Cartesian products, which formed the
Cartesian product of DEI’TS and NODI3S, then ac-
cessed SJDIR using the index:

l@xt qf Query Chavactefistics

Effect of the number of quantifiers:

Figure: 2: Effect of Numhcr of Quantifiers on Number of
Fcasihlc .loins, for linear and Star Queries

For a given set of join feasibility criteria, the number
of feasible joins is determined primarily by two factors:
the number of tables to join and the shape of the query
graph. Figure 1 shows the shapes of three rcprcsentativc
queries with 13 quantifiers and 12 binary prcdicatcs.
In the figure, a dot represents a quantifier, and a rec-

tangle represents a binary predicate. In the finenr qucrv,
all 13 quantifiers are connected consecutively with 12
predicates. In the star query, the quantifier at the
center is conncctcd to 12 surrounding quantiticrs.

The following two theorems give the relationship be-
tween query shape and number of quantifiers for the
extreme cases of linear and star-shaped queries, when
constructed using dynamic programming. Note that
thcsc calculations compute the number of feasible joins

(in which the outer and inner quantifier sets arc not
distinguished), i.c., the number of times in Starburst

that the plan generator is called; to obtain the numhcr
of join sequences, multiply by 2.

Linear

TIIIX)REM I (Complrxity of Linrar @cries with

Composite Inncrs): Ilsing dpnmic programming to op-

timize a linear qucty with N qunntiflcrs, nnd allowing

composite inncrs (bushy trees) , rkquircs eva~imting

(iv” - w / 6 fcnrihle joins.

PROOF: I;or a linear q~~ery with N quantifiers, each
of the K steps in the dynamic programming algorithm
(2 I K < N) inductively constructs joins of K consec-
utivc quantifiers from the best plan fragments contain-
ing I, 2, K - 1 quantifiers constructed by the previous
iterations. ‘I‘hrrc arc (N - K + 1) such quantifier sets
having K consccutivc quantifiers, and each of these can
bc c:mstructcd from (K - 1) different feasible joins, bc-
cause thcrc arc exactly (K - I) places to break the K-
quantifier subgraph into 2 smaller pieces to bc joined.
‘I’hcrcforc, the total number of fcasihlc joins is:

N

L
‘(K-- 1)(/V---K+ 1) =(,V”-~)/h

K 2

6 Branchee Star

% ~ “,‘:~~,,i’~,:’ #

Figure I: Examples of Query Shapes

(‘OROI.I,ARY 14 ((‘omplcxity of Linrar Qucrics with-

out Compositr Innrrs): 1 Ising dynnmic progrnmming to

optimize n M query with N qunnt@rs, and di.vaI-

lowing cnmpositc inncr.5 (hush]) trrcs) , requires cmlu-

ntinr: (N - V2 .fin.~ihf~ bins.

PROOF: ‘I‘hc proof follows from the above, noticing
that thcrc arc only 2 (instead of K-l) ways to break
the K-quantifier subgraph into fragments of size 1 and

K-l for 3 <K 5 N. and only 1 way when K = 2.

F,xperimental Results
320

THEOREM 2 (Complexity of Star Qucrics): [ising
a’ynamic programming to optimize a star auczv with N

quantifiers requires evaluating (N - I)2 - ,fcasihle

joins.

PROOF: For a star query with N quantifiers, a feasibic
quantifier set with K quantifiers is obtained by choosing
(K - 1) quantifiers from the (N - 1) quantifiers sur-
rounding the center (or “huh”) quantifier, which must
be included in any join (hence, allowing composite
inners or not mak;.sfo difference in the complexity!).
Flence, there are feasible quantifier sets, each of
which can be c z con, I-’ ru ted from (K - 1) different joins.
Therefore, the total number of feasible joins is:

&K- l)(;I ;) = (N- 1)2N-2 IGgure 3: FXcct nf Query Shape on Numher of Joins

We are intcrcsted in star queries because, f%r a given
number of quantijiers and predicales, star queries have
worst case complexity. One can see this intuitively by
moving any edge between any node j and the hub of
the star so that it connects to any non-hub node k
instead, producing a star having one fewer edge incident
upon its hub, plus edge (k,j). Now there is only one
way (via k) to join j to the rest of the aiterrcd graph,
yielding fewer choices than when j was linked directly
to the hub.

