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ABSTRACT
This paper proposes and implements a rigorous method for study-
ing the dynamic behaviour of AspectJ programs. As part of this
methodology several new metrics specific to AspectJ programs are
proposed and tools for collecting the relevant metrics are presented.
The major tools consist of: (1) a modified version of the AspectJ
compiler that tags bytecode instructions with an indication of the
cause of their generation, such as a particular feature of AspectJ;
and (2) a modified version of the *J dynamic metrics collection
tool which is composed of a JVMPI-based trace generator and an
analyzer which propagates tags and computes the proposed met-
rics. This dynamic propagation is essential, and thus this paper
contributes not only new metrics, but also non-trivial ways of com-
puting them.

We furthermore present a set of benchmarks that exercise a wide
range of AspectJ’s features, and the metrics that we measured on
these benchmarks. The results provide guidance to AspectJ users
on how to avoid efficiency pitfalls, to AspectJ implementors on
promising areas for future optimization, and to tool builders on
ways to understand the runtime behaviour of AspectJ.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.2.8 [Software Engineering]: Metrics

General Terms
Experimentation, Languages, Measurement, Performance.
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Aspect-oriented Programming, AspectJ, Dynamic Metrics, Program
Analysis, Java, Optimization, Performance.
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1. INTRODUCTION
Aspect-oriented programming [17] is a new technique for mod-

ularizing a program. An aspectis a feature that “cross-cuts” the
traditional abstraction boundaries of classes and methods; the most
common examples of aspects are ones used for tracing or logging
the execution of an existing program, but aspect-oriented design
techniques have also been used successfully for more closely cou-
pled functionality improvements, such as connection pooling.

The most popular implementation of these ideas is AspectJ [16],
an extension of Java. The textbook by Laddad [19] provides a nice
introduction, both to the language and its potential applications.
AspectJ started out as a pioneering research effort, but has quickly
reached a level of maturity where it is on the verge of being used
for production programming, and we therefore believe that the time
is right for the research community to pay more attention to the
performance of AspectJ programs.

The conceptual model behind AspectJ execution is one in which
aspects dynamically “observe” the execution of a base Java pro-
gram. At certain points during this execution, known as join points
and specified (in aspects) by pointcuts, an aspect inserts or substi-
tutes its own code, known as advice. Of course, this conceptual
model would be extremely expensive to implement literally; in-
stead, AspectJ is implemented as a compiler which statically weaves
advice code into the base code. In many cases, whether or not ad-
vice would apply at runtime (in the conceptual model) is statically
determinable, and so this can be done without introducing runtime
overhead. However, it is not always possible to decide this at com-
pile time, and so a runtime test has to be inserted, particularly when
the more complex features of pointcuts are being used. However,
it is a stated goal of the AspectJ compiler to minimize these over-
heads; indeed, the AspectJ FAQ [35] states:

“We aim for the performance of our implementation of
AspectJ to be on par with the same functionality hand-
coded in Java. Anything significantly less should be
considered a bug.”

It appears to be generally believed in the AspectJ community that
the compiler does not introduce overheads, and indeed we have
confirmed that in many situations it is the case that equivalent Java
and AspectJ programs have essentially the same performance. How-
ever, we have also identified a number of examples in which the
AspectJ compiler does impose a significant overhead, contradict-
ing this belief.

The FAQ goes on to say:

“There is currently no benchmark suite for AOP lan-
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guages in general or for AspectJ in particular. It is
probably too early to develop such a suite because As-
pectJ needs more maturation of the language and the
coding styles first. Coding styles really drive the de-
velopment of the benchmark suites since they suggest
what is important to measure.”

We contend that the development of a benchmark set which shows
good as well as bad uses of AspectJ language features will help to
inform the development both of the AspectJ language and compiler,
and of coding styles; and that it is better to view the situation as a
two-way process where benchmarking both drives and is driven by
such development. The overheads that we have found using our
benchmark set confirm this.

In detail, the contributions of this paper are as follows:

• We provide a new set of dynamic metrics and tools for mea-
suring the performance of AspectJ programs and attributing
elements of this performance between the original Java code,
the introduced aspect code and the compilation overhead of
individual AspectJ language features.

• We have collected the first benchmark set of AspectJ pro-
grams, from a variety of public sources. Despite the growing
popularity of AspectJ, it has proved rather difficult to find
publicly available programs. We hope that it will form the
basis of a generally accepted suite of benchmarks and we
welcome further contributions from the AspectJ community.

• We explain the “conventional wisdom” that the AspectJ com-
piler introduces no runtime overhead, by showing a series of
benchmarks in which this overhead is indeed negligible.

• We show that in other benchmarks, there is a significant over-
head. We identify the language features and patterns of usage
that lead to this overhead.

• Using the Dava decompiler [25] from the Soot toolkit [32],
we investigate the output of the AspectJ compiler where our
tools pinpointed a significant performance impact, and demon-
strate various ways in which improvements could be made.
This measure-identify-decompile-fix cycle is very economic
in the AspectJ situation, where a new language paradigm
calls for novel analyses and optimizations: it would be im-
mensely labour-intensive to obtain the same results through
direct experiments with different versions of the compiler.

These contributions will be of benefit to three groups of people:

• AspectJ users:Our results provide guidance on which As-
pectJ idioms are cheap to use and which impose a perfor-
mance penalty. For example, we found that directions for
advice placement (before/after/around) can have a significant
impact on performance, and our experiments explain why.

• AspectJ compiler implementors:We identify areas in which
compilers could be improved, for example by using more
sophisticated static analyses to eliminate runtime checks for
pointcut matching. Some of these suggestions are very easy
to implement, and indeed we report one such optimization
which we applied in a modified version of the compiler.

• AspectJ tool developers:The power of AspectJ makes it very
easy to write a seemingly innocuous piece of advice that
turns out to have dramatic consequences for performance.
Our results point the way towards interactive tools that warn
the programmer of such situations, and help to remedy the
problem when it arises.

The remainder of this paper is structured as follows. In Section 2
we provide a brief overview of the AspectJ language, and in Sec-
tion 3 we provide an overview of the statistics we collect for our set
of benchmarks.

In Section 4 we give the full details of our toolset, which con-
sists of a modified version of the AspectJ compiler [3] that “tags”
bytecode instructions according to their provenance (the base Java
program, aspect code, or compiler overhead from particular lan-
guage features), along with a modified version of the *J metric
tool [8] which collects statistics for each of these tags. The tag-
ging is performed both statically and dynamically to allow some
tags to be context-dependent; this is vital since in some cases code
that is compiler overhead may make calls that should also be at-
tributed to this overhead, but in other cases it may call aspect code
that should also be attributed correctly. Developing this tag “prop-
agation” scheme has been a major part of our work.

The benchmarks themselves are presented in Section 5. We split
them into two categories: those that do not demonstrate significant
compiler overhead and those that do. In the case of the latter cat-
egory, we investigate the reasons for this overhead in detail and
suggest possible improvements.

While we believe this is the first systematic study of the dynamic
behaviour of AspectJ, there is naturally a wealth of related work
on collecting dynamic metrics. We discuss these, and also existing
efforts to improve the runtime behaviour of AspectJ programs, in
Section 6. Finally we discuss our conclusions in Section 7.

2. A BRIEF INTRODUCTION TO ASPECTJ
AspectJ is an extension of Java; it provides novel features for

modularization, in particular when adding new functionality to an
existing “base program”. The novel features can be classified into
two groups. The first group allows one to influence the dynamic
behaviour of the base program by injecting new code when certain
events occur in its execution. We discuss these dynamic features
in Section 2.1. The second group of features allows one to stati-
cally add new members to classes. These features are reviewed in
Section 2.2. This introductory section only covers the very basics,
and readers who are new to AspectJ may wish to consult one of the
textbooks [10, 18, 19] for a more comprehensive introduction.

2.1 Join points, pointcut and advice
When adding tracing functionality to an existing program, it is

often undesirable to modify the program itself: the implementa-
tion of tracing is scattered over the design, and hence it obscures
the existing code, and it is difficult to maintain itself. It would be
preferable if we could describe the execution events that we wish
to trace, and the action to take upon each such event. AspectJ al-
lows us to do this by specifying such execution events. The events
are called join points, the pattern that specifies a set of join points
is called a pointcutand the additional code that gets run is called
advice. The join points that can be be selected via pointcuts can be
thought of as nodes in the dynamic call tree of the program. Be-
sides nodes for method calls, this call tree also includes nodes for
the execution of a method body, exception handlers, and so on.

To illustrate these abstract definitions, let us examine a tiny ex-
ample, shown in Figure 1. It consists of a base program (the class
Example) and an aspect (named ExampleAspect). The base pro-
gram consists of two methods called foo and bar. The purpose of
the aspect is to signal any calls that are made to bar within the dy-
namic scope of foo. In terms of the call tree, this means that we are
interested in bar nodes that occur below a call to foo. In the aspect,
this is expressed as follows. It says that before entering any join
point selected by the pointcut
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public class Example {
public static void main(String[] args) {

Example e = new Example();
e.bar();
e.foo();

}
public void foo() {

System.out.println(“foo” );
bar();

}
public void bar() {

System.out.println(“bar” );
}

}

aspect ExampleAspect {
before(): call(void Example.bar()) &&

cflow(call(void Example.foo())) {
System.out.println(“foo->bar” );

}
}

Figure 1: Example AspectJ program

call(void Example.bar()) && cflow(call(void Example.foo()))
the message “foo -> bar” should be displayed on the standard out-
put. The pointcut itself consists of two parts: it says we want a call
to bar, and furthermore we must be dynamically within the control
flow (cflow) of foo.

While the matching of join points to pointcuts is conceptually
a dynamic process that happens entirely at runtime, the AspectJ
compiler shifts a lot of the work to compile-time. In the above
example, it will identify the calls to bar in the program text, effec-
tively matching the first part of the pointcut. The second part of the
pointcut (involving cflow) is however matched dynamically, and to
this end some extra code is inserted, which checks whether we are
in the dynamic scope of foo. To make that check, it is in turn nec-
essary to do a little administration at each call to foo. As we shall
discuss in more detail later, the AspectJ compiler mimics the call
stack by recording each entry to foo, and each exit.

There is some terminology to ease discussion of these issues.
The place in a program text that gives rise to a particular join point
at runtime is called a shadow. As we have just explained, the com-
piler matches pointcuts against such shadows, possibly leaving a
dynamic residuefor the tests that could not be resolved completely.
The process of producing combined code for the base program and
its aspects is called weaving.

Our own understanding of join points and advice was mostly
shaped by [33], which gives a definitional interpreter for join points
and advice. Our discussion of the weaving process has been greatly
influenced by [23], which explains it in terms of partial evaluation
of the interpreter in [33]. The definitive account of the way the
AspectJ compiler works can be found in [14].

We shall introduce further features relating to join points and
advice as we discuss specific benchmarks later on in this paper. In
particular, we shall examine different placements of advice (after
and around) in addition to before.

Finally, we should remark that the example in this section does
not require the use of cflow. AspectJ has another kind of pointcut,
namely withincode that would be preferable to use for such a sim-
ple application, because it is more efficient. One aim of the present
paper is to elucidate such issues.

2.2 Intertype declarations
While advice is a powerful mechanism to modularize designs

where the traditional abstractions of Java fail, it is not always enough

on its own. Sometimes it is necessary to make a static change to an
existing class, for example to add a new method. AspectJ allows
such intertype declarations. For example, the aspect in Figure 1
could enhance the Exampleclass with a new method called gooby
including the line

public void Example.goo() { System.out.println(“goo”); foo(); }
Client code of Example(introduced by the aspect) can now refer

to goo in the same way as it references foo or bar.
Similar ideas can be found in other extensions to Java, in partic-

ular MultiJava [5] and RMJ [26]. These designs are in fact more
disciplined than AspectJ, and they allow for modular type checking,
which AspectJ does not; furthermore they include multimethods, a
feature that AspectJ lacks at present.

3. MEASUREMENTS AND DYNAMIC
METRICS

In order to study the dynamic behaviour of AspectJ, it was nec-
essary to develop a methodology to collect measurements and dy-
namic metrics for AspectJ programs. Our approach uses the fol-
lowing three kinds of measurements.

3.1 Execution Time
The most coarse-grained measurement is the execution time of

a program, which we use as a first-order measurement of the over-
heads incurred by using aspects. In particular, we compare the ex-
ecution time of an AspectJ version of a program and an equivalent
Java program. All execution times in this paper were collected on
an Athlon MP 1.66 GHz machine with 2 Gbyte of memory. All pro-
filing data used to compute the dynamic metrics was collected on
an Intel Pentium 4 1.80 GHz machine with 512 Mbyte of memory.
Both machines use Sun’s Java™ 2 Runtime Environment, Standard
Edition (build 1.4.0-b921) on Debian Linux.

