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Abstract

Objectives Generally speaking, crime is, fortunately, a rare event. As far as modelling is
concerned, this sparsity of data means that traditional measures to quantify concentration
are not appropriate when applied to crime suffered by a population. Our objective is to
develop a new technique to measure the concentration of crime which takes into account
its low frequency of occurrence and its high degree of concentration in such a way that this
measure is comparable over time and over different populations.

Methods This article derives an estimate of the distribution of crime suffered by a pop-
ulation based on a mixture model and then evaluates a new and standardised measurement
of the concentration of the rates of suffering a crime based on that distribution.

Results The new measure is successfully applied to the incidence of robbery of a person in
Mexico and is able to correctly quantify the concentration crime in such a way that is
comparable between different regions and can be tracked over different time periods.
Conclusions The risk of suffering a crime is not uniformly distributed across a popula-
tion. There are certain groups which are statistically immune to suffering crime but there
are also groups which suffer chronic victimisation. This measure improves our under-
standing of how patterns of crime can be quantified allowing us to determine if a
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prevention policy results in a crime reduction rather than target displacement. The method
may have applications beyond crime science.

Keywords Crime concentration - Mixture model - Victimisation profile - Chronic
victimisation - Crime immunity - Lorenz curve - Gini coefficient

Introduction

The risk of suffering a crime is not uniformly distributed over a region (Johnson 2010) and
nor is it uniformly distributed across members of the same community (Grove et al. 2012),
with some regions and some population groups more affected by crime than others (Farrell
2015). In the case of burglary, for example, it has been shown that houses in deprived areas
suffer a higher risk of being the target of a crime, whilst other regions appear to be immune
to that type of crime (Bowers et al. 2005). Equally, whether it is determined by race, age,
income or many other factors, it has been found that the risk of suffering a robbery of a
person is not uniformly distributed across all the members of the same population. Thus,
just as there are places in which crime is concentrated (Freeman 1996), there are popu-
lation groups with a higher risk of suffering a crime (Farrell and Pease 1993).

As a result of this risk heterogeneity, crime is highly concentrated in certain population
groups. For example, a landmark analysis of victimisation data from the British Crime
Survey showed that 2% of people who suffer the highest number of personal crimes, in
fact, suffered 66% of the total reported for that type of crime (Pease 1998). This has often
been attributed to the attractiveness of a place or a person (Brantingham and Brantingham
2010), the interaction in space and time of motivated offenders with suitable targets and the
absence of any deterrence system, such as a police, a security guardian or perhaps even
ordinary citizens (Hindelang et al. 1978; Cohen and Felson 1979) or based on some other
theory (Stark 1987). But, how far away from a homogeneous distribution is the crime
suffered by the population in a region and how can we quantify it? Does the distribution of
crime, as well as its concentration, change over time? These questions are highly relevant
for decision-makers interested in designing policies to reduce the levels of crime.

Measuring the number of crimes that a person suffers, quantifying its concentration and
understanding the reasons why one person is victimised more frequently than others, has a
counterpart in the number of crimes committed by potential offenders. Relevant questions
include, how many criminals are there in a region? And if crime increases, does it mean
that there are more criminals, or that a few individuals have become more active? These
questions have been of interest to criminologists for years. For example, Wolfgang’s
classic study of a birth cohort in Philadelphia found that the majority of the population had
no contact with the police, but at the same time there was a small group (less than 7% of
the population) that was responsible for the majority of the crimes committed by that
cohort (Wolfgang et al. 1987). Also, by considering families and not only the individuals
within a family, it was shown that less than 5% of the families account for more than 30%
of the arrests (Farrington et al. 2001). Thus, crime is highly concentrated in the regions in
which it is executed, in the population that suffers it and in the people that commit it.

Unfortunately, current measures for the concentration of crime do not take into account
the relative rarity of these events and so do not provide particularly useful information that
would be necessary for policy design and decision-making. This results in misleading
measures that underestimate crime concentration and which are not comparable over time,

@ Springer



J Quant Criminol (2018) 34:775-803 777

potentially leading to vulnerable groups being wrongly targeted while others are
overlooked.

The traditional and most frequent measurement of the concentration of crime suffered
by a population is provided by the average number of crimes suffered by a single victim.
Formally, we consider a population of size N and let V be the number of people within the
population who suffered a particular type of crime during a given time period (usually one
year). The victimisation rate (v), also known as the prevalence, is then defined as

o v
victimisationrate = v = . (1)

We can interpret this by saying that if we take a person at random, then v is the probability
that they suffered that type of crime of during the time period being considered. Now, let C
be the number of times that a particular type of crime was committed on the whole
population during the same time period. The crime rate (c), also known as incidence, is
defined by

C
crimerate = ¢ = —, (2)
N

thus, c is defined as the proportion of the number of crimes to the population size.

