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Measuring the Distance between Merge Trees

Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov, Gunther H. Weber, and

Bernd Hamann

Abstract Merge trees represent the topology of scalar functions. To assess the topo-

logical similarity of functions, one can compare their merge trees. To do so, one

needs a notion of a distance between merge trees, which we define. We provide

examples of using our merge tree distance and compare this new measure to other

ways used to characterize topological similarity (bottleneck distance for persistence

diagrams) and numerical difference (L∞-norm of the difference between functions).
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Scalar Functions Persistence Diagrams

Fig. 1 Consider two scalar functions, where one is a slightly shifted version of the other. Compar-

ing them directly, e.g., via the L∞ norm, results in a large difference. Their persistence diagrams

are the same, thus capturing the topological similarity of these functions.

1 Introduction

Many aspects of physical phenomena are described and modeled by scalar func-

tions. Computational and experimental capabilities allow us to approximate scalar

functions at increasing levels of detail and resolution. This fact makes it necessary

to analyze and also compare such function automatically, when possible, and to in-

clude more abstract analysis methods. Topological methods, based on the character-

ization of a scalar function via its critical point behavior, are gaining in importance,

and we were therefore motivated to investigate the feasibility of comparing scalar

functions using their topological similarity. Computational chemistry, physics and

climate sciences are just a few applications where our ideas presented here should

be valuable.

We address the generic problem of comparing the topology of scalar functions.

Fig. 1 demonstrates this problem. The figure shows slightly shifted versions of the

same function, colored red and blue. Commonly used analytical distances (e.g.,

norms of the difference) between these functions would result in a non-zero value,

failing to highlight the fact that they have the same sub-level set topology.

One well-established distance that expresses the topological similarity in the

above example is the bottleneck distance between persistence diagrams, introduced

by Cohen-Steiner et al. [8]. Computing the bottleneck distance for the example in

Fig. 1 results in zero. Originally motivated by the shape matching problem, where

the goal is to find how similar shapes are based on similarity of their topology, the

bottleneck distance also has an important property — robustness to noise; see Fig. 2.

However, the bottleneck distance does not incorporate sub-level set nesting in-

formation, often necessary for analysis. Fig. 3 shows two functions that differ by the

nesting of the maximum m. The bottleneck distance between the corresponding per-

sistence diagrams is again zero. Nevertheless, the corresponding merge trees cannot

be matched exactly, hinting at a positive difference.

To resolve this problem, we introduce a new definition of the distance between

merge trees. This distance resembles the bottleneck distance between the persistence

diagrams of sub-level sets of the function, but it also respects the nesting relationship
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Fig. 2 Consider two close scalar functions on the left, where one contains additional noise. If

we construct their persistence diagrams and find the bottleneck distance (which corresponds to

the longest black line segment between paired points on the right), the result is small, correctly

reflecting the closeness of the functions. In fact, the difference is the same as the level of the noise,

which in this example is small.

Scalar Functions Merge Trees Persistence Diagrams

m m m m

Fig. 3 Consider two scalar functions on the left. The bottleneck distance between persistence di-

agrams on the right equals zero, as points of two diagrams overlap. However, comparing the cor-

responding merge trees reveals a difference, since we cannot match them exactly. This difference

highlights existence of additional nesting information in merge trees. Quantifying it is the main

goal of this work.

between sub-level sets. Furthermore, the proposed distance implicitly distinguishes

the noise in the data, similar to the bottleneck distance, resulting in robust measure-

ments resilient to perturbations of the input. This property is crucial when working

with scientific data, where noise is a serious problem for any analysis.

The main contributions of this chapter are: a definition and an algorithm for com-

puting the distance between merge trees; computation of the number of branch de-

compositions of the merge tree; an experimental comparison between the proposed

distance, the bottleneck distance, and the L∞ norm on analytical and real-world data

sets.

Section 2 presents related work and background in scalar field topology, persis-

tent homology, graph theory, and shape matching. Section 3 provides the defini-

tion and the algorithm for computing the distance between merge trees. Section 4

demonstrates several use cases and presents the results of comparing the distance

between merge trees to the bottleneck distance between persistence diagrams, as

well as the L∞ norm. Finally, Section 5 summarizes the work and suggests ideas for

future work.



4 Kenes Beketayev et al.

2 Related Work

2.1 Scalar Field Topology

Scalar field topology characterizes data by topological changes of its level sets.

Given a smooth, real-valued function without degenerate critical points, level set

topology changes only at isolated critical points [16]. Several structures relate criti-

cal points to each other.