3.2 Java-based dynamic metrics
As well as execution time, one would also like more specific

measurements of the dynamic behaviour of both the Java and As-
pectJ versions of benchmarks. Since both Java and AspectJ pro-
grams are compiled to Java bytecode, it was possible, using *J [8],
an existing tool, to measure relevant dynamic metrics. The *J tool
collects a wide variety of metrics, and we have found several met-
rics to be useful in our evaluation of AspectJ benchmarks.

For example, the base metrics can be used to measure: (1) the
total number of bytecode instructions executed, a VM-neutral mea-
sure of execution time; (2) the total number of distinct bytecodes
loaded and executed, which gives a measurement of total and live
program size; and (3) the total number of bytes allocated, which
measures how memory hungry the benchmarks are. We can also
use more detailed metrics to measure specific behaviours. For ex-
ample, we can look at the density of important (expensive) opera-
tions such as virtual method invocations, field read/writes and ob-
ject allocations. Specific examples of these metrics are given in the
discussion of our benchmarks in Section 5.

It is often useful to differentiate between application code and
library code, especially in the case of AspectJ programs. We define
application code as the set of class files that are directly generated

1Flaws in the implementation of the JVMPI interface in more re-
cent versions of Sun’s JRE caused the collected data to be incom-
plete, and precluded their use in this study. Using a more recent
release of Sun’s JRE (build 1.4.2-b28) does result in significantly
faster running times for some benchmarks, but such improvements
do not contradict the observations made in this paper.
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by the AspectJ compiler. In addition to generating “WHOLE PRO-
GRAM” versions of the metrics, *J is also able to generate “APPLI-
CATION ONLY” versions of them by only taking into consideration
the contributions made by the application code.

3.2.1 Dead Code and Code Coverage
In our study of AspectJ benchmarks we found that the AspectJ

compiler sometimes includes code that is never executed; in par-
ticular, methods that are never called. Since the entire class must
be loaded, this causes unnecessary time to be spent in class loading
and verification.

Thus, we found that it was useful to add two new metrics to our
standard Java metrics. The dead codemetric measures the number
of bytecode instructions that are loaded, but never executed. The
code coverage metric is computed as the ratio of live codeover
loaded code. Thus, a program that loads 10,000 bytecodes and has
2,000 dead bytecodes, has a code coverage of 0.80, that is (10,000
- 2,000)/10,000. It should be noted that the dead code metric is also
dynamic and is reporting the code dead for a particular execution
of the program. It may be the case that a different execution would
touch different parts of the code. Also, in some cases, the dead code
may never execute in any given run, but is a necessary consequence
of support for incremental compilation and weaving, since a change
to the base program might cause the code to become required and
we would not want to have to recompile the aspect in that case.

3.3 AspectJ-specific dynamic metrics
Although the previous two kinds (execution time and Java-based

dynamic metrics) of measurements give a good overall idea of over-
heads incurred by the use of AspectJ, they do not help identify the
cause of such overheads, nor do they expose any behaviours that
are specific to AspectJ programs. In order to study these it was
necessary to define new metrics and extend existing tools in non-
trivial ways to compute them. These extensions are described in
more detail in Section 4, but mainly consist of associating a tag
to every executed bytecode instruction indicating its purpose. In
the following subsections we describe the new metrics that were
designed specifically for analyzing AspectJ programs.

3.3.1 Tag Mix
The tag mixmetric partitions all executed bytecode instructions

into 29 different bins, where each bin corresponds to a specific pur-
pose. Bins are reported as a percentage of total executed instruc-
tions. This breakdown of executed bytecodes is useful in determin-
ing which particular features of AspectJ are used in a benchmark.

Individual tags can be grouped into categories according to the
AspectJ language feature that they relate to. We define 10 cate-
gories of tags, 9 of which correspond to overhead code introduced
by the AspectJ compiler. A detailed list of tags and categories is
given in Appendix I, and example measurements of these tags are
given in Section 5. A short description of all categories, along with
their most important tags, is presented next.

Readers who are unfamiliar with AspectJ may wish to skim this
section first time through, and then return to it after seeing some
example programs in Section 5.

General tags.This category contains tags which are associated
with user-defined code. For analysis purposes, we distinguish be-
tween regular code and advice code. The BASE CODE bin rep-
resents all executed instructions that correspond to the base pro-
gram (regular Java), whereas the ASPECT CODE bin corresponds
to code that was executed as part of the aspect. This includes all
non-overhead instructions corresponding to the body of an advice

and all non-overhead instructions in code called from the body. It
also includes all non-overhead instructions in methods introduced
by intertype declarations.

In making the distinction between base program and aspect, we
err on the side of underestimating the effect of aspects, for example
by making all instructions due to callbacks from native methods
contribute to the BASE CODE bin.

Advice-related tags.This category contains tags that are com-
mon to before, after and around advice. The ADVICE EXECUTE

tag identifies overhead associated with executing an advice body.
The ADVICE ARG SETUP tag identifies overhead associated with
exposing parameters to the advice body. The ADVICE TEST tag is
associated with dynamic guards inserted by the compiler in cases
where it could not determine whether a particular advice body
should always be executed for a given join point.

Tags specific toaround advice.Unlike before and after,
around advice replaces existing code with the advice body. The
original code can still be invoked through the special proceed()
statement, though implementation of this feature implies additional
overhead. The AROUND PROCEED tag identifies instructions which
are inserted to make a call to proceed() from within an advice
body. Under some circumstances, it is possible that the call to
proceed() is not implemented using the inlining strategy, but im-
plemented using a more general technique, a closure. We there-
fore define the tag AROUND CALLBACK which serves the same
purpose as AROUND PROCEED, but which additionally identifies
the tagged instructions as part of the closure implementation. The
CLOSURE INIT tag is used to identify instructions which initialize
the closure objects that are created.

Tags specific toafter advice.There are two distinct kinds
of overhead that are associated with the use of after advice. As
with around advice, exposing the return value of a method to the
advice body requires support from the compiler, leading to the ad-
dition of some overhead code. Also, because after advice must
execute regardless of whether the method terminated normally or
not, the compiler adds exception handlers to the original code in
order to address this issue. The AFTER RETURNING EXPOSURE

and AFTER THROWING HANDLER tags are associated with these
two situations, respectively.

Intertype declaration tags.Intertype declarations in AspectJ
can lead to several forms of overhead being introduced: additional
method invocations, accessor methods for introduced fields, vari-
able initialization, etc. Several tags are defined to identify each
kind of overhead.

perthis andpertarget-specific tags.Normally aspects are sin-
gletons; however, they can also be defined on a per-object basis.
This category contains instructions which are used to manipulate
aspect instances when there are multiple instantiations rather than
a single one.

Cflow-specific tags.Because cflow pointcuts and percflow as-
pects (as with perthis and pertarget, percflow is defined on a per-
object basis) require some knowledge of the dynamic control flow
of the application, the compiler inserts overhead code in order to
create and maintain a representation of this information. There are
two tags, CFLOW ENTRY and CFLOW EXIT, to identify instruc-
tions which keep this data structure updated.
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Exception softening tags.This category contains a single tag,
EXCEPTION SOFTENER, which identifies instructions which are
used to wrap instances of checked exceptions into an unchecked
org.aspectj.SoftExceptioninstance.

Tags specific toprivileged aspects.Privileged aspects have
access to private methods and fields of classes. The compiler makes
it possible by adding public wrappers to the appropriate classes.
This category contains tags that identify instructions which are part
of the inserted wrapper methods.

Miscellaneous aspect tags.This category contains two kinds
of tags. The first kind of tag, CLINIT, is associated with instructions
which are found in static initializers of aspect classes. The second
kind, INLINE ACCESS METHOD, identifies the overhead involved
in calling a method defined on an aspect when there is a static dis-
patch method.

An important benefit of our tool set is that it is easy to extend
the set of bins, thus giving fine-grained information to language
designers and compiler writers about the code emanating from new
language features.

3.3.2 Aspect Overhead
Once every executed bytecode has been tagged appropriately,

it is possible to compute the percentage of executed instructions
which fall into the “overhead” category. We define overhead as
all instructions executions which do not fall within the “general”
tag category (BASE CODE or ASPECT CODE). This closely corre-
sponds to the instruction executions that would not be found in a
hand-woven implementation of the same application.

The aspect overhead metric can also be expressed as the prod-
uct of two other ratios. The overhead to adviceratio indicates the
relative amount of overhead per introduced advice. It is measured
as the number of executed overhead bytecode instructions divided
by the number of executed advice instructions. The advice to total
ratio measures the proportion of the executed code that belongs to
advice bodies, and is computed as the number of executed advice
instructions divided by the total number of executed instructions.

3.3.3 AspectJ Runtime
In order to truly measure the proportion of the code that can be

attributed to the use of AspectJ, it is necessary to keep track of
the calling context. The AspectJ runtime librarymetric measures
the percentage of the code that is executed as part of the AspectJ
library, or on its behalf.

3.3.4 Advice Execution
In many cases, the AspectJ compiler can statically determine if

a piece of advice should be executed at all join points correspond-
ing to a given join point shadow. In these cases, no dynamic test
is required to determine if the advice code should be executed or
not. There are cases for which static analysis cannot determine the
applicability of the advice. For example, the if pointcut contains
a boolean expression which is evaluated to determine join point
membership; this expression may contain references to dynamic
values, and so it may not be statically determinable whether it eval-
uates to true or false. The cflow pointcut also generally results in a
dynamic test.

The advice executionmetric reports on the outcome of those
checks, categorizing them into three bins, those that always suc-
ceed, those that always fail, and those that sometimes succeed and
sometimes fail. Clearly those checks that sometimes succeed and

sometimes fail are needed. However, those checks that always suc-
ceed or always fail (in one particular run) are potential places where
a stronger static analysis might be able to eliminate the check, thus
eliminating unnecessary overhead and improving performance. Of
course it may be the case that some checks that are measured as al-
ways going one way actually could go the other way in a different
run of the program, so it is not necessarily the case that all of those
which are identified could really be removed.

3.3.5 Hot Shadows
Recall that a shadowis the static location in a program text that

gives rise to a particular join point at runtime. The hot shadows
metric measures the percentage of all shadows that account for 90%
of the total advice body invocations. This gives an indication of
whether runtime advice execution is mostly concentrated on a few
shadows, or whether it is thinly spread; this metric thus helps us to
understand whether we might obtain a performance gain by con-
centrating on just a few locations (and for example inlining advice
bodies at those locations). Note that if there are overlapping point-
cuts, it is possible for one shadow to invoke multiple advice bodies.

4. TOOLS FOR COLLECTING DYNAMIC
METRICS

An overview of the tools that we use for collecting the dynamic
metrics is given in Figure 2. The darker shaded boxes correspond
to new tools, and the more lightly shaded boxes correspond to com-
ponents of existing tools that we modified.

Our main tools implement the two important components of our
approach: (1) a static tagger, which tags bytecode instructions with
tags corresponding to their associated purpose; and (2) a dynamic
analyzer, which propagates the bytecode tags across method calls,
according to the context of the call, and computes the dynamic met-
rics.

In addition to these main tools we have also developed two utili-
ties. The Retaggerutility allows us to modify the tags by hand in-
teractively, so that we can experiment with new tagging approaches.
The TagReaderutility allows us to print a textual representation of
the tagged bytecode so that we can check its correctness and view
the details of which bytecode instructions are tagged.

In the following subsections we first provide an illustrative ex-
ample, showing examples of static tagging and tag propagation
(Section 4.1). We then provide more specific details on the imple-
mentation of the two main components of our approach, the static
tagger, based on the AspectJ 1.1.12 compiler (Section 4.2), and the
dynamic metric analyzer, based on *J (Section 4.3).

4.1 An example
To demonstrate our approach to static tagging and dynamic prop-

agation, consider the small AspectJ program in Figure 1. The ad-
vice declared in ExampleAspectshould execute before every call to
bar() (selected by the first call pointcut) for which there is a call to
foo() somewhere in the call stack (selected by the cflow pointcut).