Both, the crime rate ¢ and the victimisation rate v are usually reported with regards to a
population of 100,000 individuals and, based on these two measures, a frequently used
metric is the concentration of crime (H), given by the ratio of the crime rate c¢ to the
victimisation rate v, that is

crime rate c C

H=—_——— _—--_, (3)
victimisationrate v V

Assuming that each crime is assigned to a single victim, H > 1, and so H is a measure

which can be interpreted as the average number of crimes suffered by the victims of that

type of crime. H has been used, for example, to measure the concentration of burglary,

referred to in that case as the burglary concentration (Tseloni et al. 2004).

Although H is frequently used to measure the concentration of crime, it has severe flaws
because it does not help us determine if crime is, in fact, more or less concentrated. To
illustrate this, here we use a simple example to show that it is a poor summary of the crime
suffered. Consider two populations, A and B, both with a population size of N = 100, 000,
and both suffering the same crime rate of ¢ = 0.1 and the same victimisation rate of
v = 0.05 so that in both populations we have the same number of victims (V = 5,000) and
experience the same number of crimes (C = 10,000), hence we obtain the same con-
centration of crime Hy = Hp = 2 (where the subscript denotes the population to which it is
applied) . However, consider the artificial situation in which for the population A each
victim suffered exactly two crimes, but in the population B there were 4,000 victims
suffering a single crime each and 1,000 victims suffering 6 crimes each. Clearly this single
measure of Hy = Hg =2 does not help us differentiate the construction of these two
distinct scenarios where, in the population B, the 1% of the population who suffers the
highest amount of crime actually suffers 60% of the crime which is a completely different
behaviour than that observed in the population A.

The level in which crime is concentrated should have an impact on the design of
policies. For example, if we know that 1% of the population suffers 60% of the crime, as in
the example case of the population B, then efforts might be better directed towards that
particular population group, both in terms of crime prevention and victim support. Hence, a
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better quantitative approach needs to be developed to measure the level in which crime is
concentrated.

Measures of variance, such as the coefficient of variation or the standard deviation,
might be applied directly to the number of crimes suffered by each person or might be
applied to the number of crimes suffered only by the actual victims. Results in the first case
tend to be highly dependant on the crime rate ¢ and results in the second case ignore
whether 50 or 95% of the population did not suffer any crime. Other measurements of the
level of concentration of crime have been proposed, for example, by taking into account
the time between repeat offences (Short et al. 2009). However, this results in a mea-
surement that cannot be compared between different regions, over different time periods or
types of crime, due to the different crime intensities. A more detailed discussion on the
issues the most frequently used measures can be found in the Appendix of ESM.

In the specific case of a measure of spatial concentration of crime, a common technique
is to consider the street segments in which the crime was committed (including, sometimes,
the intersections) and then to determine the amount of crime concentrated in the top 5% of
the segments Andresen et al. (2016) or any other top P%. A similar type of metric is often
used when the number of crimes suffered by the most victimised people is reported (Pease
and Ignatans 2016; Pease 1998), or the most criminal individuals (Wolfgang et al. 1987) or
families (Farrington et al. 2001). This metric, however, has some severe issues, such as the
lack of agreement on the percentage that gets reported (Fox and Tracy 1988); the metric
might not be comparable between different cities (Hipp and Kim 2016); it might be the
result of a certain degree of randomness (Levin et al. 2016) and it does not work as an
adequate metric when the data is extremely sparse. Consider, for example, the number of
street segments of The Hague and the number of sexual offences registered by the police
between 2007 and 2009 in that city (Bernasco and Steenbeek 2016). The extremely low
frequency of this type of crime (only 430 cases) distributed over the large number of street
segments (14,375 segments) means that taking the top 5% of streets is not even properly
defined since, at most, 3% of the segments concentrate all the crimes. Taking the top 5%
street segments, victims or criminals is a weak way of measuring crime concentration
based on an artificial cutoff point which is blind, not only to the other 95% of the
observations, but also, it is blind to the distribution inside the 5% being considered, which
is extremely relevant when the events are rare, as crime usually is.

