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1 Introduction

The empirical literature on business cycle measurement has been particularly vibrant since

the early 1980s, with increased emphasis on international aspects in the 1990s, producing,

for example, evidence of commonality in the macroeconomic fluctuations of industrial and

developing countries. Indeed that finding is widespread, ranging from classical analyses of

pairwise GDP correlations (e.g., Backus et al. (1995), Baxter (1995), inter alia) to more

recent analyses of dynamic latent factor models (e.g., Kose et al. (2003), Canova et al.

(2007), Kose et al. (2008), inter alia).

As the evidence of commonality in cross-country business cycle fluctuations accumulated,

the literature started to focus on the effect of globalization on international business cycles.

Kose et al. (2003), for example, find that the impact of the world factor on the cross-country

correlation of macroeconomic aggregates (output, consumption and investment) increased

from the 1990s onward.

Of course the evidence is not uniformly one-sided. Doyle and Faust (2005) find no evi-

dence of increased output growth-rate correlations for the G-7 countries. Stock and Watson

(2005) argue that that the comovement of macroeconomic aggregates actually declined dur-

ing the globalization era of 1984-2002, but rather than linking their results directly to the

globalization process, they conclude that their results are likely due to the diminished im-

portance of common shocks among the G-7 countries. Eickmeier (2007) emphasizes that the

impact of globalization on international propagation of macroeconomic shocks is unclear and

needs to be studied further.

In this paper we contribute by using a new connectedness-measurement technology fun-

damentally grounded in modern network theory (Diebold and Yilmaz (2014)) to measure real

output connectedness for a set of six developed countries, 1962-2011. We show that global

connectedness is sizable and time-varying over the business cycle, and we study the nature

of the time variation vis a vis the changing nature of the global business cycle. We also

show that connectedness corresponding to transmissions to others from the United States

and Japan is disproportionately important.

In particular, we define and track connectedness of monthly industrial production for the

G-6 countries (G-7 less Canada). Our approach is different from earlier studies of interna-

tional business cycles, in that, rather than finding a common world factor or indicator that

measures international business cycles, our approach helps one identify how output shocks

in one country affect output in other countries, with a lag. Thus we can study directional

connectedness, both pairwise and in the aggregate. Time variation in connectedness is po-

tentially of great interest as the intensity of business cycle connectedness is likely to vary



over time. We show that business cycle connectedness among G-6 countries is important,

that connectedness is indeed time-varying, and that the United States and Japan are the

major transmitters of business cycle shocks to other countries.

In addition, our analysis differs from most earlier work in terms of the data used. We

use industrial production indexes at monthly frequency rather than the quarterly data from

the national income accounts. There are two reasons for this choice. First, the use of

monthly data allows us to capture the connectedness of business cycle shocks much faster,

as seen in the latest economic crisis. Second, the use of monthly data allows us to have more

observations in calculating the connectedness index for each rolling sample window.

The structure of the paper is very simple. We introduce our framework for connectedness

measurement in section 2, discussing both population and sample (estimation) issues. Then

we apply it it to global business cycles in section 3, emphasizing dynamic aspects. We

conclude in section 4.

2 Measuring Connectedness

Here we introduce basic aspects of connectedness measurement as relevant for our subsequent

multi-country business-cycle analysis. The connectedness measurement framework was orig-

inally developed in Diebold and Yilmaz (2009), Diebold and Yilmaz (2012) and Diebold and

Yilmaz (2014).

2.1 The Connectedness Table

The variance decomposition indicates the amount of information each variable contributes

to the other variables in the autoregression. It determines how much of the forecast error

variance of each of the variables can be explained by exogenous shocks to the other variables.

Our approach to connectedness is based on assessing shares of forecast error variation in

various locations due to shocks arising elsewhere. This is intimately related to the familiar

econometric notion of a variance decomposition: the H-step forecast error variance share dij

is just the fraction of i’s H-step forecast error variance due to shocks in variable j.1 The

full set of variance decompositions produces the core what we call the connectedness table.

All of our connectedness measures – from simple pairwise to system-wide – flow from the

connectedness table.

1Note that, formally, we should use a notation that indicates the dependence of dij on H. We shall
emphasize that dependence later. For now we rely on the reader to remember but suppress it in the notation.
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x1 x2 ... xN From Others

x1 d11 d12 · · · d1N ΣN
j=1d1j, j 6= 1

x2 d21 d22 · · · d2N ΣN
j=1d2j, j 6= 2

...
...

...
. . .

...
...

xN dN1 dN2 · · · dNN ΣN
j=1dNj, j 6= N

To Others ΣN
i=1di1 ΣN

i=1di2 · · · ΣN
i=1diN

1
N

ΣN
i,j=1dij

i 6= 1 i 6= 2 i 6= N i 6= j

Table 1: Connectedness Table Schematic

The simple Table 1, which we call a connectedness table, proves central for understanding

the various connectedness measures and their relationships. Its main upper-left N×N block

contains the variance decompositions. For future reference we call that upper-left block a

“variance decomposition matrix,” and we denote it by D = [dij]. The connectedness table

simply augments D with a rightmost column containing row sums, a bottom row containing

column sums, and a bottom-right element containing the grand average, in all cases for i 6= j.