The contour tree [5, 7] and the Reeb graph [21, 20] track the level sets of the

function by recording their births (at minima), merges or splits (at saddles), and

deaths (at maxima). The contour tree is a special case of the Reeb graph, as the

latter permits loops in the graph to handle holes in the domain. Both structures are

used in a variety of high-dimensional scalar field visualization techniques [23, 18].

Alternatively, the Morse–Smale complex [10, 9] segments the function into the

regions of uniform gradient flow and encodes geometric information. It is also used

for analysis of high-dimensional scalar functions [12].

We focus on a structure called merge tree (sometimes called a barrier tree [11,

13]), as it tracks the evolution of sub-/super-level sets, while still being related to

the level-set topology through critical points [16].

2.2 Persistent Homology

The concept of homology in algebraic topology offers an approach to studying the

topology of the sub-level sets. We refer to Munkres [17] for the detailed introduction

to homology. Informally, it describes the cycles in a topological space: the number

of components, loops, voids, and so on. We are only interested in 0–dimensional

cycles, i.e., the connected components.

Persistent homology tracks changes to the connected components in sub-level

sets of a scalar function. We say that a component is born in the sub-level set

f−1(−∞,b] when its homology class does not exist in any sub-level set f−1(−∞,b−
ε]. This class dies in the sub-level set f−1(∞,d] if its homology class merges with

another class that exists in a sub-level set f−1(−∞,b′] with b′ < b. When a com-

ponent is born at b and dies at d, we record a pair (b,d) in the (0–dimensional)

persistence diagram of the function f , denoted D( f ). For technical reasons, we add

to D( f ) infinitely many copies of every point (a,a) on the diagonal.

Persistence diagrams reflect the importance of topological features of the func-

tion: the larger the difference d−b of any point, the more we would have to change

the function to eliminate the underlying feature. Thus, persistence diagrams let us

distinguish between real features in the data and noise.

In Cohen-Steiner et al. [8], the authors prove the stability of persistence diagrams

with respect to the bottleneck distance, dB(D( f ),D(g)). This distance is defined as

the infimum over all bijections, γ : D( f )→ D(g), of the largest distance between the



Measuring the Distance between Merge Trees 5

corresponding points,

dB(D( f ),D(g)) = inf
γ

sup
u∈D( f )

||u− γ(u)||∞.

Their result guarantees that the bottleneck distance is bounded by the infinity norm

between functions:

dB(D( f ),D(g))≤ ‖ f −g‖∞.

We use the bottleneck distance between persistence diagrams as a comparison

baseline for the distance between merge trees.

2.3 Distance between Graphs

Graph theory offers several approaches for comparing graphs and defining a notion

of a distance between them.

A common approach for measuring a distance between graphs is based on an

edit distance. It is computed as a number of edit operations (add, delete, and swap

in the case of a labeled graph) required to match two graphs [6], or, in a spe-

cial case, trees [4]. The edit distance focuses on finding an isomorphism between

graphs/subgraphs, while for merge trees we can have two isomorphic trees with a

positive distance (see the example in Fig. 3).

Alternatively, in a specific case of rooted trees, one can consider the generalized

tree alignment distance [15], which, in addition to the edit distance, considers the

minimization of the sum of distances between labeled end-points of any edge in

trees. However, it is not clear how to adapt this distance definition for our purposes.

2.4 Using Topology of Real Functions for Shape Matching

The field of shape matching offers several methods related to our work. Generally,

these methods focus on developing topological descriptors by treating a shape as a

manifold, defining some real function on that manifold, and computing topological

properties of the function. The selection of the particular function usually depends

on which specific topological and shape properties of interest [2].

While the majority of the mentioned descriptors are not directly related to our

work, two topological descriptors use similar approaches in defining a similarity

measure. One is called a multiresultion Reeb graph, proposed by Hilaga et al. [14],

which encodes nesting information into nodes of a Reeb graph for different hierar-

chy resolutions. Here, the hierarchy is defined by the simplification of Reeb graph.

Another descriptor is based on an extended Reeb graph (ERG), proposed by Biasotti

et al. [3]. It starts by computing the ERG of the underlying shape, which is basically

a Reeb graph with encoded quotient spaces in its vertices. It couples various geo-
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metric attributes with the ERG, resulting in an informative topological descriptor. In

both cases, similarity of shapes is measured by applying a specialized graph match-

ing (based on embedded/coupled information) to descriptors. However, we focus

only on the sub-level set topology information, and design a matching algorithm,

tailored specifically for this case.