The analytic formulas of the above theorems were then
verified by using Starburst to optimize queries that
varied each factor individually. Since the number of
feasible joins for linear and star queries arc the minimum
and maximum numbers, rcspectivcly, of feasible joins
for a query with a given number of quantifiers, WC
show in Figure 2 the number of joins, on a logarithmic
scale, as a function of the number of quantifiers, for
both linear and star queries. The lines denote the
number of joins predicted by Theorems 1 and 2, and
the dots and squares indicate experimental confirmation
of this analysis using Starburst’s adaptabic join enu-
merator. IJxactly as predicted, the number of joins for
star queries increases exponentially, while the number
for linear queries increases poiynomiaiiy, as the number
of quantifiers increases. From this, WC can conciudc
that our join enumeration algorithm, as wcii as any
other enumeration algorithm based upon dynamic pro-
gramming, can remain practical for linear queries much
larger than currently allowed by most relational
DBMSs, but becomes impractical for large star qucrics.

Effect of query shape: To quantify the relationship
between complexity and query shape, we hcid the num-

her of quantifiers and predicates constant at 13 and 12,
rcspcctively, and just varied the shape of the query.
Figure 3 shows how fast the number of feasible joins
increased as the shape of the queries varied from linear
to star, even though ail queries have 13 quantifiers and
I2 binary predicates. The abscissa measures the number
of branches in the query graph, varying from 1 branch
(a iincar query) to 12 of them (a stdr query).

&@xt qf Feasihlity Criteria

For a given query, varying the join enumerator’s pa-
ramoters can drastically alter the number of joins con-
sidcrcd, as demonstrated by the following experiments.

Effcrt of composite inncrs for linear queries: Figure 4
shows how the number of feasible joins for linear que-
rics increases as the maximum size of the smaller quan-
tifier set. In the figure, the total number of quantifiers
in a query is parametcrized by N, and the abscissa
rcprcscnts Starburst’s composite inner parameter,
r?lnwirntan_sizeof_smalr-.~~I, the maximum number
of quantifiers allowed in the smaller quantifier set. This
paramctcr may vary from one, whcrc no composite
inncrs arc allowctl, to the floor of N / 2, whcrc composite
inncrs of any sizr arc allowed. Again, the iincs in the
figure arc obtained by our combinatorial analysis, and
the :;quarcs indicate cxpcrimcntai confirmation of this
analysi: by executing the query on Starburst. As pre-
dictcd, the obscrvcd number of joins without composite
inncrs is sibmificantiy smalicr than that with composite
inners. Note that the measured number of feasible
joins for 110 quantifiers Icithout composite inners was
icss than the number of joins for SO quantifiers wilh
compo:itc inncrs. ‘i’hcrcfore, WC can optitnize a larger

Experimental Results
321

N=llO

:

.-..-..-.

..fi
,,-..L”

L,,_,,_.. -..-..-.

lE-

:’ RY
-.-------

------u=gO

,y, ., .~.. N = 70

!/,.’

2
1,’ /.-.*’ -.-.* NZ60

= ill
f

: p'
7

l
3

a,/’ *‘----N N = 30

5
II 6.

#I

Z1E ;

0 6 10 15 P363636404550
Yaxlmum Slzm of Smallmr Puonttflrr Sat

Figure 4: FAT&t af Compasite Inner on Feasible Joins, fur

Linear Query

linear query in the same amount of time as that for
smaller linear queries, if we disable composite inncrs
for the larger query. This is precisely what System R
and R* did for aN queries, but, in Starburst, our pa-
rameterized adaptability gives the user control over
how many joins are enumerated. With Starburst’s flcx-
ible enumeration method, we can set the maximum
number of quantifiers in the smaller set to any integer

between one and N / 2 to control the number of feasible

joins.

Effect of composite inners for star queries: One of the
operands of a feasible join for a star query must he a
single quantifier, because two sets of more than two

quantifiers will share the quantifier at the ccntcr, thus
violating the disjointness feasibility criterion for those

two quantifier sets. Therefore, the number of feasible

joins for a star query is the same rcgardlcss of whcthcr
enumeration of composite inners are enabled or dis-

abled.