To understand and interpret the information conveyed by the connectedness table, it

is helpful to cut through the notational clutter via a simple example, as in the example

connectedness Table 2 with N = 4. The 12 off-diagonal entries in the upper-left 4x4 D

matrix are the 12 pieces of the four forecast-error variance decompositions, dij. From a

connectedness perspective, they measure pairwise directional connectedness. The 3,2 entry

of 14, for example, means that shocks to x2 are responsible for 14 percent of the H-step-

ahead forecast error variance in x3. We write C3←2 = 14. In general the pairwise directional

connectedness from j to i is Ci←j = dij. Note that in general Ci←j 6= Cj←i. Hence there

are N2 − N separate pairwise directional connectedness measures. They are analogous to

bilateral imports and exports for each of a set of N countries. Sometimes we are interested

in net pairwise directional connectedness, in a fashion analogous to a bilateral trade balance.

For example, for x2 and x3 we have C23 = C3←2 − C2←3 = 14− 1 = 13. In general we have

Cij = Cj←i − Ci←j. There are N2−N
2

net pairwise directional connectedness measures.

In our subsequent analysis, however, we will be interested in more aggregative connect-

edness measures. The 8 off-diagonal row and column sums, labeled “from” and “to” in the

connectedness table, are the 8 total directional connectedness (“directional connectedness”

for short) measures. The value of 32 in the second entry of the rightmost column, for exam-

ple, means that x2 receives 32 percent of its variation from others (x1, x3 and x4). We write
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x1 x2 x3 x4 From Others

x1 96 1 2 1 4
x2 28 67 1 3 32
x3 14 14 70 1 29
x4 18 11 5 65 34

To Others 60 26 8 5 25

Table 2: Connectedness Table Example

C2←• = 28 + 1 + 3 = 32. In general the total directional connectedness from others to i is

Ci←• =
N∑
j=1

j 6=i

dij,

and the total directional connectedness from j to others is

C•←j =
N∑
i=1
i 6=j

dij.

Hence there are 2N total directional connectedness measures, N “to others” and N “from

others,” analogous to “total exports” and “total imports” for each of a set of N countries.

Just as with pairwise directional connectedness, sometimes we are interested in net total

directional effects. For x2, for example, we have C2 = C•←2 − C2←• = 26− 32 = −6. In

general, net total directional connectedness is Ci = C•←i − Ci←•. There are N net total

directional connectedness measures, analogous to the total trade balances of each of a set of

N countries.

Finally, we consider the most aggregative connectedness measure, the grand total of the

off-diagonal entries in D (equivalently, the sum of the “from” column or “to” row), which

measures total (system-wide) connectedness. We typically express this total cross-variable

variance contribution, given in the lower right cell of the connectedness table, as a percent

of total variation. Hence total connectedness in our example is C = 99
400
× 100 = 99

4
= 24.8.2

2Note that total variation is just 100 times N , the number of variables in the system, because each of
the N rows sums to 100. Conversion to percent eliminates the 100, so that ultimately total connectedness
is simply average total directional connectedness (whether “from” or “to”).
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In general we have

C =
1

N

N∑
i,j=1

i 6=j

dij.

There is just a single total connectedness measure, as total connectedness distills a system

into a single number analogous to total world exports or total world imports (the two are of

course identical).

The connectedness table makes clear how one can begin with the most disaggregated

(e.g., microeconomic, firm-level pairwise directional) connectedness measures and aggregate

them in various ways to obtain macroeconomic economy-wide total directional and total

connectedness. Different agents may be disproportionately interested in one or another of the

measures. For example, firm i may be maximally interested in total directional connectedness

from others to i, Ci←•, whereas regulators might be more concerned with total directional

connectedness from i to others, C•←i, or in total connectedness C.

2.2 Identifying Shocks

As already emphasized, our approach is based on variance decompositions. An H-step

forecast error variance decomposition dij answers an interesting and important question:

What fraction of H-step forecast error variance of variable i is due to shocks in another

variable j? This must, of course, be done within the context of a model. If shocks in

reduced-form vector autoregressions were orthogonal, variance decomposition calculations

would be trivial. That is, variance decompositions are easily calculated in orthogonal VARs,

because orthogonality ensures that the variance of a weighted sum is simply an appropriately-

weighted sum of variances.

The much more realistic case involves correlated VAR shocks. Consider therefore a data-

generating process with correlated shocks, with moving-average representation xt = Θ(L)εt,

E(εtε
′
t) = Σ. The variance decomposition calculations are more involved, because we first

need to isolate the independent shocks that underlie the observed system. One way or

another, we must transform the shocks to orthogonality to calculate variance decompositions.

The orthogonalization can be handled in several ways, and we now sketch two.