An adequate metric to determine the statistical dispersion of crime is to consider the
Lorenz curve and its corresponding Gini coefficient G (Fox and Tracy 1988) since it is a
global metric that does not depend on an artificial cutoff point. In the artificial case that one
individual suffers all the crime or all the events are concentrated on one street segment, or
in the real case of the sexual offences in The Hague, the Gini coefficient gives a value close
to one, indicating a high degree of concentration. However, there is still a major drawback
in using the Gini coefficient directly from the number of crimes suffered by the population.
The Gini coefficient is a valid metric with distinct values in the context where a variable,
such as income, is distributed across most of the members of the population, but in the case
of crime, the majority of the population suffers zero crimes and so the coefficient, com-
puted directly from the number of crimes suffered by the population (or the number of
crimes on each street segment) overestimates the level of concentration (Bernasco and
Steenbeek 2016). In the previous example of populations A and B, the Gini coefficient of
the number of crimes is fairly similar given by G4 = 0.95 and Gg = 0.97 respectively,
which reveals that crime is highly concentrated, but nothing more, providing little addi-
tional information to distinguish between the concentration observed in A and B.
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When there are more individuals than crimes, as it is almost always the case, or more
street segments than crimes, as it sometimes occurs, then an arithmetic adjustment to the
Gini coefficient has been proposed (Bernasco and Steenbeek 2016) which compares
against a case of maximum equality (termed the generalised Gini coefficient denoted as
G). Although the generalised Gini coefficient is a clever way to correct the traditional Gini
coefficient, it still has one major drawback. Consider two populations, B and C, where, as
before, population B has a size of N = 100,000 individuals, and has 4,000 victims suf-
fering a single crime each and 1,000 victims suffering 6 crimes each while the population
Chas only N = 10, 000 individuals (that is only 10% of the size of B) where the population
C has (just like population B) 4,000 victims suffering a single crime each and 1,000 victims
suffering 6 crimes each. We observe that populations B and C suffer crime under a
different pattern and have a completely different concentration of crime since 95% of the
population of B did not suffer any crime, whereas 50% of the C population suffered at least
one crime. However, in this artificial but illustrative example, B and C have the same line
of “maximal equality” and the same corrected Gini coefficient Gy = G- = 0.7, precisely
highlighting the main weakness of this arithmetic correction of the Gini coefficient: in the
case of the population B, it corrects the traditional Gini coefficient by ignoring 90% of the
population, but in the case of the population C it takes all of its individuals into account. In
fact, any population with 4,000 victims suffering a single crime each and 1,000 victims
suffering 6 crimes each, with a population size of N > 10,000 gives the same corrected
Gini coefficient G’ = 0.7 regardless of whether the population has only 10,000 inhabitants
or millions. Thus, the arithmetic correction to the Gini coefficient creates another issue that
the original Gini coefficient did not have (since Gg = 0.97 and G¢ = 0.7).

Very recent developments, responding perhaps to issues raised by the law of crime
concentration (Weisburd 2015), have highlighted the need for more specific tools in the
field of crime science. Here, we construct a new measure of the concentration of crime
rates suffered by a population which overcomes problems encountered when using other
measures and descriptive statistics as metrics. This new measure can be used to compare
different regions and it is also tractable across various time periods and therefore it can be
used for purposes such as policy design, policing and crime prevention (Laycock and
Farrell 2003).

A Probabilistic Approach to the Crime and Victimisation Rates

Assuming that the number of crimes suffered by the individuals within a population is
independent and that suffering a crime does not affect the probability of a person being a
victim in the future, then the number of crimes suffered by the i-th individual during a
period of time (usually a year) might be modelled as a Poisson distribution with rate 4; > 0.
Although other distributions could be used for modelling the random component of suf-
fering crime, such as a Negative Binomial (Park and Eck 2013), the Poisson distribution
allows to focus on a single parameter (the rate A), and so it is frequently used in crime
science (Maltz 1996).

What is relevant about this approach for the distribution of the crime rates is that it is
probabilistic: even when a person has a rate of 4; > 0 of suffering a crime, the probability
that he or she does not suffer any crime is not negligible, given by exp(—4;), therefore,
even when a person did not suffer a crime, it does not necessarily mean that he or she has a
crime rate of 4 = 0, and vice versa, if a person suffers many crimes, it could be the result of
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a small rate and bad luck. By focusing on the rates 4; rather than on the observed frequency
of crime, we consider not only the population who actually suffered crime, but also the
people who did not suffer any crime but were lucky, in the sense that given that their rate is
greater than zero they were fortunate not to suffer any crime.

The assumptions required to model the crime counts as a Poisson distribution (inde-
pendence of the crime suffered by individuals, independence between past and future
victimisation and a constant rate) are quite problematic, especially since we know that past
victimisation actually helps predict future victimisation (Tseloni and Pease 2003), crime
suffered by individuals might be strongly correlated, for example, if individuals live nearby
and finally, certain types of crime are more likely to occur at specific times of the day.
These assumptions are thus too strong and hence the results are not really useful if we use
the Poisson distribution to forecasting the number of crimes that a person will suffer, for
instance. However, the objective here is to construct a global metric of the concentration of
crime and so these assumptions, although apparently unrealistic, help us measure the
concentration based on the least possible aggregated observations, usually from large
populations but for which the number of crimes suffered is quite small. Other scenarios are
discussed later in this paper, where different assumptions are made.