Effect of Cartesian products: When Cartesian products
between two quantifier sets arc allowed, rcgardlcss of

the existence of a join predicate bctwccn the sets, thr
number of feasible joins for a query arc the samr,

independent of the shape of the query. The numbrr
of feasible joins for this case is interesting hccausc it
gives the maximum number of feasible joins for the
query. For a query with N quantifiers, the numhcr is
(3N- 2N+’ + 1) / 2 wit/z composite inncrs, and

N2N-’ - N(N + 1) / 2 without composite inncrs. It is
also interesting to note that the number of fcnsiblc
joins for a query with N quantifiers al/owing (‘artcsian
products but not composite inncrs is the same as the

number, of fcasihlc joins for a star query with N + 1

quantifiers, less N(N + 1) / 2. This cab be explained

intuitively as follows: for a star query with N + 1 quan-

tificrs, any surrounding quantifier is connected to any
othrr quantifier through the quantifier at the center.

‘I’hcrefore, the N surrounding quantifiers become fully
connected after quantifier sets containing two quanti-
ficrs arc formed. The number of ways to make the

adds the minor term N(N + 1) / 2, which is
This result further confirms our use of star
worst case when join predicates are rcquircd.

CPU Time! . fos Enurnevntion

‘I‘he time to cnumcrate joins can be reduced substan-
tially by reducing the number of potential joins coming
from the join gcncrntor. IGgurc 5 and Figure 6 show
that exploiting the algorithm’s adaptability by changing
the join gcncration part of the algorithm reduced the
time to cnumerntc feasible joins. In both cases, the
number of potential joins coming from the join gen-
crater was. reduced without affecting the set of feasible
joins. In the first case, where linear queries were op-
timized, the altcrnativc (<ST) generator was used. In

the second cast, where star qucrics were optimized,
composite inners wcrc disabled. ‘I‘hc 017 time was

mcasurcd on an IRM RT/I’C model 6150 with 4MD
of memory, running the AIX version 2.1.2 Operating

System. Note once again that the time shown is only
the time to enumerate fcasiblc joins, and intentionally
cxcludcs the time to construct and evaluate actual plans
for the fcasiblc joins.

0 1 --p--f

-_--
,._..’

,_...‘.
- -

.,..... _---
-*

, , , , , I I 1

10 l6!XiZ525 35 40 4666666665 10
Numbw of OuantIfl~m

Figurr 5: Rcductinn of fkumeration ‘I’imc by the Graph

‘I’r:rversal Generation Method, for I,incar Queries

Experitncntal Results
322

Reduction of enumeration time for linear queries: Figure

5 shows that the Graph Traversal (GT) join generator
reduced the time to enumerate the same set of feasible
joins for linear queries by a factor of 2.7 on average,
and by a factor of 3.5 (from 390.0 seconds to 111.7
seconds) for a query with 70 quantifiers, in particular.
In addition, the GT join generator handled larger que-
ries as efficiently as smaller queries, because its average
time to enumerate each feasible join was constant at
about 1.8 milliseconds for ail queries, whereas the av-
erage time for the default method increased from 1.8
milliseconds (for N = 10) to 6.8 milliseconds (for
N = 70). The reason for these improvements is that
the GT join generator generates fewer pairs of potential
quantifier sets than the default method, so fewer must
be filtered. J:or instance, for the query with 70 quan-
tifiers, the GT generator generates only 139,265 pairs,
of which almost half (57,155) were feasible joins, com-
pared with 2,542,470 pairs by the default method.

JJowever, the GT join generator worked poorly for
star queries because the feasibility criterion requiring a
join predicate - which the GT generator exploits - is
vacuously satisfied in star queries for ail pairs containing
two or more quantifiers. In fact, for star queries, the
number of potential joins coming from the GT join
gcncrator actually increases, because every quantifier
set is put into entries for every predicate in the modified
quantifier set table. For instance, for a star query with
13 quantifiers, the GT generator increased the number
of potential joins from 3,566,678 to 14,7 17,640, increas-
ing the total enumeration time from 164.0 seconds to
680.0 seconds. For this reason, the GT join generator
is invoked only for linear queries in Starburst. This
illustrates how adaptability of our join enumeration
algorithm for a particular query rcduccs the time to
rnumcrate feasible joins.