2.2.1 Cholesky-Factorized Variance Decompositions

This time-honored orthogonalization method traces at least to Sims (1980). The correlated-

shocks model above is mathematically identical to the orthogonal-shocks model, xt = A(L)ut,

E(utu
′
t) = I, A(L) = Θ(L)Q, ut = Q−1εt, where the lower triangular matrix Q is the
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Cholesky factor of Σ; that is, QQ′ = Σ. Hence a simple Cholesky-factor transformation

orthogonalizes the system.

Variance decompositions based on Cholesky factorization may be sensitive to ordering,

as has been well-appreciated at least since Sims (1980). Interestingly, we often find that

total connectedness is robust to ordering (that is, the range of total connectedness estimates

across orderings is often quite small), whereas directional connectedness often appears more

sensitive to ordering.3 Hence so-called “generalized variance decompositions,” which we now

introduce, may be more useful when studying directional connectedness.

2.2.2 Generalized Variance Decompositions

The generalized variance decomposition (GVD) framework of Koop et al. (1996) and Pesaran

and Shin (1998) produces variance decompositions invariant to ordering. The GVD approach

does not require orthogonalized shocks; rather, it allows and accounts for correlated shocks

using the historically-observed error distribution, under a normality assumption.

The GVD matrix ∆ = [δij] has entries

δij =
σ−1jj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣA

′
hei)

,

where σjj is the standard deviation of εj, and ej is a selection vector with jth element unity

and zeros elsewhere.

Because shocks are not necessarily orthogonal in the GVD environment, sums of forecast

error variance contributions (that is, row sums in GVD matrices) are not necessarily unity

(
∑N

j=1 δij 6= 1). Hence we base our generalized connectedness indexes not on ∆, but rather on

∆̃ = [δ̃ij], where δ̃ij =
δij∑N
j=1 δij

. Note that, by construction,
∑N

j=1 δ̃ij = 1 and
∑N

i,j=1 δ̃ij = N .

Armed with ∆̃, we can immediately calculate generalized connectedness measures C̃, C̃•←j,

C̃i←•, C̃i, C̃i←j, C̃j←i, and C̃ij.

In essence the GVD does not impose orthogonality of shocks. Therefore, in the GVD

framework all variables in a system are subject to shocks simultaneously. This in return

amounts to obtaining impulse responses and variance decompositions for each variable treat-

ing each variable as the leading variable in the VAR. GVDs moreover require normality, and

hence may be more useful for assessing connectedness of log volatilities, which are well-

approximated as Gaussian, than for returns, which are not.

3In any event, we will assess robustness to ordering in our subsequent empirical work.
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2.3 Sample Connectedness

Clearly C depends on x, H and A(L), so we have written C(x,H,A(L)). In reality A is

unknown and must be approximated (e.g., using a finite-ordered vector autoregression). Rec-

ognizing the centrality of the approximating model adopted, we write C(x,H,A(L),M(θ)),

where θ is a finite-dimensional parameter.

However, everything we have written thus far is in population, whereas in reality we must

use an approximating model estimated using data 1 : T , so we write Ĉt(x,H,At(L), M̂1:T (θ̂t)).

To economize on notation we henceforth drop A(L), because it is determined by nature rather

than a choice made by the econometrician, relying on the reader to remember its relevance

and writing Ĉt(x,H, M̂1:T (θ̂t)).

Hence we now consider estimation of connectedness. In addition, we want to allow for

time-variation of connectedness, effectively allowing the connectedness table and all of its

elements to vary over time, so we write Ct(x,H,At(L),M(θt)).

2.3.1 Estimation

Choice of x – the object of interest to be studied – has important implications for the

appropriate approximating model; for example, x may (or may not) be strongly serially

correlated, conditionally heteroskedastic, or highly disaggregated. Here we study real output

growth across countries, for which serial correlation, in particular, is surely important.

Connectedness measurements are defined only with respect to a reference universe (spe-

cific set of x’s). In general they will not – and should not – be robust to choice of reference

universe. Hence, given a decision as to the type of x to be examined, a second important

issue is precisely which (and hence how many) x’s to use. For example, in cross-country

analyses we may want to use sufficiently many countries to ensure that we have good global

coverage. Whether this requires a small or large number of x’s depends on the distribution

of activity across countries.

The predictive horizon, H, is also important, and one must take a stand on it as well. The

horizon is important particularly because it is related to issues of dynamic connectedness (in

the fashion of contagion) as opposed to purely contemporaneous connectedness. To take a

simple pairwise example, shocks to j may impact the forecast error variance of i only with a

lag, so that Ci←j may be tiny for small H but nevertheless large for larger H.4 Intuitively,

as the horizon lengthens there may be more chance for things to become connected.

4Such dynamic phenomena, and the rich patterns that are possible, are closely related to aspects of
multi-step Granger causality, as treated for example in Dufour and Renault (1998), Dufour and Taamouti
(2010), and the references therein.
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In a sense, varying H lets us break down connectedness into “long-run,” “short-run,”

etc. More precisely, as H lengthens we obtain a corresponding sequence of conditional

prediction error variance decompositions for which the conditioning information is becoming

progressively less valuable. In the limit as H → ∞, we obtain an unconditional variance

decomposition.