Since we consider a distinct crime rate for each individual, here the number A; refers to
the individual crime rate and it represents the rate or “speed” at which the i-th individual
suffers crime. The reasons why individuals experience different rates have been considered
in depth by others and explanations go from individual attributes, which cause an increase
in the attractiveness, to a boost on the probability of suffering a second crime after
suffering a first one (Johnson et al. 2009). We referred to this as a population which suffers
an inhomogeneous distribution of crime.'

The causal mechanism that leads to a population suffering an inhomogeneous rate has
been studied before (Tseloni and Pease 2004), but the focus of this study is the distribution
itself, so here we assume different individual rates, without going any further into this
topic. Considering a probabilistic approach means that the actual number of crimes suf-
fered by the i-th individual is an observation from the Poisson distribution, so we can
analyse the individual crime rates rather than the observations. The expected number of
crimes suffered by the population is simply the sum of the rates 4;, from which

C= i iy 4)

which also means that the average rate 2 is the population crime rate ¢ = C /N.

The probability that the i-th person actually suffers a crime is (1 — exp(—/%;)), which
means that the number of victims V follows a Poisson-Binomial distribution with
parameters p; = 1 — exp(—4;), with i € 1,2,...,N. The Poisson-Binomial distribution is
closely related to a Binomial distribution, in which each observation is allowed to have a
different success probability (Chen and Liu 1997). The expected number of victims is

V= Zp,- =N - Zexp(—ii). (5)
i=1 i=1

Since the number of crimes C and the number of victims V from the population is a fixed
(observed) number, we thus have three restrictions for the rates /;:

' We use the term “inhomogeneous” here rather than “heterogeneous” for consistency purposes with other
applications of a Poisson process.
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Restrictionl :  4; >0 forall i =1,2,...,N.
Restrictionll : SV i=C.
Restrictionlll : N — YV exp(—/4) = V.

The restrictions II and I1I refer to the expected value of the number of crimes C and victims
V (so the left-hand side is not necessarily a whole number), which means that both are
considered to be satisfied in an interval around each integer C and V. Additional restric-
tions could also be considered by taking into account the observed number of people who
suffered exactly two crimes, or exactly three crimes and so on against the theoretical
(expected) outcome. Different distributions of the individual rates A;, with i =1,2,....N
which satisfy these restrictions could be the distribution of the crime rates over the whole
population, and a goodness of fit test could help us accept or reject the distribution of the
individual rates 4;.

A homogeneous distribution of the rates means that 4; is the same foralli = 1,2,.. ., N,
from which, due to the Restriction II, we see that 4; = c¢. If (and only if) ¢ and v are such
that (1 — exp(—c)) = v, then a homogeneous distribution of the individual rates might be
accepted. However, this is rarely the case since crime is far more concentrated than random
events would predict (Osborn and Tseloni 1998); usually v is much smaller than
(1 —exp(—c)), which tells us that a homogeneous distribution is far from being the
observed one and other distribution of the rates /; needs to be considered. Here, we present
a potential distribution of the individual crime rates /;.

Although the methodology presented here, by modelling the distribution of the vic-
timisation rates, is designed for the number of crimes suffered by individuals, with certain
precautions it could also be applied to other aspects of crime, for instance, the concen-
tration of criminality (the observations could also be the number of crimes executed by a
person) or the spatial concentration of crime (so the observations could be the number of
crimes committed on a street segment). In the case of the crime committed by the popu-
lation, the assumption that past and future events are independent is strong, since it has
been found that the rate at which an individual executes crime tends to increase as they
commit more crimes (Ferguson 1952) meaning that a constant rate is dubious. In the case
of the spatial distribution, crime suffered in street segments (Weisburd 2015) or regions of
a city (Mohler et al. 2012) tends to be highly concentrated and a hot spot pattern usually
emerges, indicating a geographic clustering of crime (Short et al. 2008), thus, assuming
independence between the observations might not be adequate. The methodology pre-
sented could be used for measuring the concentration of crime in the other two aspects (the
location and the criminal) but we focus here on the crime suffered by the victims.

Inhomogeneous Distribution of the Crime Rates

The individual crime rates 4; depend on many factors (Tseloni 2000), such as the habits of
the i-th person, their lifestyle, the region in which he or she usually commutes, physical
attributes (such as gender or age), and perhaps that rate is of a similar value to other
individuals who live under the same circumstances. To model the inhomogeneous distri-
bution of the crime rates, we assume that the population can be divided into k > 1 distinct
groups, where group j say, has Q; members, all of whom suffer the same crime rate 4;, with
Jj=1,2,... k. Each of the N members of the whole population belongs to one and only one
group so that Q) + Q> + ...+ Qr = N. The proportion of the population who suffer the

crime rate 4; is ¢; = Q;/N, so that Z;‘Zl q; = 1. To avoid ambiguous definitions, we order
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the groups by their crime rate in increasing order, 4; </, <... </, so we label the groups
according to their rate.