Thomas and Natarajan [22] focus on symmetry discovery in a scalar function

based on its contour tree. The authors develop a similarity measure between sub-

trees of the contour tree, which in some regards is similar to our proposed measure.

However, they consider a single pre-processed branch decomposition, and focus on

discovering symmetry in a sole function.

3 Defining a Distance Between Merge Trees

In this section, we provide a formal definition of the distance between merge trees

and provide an algorithm (with optimizations) for computing it. In short, to com-

pute the distance between two merge trees, we consider all branch decompositions

of both trees and try to find a pair that minimizes the matching cost between them.

Additionally, we provide the details of computing the number of branch decompo-

sitions of a merge tree, used in complexity analysis of our algorithm.

3.1 Definition

Let K be a simplicial complex; let f : K → R be a continuous piecewise-linear

function, defined on the vertices and interpolated in the interior of the simplices.

Furthermore, assume all vertices have unique function values; in practice, we can

simulate this by breaking ties lexicographically.

Let Tf be a merge tree of the function f ; every vertex of K is mapped to a vertex

in the merge tree. Every vertex of the merge tree has a degree of either one, two, or

more, corresponding to a minimum, a regular point, or a merge saddle. Our defini-

tion works for higher-dimensional saddles (degenerate critical points) as well, and

they need explicit consideration only in the complexity analysis of the algorithm

(Sect. 3.4). A merge tree with purged regular vertices is called reduced.

A branch decomposition B [19] of a reduced merge tree T is a pairing of all

minima and saddles such that for each pair there exists at least one descending path

from the saddle to the minimum. We consider a rooted tree representation R of the

branch decomposition B, such that the rooted tree representation R is obtained by

translating each branch b = (m,s) ∈ B into a vertex v ∈ R, where m and s are mini-

mum and saddle that form the branch b. The edges of the rooted tree representation

describe parent–child relationships between branches, see Fig. 4.
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Fig. 4 Merge trees Tf (top) and Tg (bottom), all their possible branch decompositions, and corre-

sponding rooted tree representations. Root branches are colored red, demonstrating the mapping

of branches to vertices.

Given two merge trees, Tf and Tg, consider all their possible branch decompo-

sitions, BTf
= {R

f
1 , ...,R

f
k} and BTg = {R

g
1, ...,R

g
k}, respectively; see Fig. 4.We need

two auxiliary definitions to describe the matching of rooted branch decompositions.

Definition 1 (Matching cost). The cost of matching two vertices u = (mu,su) ∈ R
f
i

and v = (mv,sv) ∈ R
g
j is the maximum of the absolute function value difference of

their corresponding elements,

mc(u,v) = max(|mu −mv|, |su − sv|).

Definition 2 (Removal cost). The cost of removing a vertex u = (mu,su) ∈ R f ,g is

rc(u) = |mu − su|/2.

We say that a partition (M f ,E f ) of the vertices of a rooted branch decomposition

R f is valid, if the subgraph induced by the vertices M f is a tree. Here, the vertices

M f are mapped vertices, while the vertices E f are reduced vertices. We say that an

isomorphism of two rooted trees preserves order when it maps children of a vertex

in one tree to the children of its image in the other tree.

Definition 3 (ε-Similarity). Two rooted branch decompositions R f ,Rg are ε-similar,

if we can find two valid decompositions (M f ,E f ) and (Mg,Eg) of their vertices, to-

gether with an order-preserving isomorphism γ between the trees induced by the

vertices M f and Mg, such that the distance between each matched pair of vertices

and the maximum cost for reduced vertices does not exceed ε:

max
u∈M f

mc(u,γ(u)) ≤ ε (1)

max
u∈E f ∪Eg

rc(u) ≤ ε (2)
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The smallest epsilon, for which the above two inequalities hold, denoted εmin(R
f
i ,R

g
j).

Definition 4 (Distance between merge trees). The distance between two merge

trees Tf ,Tg is:

dM(Tf ,Tg) = min
R

f
i ∈BTf

,R
g
j∈BTg

(εmin(R
f
i ,R

g
j)).

3.2 Distance Computation

To compute the distance dM , we design an algorithm that is based on Definition 4.

In particular, our algorithm constructs all possible pairs of branch decompositions,

computes εmin for each pair, and selects the minimum among them.

We use a recursive construction of the branch decompositions of a merge tree.