The remaining issue – choice of empirical approximating model M̂1:T (θ̂t) – is the obvious

elephant in the room. For real activity, conditional mean dynamics in M(θ) will surely be

important and will need to be modeled. We will use the obvious workhorse model, a vector

autoregression, V AR(p). We emphasize, however, that almost any model could be used,

including much more deeply structural models, so long as underlying orthogonal shocks can

be identified.

2.3.2 Time-Variation

Connectedness is just a transformation of system coefficients. Hence if the coefficients are

time-varying, so too will be connectedness. Tracking (“nowcasting”) real-time connectedness

movement is of central interest. One can capture parameter variation by using a rolling

estimation window; we write Ĉ(x,H, M̂(θ;w)), where w denotes window width. We will take

this approach, estimating the model repeatedly, at each time using only the most recent w

observations.

There are of course both benefits and costs of a rolling-window approach. Benefits include

both tremendous simplicity and coherence with a wide variety of possible data-generating

processes (DGPs) involving time-varying parameters. Costs include that, given a particular

DGP, rolling is generally sub-optimal, and it requires selection of w. Too large a w produces

“oversmoothing,” and too small a w produces “undersmoothing,” in a manner precisely

analogous to bandwidth choice in density estimation.

3 Global Business Cycle Connectedness

To study business cycle connectedness we use monthly seasonally-adjusted industrial produc-

tion (IP) for the G-7 countries less Canada (“G-6”), from January 1958 to December 2011,

as shown in Figure 1.5 We begin in section 3.1 by assessing the cointegration status of the IP

data, which has implications for the structure of our subsequent analysis in sections 3.2, 3.3

5We exclude Canada because its IP growth is very highly correlated with that of the United States.
Indeed year-on-year industrial production growth rates for the U.S. and Canada have correlation of .87,
which is much higher than the correlations for other G-6 country pairs.
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Figure 1: G-6 Industrial Production, 1958:01-2011:12

and 3.4. In section 3.2 we examine static connectedness, in section 3.3 we examine dynamic

total connectedness, and in section 3.4 we examine dynamic directional connectedness.

3.1 Cointegrating Relationships

Before proceeding to examine business cycle connectedness, we must ascertain the likely

integration and cointegration status of our G-6 (log) IP data. We first tested for unit roots

in each log IP series, using augmented Dickey-Fuller (ADF) tests with augmentation lag

length selected using AIC, and allowing for linear trend under the alternative.6 There was

no evidence against the unit root in any log IP series, and overwhelming evidence against the

unit root in every differenced log IP series (allowing for non-zero mean under the alternative).

We now assess cointegration status. We show the results of Johansen’s maximum eigen-

value and trace tests in Table 3. The hypothesis of 0 cointegrating relationships is clearly

rejected, the hypothesis of at most 1 conintegrating relationship is not rejected at the 5%

level (but it is rejected by the trace test at the 10% level), and there is no evidence against

the hypothesis of at most R conintegrating relationships for R > 1. All told, then, it ap-

pears that there is only one cointegrating relationship among the G-6 IP series. Hence we

proceed to adopt a vector error-correction specification for our approximating model, al-

6To conserve space we do not show the unit root test results.

9



CI Rank Max Eval (P-Value) Trace (P-Value)

0 48.9 (0.004) 115.6 (0.0011)
At most 1 29.1 (0.168) 66.7 (0.0865)
At most 2 17.4 (0.550) 37.6 (0.3191)
At most 3 14.7 (0.310) 20.3 (0.4054)
At most 4 5.4 (0.687) 5.6 (0.7473)
At most 5 0.12 (0.723) 0.12 (0.7230)

Table 3: Tests of Number of Cointegrating Relationships. We assume linear trends in
industrial production series and intercepts in any cointegrating relationships.

though we note that is is not far from a simple VAR in first differences (i.e., 0 cointegrating

relationships).

3.2 Static Connectedness

In the empirical analysis of business cycle connectedness we first estimate the VEC model

for the full sample and report the connectedness index and the directional connectedness in

Table 3.2 along with the underlying generalized variance decomposition. The connectedness

index for the full sample period is 29.1%, indicating that less than one-third of the total

variance of the forecast errors for the G-6 countries is explained by the connectedness of

shocks across countries, whereas the remaining 70.9% is explained by idiosyncratic shocks.

It is important at this stage to note that the connectedness index for the whole sample is

sensitive to the inclusion of new observations in the sample. The connectedness index for the

period from 1958:01 to 2008:12 is only 27%. When the sample is extended to May 2009, the

connectedness index for the full sample jumps to 69%. Finally, the inclusion of observations

from June 2009 to December 2011 lowers the index to 29.1%.

In terms of the directional connectedness to others (measured by C̃H
•←i ) throughout the

full sample, Japan is the country that contributed the most to other countries’ forecast

error variance (58.1 points, which is close to 10% of the total forecast error variance to

be explained), followed by France (35.4 points). According to the full sample directional

connectedness measures, the U.S., Germany and the U.K. contributed at similar rates (29.2,

23.9 and 17.1 points, respectively), followed by Italy (10.7 points).