If we consider a random person from the population, the distribution of the number of
crimes that he or she suffered can be expressed as

q1Pois(41) + qaPois(42) + ... + qxPois(Ay), (6)

which means that the person is assigned into any of the k groups and suffers a Poisson
distribution with the corresponding rate.

Assuming that the population can be divided into k£ > 1 distinct groups where all of the
members of each group suffer the same rate is a common technique that simplifies the
crime suffered by a population of perhaps millions of people into only a few parameters
(Short et al. 2009; Brame et al. 2006; Nagin and Land 1993). The number of groups, k, is
crucial for the mixture model (Bohning et al. 1992), and distributions with a larger number
of groups are less useful since for each additional group, its size and its rate need to be
estimated, so this increases the number of parameters of the model. The (non-parametric)
maximum likelihood estimator (mle or npmle) helps us compare between models and to
pick the best (Bohning et al. 1998), since in our case we have no prior information on the
number of groups (McLachlan and Peel 2004). Although other techniques to estimate the
number of groups are also available, for example, by using bootstrapping (Schlattmann
2005), the mle is used here, which includes an estimate k of the number of population
groups, easily computed using the statistical package CAMAN (Computer Assisted
Analysis of Mixtures) by considering the observed number of crimes suffered by each of
the individuals, C;. A similar procedure, using a mixture model, has been used in different
scenarios (Bohning 1998), such as traffic accidents, the number of accidents in a factory
and even the number of criminal acts from a set of persons considered to have deviant
behaviour.

The results obtained using CAMAN and estimating the mle are:

e the optimal number of groups in which the population might be divided k,
e the size of each population group relative to the total population g;, expressed as a
vector as g, and

e the corresponding rate for each group i_-, also expressed as a vector A.

As an example, we consider again the previous populations A and B, both with
N = 100,000, ¢ = 0.1 and v = 0.05. In population A (where 10,000 crimes are suffered

uniformly by the 5,000 victims), the mle gives k=2 groups, with ¢ = (0.937,0.063) and
4 =(0,1.594), which means that 93.7% of the population has a crime rate of J1 =0 and

6.3% of the population has a crime rate of 4, = 1.594. On the other hand, in the population
B (where 6,000 crimes are suffered by 1,000 victims and 4,000 crimes are suffered by

4,000 victims), the mle gives k=3 groups, with g = (0.409,0.580,0.010) and
4 =1(0,0.069,5.897), which means that the mixture model tells us that indeed 1% of the
population suffers crime with rate 23 = 5.897, but also that 58% of the population suffers

crime at a rate of 22 = 0.0609, so that if we randomly select 15 individuals from that group,
we would expect to find only one victim. Results indicate that a large proportion of the
population (more than half) suffers crime at a very small rate, but there is a particular
group, (formed by only 1% of the individuals) whose members suffer a considerably large

crime rate (13 = 5.89). In the population B, efforts might be much better oriented towards
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the small population group who expect to suffer J3 = 5.89 crimes during that time period
rather than the large population group who suffer the lower rate 22 = 0.069.

The mixture model process depends not only on ¢ and v, but it also changes based on the
number of people who suffered exactly 0, 1, 2, 3 or more crimes. It gives a more accurate
distribution of the crime rates, considering the random component of suffering a crime,
hence it provides a better understanding of the distribution of crime in the population since
it estimates that a group of relative size g; suffers crime at a rate ij. This distribution is
useful since it allows us firstly, to compare different regions or different time periods,
secondly, to simulate crimes in a population, and thirdly, to determine the expected
departures that natural variability gives to the number of crimes suffered by the population.
The mixture model is useful from a macro perspective giving an approximate distribution
of the number of crimes over the whole population in terms of only a few parameters. It is
not useful, though, from an individual perspective. For example, results for population B
are that nearly 60% suffers a crime rate A > 0 but it comes from a population where 95%
suffered zero crimes, meaning that if a person suffered no crimes we would not be able to
tell whether they belong to the group that suffers no crime or whether they belong to a
group which suffers a small rate J2 = 0.069 or even less likely, but not impossible, they
belong to the group who suffers a large rate J3 = 5.89 and yet they were lucky and suffered
no crime.

Two particular cases of the results of the mixture model are worth further comment. The

first is when kK = 1 (which means that there is only one group, with rate . | = ¢), in which
case the mixture model tells that crime is uniformly suffered by the population. The second
case is when k = 2 and )Aq = 0, which indicates that the population is divided into two
groups, one of them of relative size ¢; which does not suffer crime and the second group,
of relative size g, = 1 — g, suffers all the crime within that population. This type of model
is also known as a Zero-Inflated Poisson Model (Bohning 1998), frequently used to model
heterogeneity in the rates (Bushway and Tahamont 2016) and for count data in which the
number of zeros is frequent, such as here in which we consider the count of the number of
people who suffered zero crimes. These two cases might result from data after fitting the
mixture model, which means that the mixture model lets the data adjust to the most
suitable distribution of the crime rates, without assuming anything about the uniformity of
crime suffered by the whole population.