The listing in Figure 3 shows the bytecode instructions for each
of the methods in Example.class, with the added instruction tags
that were produced by our static tagger. Each line of bytecode cor-
responding to instructions introduced by the AspectJ compiler is
annotated with the tag associated with it. Many bytecodes do not
have a tag and these bytecodes will be assigned a tag during the

2 At the time of this writing, version 1.2 of the AspectJ compiler
has been recently released. Preliminary experiments show that it
does not significantly affect the present discussion.
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Figure 2: Overview of Metric Collection Tools
Tag Shadow

public Example()
0: aload 0
1: invokespecial Object()
4: return

public static void main(String[] args)
0: new Example
3: dup
4: invokespecial Example()
7: astore 1
8: aload 1

ADVICE TEST 12 9: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
ADVICE TEST 12 12: invokevirtual boolean CFlowStack.isValid()
ADVICE TEST 12 15: ifeq→ 24

ADVICE ARG SETUP 12 18: invokestatic ExampleAspect ExampleAspect.aspectOf()
ADVICE EXECUTE 12 21: invokevirtual void ExampleAspect.ajc$before$ExampleAspect$148()

24: invokevirtual void Example.bar()
27: aload 1

CFLOW ENTER 13 28: bipush 0
CFLOW ENTER 13 30: anewarray Object[]
CFLOW ENTER 13 33: astore 3
CFLOW ENTER 13 34: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
CFLOW ENTER 13 37: aload 3
CFLOW ENTER 13 38: invokevirtual void CFlowStack.push(Object[])

41: invokevirtual void Example.foo()
CFLOW EXIT 13 44: goto→ 24
CFLOW EXIT 13 47: astore 4
CFLOW EXIT 13 49: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
CFLOW EXIT 13 52: invokevirtual void CFlowStack.pop()
CFLOW EXIT 13 55: aload 4
CFLOW EXIT 13 57: athrow
CFLOW EXIT 13 58: nop
CFLOW EXIT 13 59: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
CFLOW EXIT 13 62: invokevirtual void CFlowStack.pop()

65: nop
66: return

public void foo()
0: getstatic PrintStream System.out
3: ldc “foo”
5: invokevirtual void PrintStream.println(String)
8: aload 0

ADVICE TEST 17 9: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
ADVICE TEST 17 12: invokevirtual boolean CFlowStack.isValid()
ADVICE TEST 17 15: ifeq→ 24

ADVICE ARG SETUP 17 18: invokestatic ExampleAspect ExampleAspect.aspectOf()
ADVICE EXECUTE 17 21: invokevirtual void ExampleAspect.ajc$before$ExampleAspect$148()

24: invokevirtual void Example.bar()
27: return

public void bar()
0: getstatic PrintStream System.out
3: ldc “bar”
5: invokevirtual void PrintStream.println(String)
8: return

Figure 3: Tagged class file for example AspectJ program

subsequent dynamic analysis. Let us now examine the static tag-
ging and dynamic tag propagation for our example.

Instructions 9–15 in both main(String[]) and foo() are tagged
ADVICE TEST; these instructions perform the matching of the cflow

pointcut, and test for the presence of a call to foo() in the call stack.
If this test succeeds, the advice is executed.

Instructions 18–21 in both methods are advice execution over-
head, tagged ADVICE ARG SETUP and ADVICE EXECUTE. The
distinction is made between these two tags because they propagate
differently. Instruction 18 is a call to the aspectOf()method, which
acquires the aspect instance. All of the untagged instructions in as-
pectOf()will inherit the tag of instruction 18 (ADVICE ARG SET-
UP), as they also represent the same kind of overhead. Instruction
21, however, calls the advice body, which is not overhead, and so its
tag is not propagated by the analyzer. Instead, the ASPECT CODE

tag is propagated to the advice body method.
Instructions 28–38 (CFLOW ENTRY) and 44–62 (CFLOW EXIT)

manage the representation of the call stack, required by the cflow
pointcut. This call stack representation is described in more detail
in Section 5.3.2. Before each call to foo(), a value is pushed onto
the CFlowStackcorresponding to the relevant cflow pointcut. On
returning from that call, either normally or by thrown exception,
the CFlowStackis popped. Both of these tags, CFLOW ENTRY and
CFLOW EXIT, propagate to the called methods since the push()and
pop()methods represent the same kinds of overhead.

4.2 Static Tagging: annotating class files using
a modified AspectJ compiler

The AspectJ compiler, since version 1.1, operates in two stages.
The first is a compilation stage, using the Java compiler from the
Eclipse project, which produces class files with special attributes.
These attributes contain information for the second stage, where
aspects are woven into the bytecode of a base program.

We have modified the bytecode weaver of version 1.1.1 of the
AspectJ compiler to annotate the classes it produces. A first set
of annotations assigns tagsto certain bytecode instructions. These
tags aim at identifying the role of the instruction in the generated
code, such as dynamically guarding a given piece of advice, invok-
ing an advice body, etc. The tag annotations are focused on study-
ing the use of the different language features that AspectJ supports;
27 out of the 29 possible tags represent overhead instructions (the
other two are for base and aspect code respectively).

A second set of annotations identify the join point shadows into
which instructions have been inserted during weaving. Each added
instruction is tagged with a shadow ID corresponding to a sin-
gle join point shadow. For example, the single advice declaration
listed in Figure 1 results in instructions being added to multiple join
point shadows in the base program. These added instructions have
shadow ID tags as shown in Figure 3. The three join point shad-
ows, each corresponding to a method call, have IDs 12, 13, and 17.
The weaver additionally stores a table mapping each shadow ID
to its shadow kind (e.g., method-call) and its signature (e.g., void
Example.bar()for shadow 12 in the example.)

4.2.1 Tagging during weaving
In the AspectJ compiler, the major changes made to the classes

being woven into are performed by two kinds of munger. The first
is the type munger, which is responsible for changing the type
structure of the program and implements intertype declarations.
The second is the shadow munger, which is responsible for manipu-
lating join point shadows, implementing, for example, the weaving
in of advice. Consider the simple case of the before advice declared
in the example in Figure 1. During the weaving stage this advice
is represented by a shadow munger which operates on shadows for
which a subset of associated join points are selected by the advice’s
pointcut. The body of the advice is compiled as a method on the as-
pect class during the compilation stage; the shadow munger inserts
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into the shadow the instructions necessary for calling this advice
body method, and, if necessary, test instructions to determine at
runtime if a join point matches the pointcut.

Our modified AspectJ weaver tags all the instructions according
to their purpose. The first set of new instructions created by the
weaver expose arguments to the advice and acquire the aspect in-
stance. We add as attributes to each generated instruction object
the ADVICE ARG SETUP tag. Then the advice execution instruc-
tion is created, which is an invoke to the advice body method. We
tag this ADVICE EXECUTE in the same way. Finally, if it hasn’t
been statically determined that this advice should always execute at
this shadow, test instructions are generated, which we tag as AD-
VICE TEST. This newly generated instruction list is then inserted
into the shadow, which is a range of instructions in a method in the
base program.

Our examples so far have demonstrated some of the most com-
mon tags. However, the AspectJ weaver introduces new instruc-
tions into the base program to implement many other features, both
as a result of static cross-cutting and dynamic cross-cutting.

4.2.2 Pretagging
Not all of the instructions we wish to annotate during the weav-

ing stage are generated during the weaving stage. Existing in-
structions in aspect classes, generated during the front-end AspectJ
compilation, may also represent overhead. The front-end compiler
could be modified to tag these instructions as they are generated,
in the same manner that instructions are tagged during weaving,
however, since AspectJ supports the weaving of binary aspects for
which the source may be unavailable, it is desirable to instead per-
form all tagging during the weaving stage. Therefore, at the be-
ginning of this stage, we search for existing overhead instructions
within aspect classes and tag them. Since the AspectJ compiler au-
tomatically generates names for advice bodies and other methods
on the aspect class, this is accomplished by searching for bytecode
patterns in methods whose names match the naming conventions.
An example case is that of an around advice body. The body of
this around advice is implemented as a method on the aspect class.
For this method, we isolate the instructions implementing the pro-
ceed() call, and tag them appropriately.

4.2.3 Generating attributed class files
After all tagging and weaving has been performed on all classes,

and as classes are being written, our modified AspectJ compiler
converts the tag attributes on the instruction objects into a code at-
tribute for each method which is stored in the generated class files.
For those instructions with explicit tags we use that tag value, and
for instructions without tags a placeholder tag is assigned, namely
NO TAG. This will be replaced by a proper tag during the dynamic
analysis phase.

4.3 Dynamic metric analysis with tag propa-
gation using *J

*J is a framework designed to perform dynamic analyses of Java
programs. While it was primarily designed for computing dynamic
metrics, it can be easily extended to include various other kinds of
analyses. The *J framework uses a trace collection agent which is
based on the Java Virtual Machine Profiler Interface (JVMPI). This
agent receives execution events from a regular Java Virtual Ma-
chine (JVM) and encodes the information in the form of an event
trace. This trace can then be processed by the analyzer, which inter-
nally consists of a sequence of operations organized as a pipeline
structure. Each analysis in the pipeline receives events from the
trace sequentially. *J provides a number of default analyses in its

library, many of which provide services to subsequent analyses in
the pipeline. It also includes a full set of general-purpose dynamic
metric computation modules.

4.3.1 Modifications to the *J analyzer:
Static tagging identifies bytecode that is added to support As-

pectJ constructs. Because only the application classes are compiled
with the modified AspectJ compiler, using only the static instruc-
tion tags in an analysis results in a significant underestimate of the
overhead code. For example, it is possible for parts of the Java
standard library to be called in AspectJ overhead code as well as
from the original application. It is thus necessary to propagate the
statically-assigned tags dynamically based on the control flow of
the application in order to obtain a correct measurement of over-
head.

Several additions were made to *J in order to make it recognize
and use the bytecode tags. The *J class file reader was extended to
enable reading of the encoded information, and association of tags
with each loaded bytecode instruction. For untagged bytecodes, a
default tag value, NO TAG, serves as a placeholder.

The most significant addition to *J consists of the tag propaga-
tion analysis. This analysis is responsible for dynamically assign-
ing tags to executed bytecodes by pushing tags along invocation
edges in the dynamic call graph of the application. For example,
in Figure 1, the invokestaticbytecode at offset 18 in main(String[])
has a static ADVICE ARG SETUP tag. This instruction invokes the
aspectOf()method on the ExampleAspectaspect class. At runtime,
the ADVICE ARG SETUP tag will be propagated to all bytecodes in
the aspectOf()method, and all bytecodes in methods that it calls,
etc. If an instruction has no static tag, and no tag has been propa-
gated to it, it is assigned the default tag, BASE CODE. This guar-
antees that all bytecodes executed during “normal” control flow re-
ceive a dynamic tag every time they are executed.

The exception to this is when program code is entered from
places the *J agent cannot observe. This can happen in the case
of callbacks from JNI code, or the execution of the class loader,
for example. In the cases described, where this task is especially
difficult, we always opt for the conservative solution, ensuring that
our analysis will never overestimate the overhead.

The meaning associated with some tags precludes their propaga-
tion. For example, the ADVICE EXECUTE tag is used for calls to
methods corresponding to advice code; the call (and subsequent re-
turn statement) are overhead, but the body of the advice is not and
should be tagged ASPECT CODE. In this and similar cases, partic-
ular tags trigger propagation of different tags. Therefore, we define
a propagation table. This table provides a mapping from each tag
to another tag which is to be used in its stead when propagating.
Most tags are propagated as themselves; the exceptions are listed
in Table 1.

Current Propagated

ADVICE EXECUTE ASPECT CODE

INTERMETHOD ASPECT CODE

INLINE ACCESS METHOD ASPECT CODE

AROUND CALLBACK BASE CODE or ASPECT CODE

AROUND PROCEED BASE CODE or ASPECT CODE

Table 1: Dynamic Propagation Table

The INTERMETHOD and INLINE ACCESS METHOD tags, like AD-
VICE EXECUTE, both identify call sites which invoke user-defined
aspect code, and thus have the same propagation behaviour. The
AROUND CALLBACK and AROUND PROCEED tags identify call
sites which implement the proceed() construct, and can propagate
either the BASE CODE or the ASPECT CODE tag depending on the
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calling context at the advised join point. Keeping track of the depth
of nested aspect code is thus necessary to determine the context of
proceed() calls.

The propagation algorithm is further complicated by tags which
are to be propagated to bytecode instructions which already pos-
sess a tag. In such cases, it is sometimes necessary to allow the
new tag to temporarily override the previous one. While tags iden-
tifying overhead code should not be overridden, it must be possible
to override the tags which correspond to base or aspect code.

This is best illustrated by a simple example. An instance of an
aspect can be accessed via the static method aspectOf()on the as-
pect class. This call can originate from within user-defined code, as
well as from within the code inserted by the weaver to implement
advice execution. In order to support the first case, the method is
statically tagged ASPECT CODE. In the second case, the invoke
is tagged ADVICE ARG SETUP (as illustrated in Figure 3), which
we wish to propagate to the method. To correctly handle all sim-
ilar situations, it is necessary that instances of the ASPECT CODE

and BASE CODE tags can temporarily be overridden by other tags
during analysis. Note that in order to support the first case, an
instruction tagged BASE CODE must not be allowed to override a
statically assigned ASPECT CODE tag. In cases where it would, an
ASPECT CODE tag is propagated instead.