Reduction of enumeration time for star queries: ‘I‘he
time to enumerate fcasibie joins for star queries was
reduced by disabling the enumeration of composite
inncrs, as shown in Jiigurc 6. Note that a logariliunic
scale is used for the ordinate to show the cxponcntini
increase of the time as the number of quantifiers in a
star query increases, and that ail times less than 0.1
seconds are shown to be 0.1 seconds in the ligurc
because the resolution of the CI’JJ clock was 0. I scc-
ends. Recall that disabling the cnumcration of rom-
posite inners for star queries does not rcducc the set
of feasible joins, since one of the operands must bc a
single quantifier anyway. For a star query with 13
quantifiers, the enumeration time was rcduccd by a
factor of 6.8 (from 164.0 seconds to 24.0 seconds), and

1E-QI

1 3 4 !I D 7 I D IO 11 13 13

Numbu of Ouantlfhm

Fignrc 6: Reduction of Ennmeration Time (on a Logarithmic

Scale) hy Disabling <‘omposite inners for Star Queries

this reduction factor increased as the number of quan-
tifiers increased.

Conclusions

Enutneration of the join sequences for a query is the
dominant factor in both the optimization time for the
query and the quality of resulting execution plans. To
generate better execution plans, the join enumeration
algorithm in this paper cniargcs the set of feasible
plans. The resulting plans can contain composite in-
ncrs, and Cartesian products can occur at any place in
join scquenccs, not ncccssariiy at the end. Furthermore,
by gcncraiizing join predicates to include non-equality
predicates, impiicd predicates, and predicates on more
than two tabics, the Starburst optimizer can generate
more cfficicnt plans that exploit these predicates as join
predicates, rather than having to resort to Cartesian
product,s.

Although enlarging fhc set of fcasibic joins gcncrally
mnkcs the optimization tirnc larger, we can balance
the number of fcasiblc plans with the optimization
time by varying the number of feasible joins using our
pnrame~crizcci fcasibic join rritcria. ‘J‘his kind of adapt-
ability is important so that some queries may be op-
tiinircd cxtcnsivrly into an cxtrcmciy cfficicnt plan,
and complex qucncs can bc optimized at ail.

Our cxpcrimcntal rrsults on the number of feasibic
joins show that ivc can find the optimal plan using
dynamic programming for a coinpicx query referring

Conclusions

to as many as 100 tables if the shape of the query is
linear or almost linear. For linear qucrics, lhc number
of feasible joins can also bc controlled hy a paramc-

terized feasible join criterion on composite inncrs that
controls the maximum size of smaller quantifirr sets
for a join. It can be set to any intcgcr from one (no
composite inners) to the maximum, which is half of
the total number of quantifiers (full composite inncrs).
Although intuitively the linear shape seems to bc the
most common shape of queries, it would be an inter-
esting future study to examine shapes of queries in real
applications, classify the shapes, and obtain empirical
formulas for typical shapes, because the shape of a
query largely determines the number of feasible joins
for the query and, thus, the practicality of optimizing
it.

We also measured the join enumeration time, and
found that adaptability in changing part of the enu-
meration method allows us to reduce the enumeration
time for queries of various shapes and sizes; thcrc

seems to be no single join enumeration method that
works best for all queries. Using our Graph Traversal
join generator for linear queries, and disabling com-
posite inners for star queries, we reduced the time to
enumerate joins without reducing the number of rc-
suiting feasible joins.

Currently, these adaptability mechanisms are controlled
by a user at a terminal. For instance, the user must
disable composite inners and select the alternative join
generation method based on the shape and size of the
query at hand. It should be straightforward to automate
these decisions in the future, so that the enumerator
itself decides the best options based on the submitted
query. We also hope to derive a repertoire of heuristic
join enumeration methods for very large queries with
hundreds of tables.

Acknowledgements

The authors wish to thank Laura Ilaas, John
McPherson, and Pat Selinger for reviewing an earlier
draft of this paper, significantly improving its readabil-
ity. The implementation of the join enumerator was
facilitated considerably by the well-designed QGM data
structures develoPed by I-larnid Pirahesh, who gcncr-
ously explained and adapted them when necessary for
the join enumeration algorithm. We are grateful to
Laura IIaas for her technical as well as managerial
guidance and support. IIanh Nguyen and George
Lapis provided invaluable programming support for

som:: of the empirical results. ‘I’hc work reported in
this paper was done while the primary author was on
assignment from IlIM’s Tokyo Research I aboratory.
IIc wishes to cxprcss his thanks to the members of the
Starhurst project for providing a stimulating and sup-
portivc working environment during that assignment
at the Ahnndcn Research Center.