In terms of the directional connectedness received from others (measured by C̃H
i←•), the

U.S. appears to be the country that received the lowest percentage of shocks from other

countries (10.7 points, equivalent to just 1.8% of the total forecast error variance to be

explained) followed by the U.K. (22.4 points) and Japan (22.6 points). Germany received
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FROM
U.S.A. GER JPN FRA U.K. ITA Others

U.S.A. 89.2 0.8 3.5 3.3 2.2 1.1 10.8
Germany 5.6 55.7 23.9 8.4 6.0 0.5 44.3
Japan 8.1 5.6 77.4 6.0 1.9 1.0 22.6
France 3.5 10.1 11.0 64.2 4.2 7.0 35.8
U.K. 7.7 3.3 4.2 3.8 80.0 1.0 20.0
Italy 5.9 2.0 14.3 13.2 4.0 60.6 39.4

TO Others 30.9 21.7 56.8 34.7 18.3 10.5

NET Index =
TO – FROM 20.0 -22.5 34.1 -1.1 -1.7 -28.8 28.8%

Table 4: Static Connectedness, G-6 Industrial Production, 1958:01-2011:12. Each
cell in the upper-left 6x6 matrix reports the relative (percent) contribution of the “column” country to the
variance of the forecast error for the “row” country. The “Directional FROM Others” column reports the
total forecast error variance shares of the row countries attributable to shocks from other countries. The
“Directional TO Others” row reports the total contributions of each column country to all other countries’
forecast-error variance. Each cell in the “Net Directional Connectedness (TO-FROM)” row reports the
difference between the corresponding cells in the“Directional TO Others” row and the ones in the “Directional
FROM Others” column. The total connectedness index in the lower right is the average of the elements of
the “Directional FROM Others” column (or equivalently, the “Directional TO Others” row), multiplied by
100 percent.

the highest percentage (43.5 points) of shocks from other countries, followed by Italy (39.4

points) and France (35.7 points).

Finally, we calculate the difference between the column-wise sum (the ”contribution from

others”) and the row-wise sum (”contribution to others”) to obtain the ”net directional con-

nectedness” given by C̃H
i . Japan (35.4 points) and the U.S. (18.4 points) are net transmitters

of industrial production shocks to other countries, while the U.K. (-5.3 points) and France

(-0.3 points) received very low percentage of business cycle shocks in net terms. Italy (-

28.7 points) and Germany (-19.6 points), on the other hand, are definitely the leading net

recipients of business cycle shocks over the full sample.

3.3 Dynamic Total Connectedness

The connectedness table for the full sample provides important clues as to how the connect-

edness index is calculated and interpreted. However, we want to focus more on the dynamics

of business cycle connectedness over time. The fact that the inclusion of new observations

in the sample leads to significant jumps in the connectedness index definitely highlights the

need to study the dynamics of connectedness over time.
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As the VEC is the correct model for the full sample, the dynamic analysis of connected-

ness also relies on the variance decomposition from the VEC model estimated over rolling

5-year windows. Here is how the connectedness plot is obtained: We estimate the VEC model

for the first 5-year sub-sample window (April 1958-April 1963) and obtain the value for the

generalized variance decomposition-based connectedness index (from now on, the connected-

ness index). Moving the sub-sample window one month ahead, we estimate the VEC model

again and calculate the connectedness index for the new sub-sample and so on. Graphing

the connectedness index values for all sub-sample windows leads to the connectedness plot.

So far we have discussed the connectedness plot based on the underlying VEC(1) model,

estimated over 5-year rolling windows with a 12-month forecast horizon. Next we want to

discuss the appropriateness of our assumptions and the robustness of our results to these

assumptions. Let’s start with the underlying VEC(1) model. Earlier we reported unit root

and cointegration test results for the full sample from 1958:01 to 2011:12. While the test

results indicated that the correct underlying model is the VEC(1) for the full sample, this

does not necessarily imply that VEC(1) is the correct model for each 5-year rolling window.

For that reason, we repeated the unit root and cointegration tests for all 5-year rolling

windows considered. The ADF test fails to reject the presence of unit roots in the log IP

series for an overwhelming majority of the windows considered for all countries. In the

case of first-differenced log IP series, the ADF test rejects the presence of unit roots for

almost all countries. The only exception is Japan. In the case of Japan, for a non-negligible

number of rolling windows the ADF test fails to reject the presence of unit roots in the

first-differenced log IP series. While this is a cause for concern, we do not test for unit roots

in further differenced IP series. Instead, we proceed with the Johansen cointegration test

over the rolling windows. In the case of the U.K., the ADF test rejects the unit root in the

first-differenced log IP series so strongly for all windows that the p-value is very close to

zero.