4.3.2 Collecting the AspectJ-specific metrics
The entire tag propagation scheme is implemented as a separate

*J analysis, so that subsequent AspectJ-specific analyses can be
implemented independently and easily.

Since each bytecode execution now has an associated dynami-
cally computed tag, it is a simple addition to the *J analyzer to
collect the tag mixmetric, which counts the number of bytecodes
executed for each tag. We can also apportion other existing metrics,
such as allocation counts, between the different tags.

In addition, the analyzer also tracks all dynamic guards on ad-
vice, and for each such guard computes whether the guard always
succeeds, always fails, or sometimes succeeds. A count of the num-
ber of times each guard is executed is also maintained.

5. BENCHMARKS
In this section we provide the results and analysis for eight bench-

marks which span a wide variety of uses of AspectJ. Although As-
pectJ is becoming quite popular there is no existing AspectJ bench-
mark set, thus our first challenge was to collect benchmarks that
were representative of many different applications of AspectJ. All
of our benchmarks were collected from public sources on the web,
and can be obtained from http://www.sable.mcgill.ca/
benchmarks/. We believe that providing an interesting and di-
verse benchmark set is an important contribution in itself.

Four of our benchmarks have equivalent Java versions, while
the other four are too large and/or complex to easily produce Java
equivalents. The benchmarks with Java versions are particularly
valuable because we can compare runtime overheads shown by
direct timing comparisons with overheads shown by our dynamic
metric analysis; the timings tell us where there is observable over-
head, and the metric analysis helps us understand the reasons for
that overhead.

When analyzing the benchmarks we did not know what to ex-
pect a priori. The general belief in the AspectJ community seems
to be that overheads are low. Thus, an important part of our study
was to find out if and why this is true. The first four benchmarks,
presented in Section 5.2, are examples where we found low over-
all overheads. However, somewhat to our surprise we found three
benchmarks which had extremely high overheads, and for those

benchmarks we have made a detailed examination of the source of
the overheads, as presented in Section 5.3. Finally, we investigated
one benchmark for which the aspect is intended to improve perfor-
mance. We discuss it in Section 5.4.

5.1 Overall Data
Table 2 gives an overview of the key data for all eight bench-

marks. Each heading of related rows contains references to those
sections of the paper that discuss the relevant metrics in detail.

At the top of the table we give the metrics that measure program
size. Note that six of the benchmarks are quite large, and are com-
posed of between 24 and 252 application classes (classes that are
not part of the standard Java library). Two benchmarks, Beanand
Figure are smaller, but have been selected to illustrate some stan-
dard uses of AspectJ. Also, note that as with all Java programs, the
size of the programs, when the Java libraries are included, are very
large, even for the small applications.

The region of the table labelled “EXECUTION TIME MEA-
SUREMENTS” gives measurements for execution time, including
both real execution times and metrics. For real execution times
we consider three different configurations of the Java VM (Java
HotSpot™ Client VM (build 1.4.0-b92, mixed mode)). In the first
configuration we use the default mode which enables the client
VM. For this configuration we also provide the amount of time
spent in the JIT compiler, and total GC time. Since the ajc com-
piler’s code generation strategy assumes a VM with a JIT that in-
lines, we also provide the performance for the client VM when in-
lining is disabled. Finally, in order to see performance of the byte-
code directly, without the effect of JIT compilation, we provide the
time for the interpreter configuration.

Another important aspect of performance is space usage. In the
section of the chart labelled “EXECUTION SPACE MEASURE-
MENTS”, a key metric is the Object Allocation Density which mea-
sures the number of objects allocated per 1000 bytecode instruc-
tions executed (kilobytecodeor kbc). If the allocation density is
high, then it is important to examine the “ASPECTJ TAG MIX

FOR ALLOCATIONS” section at the bottom of the table to deter-
mine if significant space is used for AspectJ overhead.

In the section labelled “ASPECTJ METRICS SUMMARIZING

OVERHEAD” we provide those measurements that summarize
overheads. Benchmarks with high AspectJ Overhead are those
most likely to have performance problems.

The sections for “ASPECTJ TAG MIX” provide a more detailed
breakdown of the overheads, first considering all instructions, and
then the tag mix for allocations only.

Finally, in the section labelled “ASPECTJ METRICS FOR SHAD-
OWS”, we give two metrics. The first one refers to the hot shadow
metric as defined in Section 3.3.5. The second one, called “Shadow
Guards Runtime Const.”, is computed using the advice execution
metrics defined in Section 3.3.4, and is simply the percentage of
all shadow guards that always evaluate to true or always evaluate
to false (i.e., those guards that are runtime constants and perhaps
could be optimized away using a compiler analysis).

A detailed individual analysis of all benchmarks is given in the
next three subsections. For each benchmark we give the source of
the benchmark, a brief description of the aspects involved, and a
discussion of our performance measurements.

5.2 Benchmarks with low runtime overhead
In this section we present four benchmarks which seem to con-

firm the general opinion that AspectJ programs have low overhead
when compared to equivalent hand-woven Java programs.

As shown in the bold entries in Table 2, the first four benchmarks
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DCM ProdLine Tetris Bean NullCheck Figure LoD *J Pool
PROGRAM SIZE (APPLICATION ONLY) (§5.1, §3.2.1)
Classes Loaded 55 28 60 5 252 12 60 221
Instructions Loaded 17151 3198 5543 529 13954 616 27845 48227
Instructions Dead 9293 1231 2052 154 6901 233 11830 28491
Code Coverage (%) 46 62 63 71 51 62 58 41
PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM) (§5.1)
Classes Loaded 390 322 1007 372 573 295 385 905
Instructions Loaded 112588 83275 313425 99477 107486 74922 122689 184517
EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM) (§5.1, §3.1)
# instr. (million bytecodes) 3646 2213 68 158 5034 1623 2984 4232
Total time - client (sec) 8.46 1.78 125.83 1.74 33.13 8.90 96.91 24.52
JIT time - client (sec) 0.29 0.14 0.37 0.08 0.29 0.05 0.55 0.66
GC time - client (sec) 0.64 0.03 0.05 0.04 9.52 0.14 72.42 7.41
Slowdown vs. handcoded(×) 1.00 18.56 32.53 1.24
Time - client noinline (sec) 8.79 1.86 125.83 1.80 34.58 10.07 97.18 26.44
Slowdown vs. handcoded (×) 1.07 18.82 23.01 1.26
Time - interpreter (sec) 56.05 15.99 125.97 5.61 192.62 44.76 158.78 85.08
Slowdown vs. handcoded (×) 1.15 13.57 21.11 1.08
EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM) (§5.1, §3.2)
Mem. Alloc. (million bytes) 367 30 12 110 5705 374 998 177
Obj. Allocation Density (per kbc) 2.14 0.35 1.90 21.59 32.29 9.86 11.78 0.49
#Garbage Collections 374 38 13 144 5818 488 1104 46
ASPECTJ METRICS SUMMARIZING OVERHEAD (§3.3.2, §3.3.3)
AspectJ Overhead % (whole) 4.92 0.73 0.37 14.24 69.56 92.54 96.33 2.80
#overhead/#advice (whole) 0.05 0.01 0.19 0.18 20.03 125.17 30.68 1.77
#advice/#total (whole) 0.94 0.99 0.02 0.79 0.03 0.01 0.03 0.02
AspectJ Runtime Lib % (whole) 2.74 0.01 0.05 0.00 21.39 85.27 90.33 0.00
Aspect Overhead % (app) 16.98 11.25 7.84 39.48 73.28 82.86 97.94 3.56
#overhead/#advice (app) 0.22 0.13 1.09 0.92 19.49 48.33 142.30 1.77
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%) (§3.3.1, appendix)
BASE CODE 1.40 0.06 97.62 7.20 26.97 6.72 0.53 95.61
ASPECT CODE 93.68 99.21 2.00 78.55 3.47 0.74 3.14 1.59
AspectJ Overhead (total) 4.92 0.73 0.37 14.24 69.56 92.54 96.33 2.80
INTERMETHOD 0.23 0.51
INTERFIELDINIT 0.09 1.27
INTERCONSTRUCTOR PRE 0.07
INTERCONSTRUCTOR POST 0.23
INTERCONSTRUCTOR CONVERSION 0.03
ADVICE EXECUTE 0.29 0.002 0.04 0.76 1.74 0.25 0.008 0.11
ADVICE ARG SETUP 3.17 0.02 0.24 5.19 26.66 0.62 0.21 0.95
ADVICE TEST 10.84 0.22 0.64
AROUND CONVERSION 1.15 0.004 0.002 8.31
AROUND CALLBACK 0.01 0.002 16.35 0.11
AROUND PROCEED 0.30 0.01 0.08 2.53 7.81
CLOSURE INIT 0.007 0.003 8.68
AFTER RETURNING EXPOSURE 0.002
AFTER THROWING HANDLER 0.002
CFLOW ENTRY 36.97 44.06
CFLOW EXIT 43.87 51.83
PEROBJECT ENTRY
CLINIT 0.001 0.001
INLINE ACCESS METHOD 2.66
ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%) (§3.3.1, appendix)
BASE CODE 0.38 0.57 95.52 3.74 19.25 0.02 0.03 100.00
ASPECT CODE 26.25 53.54 3.70 92.69 0.27
AspectJ Overhead (total) 73.38 45.88 0.78 3.56 80.75 99.98 99.70 0.003
INTERFIELDINIT 3.56
INTERCONSTRUCTOR PRE 18.72
INTERCONSTRUCTOR POST 21.06
INTERCONSTRUCTOR CONVERSION
ADVICE ARG SETUP 54.39 4.07 0.59 53.85 0.27
AROUND CONVERSION 18.98 0.09
AROUND PROCEED 2.03 0.09 26.90
CFLOW ENTRY 99.98 99.42
PEROBJECT ENTRY 0.009 0.003
CLINIT 0.005 0.001 0.02 0.002
ASPECTJ METRICS FOR SHADOWS (WHOLE PROGRAM) (%) (§3.3.5, §3.3.4)
Hot Shadows (for 90%) 3.12 33.33 4.17 100.00 2.94 100.00 27.43 66.67
Shadow Guards Runtime Const.(%) 100.00 100.00 100.00

Table 2: Benchmark Measurements
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either show a low amount of total overhead as computed by our
metrics (DCM, ProdLineand Tetris), or show little or no slowdown
when compared to an equivalent Java program (Bean).

The overall conclusion is that total overhead is not a problem
when: (1) each advice body represents a large amount of work,
so the overhead per advice application is low; (2) the application
spends most of its time in the Java library, which usually does not
have advice applied to it; (3) the application spends very little time
in the part of the code which has advice applied to it (so even if
the overhead per advice instruction is high, the overall overhead is
low); or (4) there is some noticeable overhead in the code produced
by ajc, but a good inlining JIT compiler removes the overhead.
In the following sections we expand upon these conclusions and
examine each of the low-overhead benchmarks in more detail.

5.2.1 DCM
One important use of AspectJ is to provide a convenient way

of instrumenting a base Java program. In this case the base pro-
gram doesn’t change, but aspects are used to inject instrumentation
code to measure some sort of dynamic behaviour. Hassoun, John-
son and Counsell have suggested a new dynamic coupling metric
(DCM) [12] and a validation of that metric using AspectJ [13]. We
have implemented a more efficient version of their aspects (using
a hash table with one entry per class, instead of one entry per ob-
ject) which computes their proposed dynamic coupling metric. The
aspects use around and after advice. The basic idea is that each
constructor call and each method call is instrumented so as to in-
crement a time step counter and to compute a dynamic coupling
metric as a function of the value of the metric at the previous time
step, the number of currently live objects, and the static coupling
metric values. Computing this function is quite expensive as it re-
quires iterating through the entries in a hash table, where there is
one entry for each class in the application.

Since this aspect can be applied to any program, we applied it
to a reasonably large Java benchmark, Certrevsim, which is a dis-
crete event simulator used to simulate the performance of various
certificate revocation schemes [1]. This seemed to be a suitable
benchmark because it has non-trivial uses of objects and it com-
putes something useful.

The performance measurements for the DCM aspects applied to
the Certrevsimprogram are given in the column labelled “DCM”
in Table 2. As shown by the bold entry, the AspectJ Overhead is
only 4.92%. Furthermore, as expected, the ASPECTJ TAG MIX

metrics shows that over 93% of the instructions executed are in the
aspect code. This is completely reasonable, since the advice bodies
are very expensive, and they involve calls to relatively expensive
hash table routines in the Java library.