The main operation is to pair a given saddle, one by one, with each minimum in its

subtree. We start by pairing the highest saddle sr with all minima in a tree. Each

pair acts as a root branch (sr,mi) in the recursive operation. For each child saddle s j

on the root branch, we recursively repeat the pairing until all the saddle–minimum

pairs are fixed, producing a unique branch decomposition bi.

To compute εmin(R
f
i ,R

g
j), we design a function ISEPSSIMILAR(ε,R f

i ,R
g
j) that,

for a predefined ε , determines whether two branch decompositions match. We start

by setting ε to a high value — for example, the maximum of the amplitudes of the

two functions — and perform a binary search to determine εmin.

The function ISEPSSIMILAR is the core of the algorithm. It works by matching

the vertices and the edges at each level of the tree. We recall that each vertex u =
(mu,su)∈ ri,v = (mv,sv)∈ r j is a minimum-saddle pair. There are only two vertices

at the root levels of R
f
i and R

g
j , so we determine whether their endpoints can be

matched, i.e., max(|mu −mv|, |su − sv|) ≤ ε . If not, ISEPSSIMILAR returns false.

Otherwise, we consider all the child vertices (see Fig. 5). Since there are several

potential matches, we compute a bipartite graph between the child vertices such that

the edge between a pair of children u ∈ R
f
i ,v ∈ R

g
j exists if and only if they can be

matched within given ε , and ISEPSSIMILAR returns true for their subtrees. We also

add ghost vertices for each vertex in the rooted branch decomposition when it can

be reduced within ε . When there exists a perfect matching in the bipartite graph,

the function returns true; otherwise, it returns false. If one or both of the current

pair of children has children of their own, we recursively call ISEPSSIMILAR. The

matching is perfect when there exists an edge cover such that its edges are incident

to all the non-ghost vertices and do not share any of them.
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Fig. 5 Top: For the merge trees Tf ,Tg, the smallest manually identifiable difference is shown as red

segments. Bottom: The first iteration of the ISEPSSIMILAR function chooses (s4,m1) and (s8,m6)
as root branches (depicted in green).

3.3 Optimized Algorithm with Memoization

The naive algorithm described above has exponential complexity. Indeed, there ex-

ist O(2N−1) branch decompositions for a tree with N extrema (see Sect. 3.4 for

details). Consequently, comparing all branch decompositions of two trees to each

other would require a total of O(2N+M−2) operations, where N,M are the numbers

of extrema in each tree. This computational cost makes it infeasible to compare

even small trees using this method. To alleviate this problem, we have designed an
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optimization, which reduces the number of explicitly considered branch decompo-

sitions, thus improving the complexity of the function ISEPSSIMILAR from expo-

nential to polynomial. (Details are given at the end of this section.)

We demonstrate the optimized version of the function ISEPSSIMILAR using the

example in Fig. 5. The function starts by iterating over all possible root branches

(s4,mi), i ∈ 1 . . .5, and (s8,m j), j ∈ 6 . . .10. Once the pair of root branches is fixed

as (s4,m1) and (s8,m6), the function is called recursively for every possible pairing

of child subtrees in each tree. Fixing the root branches leads to two sets of child sub-

trees, {Ss4−s3
,Ss2−m3

,Ss1−m2
} and {Ss8−m10

,Ss7−m9
,Ss5−s6

}. A subtree (e.g., Ss4−s3
)

needs two vertices to be uniquely identified, a child saddle (e.g., s4), and the imme-

diate child vertex (e.g., s3) that can be either a saddle or minimum.

A key observation allowing us to reduce cost is that each pair of subtrees, for

which the function is called recursively, also appears in subsequent iterations over

other root branches. For example, the pair (Ss4−s3
,Ss8−s10

) that appears in the first

iteration that chooses (s4,m1) and (s8,m6) as root branches, also reappears in 11

subsequent iterations, e.g., in the iteration that chooses (s4,m2) and (s8,m7) as root

branches. Therefore, it is sufficient to compute the matching for subtrees Ss4
,Ss8

once, and reuse the result in subsequent iterations. More generally, for any subtree

pair Ssi−schildo f i
∈ Tf and Ss j−schildo f j

∈ Tg, one of the three possibilities is recorded

in the array match[Ssi−schildo f i
][Ss j−schildo f j

]: not yet compared – (0), comparison re-

turned false – (1), or true – (2).

Furthermore, the same pair of subtrees also reappears in other binary search it-

erations as well, i.e., when the function ISEPSSIMILAR is called with other values

of ε . However, the reuse of previous results in this case is selective. If two subtrees

were matched for some ε , they would stay matched only if the value of ε stayed the

same or gets larger. If it gets smaller, we will have to recompute the matching result.