Similarly, both the trace and maximum test statistics reject the null of no cointegration

relationship among the six log IP series at the 5% level for an overwhelming majority of

rolling windows considered. This means that the test prefers a VEC model to a VAR in first

differences. In contrast, the trace statistic, in particular, fails to reject the null of at most

one cointegration equation linking all six log IP series. Therefore, the Johansen cointegration

tests indicate that there is either one or two cointegration equations among the six IP series.

Based on these results, we expand the connectedness index analysis to rolling windows based

on the VEC(1) model. Later on, we will show the differences in the connectedness indexes

for different models.
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Figure 2: Dynamic Total Connectedness, G-6 Industrial Production, 1958:01-
2011:12. We use a 5-year rolling window. The shaded areas indicate U.S. recessions. See text for details.

The dynamic connectedness index based on the VEC(1) model is plotted in Figure 2. We

also calculate an alternative connec tedness index based on the Cholesky variance decom-

position. Even though we do not plot it here, we can report that the two indexes move in

tandem, with the difference between the two indexes seldom exceeding 10 percentage points.

Therefore, it would be sufficient to focus on the generalized VD-based connectedness index

for the rest of the paper.

Turning to Figure 2, the first thing one observes about the connectedness plot is the ab-

sence of a long-run trend. The connectedness plot clearly shows that while there are periods

during which shocks to industrial production are substantially transmitted to others, there

are yet other periods during which the connectedness of business cycle shocks was much less

important. Actually, during or after all U.S. recessions (indicated by the shaded bars in Fig-

ure 2), the connectedness index recorded significant upward movements. The only exception

is the 1969-70 recession, during which the index moved down. In addition, the index went up

in late 1993, and after a brief correction in late 1994, it went up again in 1995. While there

was no U.S. recession during this period, France, Germany, Italy and Japan experienced

recessions ending in late 1993 or early 1994 (see the Economic Cycles Research Institute’s

website http://www.businesscycle.com/resources/cycles/). As a result, the upward

movement in the connectedness index is most likely due to the connectedness originating

from these countries.

Second, while the connectedness index fluctuates over time, it is possible to differentiate

between several trends. First, during the 1973-75 recession the connectedness index increases

13



by almost 20-25 percentage points and fluctuates around 50% after the 1981-82 recession.

Starting in 1984, the connectedness index declines all the way to 33%. This result is con-

sistent with the findings of McConnell and Perez-Quiros (2000) and Blanchard and Simon

(2001) that the volatility of the U.S. GDP declined after 1984 (the great moderation). As

the volatility of GDP declines, the connectedness index declines to pre-1973 levels.

Third, after the great moderation of the late 1980s, the behavior of the connectedness

index reflects the influence of globalization. From 1989 onward, the band within which the

connectedness index fluctuates starts to move upward with the current wave of globalization

that started in earnest in the early 1990s. As the sample windows are rolled to include

1996, the index reaches 60%, but declines to 40% as the data for the late 1990s and 2000

are included. The index starts to increase again toward the end of the mild recession of

2000-2001, reaching 60% by the end of 2002. However, as the other G-6 countries followed

the quickly recovering U.S. economy to a major expansion, the connectedness index reached

65% in the second quarter of 2004. The index then declines to 60% again as the window

is rolled to include the second half of 2004, and then gradually moves down, reaching its

bottom around 40% from the last quarter of 2006 until the first quarter of 2008.

During the era of globalization, from the late 1980s to 2007, the connectedness index

followed three distinct cycles. Each cycle lasted longer and had a larger bandwidth than the

previous one. During the first cycle, which lasted from 1989 to the end of 1992, the index

fluctuated between 33% and 53%, while in the second cycle, which lasted from 1993 to 1999,

the index fluctuated between 37% and 60%. Finally, during the third cycle from 2001 to

2007, the index fluctuated between 44% and 65%.

This result is consistent with Kose et al.’s (2003) finding that with the globalization

process, business cycles have become more synchronized. It basically indicates that the

comovement of industrial production fluctuations has tended to be more significant since the

late 1980s. In other words, when there is a shock to industrial production in one or more

countries in the G-6 group, its tendency to be transmitted across other countries increases

as one move from 1989 toward 2007. This result can also be interpreted as consistent with

Doyle and Faust’s (2005) conclusion that the correlation coefficients among the industrial

production series have not increased much since the late 1980s. The output fluctuations tend

to move together during periods of high connectedness indexes, compared to the periods with

low connectedness indexes. When one analyzes the period since the late 1980s as a whole,

one may not obtain high correlation coefficients. Actually, for the period from 1989 to 2007

the connectedness index is only 36%.

Next, we focus on the behavior of the connectedness index since June 2008 (see Figure 3).
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Figure 3: Dynamic Total Connectedness, G-6 Industrial Production, 2000:01-
2011:12. We use a 5-year rolling window. The shaded areas indicate U.S. recessions. See text for details.

We want to focus on its most recent behavior, not only because it provides us with more

clues about the business cycle connectedness since the beginning of the sub-prime crisis in

the United States, but also because, in 2008 and 2009, the index recorded the biggest jump

in its history. The index increased sharply from 41% in May 2008 to 53% in July, to 68% in

September, and then to 80% in December 2008. With the inclusion of January 2009 through

October 2009 in the analysis, the index declined slightly to 71%. As the economic recovery

went underway in the G-6 countries in the second half of 2009, the index moved slightly

upward again, reaching 75% by December 2009.