A more detailed analysis does show that the overhead when look-
ing at just the application code (Aspect Overhead (app)) is higher,
at 16.98%. Furthermore, in the TAG MIX metrics for allocations,
19% of all allocations are due to AROUND CONVERSION. These
overheads do not matter for this particular benchmark, but for a
benchmark with smaller advice bodies, it could be a problem, and
may be worth further investigation and possible improvements to
the compiler.

5.2.2 ProdLine
Intertype declarations in AspectJ allow one to define new fields,

constructors and methods for existing Java classes. Lopez-Herrejon
and Batory use this idea to experiment with using AspectJ to im-
plement product lines, where a product lineis a family of related
software applications [22]. Their application experiments with a
product line for related graph algorithms. This application is in-

teresting because it heavily uses intertype declarations. The base
program is effectively just a collection of empty classes (for exam-
ple Edge, Vertexand Graph) and various aspects that use intertype
declarations to insert fields, constructors and methods into those
classes (for example, Directed, Undirected, DFS), plus some uses
of advice to splice in some method calls. The underlying imple-
mentations of the graph data structures and algorithms make heavy
use of the LinkedListimplementation in the standard Java library.
We used the original benchmark as provided by the authors, but
added our own module to generate random graphs, and run larger
tests suitable for timing.

The performance numbers are given in the column labelled “Prod-
Line” in Table 2. The overall AspectJ overhead is very low at
0.73% and almost all of the overhead comes from the intertype tags.
However, note that the AspectJ overhead for the application only is
much higher at 11.25%. This indicates the benchmark spends a ma-
jority of its time in the Java library. Also, a potentially important
overhead is found in the ASPECTJ TAG MIX for allocations. It ap-
pears that the heavy use of intertype constructors in this benchmark
leads to considerable space overhead, with about 40% of the total
space used due to objects allocated in the pre and post processing
of constructors that have been introduced using intertype declara-
tions. This may be another area where a better compilation strategy
can avoid some of that overhead.

5.2.3 Tetris
Graphical, interactive applications pose difficulties for analysis

in that they both require human intervention and may have large
variations in execution time thereby. However, they certainly form
a large class of applications, and the performance and overhead
of aspects in such a context is quite relevant in terms of program
response times, or the cost of background computations.

We have analyzed an AspectJ version of the arcade game Tetris,
available on the web [9]. In order to get reproducible results, we
have modified the program to use a seeded random number gener-
ator, and to (non-interactively) replay a previously-recorded inter-
active session. The code to accomplish this naturally changes the
program; however, the core program logic is unaltered, and the use
of aspects remains the same as the original program.

Aspects in this situation were used to augment the base game
with new functionality. A number of aspects were applied, though
most of them apply to situations that did not happen or which hap-
pened only a few times during our sample game play. The remain-
ing aspects (NEW BLOCKS and NEXT BLOCK in [9]) are applied
to code that is exercised every few game moves, roughly in (a re-
duced) proportion to the number of game events, or sequences of
active code execution.

Overall aspect overhead in Tetrisis low, accounting for less than
1% of executed bytecodes (see the “Tetris” column in Table 2).
This is further demonstrated by the limited use of aspects with re-
spect to the overall program—advice constitutes only 2% of the
program.

In fact, the WHOLE PROGRAM metrics are dominated by costs
external to the application (startup, GUI library code). This can be
seen in the relative size (Instructions Loaded) of the application ver-
sus the whole program, but is also apparent in the APPLICATION

ONLY version of the aspect metrics. Overhead rises to 7.84%, and
is now greater than the cost of the aspect code itself (overhead to
advice ratio is 1.09).

Program design in this case limits any apparent overhead. Varia-
tions in Java library/startup design may change the relative weight
of application code, and thus the visibility of this overhead.
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5.2.4 Bean
This is example is taken from the AspectJ primer on the website

aspectj.org.3 Once again, we modified it slightly to increase
the running time. It starts with a class named Point for representing
pairs of x and y coordinates, and it adds the functionality of Java
beans with bound properties to this class.

In order to do so, it injects a new private field into the Point
class; this new field has type PropertyChangeSupport; all the asso-
ciated methods are added as well, and the Point class is declared to
be an implementation of Serializable. All these additions are ac-
complished via the static features of AspectJ. Furthermore, it also
fires a property changer whenever either the x or y coordinate is
changed. This additional functionality is achieved with a pointcut
and around advice, for each of x and y separately.

For comparison, we wove the AspectJ version by hand to obtain
a pure Java program. Both the AspectJ and the pure Java program
were compiled with the JIT inliner turned on and off. The results
for these versions are shown in the “Bean” column of Table 2.

From the tag mix, it is apparent that this benchmark spends most
of its time in aspect code, which consists of library calls introduced
via intertype declarations, but there is also some around advice.

The overhead in terms of bytecodes executed is quite significant
(14.24%). This is reflected in the execution time when run through
the interpreter. However, it appears that the JIT compiler is able to
eliminate most of the overhead. Without inlining turned on, there is
still a discernible price in execution time of about 7%. With inlin-
ing, the JIT compiler completely eliminates the cost of the overhead
instructions inserted by the AspectJ compiler.

In the context of this small benchmark, these numbers appear to
justify an assumption of the AspectJ implementors, stated in [14],
that the inliner eliminates most overhead of intertype declarations,
and also of advice declarations where there is no dynamic residue
of pointcut matching. It is however notoriously difficult to predict
the effect of inlining strategies, so further benchmarking is neces-
sary to justify the assumption in general.

5.3 Benchmarks with high overheads
Contrary to the belief that there are no significant overheads

for AspectJ we did find extremely large overheads in three bench-
marks. In this section we present these benchmarks, examine where
the overheads come from and suggest some solutions for both the
programmer (what to avoid using in AspectJ) and for compiler writ-
ers (what can be improved and some ideas on how to make those
improvements).

5.3.1 NullCheck
Users of AspectJ have found many different kinds of applications

for aspects. One potential use, as outlined in a short online article
by Asberry, is to use aspects to enforce coding standards [2]. He
suggests several applications, one of them being an aspect to detect
when methods return null. According to Asberry, the justification
for this aspect is that sometimes programmers use the “on error
condition, return null from method” anti-pattern. This is consid-
ered to be bad coding style, since throwing a meaningful exception
would be much preferable. He suggests the following pointcut and
around advice to detect all occurrences of returning null from a
method.

// First primitive pointcut matches all calls,
// second avoids those with void return type.

3An earlier version on that webpage was flawed; we are using the
revision suggested in an early draft of this paper and also on the
aspectj-dev list by Gregor Kiczales on January 14, 2004.

pointcut methodsThatReturnObjects(): call(* *.*(..)) && !call(void *.*(..));

Object around(): methodsThatReturnObjects()
{ Object lRetVal = proceed();

if (lRetVal == null)
{ System.err.println( “Detected null return value after calling ”+

thisJoinPoint.getSignature().toShortString() + “ in file ” +
thisJoinPoint.getSourceLocation().getFileName() + “ at line ” +
thisJoinPoint.getSourceLocation().getLine());

}
return lRetVal; }

Since this is another case of an aspect that can be applied to any
Java program, we applied it to the same Java benchmark, Certrevsim,
that we used for the DCM example in Section 5.2.1. Our first
experiment was to analyze the dynamic behaviour of the original
Certrevsimbenchmark and compare it with the same benchmark,
but with the suggested null check aspect applied to it. Results given
in Table 3 in the column labelled “Orig. AspectJ”. The results were
very surprising, as the original Java benchmark runs in 1.49 sec-
onds, but the AspectJ benchmark runs in 33.13 seconds, a 19-fold
slowdown. This was completely unexpected, because according to
the description of the aspect, the only new useful code being in-
serted is a check of the return value of all non-void methods.4 To
verify that such checks should not account for such a slowdown
we hand-wove the checks into the original program, and the dy-
namic measurements for this version are given in the last column
of Table 3, labelled “Hand-woven Java”. The runtime for this hand-
woven version is 1.78 seconds, which is only 19% slower than the
benchmark without the checks. Thus, there is a huge gap between
the performance of the AspectJ program (1856% slower) and the
hand-woven program (19% slower). The hand-woven version does
of course not admit the collection of the AspectJ metrics, and there-
fore that part of the table has been omitted in the relevant column.

Our metrics indicate the source of the problem. First, there is
a lot of around overhead — this is to be expected. However,
AROUND CONVERSION should be significant only when non-object
types have to be boxed (and unboxed) upon invocation of the around
advice body. Here we did not expect that to happen, as we only
wish to process method results that are objects in the first place.
However, the around advice was being applied to all method calls
returning values (including methods returning scalar types such as
integers) instead of just those that returned values with some Ob-
ject type (i.e., any type that is Objector a subclass of Object).5 Of
course, looking back to the pointcut methodsThatReturnObjects,
we can see that it does apply to all methods with non-void return
type. Thus, we fixed the pointcut designator to be the following.

pointcut methodsThatReturnObjects(): call(Object+ *.*(..));

This fixed pointcut matches only those method calls which re-
turn Object types, as intended, and the dynamic measurements of
applying this fixed pointcut to the simulator benchmark are given
in Table 3, in the column labelled “Fixed AspectJ”. Note that the
runtime is still much larger than expected, 10.69 seconds, or about
6 times slower than the handwoven Java program.

The WHOLE PROGRAM dynamic metrics give us some insight
into this large performance difference. The fixed AspectJ version
executes 1938 million instructions, whereas the hand-woven Java

4It turns out that the Certrevsimbenchmark is well written and does
not return null from methods, so the check against null never suc-
ceeds. Thus, the runtime overhead is simply the check against null
and a branch.
5This could also be observed using the Eclipse plugin for AspectJ.
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Orig. Fixed Pruned Best Hand-woven
AspectJ AspectJ AspectJ AspectJ Java

(all non-void (only Object+ (not within (after (with null
methods) methods) aspect code) returning) checks)

PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 252 138 48 48 22
Instructions Loaded 13954 8510 7660 3859 2421
Instructions Dead 6901 4967 4872 2028 1042
Code Coverage (%) 51 42 36 47 57
PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 573 459 369 369 342
Instructions Loaded 107486 102042 101192 97391 95946
EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 5034 1938 1313 1088 963
Total time - client (sec) 33.13 10.69 1.89 1.82 1.78
JIT time - client (sec) 0.29 0.13 0.09 0.08 0.07
GC time - client (sec) 9.52 2.61 0.02 0.01 0.01
Slowdown vs. handcoded(×) 18.56 5.99 1.06 1.02 1.00
Time - client noinline (sec) 34.58 11.06 2.18 2.02 1.84
Slowdown vs. handcoded (×) 18.82 6.02 1.19 1.10 1.00
Time - interpreter (sec) 192.62 61.18 19.49 16.67 14.20
Slowdown vs. handcoded (×) 13.57 4.31 1.37 1.17 1.00
EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 5705 1529 2 2 2
Obj. Allocation Density (per kbc) 32.29 19.34 0.03 0.04 0.04
#Garbage Collections 5818 1526 3 2 2
ASPECTJ METRICS SUMMARIZING OVERHEAD
AspectJ Overhead % (whole) 69.56 50.15 25.63 13.75
#overhead/#advice (whole) 20.03 19.49 5.40 6.00
#advice/#total (whole) 0.03 0.03 0.05 0.02
AspectJ Runtime Lib % (whole) 21.39 3.88 0.00 0.00
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 26.97 47.28 69.62 83.96
ASPECT CODE 3.47 2.57 4.75 2.29
AspectJ Overhead (total) 69.56 50.15 25.63 13.75
ADVICE EXECUTE 1.74 1.29 1.90 3.44
ADVICE ARG SETUP 26.66 22.51 16.13 8.02
AROUND CONVERSION 8.31 0.64 0.95
AROUND CALLBACK 16.35 13.49
AROUND PROCEED 7.81 5.79 6.64
CLOSURE INIT 8.68 6.43
AFTER RETURNING EXPOSURE 2.29
ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)
BASE CODE 19.25 0.10 99.26 99.75
AspectJ Overhead (total) 80.75 99.90 0.74 0.25
ADVICE ARG SETUP 53.85 66.61
AROUND PROCEED 26.90 33.28
CLINIT 0.001 0.74 0.25

Table 3: Nullcheck metrics

version executes only 963 million instructions. However, most sur-
prising is that even the fixed AspectJ benchmark allocates 1529
million bytes, whereas the original Java version only allocated 2
million bytes. This is a huge increase in memory consumption,
considering the aspect body itself is very simple, the check against
null never succeeds in this benchmark, and thus the aspect body
does not explicitly allocate any objects at all.

When we look at the APPLICATION ONLY dynamic metrics we
see that the hand-woven Java benchmark loaded only 22 applica-
tion classes (2421 instructions), whereas the fixed AspectJ version
loaded 138 classes (8510 instructions), another source of overhead
for the class loader and JIT compiler.