Immunity and Chronic Victimisation

As previously noted (Sparks 1981; Hope and Norris 2013), there is usually a population
group which is immune to victimisation and the mixture model allows us to detect the
existence of such a population group and determine its size. After analysing the data, if the

results show that there are 152 2 groups and il = 0, then it means that indeed there is a
group who is immune to crime and its relative size is given by g;. It is important to note
that the existence of an immune group is the result of the data and the model rather than by
an assumption. Equally, results might reveal that there is no immune group, in which case
the smallest crime rate would be il > 0.

Population groups that suffer chronic victimisation have also been noted previously
(Hope and Trickett 2008), where again, their existence might be tested using the results
from the mixture model. Results from the mixture model might also show that a population
group which suffers a rate higher than 1 = 2. Suffering two or more crimes per year is a

@ Springer



784 J Quant Criminol (2018) 34:775-803

persistent and perhaps habitual victimisation and so groups which suffer a rate Jy >2 are
considered to suffer chronic victimisation.

In the previous example of populations A and B (with N = 100,000, ¢ = 0.1 and
v = 0.05), for the population A (where 10,000 crimes are suffered uniformly by the 5,000
victims), results of the mixture model showed that 93.7% of the population has a crime rate
of 21 = 0, which means that a large portion of the population is statistically immune to
crime. For the population B (where 6,000 crimes are suffered by 1,000 victims and 4,000
crimes are suffered by 4,000 victims), results of the mixture model showed that 40.9% are
immune to crime, but also, 1% of the population has a crime rate of 23 = 5.89, which
means that they expect to suffer chronic victimisation of almost six crimes each year.

Concentration of Crime Metric

Although the distribution of the rates (g, 4) is powerful by itself, the Rare Event Con-
centration Coefficient (RECC) (Prieto Curiel and Bishop 2016) is a new and standardised
summary statistic from the mixture model, based on the Lorenz curve (Marsh and Elliott
2008; Hope and Norris 2013) and the Gini coefficient (Dorfman 1979) of the distribution of
the crime rates. It is important to note that it is not the Gini coefficient computed directly
from the number of crimes suffered by each member of the population [previously used to
measure the concentration of crime (Tseloni and Pease 2005; Fox and Tracy 1988; Ber-
nasco and Steenbeek 2016)], but rather it is the Gini coefficient of the rate at which
individuals suffer crime. The RECC is given by

1 k. k

RECC = ———— dq;|

2 Zf:l 4id; ; le !

which is the Gini coefficient of a stepwise distribution and can be interpreted in a similar

way to how the Gini coefficient is used in the case of the distribution of wealth: a smaller

value of the RECC means a more homogeneous distribution of the crime rates across the

population, and a value closer to one means that crime is more concentrated in some

population groups. The RECC is comparable between different time periods and different
regions and different types of crime.

Using again the example of populations A and B (both with N = 100, 000, ¢ = 0.1 and

v = 0.05), for the population A (where 10,000 crimes are suffered uniformly by the 5,000

victims) the mixture model says that 93.72% of the population is considered immune to

crime and so, the RECC4 = 0.9372. On the other hand, for the population B (where 6,000

crimes are suffered by 1,000 victims and 4,000 crimes are suffered by 4,000 victims) the

RECCg = 0.7546 which means that crime is suffered more homogeneously in the popu-

lation B, perhaps an expected result since 59% of the population has a crime rate greater

than zero.

b = 4, (7)

Coefficient Interval

Is observing RECC, = 0.9372 statistically different from RECCg = 0.7546? We construct
an interval for the RECC of each population based on a Monte Carlo method (Mooney
1997) which allows us to incorporate a level of uncertainty. This method assumes that the
distribution (g, 4) is the true distribution of the crime rates and so that we can simulate N
individuals which suffer crime with the distribution given in Eq. 6. Each one of the N
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simulated individuals represents the number of crimes that a person taken at random from
the population might suffer, given the true distribution of crime and by simulating N
individuals we are thus considering the departures from the true distribution that the
number of crimes the population could experience. By computing the mixture model of the
simulated crimes and then considering its corresponding RECCsg;,, we are thus taking into
account just how low, or high, the RECC could be, given the exact same distribution.

Following the same procedure a sufficient number of times (100 in our case) results in a
simulated sample of potential values of the RECC. We subsequently consider the 95%
intervals to avoid the extreme simulated values (Greenland 2004).

The results, in terms of the simulated RECC, are given in Table 1 in terms of the 95%
lower and upper bound intervals.