The behavior of the index during the Great Recession of 2007-2009 is in stark contrast

to its behavior in previous recessions. It increased 37 points from April to December 2008.

The jump in the index during the Great Recession is an indication of how the G-6 countries

were pulling each other down. To give an example, during the recession following the first

oil price hikes, in a matter of three and a half years from 1972 to 1976, the connectedness

index recorded a relatively smaller increase, from a low of 32 in August 1972 to a high of 64

in April 1974.

So far we have only discussed the total connectedness index. However, as we argued in

the introduction, the analysis of directional connectedness provides me with quite interesting

results to discuss in some detail. However, before going ahead with the analysis of directional

connectedness plots, we want to make sure that the results we obtained from the total

connectedness analysis are not due to some special characteristics of the VAR framework we

use. For that reason, we now report the robustness of the total connectedness index with

respect to the model choice, the window width, the forecasting horizon and the ordering of

variables.
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(c) One Cointegrating Vector vs. VAR in Growth Rates

Figure 4: Robustness of Estimated Dynamic Total Connectedness to VECM Spec-
ification. In each sub-panel, black denotes our VECM with one cointegrating vector, and red denotes an
alternative model.

16



Let’s start the robustness analysis with the choice of the underlying model. Along with

the single cointegration equation (VEC1) model, we calculated the total connectedness index

under a VAR in first differences (DVAR), a VEC2 and a VEC5 model. We present the

dynamic connectedness plots in Figure 4. The dynamic connectedness plot obtained from the

underlying DVAR model differs substantially from the one obtained from the VEC1 model.

Given the fact that the null hypothesis of no cointegration equation was very strongly rejected

by Johansen’s cointegration test using both trace and maximum eigenvalue statistics, it is

not very surprising that the dynamic connectedness index obtained from the DVAR model

is quite different from the one obtained with the VEC1 model.

Cointegration test results, in general, preferred the VEC1 model to the VEC2 and VEC5

models, but there were many instances, especially in the case of maximum eigenvalue statis-

tics, where the null of at most one cointegration equation was rejected in favor of 2 or

more cointegration equations. Given that the Johansen test results did not indicate an

overwhelming preference in favor of the VEC1 model, we decided to compare the behavior

of the total connectedness index from the underlying VEC1 model with the ones obtained

from the VEC2 and VEC5 models. As can be seen, there is a level difference between the

connectedness index obtained from the VEC1 model and the ones obtained from the VEC2

and VEC5 models. As the level difference is not changing substantially over time, there is

little difference between the time behavior of the VEC1-based connectedness index and the

ones obtained from the VEC2 and VEC5 models. Based on these results, we decided to use

the VEC1 as the main underlying model.

Next, we present the robustness checks with respect to the window width and the forecast

horizon in Figure 5. In this robustness exercise we consider 4, 6 and 7 years as the alternatives

to our benchmark window width of 5 years. In the case of the forecast horizon, we consider 6

and 18 months in addition to our benchmark forecast horizon of 12 months. In total we plot

the dynamic connectedness index in 12 sub-graphs. In addition to the connectedness index,

which is based on generalized variance decomposition, we plot the 10th and 90th percentile

values of the Cholesky-based connectedness index out of 100 random orderings.

Irrespective of the forecast horizon and window width considered, the generalized and

Cholesky variance decomposition-based connectedness indexes follow very similar patterns.

This comparison assures us that the use of the generalized variance decomposition-based

connectedness index leads to quite sensible results. Figure 5 also assures us that the result

we obtained for the benchmark values of the window width and the forecast horizon carries

over when we use other values for these two important parameters of our connectedness

index methodology.
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H is forecast horizon. w is estimation window width.
[line] Koop-Pesaran-Potter-Shin generalized identification.  [grey box] Cholesky factor identification, (10%,90%) band based on 100 randomly-selected orderings.

Figure 5: Robustness of Estimated Dynamic Total Connectedness to Window
Width, Forecast Horizon and VECM Identification. We explore window widths of 4,
5, 6 and 7 years (across columns), and horizons of 6, 12 and 18 months (across rows). Each sub-figure
contains a solid line based on generalized identification, and a 90% region based on 100 randomly-selected
Cholesky-factor identifications. See text for details.

3.4 Dynamic Directional Connectedness

Following the analysis of the total connectedness index, we can now focus on the directional

connectedness of business cycles across countries. Directional connectedness indexes are crit-

ical in understanding the respective roles of each of the G-6 countries in spreading shocks

to their local industrial outputs to other countries. In Figure 6 we present all three in-

dexes of connectedness: “Connectedness to others,” “Connectedness from others” and “Net

connectedness to others,” which we will discuss in some detail.