By looking at the ASPECTJ TAG MIX metrics we can see there
is a large amount of overhead, mostly attributed to the tags AD-
VICE ARG SETUP, AROUND CALLBACK, AROUND PROCEED and
CLOSURE INIT. Furthermore, by concentrating on the ASPECTJ
TAG MIX FOR ALLOCATIONS ONLY metrics, it is clear that the

around advice tags ADVICE ARG SETUP and AROUND PROCEED

account for almost 100% of the allocations in the program. Given
that all overhead was coming from around advice, we decom-
piled the class files and studied the code generated by the AspectJ
compiler to implement the around advice. We found that, in this
case, closures are created to handle the around advice. By study-
ing the code produced we estimated that each method call with
around advice has an overhead of 2 invokespecial calls, 5
invokestatic calls, 2 invokevirtual calls, 2 array alloca-
tions, 3 object allocations, 3 field read/write instructions, 4 cast/in-
stanceof instructions, plus numerous simple load and store in-
structions. Clearly this use of closures is a very heavy-weight solu-
tion, using many expensive bytecode instructions and considerable
memory allocation, and it certainly accounts for the increase in run-
time.

In order to understand why closures were being used to imple-
ment the around advice for such a simple case, we studied the
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AspectJ compiler and found that there are two strategies for im-
plementing around advice, one uses closures and the other uses an
inlining strategy. By default the compiler will try to inline; however
there are two situations in which closures will be used: (1) the com-
piler flag -XnoInline has been set; or (2) the around body has
around advice which applies to it. For our benchmark, the body of
the around advice contains several method calls returning Object
types (namely the string operations in the argument of println), so
situation (2) applies and thus the AspectJ compiler selects the clo-
sure strategy for all method calls which have this kind of around
advice applied.

To study the performance of the inlining strategy, we changed
the pointcut designator to eliminate those method calls that were in
our aspect code as follows.

pointcut methodsThatReturnObjects():
call(Object+ *.*(..)) &&
!within(lib.aspects.codingstandards.*);

The dynamic measurements of this version are given in Table 3
in the column labelled “Pruned AspectJ”. Clearly the inlining strat-
egy for around advice is much more efficient than the closure strat-
egy. However, it is somewhat alarming that such a minor change
to the pointcut specification has such a large impact on the perfor-
mance of the program. From the programmer’s point of view, the
!within clause should not be necessary, but clearly it does have
a very important impact on the ultimate performance. Further-
more, there is still a significant amount of overhead when we com-
pare the hand-woven Java version (column labelled “Hand-woven
Java”) to the equivalent AspectJ version (column labelled “Pruned
AspectJ”).

In terms of runtime performance, the hand-woven Java version
executes in 1.78 seconds whereas the Pruned AspectJ version exe-
cutes in 1.89 seconds, which is 6% slower. This overhead is also
reflected in the number of instructions executed, 963 million for
the Java version versus 1313 million for the AspectJ version. Ac-
cording to the ASPECTJ TAG MIX metrics, most of the overhead
is due to ADVICE ARG SETUP (16.13%) and AROUND PROCEED

(6.64%).
Furthermore, the Pruned AspectJ program loads more applica-

tion classes (48 vs. 22), because the AspectJ version must load
many classes from the AspectJ runtime library, and the aspect class
itself. The AspectJ version has more instructions (7660 vs. 2421),
which is due to code from the AspectJ runtime library, the inlining
of multiple copies of advice, and the fact that the inlining strat-
egy introduces many overhead instructions, as demonstrated by the
ASPECTJ TAG MIX metrics.

Finally, the Pruned AspectJ version has significantly more dead
code (4872 vs 1042). The dead code comes from three sources: (1)
methods in the AspectJ runtime library that are loaded, but never
run, (2) the code in the never-taken branch of the advice which is
inlined in many places, and (3) the presence of methods generated
by the AspectJ compiler which are never needed (for example, a
method to deal with advice as closures is generated even if closures
are not used). We believe AspectJ generates these dead methods
for reasons of incremental compilation.

After studying the null check aspect further, one can notice that
the pruned version can be further improved by using after return-
ing advice instead of around advice, as follows.

after() returning(Object lRetVal): methodsThatReturnObjects()
{ if (lRetVal == null)

{ System.err.println(
“Detected null return value after calling ”+
thisJoinPoint.getSignature().toShortString() +

“ in file ” + thisJoinPoint.getSourceLocation().getFileName() +
“ at line ” + thisJoinPoint.getSourceLocation().getLine());

}}

The measurements for this final version are given in the column
labelled “Best AspectJ”. As indicated by the ASPECTJ TAG MIX

metrics, the overhead due to around in the Pruned version (0.95%
for AROUND CONVERSION and 6.64% for AROUND PROCEED) is
replaced by a smaller overhead due to after after returning (2.29%
for AFTER RETURNING EXPOSURE).

There are some important observations to be made with this bench-
mark. First, even though the pointcut in this example was very
simple, it shows that it is very easy for a programmer to define
a pointcut that applies to more places than absolutely necessary.
Further, the decision of the AspectJ compiler to use closures or in-
lining for around advice can have a huge impact on runtime, due
to the general, but heavy-weight, strategy used for closures. Pro-
grammers may unwittingly trigger the use of closures if they forget,
or don’t realize, the importance of avoiding pointcuts that apply in
the aspect body. The inlining strategy for around advice is much
more efficient than the closure-based strategy, but it can still lead
to significant overheads, particularly if applied to method calls that
execute frequently. Thus, we feel that this example shows that it
would be worthwhile to further improve the approach to generating
code for around advice. Finally, programmers should be aware
of situations where after advice could be used instead of around
advice, since the overheads for after advice are lower.

5.3.2 Figure
The Figure benchmark illustrates the use of aspect-oriented pro-

gramming in a figure editor [15]. Here we have selected just one
aspect from that example, namely to update the display whenever
one of the figure elements has been altered.

There is an interface called FigureElement, and all shapes that
the editor support implement that interface, for example the Point
and Line classes. To capture any alterations to figure elements, we
define a named pointcut:

pointcut move():
call(void FigureElement.moveBy(int, int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

The first use of call captures the moveByoperations on any of the
implementations of FigureElement; the other disjuncts deal with
alterations to individual classes.

Now when do we want to update the display? Clearly whenever
a move has occurred, but not when the move is part of a more com-
plex operation that is itself a move. Furthermore we only want to
update the display when the relevant move has been successfully
completed, not when it throws an exception. These considerations
lead [15] to declare the following pointcut and advice:

after() returning: move() && !cflowbelow(move()) {
Display.needsRepaint();
}

The primitive cflowbelow checks that there is a movesomewhere
strictly below the top of the call stack. One might argue that it is
not necessary to use this primitive: it would be possible to explic-
itly write out all the composite operations. In that case, however,
the pointcut depends on intimate implementation detail, and is not
robust to changes in that detail.

In the present paper, the purpose of the Figure benchmark is to
examine the cost of using cflowbelow. We have thus disabled the

162



other aspects introduced in [15], using only the core figure editor
and the above advice. The core program is only a skeleton, and it
does no interesting computation on its own. It is therefore to be
expected that there is a very high overhead as a proportion of the
total computation time. This expectation is confirmed by the first
column of Table 4: the slowdown is about a factor of 32 compared
to an equivalent, hand-coded version (where all the necessary calls
to needsRepaintare inserted by hand into the core).

To understand this huge performance penalty, it is worthwhile
to examine the numbers in more detail. It appears that there is a
great deal of allocation, as indicated by the EXECUTION SPACE

MEASUREMENTS. Furthermore the tag mix reveals that the rel-
evant overheads lie in the administration of CFLOW ENTRY and
CFLOW EXIT, as well as ADVICE TEST. The dynamic tests for
cflowbelow are thus at the root of the problem. However, from the
last row in our table we can conclude that all the dynamic tests are
in fact runtime constants — so there is likely to be a significant
saving possible.

As described in [23, 14], the AspectJ compiler generates code
to maintain a stack to keep track of each cflow(P) pointcut. When
a join point that matches P is encountered, a new entry is pushed
onto the stack; and when such a join point terminates, the stack is
popped. We examined the generated code using the Dava decom-
piler to gain further insight.

In this example, the entries of the stack are zero length arrays of
Object. In general these arrays are used to store variable bindings.
A pointcut can bind variables through a number of primitives such
as args(x), which assigns the value of a join point parameter to x.
If the pointcut P in cflow(P) binds variables, we need to keep track
of them in the stack. In this benchmark program, the arrays have
zero length because there are no arguments to bind.

Such a stack of zero length arrays could be more efficiently im-
plemented using a counter; and the only check we need to make is
that the argument of cflow does not have variable binders in it. This
optimization was implemented by modifying the AspectJ compiler,
and the results are displayed in the second column of Table 4. The
results are a lot better, but there are still significant overheads. The
slowdown compared to the hand-woven version is a factor of 15.44.

The overheads of this counter-based implementation are due to
the fact that it is necessary to maintain a counter for each cflow in
each thread. To this end the implementation keeps a mapping from
threads to counters: upon each push, pop or is-empty operation, one
first needs to retrieve the relevant counter for the current thread.

To improve upon this bookkeeping, note that the thread can be
assumed to be the same throughout a method body. It is therefore
possible to retrieve the relevant counter once when the first cflow
operation is done, store it in a final local variable, and then use the
same counter throughout the method. To measure the impact of this
optimization, we decompiled the output of our modified compiler,
and applied the transformation by hand. The results are displayed
in the third column of Table 4: the slowdown has now been brought
down to a factor of 3.78.

Of course for this very simple benchmark, we know that there is
only a single thread, and thus the thread-counter mapping is wholly
unnecessary. The result of eliminating it from our code (again by
editing the decompiled source) is shown in the penultimate column
of Table 4. It further reduces the slowdown to a factor of 1.31.
It would not be too difficult to implement this optimization, with
a conservative whole-program analysis to determine whether the
application is single-threaded.

In [30], it is argued that by building an accurate call graph that
accounts for advice as well as ordinary method calls, one may often
completely eliminate the dynamic tests for cflow. That paper makes

a lot of simplifying assumptions, however, and in fact the language
under consideration is a simple aspect-oriented variant of Pascal.
We expect, however, that the same techniques can be applied in the
more general setting of Java, and we are working towards an im-
plementation using the Soot analysis framework [29], which would
truly be on a par with the hand-woven version.

5.3.3 LoD
A very interesting application of AspectJ for checking the Law

of Demeter was proposed by Lieberherr, Lorenz and Wu [20] and
the code to accompany the paper is also available [21]. In the pa-
per they suggest two checkers, one for object formand another for
class form. We have used the object form checker as our bench-
mark. The basic idea is that a program has correct Law of Demeter
object formwhen an object can only send messages to: itself, its
arguments, its instance variables, a locally-constructed object or a
returned object from a message sent to itself. To achieve this check
Lieberherr et al. have written a concise, but advanced collection of
aspects which includes relatively complex pointcuts, and the use of
percflow, pertarget and cflow.

The basic idea behind the checking code is that each calling con-
text is associated with a hash table (through the use of percflow)
and all valid (preferred) objects for that context are inserted into the
hash table for that context. Then, at each method call, the checker
verifies that the method call uses only preferred objects, otherwise
it is a violation of the Law of Demeter object form.

In order to generate an interesting application of the checker, we
applied it to the same simulator base code as used in Sections 5.3.1
and 5.2.1. We slightly modified the Law of Demeter code so that
each error would be reported only once (in the original code an er-
ror was reported once for each dynamic instance of the error, which
led to large, difficult to read, output files). After applying the Law
of Demeter checker code (AspectJ code) to the simulator code base
(Java code), and executing the resulting woven code, the following
three object form violations were reported.

!! LoD Object Violation !!
call(double certrevsim.RevocationInfo.

getNextUpdate())
at EndEntity.java:26

!! LoD Object Violation !!
call(double certrevsim.RevocationInfo.

getFirstDeltaUpdate())
at EndEntity.java:29

!! LoD Object Violation !!
call(RevocationInfo certrevsim.Repository.

requestRevocationInfo())
at Simulator.java:248

At first glance one might expect that the AspectJ overhead for
this benchmark should be small in relation to the amount of work
done in each advice body (which includes inserting and testing for
membership in hash tables). However, as shown in Table 5 this was
not the case. As demonstrated by the column labelled “Orig.”, the
original benchmark code has about 96% overhead, which is entirely
unexpected. By examining the ASPECTJ TAG MIX metrics it is
immediately obvious that cflow is the problem, with 96% of the
instructions and over 99% of the object allocations coming from
CFLOW ENTRY and CFLOW EXIT. The effect of all these alloca-
tions has a huge impact on execution time, with garbage collection
taking 72.42 seconds, out of a total of 96.91 seconds.