These results show that with the true distribution observed in the population A, the
RECC does not achieve values as low as the ones obtained for population B. Therefore,
with the simulated intervals, we can reject a Null Hypothesis that both populations have the
same concentration of crime and so, thanks to the simulated intervals we have a statistical
justification that both populations suffer a different concentration of crime. A more
detailed explanation of the simulated intervals for the RECC is included in the Appendix of
ESM.

A relevant observation from the simulations is that the number of groups Kyim might
change and also the sizes of the immune group and the chronic group might also change
since, for example, suffering a small rate of J = 0.01 is almost the same as 4 = 0 but this
difference would change the size of the immune group. Therefore, for comparing two
different populations or comparing the same population over different time periods, a
global metric, such as the RECC, provides more stable results.

Case Study

We use the case of Mexico to apply the mixture model. Its territory is divided into 32
states with a wide variety in terms of population size —some states have a population
of just above 700,000 inhabitants (a population size similar to Luxembourg), while at
the same time, there is a state with a population size nearly 23 times larger, of more
than 16 million inhabitants (a population size similar to the Netherlands)— and this

Table 1 Group sizes g, crime rate 4 and intervals for the RECC for the populations A and B

Population Group RECC Lower bound Upper bound
1 2 3
A i 0.937 0.063 0.9372 0.9369 0.9428
j/ 0 1.594
B qg; 0.409 0.580 0.010 0.7546 0.7117 0.7948
) 0 0.069 5.897

j

Immune population size are given in bold
Zero crime rate 4; = 0 are given in italic
Chronic population size is given in bold italic
Chronic crime rate J; > 2 is underlined
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sub-division also considers Mexico City as a separate state, allowing us to detect
whether crime tends to be more concentrated in regions with more inhabitants (Glaeser
and Sacerdote 1996).

Data was obtained from an annual victimisation survey conducted yearly between 2011
and 2016 in Mexico. Thus, six years of data are available which allows us to measure the
concentration of crime across time. Although previous victimisation surveys were also
conducted in Mexico, the survey used here provides comparable data over different years
and also provides the most up to date data (INEGI 2016), with micro-data available on-
line.” For each year, more than 80,000 surveys were conducted, and its sampling method
allows separate data for each of the 32 states. The survey contains an expansion factor,
used to establish an estimate for the number of people who are represented by each survey
respondent so that every person older than 18 years in the country is represented by a
single survey respondent.

For different types of crime, such as robbery of a person, car theft or burglary, the
person is asked whether he or she suffered that type of crime and the number of times
that it occurred during the previous year. We mainly use the case of robbery of a person
in our studies since it has the highest variability, from a crime rate as low as cpcs =
0.007 (where the subscript denotes the state) to a crime rate as high as cypx = 0.471,
nearly 68 times larger, so this particular type of crime allows us to detect whether
higher crime rates are also associated with a higher concentration of crime. Also, the
analysis of the crime rates from the 32 states in Mexico allows us to compare popu-
lation groups, so detecting, for example, an immune group in the states with high crime
rates implies that they live under better conditions, in terms of crime and security than
some of the groups from states with low crime rates. Thus, living in a state with a
lower crime rate is not necessarily preferable from an individualistic viewpoint. More
specific details on why we focus on the case of robbery of a person in Mexico is
included in the Appendix of ESM.

Results

At a national level, the Table 2 gives the number of crimes suffered by the survey
respondents in Mexico for 2016, as well as the national estimate, considering the expansion
factor for each survey. The data shows that 91.9% of the population did not suffer a
robbery of a person during 2015, but also, it is estimated that more than 100,000 persons
suffered at least four robberies during that year.

Is the crime suffered the result of a homogeneous distribution? We use one state
(Guerrero) and over one year (2016) to test against a random distribution of crime (Park
and Eck 2013). With the observed number of crimes, ¢ = 0.069 we would expect, from
Eq. 5, a victimisation rate of v = 0.066 and values between 0.065 and 0.068 would support
this hypothesis. However, the observed victimisation rate (v = 0.053) is far from this
interval so that, in this state, crime is far from being homogeneously suffered by the
population and there are much fewer victims than the homogeneous distribution would
indicate. Similar results occur for other states and so there is, indeed, a high concentration
of crime.