And correspondingly, if two subtrees were unmatchable for some ε , they would stay

unmatchable, only if the value of ε was the same or lower. However, if the value gets

higher, we will have to recompute the matching result.

Returning to the example in Fig. 5, consider the case where ε = 5. The first pair

of root branches (s4,m1) and (s8,m6) (depicted in green in Fig. 5) do match, as

| f (s4)− g(s8)| = 0 < 5 and | f (m1)− g(m6)| = 2 < 5, hence the function proceeds

to their child subtrees. The first pair Ss4−s3
,Ss8−m10

is matchable, thus there is an

edge in the bipartite graph (similar to the naive algorithm) between the nodes that

correspond to these subtrees. In fact, from nine pairs, only pairs Ss2−m3
,Ss8−m10

and

Ss4−s3
,Ss7−m9

are unmatchable, thus there exists a perfect matching in the bipartite

graph, and two merge trees are ε-similar for ε = 5. Consequently, we continue the

search with decreasing value of ε , until it converges to ε = 2, in which case for

the root branches (s4,m1) and (s8,m6), the only pairs of subtrees that match are

(Ss4
,Ss8

), (Ss2
,Ss7

), (Ss1
,Ss5

). No lower value of ε would lead to the ε-similarity of

the merge trees, making the value εmin = 2 the distance between merge trees.

Such optimization reduces the run time complexity from exponential to polyno-

mial. Indeed, the function ISEPSSIMILAR performs N ·M iterations over the root

branches, multiplied by the sum of processing nc f
·ncg explicit pairs of subtrees, and

the complexity of a maximal matching algorithm (nc f
+ ncg) · nc f

· ncg . The latter
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complexity dominates the former term. Hence, assuming that a look-up operation of

previous results is done in a constant time via memoization, the resulting run time

complexity of the function ISEPSSIMILAR is O(N2M2(N +M)). This complexity

is multiplied by the number of iterations of the binary search algorithm, which we

found to be moderate, given a reasonable selection of the search range and the pre-

cision. The worst-case memory complexity of the optimized algorithm is O(N ·M),
which is computationally less prohibitive than its run time complexity.

3.4 The Number of Branch Decompositions of a Merge Tree

We provide the details of computing the number of branch decompositions of the

merge tree, used for the naive algorithm complexity analysis in the beginning of

Sect. 3.3. We calculate the number of branch decompositions P(N) for a merge tree

with N minima in two steps. First, we compute the number P(N) for the case when

the merge tree is binary, in which case the tree has maximum possible number of

saddles. Second, we show that for fewer saddles the number P(N) decreases, leading

to the worst case P(N) = 2N−1 branch decompositions for any merge tree.

Theorem 1. The number of branch decompositions of the binary merge tree with N

minima equals P(N) = 2N−1.

Proof. For any saddle s, the number of branch decompositions in its subtree is Ps =
2 ·Pc1

·Pc2
, where c1 and c2 are the children of the saddle s. Indeed, if the saddle s is

paired with a minimum in a subtree of child c1, then for each such pairing we have

all the possible branch decompositions of a subtree of child c2, resulting in Pc1
·Pc2

possibilities. Symmetrically, for the child c2 we have Pc2
·Pc1

possibilities.

Using this fact we construct a proof by induction:

• For the base case of N = 1, the number of branch decompositions is one. On the

other hand, P(1) = 21−1 = 1. Hence, the formula holds.

• We assume that for all N = 1, . . . ,k the formula P(N) = 2N−1 holds true.

• Now let’s consider the case with N = k + 1, for which we have to prove that

P(k+1) = 2k. For the root saddle r of the tree with k+1 minima, we remember

that Pr = 2 ·Pc1
·Pc2

. If to denote the number of minima in the subtree of the child

c1 as i ∈ [1,k], with k− i+1 denoting the number of minima in the subtree of the

child c2, we can expand P(k+1) = 2 ·P(i) ·P(k− i+1). Since both i and k− i+1

are not greater than k, we can substitute P(i) and P(k− i+1) in accordance with

assumptions for N = 1, . . . ,k:

P(k+1) = 2 ·P(i) ·P(k− i+1)

= 2 ·2i−1 ·2k−i+1−1

= 2 ·2i−1+k−i+1−1 = 2k.
⊓⊔
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Fig. 6 Splitting the higher-degree saddle (with degree > 2) always creates more branch decompo-

sitions. The saddle s has three branch decompositions, while after splitting it into two saddles s1

and s2, we get four branch decompositions.