In order to examine this problem in more depth, we created a
second version of the benchmark using our modified ajc which
implements cflow with counters instead of stacks (“Counters” col-
umn in Table 5). As we saw in the Figure benchmark, the counters
do improve performance substantially, reducing total running time
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Orig. Counters Opt. Counters Single Thread Hand-woven
PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 12 10 10 8 6
Instructions Loaded 616 645 642 347 189
Instructions Dead 233 246 270 89 25
Code Coverage (%) 62 62 58 74 87
PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 295 293 293 291 284
Instructions Loaded 74922 74951 74948 74653 73325
EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 1623 495 299 229 114
Total time - client (sec) 8.90 4.23 1.03 0.36 0.27
JIT time - client (sec) 0.05 0.04 0.04 0.03 0.03
GC time - client (sec) 0.14 0.00 0.00 0.00 0.00
Slowdown vs. handcoded(×) 32.53 15.44 3.78 1.31 1.00
Time - client noinline (sec) 10.07 4.46 1.18 0.48 0.44
Slowdown vs. handcoded (×) 23.01 10.20 2.69 1.11 1.00
Time - interpreter (sec) 44.76 13.38 5.44 3.51 2.12
Slowdown vs. handcoded (×) 21.11 6.31 2.57 1.66 1.00
EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 374 1 1 1 1
Obj. Allocation Density (per kbc) 9.86 0.01 0.02 0.03 0.06
#Garbage Collections 488 0 0 0 0
ASPECTJ METRICS SUMMARIZING OVERHEAD
AspectJ Overhead % (whole) 92.54 75.55
#overhead/#advice (whole) 125.17 31.17
#advice/#total (whole) 0.01 0.02
AspectJ Runtime Lib % (whole) 85.27 40.40
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 6.72 22.02
ASPECT CODE 0.74 2.42
AspectJ Overhead (total) 92.54 75.55
ADVICE EXECUTE 0.25 0.81
ADVICE ARG SETUP 0.62 2.02
ADVICE TEST 10.84 33.94
CFLOW ENTRY 36.97 25.86
CFLOW EXIT 43.87 12.93
PEROBJECT ENTRY

CLINIT

INLINE ACCESS METHOD
ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)
BASE CODE 0.02 99.78
AspectJ Overhead (total) 99.98 0.22
CFLOW ENTRY 99.98 0.09
CLINIT 0.12
ASPECTJ METRICS FOR SHADOWS (WHOLE PROGRAM) (%)
Shadow Guards Runtime Const.(%) 100.00 100.00

Table 4: Figure Benchmark Measurements

to 9.38 seconds and garbage collection time to 0.34 seconds. How-
ever, there remains over 75% overhead due to CFLOW ENTRY and
CFLOW EXIT, which is still higher than expected.

We examined the benchmark and found that cflow is used in two
places, first in the definition of a pointcut, and second in a percflow
clause. The pointcut definition is as follows.

public pointcut scope(): !within(lawOfDemeter..*)
&& !cflow(withincode(* lawOfDemeter..*(..))) ;

public pointcut StaticInitialization(): scope() && staticinitialization(*);
public pointcut MethodCallSite(): scope() && call(* *(..));
// ... followed by many other uses of scope()

Note that the definition of the scope()pointcut contains a cflow
and then scope()is used within the definition of many other point-
cuts. By examining the decompiled output of ajc we determined
that at least 13 cflow stacks are created for the same cflow, pre-
sumably due to the inlining of the scope()pointcut inside the other
pointcuts. Since all 13 stacks are updated on method entry and exit

of some key methods, this leads to enormous overheads. Since the
states of all of these stacks are the same, there is clearly room for
improvement in the ajc code generation strategy, and further work
will be needed to avoid the creation of unneeded duplicate stacks.

To show that most of the overhead is due to this use of cflow
and not the percflow, we created a version of the benchmark that
eliminated the cflow clause in the definition of the scope()pointcut.
This is safe for our benchmark because we know for our case it is
not needed. The performance measurements for this version are
given in the column labelled “No cflow”, and it is clear that we
have removed the majority of the cflow overheads.

Clearly programmers like to include cflow pointcuts for ease of
specification and for safety, so it seems important to work on effi-
cient implementations for them. By eliminating the multiple copies
of stacks, and applying the efficient counter schemes presented in
the previous section, it should be possible to greatly reduce the
overheads due to cflow.

Even after dealing with the cflow overheads, there still remains
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Orig. Counters No cflow
PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 60 59 59
Instructions Loaded 27845 33107 16606
Instructions Dead 11830 13742 7492
Code Coverage (%) 58 58 55
PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 385 384 384
Instructions Loaded 122689 127951 111450
EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 2984 552 111
Total time - client (sec) 96.91 9.38 1.16
JIT time - client (sec) 0.55 0.40 0.22
GC time - client (sec) 72.42 0.34 0.06
Time - client noinline (sec) 97.18 9.17 1.10
Time - interpreter (sec) 158.78 15.14 2.18
EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 998 39 39
Obj. Allocation Density (per kbc) 11.78 0.68 3.40
#Garbage Collections 1104 42 42
ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 96.33 80.13 15.70
#overhead/#advice (whole) 30.68 4.71 0.19
#advice/#total (whole) 0.03 0.17 0.81
AspectJ Runtime Lib % (whole) 90.33 25.60 12.75
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 0.53 2.84 2.83
ASPECT CODE 3.14 17.03 81.46
AspectJ Overhead (total) 96.33 80.13 15.70
ADVICE EXECUTE 0.008 0.04 0.21
ADVICE ARG SETUP 0.21 1.11 5.47
ADVICE TEST 0.22 1.53 2.24
AFTER RETURNING EXPOSURE 0.002 0.01 0.07
AFTER THROWING HANDLER 0.002 0.01 0.06
CFLOW ENTRY 44.06 51.80 4.04
CFLOW EXIT 51.83 25.55 3.26
PEROBJECT ENTRY

CLINIT 0.001 0.005 0.02
ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)
BASE CODE 0.03 2.64 2.64
ASPECT CODE 0.27 25.83 25.84
AspectJ Overhead (total) 99.70 71.53 71.52
ADVICE ARG SETUP 0.27 25.71 25.71
CFLOW ENTRY 99.42 44.69 44.69
PEROBJECT ENTRY 0.009 0.89 0.89
CLINIT 0.002 0.23 0.22

Table 5: Law of Demeter Benchmark Measurements

about 16% overhead which is due mostly to the percflow and per-
target aspects. The pertarget overhead shows up in two ways.
First, there are some significant overheads for ADVICE ARG SET-
UP (5.47%) and ADVICE TEST (2.24%). These overheads are larger
than normal because the pertarget advice leads to extra code to be
generated that checks if the aspect instance corresponding to the
target already exists, and to allocate a new aspect instance if one
does not exist. Also, the space requirements for percflow and per-
target are significant. The BASE CODE only accounts for 2.64%
of the total allocations, whereas the percflow accounts for 44.69%
(shown in the bin for CFLOW ENTRY), and the pertarget accounts
for 25.71% (shown in the bin for ADVICE ARG SETUP, since this
is where new aspect instances are created in the case of pertarget
aspects). We expect that at least some of these space overheads
could be reduced.

5.4 Benchmark for performance improvement

The final benchmark in our set is somewhat different from the
others in that the aspects used for this benchmark were intended to
improve upon the performance of an existing Java program.

5.4.1 *J Pool
This benchmark is drawn from our own tool set, namely the *J

tool itself. The *J analyzer reads events one-by-one from a trace
file (as described in Section 4.3). Each time it reads a new event, a
new object is allocated to hold this event; since there are potentially
millions of events in a trace file this places significant stress on the
memory manager. However, it is a property of the implementation
that for any given trace file, no more than the last two events will
ever be in use at any one time, which makes manual memory man-
agement of these objects possible (by reusing previously allocated
ones that are guaranteed to no longer be in use, rather than allocat-
ing new ones).

This optimization is implemented by maintaining two pools of
events, each pool containing one object of each of the various pos-
sible event type. At any one moment, one pool is “active” and the
other is “inactive”; each time a new event would have been allo-
cated, the appropriate type of event from the active pool is reused
instead, and the active and inactive pools are swapped over. This
guarantees that the last two events are always allocated from differ-
ent pools, which ensures that events in use can never collide with
each other.

We wrote this optimization as a piece of around advice; in the
original program a single method (newEvent) is used to allocate
new event objects, so this advice simply replaces calls to newEvent
with code to reuse an object from the appropriate pool as described
above. Of course, this could be implemented relatively simply by
just replacing the body of newEvent, but this would make it harder
to disable the optimization easily if required. Multiple trace files
can be read simultaneously by creating multiple objects of the ap-
propriate class; therefore the advice is implemented in a pertarget
aspect, to ensure that different pools are used for each trace file
(the current implementation actually reads just one file at a time, so
the aspect could be implemented without using pertarget, but this
would be rather more fragile).

The results of this optimization are detailed in Table 6. The first
column, “Aspect” shows it implemented as a pertarget aspect as
described above; the second column (“Hand-woven”) is for a man-
ual implementation. Finally the third column (“No pooling”) shows
the unoptimized version for comparison. In each case, the *J ana-
lyzer was run on a trace generated from a short run of a program to
calculate the Fast Fourier Transform. 6

We have provided comparisons of running time with the unop-
timized version; these show that introducing the aspect provides a
speedup of about 23%. In fact, there is some overhead from weav-
ing, since the version that applies pooling directly shows a speedup
of about 52%. The amount of memory allocated drops by nearly
a factor of 2, and the number of garbage collections and the total
time spent garbage collection go down significantly.

6. RELATED WORK
Most work on dynamic metrics has focused on either address-

ing a specific optimization problem such as memory use (e.g., [7,
31]), or more generally (and voluminously) on software engineer-
ing quality or complexity measures (e.g., [24, 34, 36]). More re-

6In order to reproduce the memory constraints imposed by a larger
input, the total heap size is limited to 52 Mbytes for this benchmark.
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Aspect Hand-woven No pool
PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 221 218 218
Instructions Loaded 48227 46869 46305
Instructions Dead 28491 27269 27694
Code Coverage (%) 41 42 40
PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 905 902 901
Instructions Loaded 184517 181556 180992
EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 4232 4085 4185
Total time - client (sec) 24.52 19.84 30.18
JIT time - client (sec) 0.66 0.65 0.64
GC time - client (sec) 7.41 3.42 13.47
Speedup vs. no pooling(×) 1.23 1.52 1.00
Time - client noinline (sec) 26.44 20.95 31.58
Speedup vs. no pooling (×) 1.19 1.52 1.00
Time - interpreter (sec) 85.08 78.78 91.18
Speedup vs. no pooling (×) 1.08 1.16 1.00
EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 177 162 352
Obj. Allocation Density (per kbc) 0.49 0.51 1.03
#Garbage Collections 46 45 81
ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 2.80
#overhead/#advice (whole) 1.77
#advice/#total (whole) 0.02
AspectJ Runtime Lib % (whole) 0.00
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 95.61
ASPECT CODE 1.59
AspectJ Overhead (total) 2.80
ADVICE EXECUTE 0.11
ADVICE ARG SETUP 0.95
ADVICE TEST 0.64
PEROBJECT ENTRY

Table 6: *J Pool Benchmark Measurements

lated work on analyzing programs through metrics is given in [8],
along with a description of our overall approach.

The performance of AspectJ programs has also been discussed
and investigated in the literature, and typically it is assumed or
demonstrated to some degree that aspects do not impose unreason-
able overhead. Kiczales et al.’s overview paper of AspectJ [16]
for instance makes the pronouncement that (with respect to be-
fore/after advice) “...there should generally be no observable per-
formance overhead from these additional method calls.” Method
calls inserted into code to support advice testing are assumed to
be simple and strict enough that the Just-In-Time compiler in most
Java Virtual Machine implementations will be able to inline the
method call, and thus reduce any overhead to insignificance. The
AspectJ FAQ reinforces that perception, claiming that most con-
structions have little overhead, which “could be optimized away by
modern VM’s.” [35] (section 7.3).

There are a few studies that actually measured the performance
impact of using aspects. Pace and Campo, for instance, analyzed
regular and aspect-oriented versions of a temperature control bench-
mark [6]. Although they found one style of implementation to be
over 3 times slower than the original, a different aspect-oriented
approach had only about 1% runtime overhead. They attribute the
former to the internal use of reflection, and conclude that the impact
may depend on the problem under consideration. A more recent
and larger study was done by Hilsdale and Hugunin [14], examin-
ing both runtime and compile-time performance issues. A naive
implementation is shown to have quite poor performance (for a
logging implementation they get a 2900% overhead versus a hand-
coded implementation), but they improve that to an “unlikely to be

noticeable” 22% runtime overhead for an optimized version. Again
they attribute the former very poor performance largely to the use
of reflection.