The distribution of the rates for each state and for each year have been computed (R
Core Team 2014; Schlattmann et al. 2015) based on data from the victimisation surveys
and the concentration RECC and its corresponding intervals are displayed in Table 4. The

2 Available at http:/www?3.inegi.org.mx/sistemas/microdatos/encuestas.aspx 7c=34517&s=est.
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Table 2 Crimes suffered by the population, in thousands, estimated by considering the expansion factor for
each survey respondent

Crimes suffered 0 1 2 3 4 5 6 7 or more
Respondents 81,672 3486 455 95 22 10 1 23
Population® 75,992.6 5604.5 769.5 193.1 72.7 23.1 3.9 59
% 91.9 6.8 0.9 0.2 0.1 0.0 0.0 0.0

? Population expressed in thousands meaning that 75.9 million people did not suffer any crime, 5.6 million
people suffered exactly one crime and so on

full distribution of the rates for the latest two years (2015 and 2016) in Tables and and the
remaining years can be found in the Appendix of ESM. The results show that crime has a
completely different pattern across the 32 states from Mexico. For example, in some states
(Baja California Sur in 2015 or Aguascalientes in 2016) the population can be divided into
just two groups, the immune and the victimised. However, in Morelos, for example, for
2015 and 2016 the model gives 4 groups, which means that a more complex distribution of
crime is needed.

Results for the 32 states, over the six years of data available, are displayed in Table 7

and they show that there is usually a large group which have a rate =0, forming the
group which statistically is immune to crime and its relative size reaches a value as high as
95.6% in the state of Campeche in the year 2015. This means that during that year, in that
state, less than 5% of the population actually expected to suffer crime, but with a rate of
J2 = 0.853, higher than most of the groups from all the other states. Actually, considering
the population size of each state, this small group from Campeche suffered a higher rate
than 96.8% of the whole country. The results obtained support the theory of the existence
of an immune population group (Hope and Trickett 2008) and its size on average through
the six years considered, was 61.5% of the whole population.

Results also show that there are some states (15 out of the 32 states in 2015 and only 9 in
2016) with a group which suffers chronic victimisation, so they expect to suffer two or more
crimes in a year. For example, in Estado de México in 2015, there is a small group (which

represents approximately only 0.2% of the population), but which has a crime rate of Sy =128,
which sadly means that they expect to suffer one robbery roughly every seven weeks.

Figure 1 shows the results from Mexico City during 2014 simply as an illustration of the
crime rates suffered by the population. The upper diagram, part (a), gives the rates from the
mixture model so it provides the Victimisation Profile of Mexico City during 2014. The
lower diagram, part (b), gives the cumulative rates and the Lorenz curve, where the area
shaded in colour grey is the distance to a uniform distribution of the rates.

Crime Rates and Crime Concentration

Another observation of the results is that lower (or higher) crime rates do not necessarily
mean a lower (or higher) concentration of crime. For example, the state of Chiapas (CHIS)
between 2015 and 2016 suffers a similar crime rate (ccpys2015 = 0.037 and ccris016 =
0.034 respectively) with an opposite pattern for the concentration of crime
(RECCcpis 015 = 0.897 and RECCcris 2016 = 0.228). In general, though there is a national
decrease in the concentration of crime between 2011 and 2016. Between 2011 and 2013
the average RECC, weighted by the population size of each state, was nearly 0.8 but it has
gradually decreased to an average of RECC = 0.688 by 2015 and RECC = 0.563 by 2016.
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Fig. 1 a Victimisation Profile (individual crime rates 4 and group sizes ¢) and b Lorenz curve of the
individual crime rates for Mexico City in 2014

At the same time, crime rates have increased slightly through this period, from a national
rate near ¢ = 0.084 to an average of ¢ = 0.105. Thus, for this particular type of crime,
there are now more robberies which are being suffered by more people.

Less or More Concentrated?

Having the estimated distribution of crime and its corresponding RECC enables us to
understand the degree of concentration of crime and, using data from the victimisation
survey, allows us to obtain quantitative results for the different states in Mexico during the
years considered. What is not clear is what degree of concentration of crime is preferable.

Crime prevention strategies might result in some displacement of crime (Guerette and
Bowers 2009; Johnson et al. 2014) from one place to the other, to an alternative victim
(which is referred to as target displacement), to different times of the day, to a different
tactic or to a different type of crime (Bowers and Johnson 2003), which has an effect on the
levels of concentration of crime, but then this promotes the question: is it desirable to have
less concentrated crime? Clearly, a population with overall less crime is desirable, but let
us compare two populations with the same number of crimes. On the one hand, a high
degree of concentration of crime means that fewer people suffer crime, that is, fewer
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victims, but those victims suffer usually much more than a single crime. With a high
degree of concentration of crime, resources might be better targeted to those who suffer
most crime in terms of prevention and victim support. On the other hand, a low degree of
concentration of crime means more victims, which makes policies less efficient, and it
might deteriorate the perception of security in a particular region. Suffering a crime when
there is a low degree of concentration of crime becomes a matter of bad luck and not a
matter of being socially deprived, a minority, a female or any other attribute which perhaps
increases the chances of suffering a crime, therefore it could be considered as a more fair
distribution of crime (Bowers and Johnson 2003) as opposed to a population with a high
degree of concentration of crime.

As an example, we analyse the particular case of Mexico City between 2011 and 2012.
We focus on this particular example for three reasons. Mexico City is diff