Bibliography

lGRA871

IrIAA88l

11 IAA901

IKOO8OL

lKR184I

(I,OII84]

6. Gracfc., RuleBased Query Optimiza-
tion in Extensible Database Systems,
Comptcr Sciences Tech. Report # 724
(P/r11 thesis) (IJniv. of Wisconsin, Mad-
ison, WI, Nov. 1987).

I,.M. 1 lass, W.1;. Cody, S. IGnkclstein,
J.C. Frcytag, <I. Lapis, D.G. I,indsay,
G.M. I ohman, K. Ono, and II. Pirahesh.,
An Iixtcnsible Processor for an Extended
Relational Query language, I/l&f Re-
search Repor- R.M/82, Illhi AImad~n Re-
.rearch Chlcr, San Jose, CA (Apr. 1988).

I ,.M. liaas, W. Chang, G.M. Lehman, J.
McPherson, P.F. Wilms, G. Lapis, D.
I ,indsay, II. Pirahesh, M. Carey, and E.
Shekita, Starburst Mid-Plight: As the
Dust Clears, IEEE 7’rans. on Knowledge
and Data hgineering (March 1990). Also
available as IBM Research Report
R.17278, San Jose, CA, Jan. 1990.

R.P. Kooi, The Optimization of Queries
on Relational Databases, Report No.
CES-80-8, Case Western Reserve liniver-
sity, Cleveland, Ohio (Sept. 1980).

R. Krishnamurthy, II. Roral, and C.
Zaniolo, Optimization of Nonrecursive
Qurrics, I’rocs. of VZ,D/J (1984).

M.K. I ,ec, .J.C. Frcytag, and G.M.
I ,ohman, Implementing an Interprctcr for
Iunctional Rules in a Query Optimizer,
Procs. of 14111 VIJIII (I ,ong Reach, August
1988) pp. 218-229.

G.M. I ohman, I). Daniels, L,.M. IIaas,
R. Kistler, and P.G. Selinger, Optimiza-
tion of Nested Queries in a Distributed

Bibliography
324

IL(1H85]

Relational Database, Procs. of 10th VLDB
(August 1984) pp. 403-415.

G.M. Lohrnan, C. Mohan, L.M. IJaas,
B.G. Lindsay, P.G. Selinger, PP. Wilms,
and D. Daniels, Query Processing in R+,
Query Processing in Database Systems

(Kim, Batory, & Reiner (eds.), 1985) pp.
3 l-47. Springer-Verlag, I Ieidelberg. Also
available as IBM Research Report
RJ4272, San Jose, CA, April 1984.

[J-,01186] G.M. L&man, Do Semantically Equiv-
alent SQL Queries Perform Differently?,
Procs. of IEEL Data Engineering (Pcbru-
ary 1986) pp. 225-226.

[J/01188] G.M. Lehman, Grammar-like J;unctional
Rules for Representing Query Optimiza-
tion Alternatives, Procs. of ACM-

SZGMOn (June 1988).

[I ,01189] G.M. Lohman, Is Query Optimization a
‘Solved’ Problem? (extended abstract),
Workshop on Database Query Optimiza-

tion (CSB Tech. Report 89-005) (Oregon
Graduate Center, Portland, OR, June
1989).

(ON0881 K. Ono and G.M. Lehman, Extensible
Enumeration of Feasible Joins for Rela-
tional Query Optimization, IBM Research
Report R.16625 (San Jose, CA, Dec. 1989).

[ROS82] A. Rosenthal and D. Reiner, An Archi-
tecture For Query Optimization, Procs.
of ACM-SIGMOD (1982).

[Sf:J,791 P.G. Selinger, M.M. Astrahan, D.D.
Chamberlin, R.A. Lorie, and T.G. Price,
Access Path Selection in a Relational Da-
tabase Management System, Procs. of
ACM-sIr;MOD (1979).

[SWASR] A. Swami and A. Gupta, Optimization of
Jargc Join Queries, Procs. of ACM-
SIGMOD (June 1988).

ISWA891 A. Swami, Optimization of Large Join
Queries: JXstributions of Query Plan
costs, Tech. Report HPL-SAL-89-24
(JJcwlett-Packard Labs, Palo Alto, CA,
June 1989).

(WON76] IT. Wong and K. Youssefi,, Decomposi-
tion -- a Strategy for Query Processing,
ACM Transactions on Database Systems
I,3 (September 1976) pp. 223-241.

Bibliography
325