In the context of middleware, Zhang and Jacobsen [37] demon-
strate that an aspect version of a CORBA/ORB benchmark has neg-
ligible runtime overhead. They argue that an AspectJ implementa-
tion should have no overhead since it is just specifying the same
code in different ways (in the aspect versus in the program). In
their case, however, an aspect-oriented approach significantly sim-
plified the program design (overall code reduction of 9%, fewer
methods per class on average, etc), so they are actually comparing
an optimized design to an unoptimized design. The fact that the
optimized design only achieves the same speed as the unoptimized
is an argument that a significant overhead may well be present.

In their analysis, Zhang and Jacobsen also give data for a number
of software engineering complexity metrics, and use that data to
show that the aspect-oriented approach is quantitatively simpler.
Complexity is also considered by Zhao, who proposes a specific
complexity metric suite for aspect oriented programming [38]. We
are focusing on performance and execution time costs, rather then
complexity.

Clearly particularities of the implementation of aspects have a
large impact on the overhead. Sereni and de Moor describe a bet-
ter implementation of pointcut designators as well as a compiler
flow analysis that can reduce the overhead by eliminating many
instances of runtime matching [30]. That paper is mostly a theoret-
ical study, dealing with a small toy language, and wholly without
performance experiments. The results presented here suggest that
such optimization techniques may be quite important in practice.

Performance analyses have also been done on dynamic weav-
ing approaches where an aspect is applied to a running program.
Dynamic weaving generally aims to enhance capabilities, allow-
ing for instant “hot fixes” to be applied to running code [27, 28].
Popovici et al. show an aspect-aware Java Virtual Machine that im-
poses relatively little overhead when aspects are inactive (1.5%–8%
slowdown over a regular JVM), though that increases dramatically
for active join points (1.3×–5× slower than a statically-woven ver-
sion).

Finally, more generic profiling methods have been applied to As-
pectJ programs. Hall’s CPPROFJ [11] for instance, does call-path
profiling of both pure Java and (limited) AspectJ programs, allow-
ing the runtime cost of various method execution sequences to be
determined. CPPROFJ is sampling-based and is naturally much
more coarse-grained than our approach.

7. CONCLUSIONS
We have presented a tool set and a systematic method for an-

alyzing the dynamic behaviour of AspectJ programs. The main
technical contributions are the definition of new metrics, as well
as a novel method of computing these metrics. In particular the
idea of compile-time tags that are dynamically propagated allows
us to accurately attribute costs to specific language features. As
discussed in Section 4, the overall system for collecting our data is
complex—modifications to *J and ajc were non-trivial, and this
system constitutes a contribution by itself. One of the more inter-
esting and difficult components of the system is the propagation
strategy, which has to be carefully designed in order to attribute
data correctly. The general paradigm could be transferred to similar
situations, for example when compiling ML to Java bytecode [4].
The same ideas could be integrated in a compiler that weaves the
instrumentation with the generated code, instead of using a tool like
JVMPI, which was the route taken in this paper.

Our benchmark set provides the first collection of programs suit-
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able for discussing performance of AspectJ. The benchmarks we
have chosen provide a good cross section of different uses of the
language. We are continuing to extend the collection, in particular
using some of the examples from [19]. One small difficulty consists
of programs that make use of reflection: at present our propagation
tools are unable to cope with reflective calls, and wrongly attribute
the cost of such calls to the base program, never to the aspect. This
does not invalidate our measurements of overheads, only the num-
bers for BASE CODE and ASPECT CODE.

The conventional wisdom that AspectJ does not introduce over-
heads seems to be explained by typical aspect usage. First, advice
generally applies to user code, yet typical Java programs spend
most of their time in library calls. As a percentage of the total
execution time, the cost of advice is therefore insignificant in such
applications. The Tetris benchmark illustrates this phenomenon.
Some of our benchmarks (in particular DCM) show the opposite
behaviour, where the advice is so expensive that the overheads of
applying it are dwarfed. Finally, intertype declarations have very
little overheads, except when it concerns the introduction of new
constructors. This is demonstrated by Beanand ProdLinerespec-
tively.

Contrary to popular belief, we did however also find significant
overheads. This has led to the following guidelines for AspectJ
usage, as well as promising areas for future compiler research:

Loose pointcuts. It is easy to write a pointcut that matches too
many join points. Even when some of the dynamic tests fail, such
loose specification can introduce significant overheads. It is par-
ticularly important to avoid around advice that can apply to itself,
as this forces the introduction of closures. This was illustrated in
the first two versions of the Nullcheckbenchmark. Sometimes it is
however not possible to tighten pointcuts to avoid this situation, so
a more careful consideration of the use of closures is a fruitful topic
for future research.

Advice that is too generic. When using the very generic form of
around, this causes a significant amount of boxing and unboxing
to convert arguments to the right form.

Unwarranted use of around. Because of the above, it is gener-
ally preferable to eschew around in favour of after returning when
possible. The most striking example we found of this phenomenon
occurred in the final version of the Nullcheckbenchmark. In fact,
that improvement was not noticed by a number of seasoned AspectJ
users to whom we showed the original code, so this is an instance
where our methods give new insights.

Cflow. It is tempting to write pointcuts using cflow, but often this
introduces significant overheads. This was illustrated by three sep-
arate benchmarks, namely Nullcheck, Figure and LoD. Where pos-
sible, it is better to use withincode in lieu of cflow, but this is ar-
guably less robust with respect to refactoring. Because it is not
always possible to eliminate cflow, we investigated various ways
of improving its implementation:

• When there is no argument binding, the current use of stacks
in ajc can be replaced by counters. We have in fact imple-
mented this optimization in ajc, and found it to be highly
effective.

• The use of such counters is still somewhat expensive due to
the fact that we have to maintain one for each thread. If the
application is known to be single-threaded, significant sav-
ings are possible, as there is no need to maintain a mapping
between threads and counters.

• A whole-program analysis based on the call graph can elimi-
nate all runtime overheads of cflow. An initial study in this di-
rection, for a very small toy language, was undertaken in [30].

Pertarget. The use of per clauses to control aspect creation carries
a non-negligible overhead, as demonstrated by the *J Pool bench-
mark. It might be possible to devise a static analysis which detects
that only one instance will be created in a particular application.

For all programmers with an interest in aspect-orientation, it is
important to understand the implications of using aspects on the
behaviour of their programs. The tools we have presented are an
important step towards this goal, but perhaps even more important
is the construction of a representative set of benchmarks that is ac-
cepted by the whole community. We hope that the benchmarks
presented here provide a starting point, and that others will join us
in extending and improving it.

We will be making a public release of the *J tool so that others
can collect our Java-based metrics for their own programs. To ben-
efit from these tools, one also needs a compiler that assigns static
tags; for now we are using a modified version of the standard As-
pectJ compiler ajc. Inspired by the results of the present paper, we
have begun the implementation of an optimizing AspectJ compiler
based on Soot [29], and this compiler includes that tagging scheme.
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Appendix I: Tags

General Tags
BASE CODE: This tag represents instructions that are not inter-
preted as AspectJ overhead or are not part of an advice body. They
represent the base program that exists before weaving.

168



ASPECT CODE: This tag represents the default for any instruction
that is executed from an aspect, regardless of where it was origi-
nally defined. It is propagated, so that, for example, the body of a
method call from advice will receive the ASPECT CODE tag.

NO TAG: This is a special tag inserted by the compiler which is
meant to be overwritten by a propagated tag during analysis. An
instruction with this tag is to be interpreted equivalently to an in-
struction with no tag at all. It is a necessary consequence of the way
tags are encoded in a code attribute. Instructions in library classes,
which have not been explicitly tagged, are also assumed to have
NO TAG.

Tags to support intertype declarations
INTERMETHOD: An intertype method declaration results in the
body of the new method being compiled into a method on the as-
pect class, and a dispatch method being added to the target class.
The instructions in this dispatch method have this tag.

INTERFIELDGET, INTERFIELDSET: Some intertype field declara-
tions result in accessor methods being woven into the target class.
The instructions in these accessor methods have these tags.

INTERFIELDINIT: Intertype field declarations result in initializa-
tion code being woven into either the target class’s constructor, or
its static initializer. These instructions invoke initialization meth-
ods on the aspect to handle variable initialization. This initializa-
tion code has this tag.

INTERCONSTRUCTOR PRE, INTERCONSTRUCTOR POST: If an as-
pect has an intertype constructor declaration two methods are cre-
ated on the aspect: a preInterConstructormethod and a postInter-
Constructormethod. A new constructor method is added to the
class, and it invokes both of these methods. The instructions that
load these methods’ arguments and invoke these methods have these
tags.

INTERCONSTRUCTOR CONVERSION: This represents overhead in-
volved in calling methods on org.aspectj.runtime.internal.Conver-
sionsfrom within a constructor added by an intertype constructor
declaration.

Tags applying to all kinds of advice (before, after and
around)
ADVICE EXECUTE: This tag represents the overhead associated
with executing the method implementing a piece of advice. Ad-
vice bodies are compiled as methods in the aspect class. When an
aspect with advice is woven into a base class, an invoke instruction
for the advice method is added to the relevant join point shadows.

ADVICE ARG SETUP: This tag represents the overhead associated
with acquiring an aspect instance at a join point at which advice
is to be executed, and exposing arguments to the advice body. At
least one instruction of this kind will precede an advice execution
instruction.

ADVICE TEST: When it cannot be statically determined whether
an advice body should be executed at all join points corresponding
to the join point shadow at which the advice invocation instructions
have been added, then those invocation instructions are wrapped in
a test. The instructions corresponding to this test have this tag.

Tags applying toaround advice only
AROUND CONVERSION: This represents the conversion of argu-
ments and return values related to a proceed() call within around
advice. This conversion is done by making calls to methods on
org.aspectj.runtime.internal.Conversions, which convert between
primitive types and objects.

AROUND CALLBACK, AROUND PROCEED: Both of these tags rep-
resent an overhead involved in making a proceed() call from within
around advice. One of these tags, AROUND CALLBACK, is spe-
cific to the run method on closure classes.

CLOSURE INIT: Advice advice may result in the creation of clo-
sure classes. When it does,the instructions in the constructors of
these classes have this tag.

Tags applying toafter advice only
AFTER RETURNING EXPOSURE: This tag represents the overhead
involved in exposing the value returned at a join point to the body
of a piece of after advice.

AFTER THROWING HANDLER: In order to support after and after
throwing advice, exception handling code is inserted which catches
any exception, executes any pertinent advice, and then rethrows the
original exception. The instructions responsible for this have this
tag.

Tags to support thecflow pointcuts andpercflow aspects
CFLOW ENTRY, CFLOW EXIT: The cflow and cflowbelow point-
cuts require that a representation of the call stack be managed dur-
ing the execution of the program. At every relevant join point
shadow, this representation must be updated. Instructions for doing
so receive one of these tags.
An aspect that is declared with percflow or percflowbelow clause
will also lead to instructions with this tag.

Tags to supportperthis andpertarget aspects
PEROBJECT ENTRY: By default, aspect instances are singletons.
They can however be associated on a per-object basis, either with
the execution or target objects at join points selected by a given
pointcut. The instructions inserted at join point shadows matched
by the pointcut to manage these instances have this tag.

PEROBJECT GET, PEROBJECT SET: These accessor methods are
added to a class to acquire instances of an aspect that is declared
pertarget or perthis.

Tag for exception softening due todeclare soft

EXCEPTION SOFTENER: This tag represents the overhead involved
in softening exceptions. The declare soft declaration in an as-
pect results in exceptions of a given type, thrown from within join
points selected by a given pointcut, being wrapped in the unchecked
org.aspectj.SoftException, which is then thrown.

Tags to handleprivileged aspects
PRIV METHOD, PRIV FIELD GET, PRIV FIELD SET: In order to
support privileged aspects, public wrapper methods for the class’s
private methods, and public accessor methods for the class’s private
fields, are inserted during weaving. The instructions in these new
methods have these tags.

Miscellaneous aspect tags
CLINIT: The instructions in the static initializer of the aspect class
have this tag. The static initializer may setup the default singleton
instance of the aspect or setup the cflow stack, if necessary. In-
structions woven into the static initializer of a base program class,
such as for initializing the static join point information, also have
this tag.

INLINE ACCESS METHOD: This tag represents the overhead in-
volved in calling a method defined on an aspect when there is
a static dispatch method. The instructions of the static dispatch
method have this tag.
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