We consider the case with a number of saddles less than N − 1, i.e., the merge

tree has saddles with degree higher than two. The number of minima N remains

the same, while some of the saddles have more than two children. Any saddle of

degree d > 2, can be split into d − 1 saddles of degree two, such that the structure

of the tree changes only around the selected saddle, see Fig. 6. Such split leads

to 2d−1 possible branch decompositions instead of the d for the selected saddle.

Since d > 2, the inequality 2d−1 > d holds true, which means having degree-two

saddles always leads to more branch decompositions. At the extreme, if all saddles

become degree-two saddles, we obtain the binary merge tree, for which we already

computed number of branch decompositions as 2N−1.

4 Results

In this section we demonstrate the use of the proposed distance dM . First, we apply

it to simple data sets, observing its difference from the bottleneck distance and the

L∞ norm, as it captures additional information. We consider performance data sets

obtained for a ray tracing program, and demonstrate how the proposed distance

correctly captures the similarity of data sets.

4.1 Analytical Functions

We consider a set of simple functions that have a fixed number of maxima. Each

function is constructed by creating a random set of maxima generators. For each

maximum generator, function values decrease as the distance from the source grows,

which results in a corresponding peak. The upper envelope of such peaks results in

the required function.

We generate three bivariate (or 2D) functions f1, f2, f3, and three trivariate (or

3D) functions f4, f5, f6. We set the number of maxima to five, to keep them simple

for visual exploration; see Fig. 7. The resulting distances, presented in Table 1, lead

to two interesting observations.
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Fig. 7 Analytical functions. Rendering with embedded merge tree of three 2D functions f1, f2, f3

(first row), and three 3D functions f4, f5, f6 (second row).

Table 1 Resulting distances from Fig. 7.

Metric f 2D
1 f 2D

2 f 2D
3 f 3D

4 f 3D
5 f 3D

6

dB 4.525 8.647 7 3.011 2.598 4.031

dM 8.398 8.664 7 5.031 2.604 4.833

L∞ 67.561 43.015 65.956 29.586 20.495 22.632

Tf1 Tf2 Tf3

Fig. 8 Simplified view of nesting of merge trees for functions f1, f2, f3. Unmatchable red edges

cause the non-zero distance.

For the 2D functions, the bottleneck distance dB for functions f1, f2 is about two

times lower than for functions f1, f3 and f2, f3, suggesting relative closeness of the

first pair. However, the distance between merge trees dM suggests that all three func-

tions are equally different. Closer investigation confirms this hypothesis. In Fig. 8,

we see simplified depictions of merge trees having equally different nesting.

For the 3D functions, visually the function f5 seems different from the other two.

This fact is again captured by the distance between merge trees, as the resulting dis-

tance dM is almost two times lower for functions f4, f6, than from them to function

f5. The bottleneck distance again fails to capture this distinction.
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Fig. 9 Performance data. dB = 0.027,dM = 0.027,L∞ = 0.13. The difference is small relative to

the value range of functions (about 2.7%), implying little influence of the ray sampling option on

the overall performance of the algorithm.

4.2 Tuning a Ray Tracing Algorithm

We consider the problem of tuning a ray tracing algorithm on a multicore shared-

memory system from the study by Bethel and Howison [1]. The authors explored

various tuning parameters and their effect on the performance of the algorithm,

with a focus on three parameters: the work block width {1,2, . . . ,512} and height

{1,2, . . . ,512}, and the concurrency level {1,2,4,8}.

We generated two data sets with the same parameter space, but slightly different

algorithm, based on the selection of a ray sampling method, which is either based

on nearest neighbor or trilinear approximation. For each option, the performance of

the algorithm (in terms of running time) was recorded.

In this example, one is interested in studying optimal run configurations that

correspond to low run times of the algorithm. Fig. 9 shows two data sets using

isosurfaces, such that isovalues are the same for both data sets. The similarity of

data sets, implying that the selection of the chosen ray sampling method does not

significantly influence the performance of the algorithm. This fact is confirmed by

the resulting distance. The measured distances allow us to capture the similarity,

regardless of shifted optimal configurations (minima) and the noise.

5 Conclusions

We presented a novel distance between merge trees, including the definition and the

algorithm. We demonstrated the use of the proposed distance for several data sets.

We plan to perform a theoretical investigation of the proposed distance, including

the concerns about its stability. We also plan to explore the use of the proposed

distance for error analysis in the context of approximated scalar functions.
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