Throughout the 1970s, Japan was the most important source country of net connectedness

(Figure 6), followed by France and Germany. During the second half of the 1970s, the gross

connectedness from Japan to others reached as high as 180%, whereas the connectedness

received by Japan from others was only around 40-50%, leading the net connectedness from

Japan to reach as high as 150%. While Germany had high directional connectedness to

others in the late 1960s, early 1970s and late 1970s, its net connectedness was negative in

the mid-1970s, immediately after the first oil price shock. France, on the other hand, had

significant directional connectedness to others after the first oil price hikes in 1973-74 as
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Figure 6: Dynamic Directional Connectedness, “To,” “From” and “Net.” We show
transmissions to others in rows 1 and 2, receipts from others in rows 3 and 4, and net flows (To-From) in
rows 5 and 6. The shaded areas indicate U.S. recessions.
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well as the second half of the 1970s. The United States, on the other hand, had negative

directional connectedness to others, and, therefore, was a net recipient of business cycle

shocks over most of the 1970s.

The roles were reversed in the 1980s: the United States became the major net transmitter

of shocks, while Japan became the net recipient of the business cycle shocks. Following

the 1981-82 U.S. recession, gross connectedness transmitted by the United States to others

jumped above 160%, and net connectedness from the U.S. fluctuated between 50 and 120%.

Japan’s net connectedness, on the other hand, declined to as low as -80% after the 1982

recession and stayed at low levels until the end of 1987. Germany and the U.K. also had

positive net directional connectedness to others after the 1981-82 recession, but their roles

were rather secondary compared to that of the United States.

Throughout the 1990s, Japan’s net directional connectedness was positive, but it was

rather low. This fact is consistent with the decade-long recession Japan suffered while the

other G-6 countries continued to attain higher growth rates. Neither the United States

nor Germany was one of the countries that had net directional connectedness in the 1990s.

Rather, France and the U. K. had sizeable net directional connectedness in the 1990s, even

though their net connectedness was not as significant and as persistent as the ones the U.S.,

Japan and Germany attained in the 1970s and 1980s. The role these countries played during

the 1990s is closely related to the aftermath of the ERM crisis of 1992 and the ensuing

slowdown in these economies.

Moving forward in time, the United States and Japan returned to their locomotive roles

in the 2000s. In particular, with a high net connectedness to others, the U.S. was a net

transmitter of business cycle shocks after the 2001 recession. In response to the slowdown

in the economy in early 2001, the Federal Reserve lowered the fed funds rate from 5.5%

in January 2001 all the way down to 2% in November 2001. This aggressive policy stance

was effective in stimulating domestic demand. As a result, industrial production grew at a

monthly rate of between 0.5 and 1.0% in the first half of 2002. The 2001 recession lasted for

only 8 months, from March to November 2001. With this rapid turnaround, the U.S. started

to generate substantial connectedness in the first half of 2002, with the net connectedness

from the U.S. reaching 100%. After a brief lull in 2003 the net connectedness from the U.S.

increased again to surpass 130%. Being the driver of worldwide demand, the U.S. had an

impact on other countries until the end of 2006, as the net connectedness of the U.S. declined

to almost zero. Japan also had a positive net connectedness in the first 7 years of the 2000s;

its net connectedness fluctuated around 50%. Germany’s net directional connectedness was

negative throughout the 2000s and during the global recession of 2008-09. France, Italy and
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the U.K. were also net recipients of business cycle shocks before the global recession.

Lately, with a net connectedness measure lower than -50% since 2007, Japan has become a

net recipient rather than a net transmitter of business cycle connectedness. In the meantime,

the net connectedness from the U.S. has gradually increased with the intensification of the

sub-prime crisis since mid-2007. As emphasized above, from April to December 2008, the

total connectedness index jumped up substantially to reach 80%. The United States was

the most important contributor to the increase in business cycle connectedness, with a net

connectedness contribution of more than 150%. The gross directional connectedness from

the U.S. jumped close to 180% following the collapse of Lehman Brothers in September 2008.

While the United States was the major net transmitter of shocks to others, France and

Italy had also become important net transmitters during the global recession of 2008-2009.

Actually, the net connectedness of both countries stayed high after late 2008, fluctuating

between 50 and 100%. According to Figure 6, since the global financial crisis, the net

connectedness of Germany, the U.K. and Japan declined rapidly, dropping all the way to

-100% in early 2010.

3.5 Using Country Real-Activity Factors

In order to check the robustness of our results obtained from the industrial production

indexes, in this short section we use a set of alternative measures of the behavior of each of

the G-7 economies over the business cycle. Recently, using data on major macroeconomic

variables at monthly and quarterly frequency Aruoba et al. (2011) estimated dynamic factor

models for the G-7 countries and derived country factors for each of the countries using 37

monthly indicators. Aruoba et al. (2011) showed that the country factors captured the main

macroeconomic developments over a period of 40 years and their behavior over time were

fairly consistent with the business cycle narrative for each of the countries.

Applying the connectedness methodology to monthly country factors obtained by Aruoba

et al. (2011), we calculated the total connectedness index for different window lengths. In

Figure 7 we present the total connectedness index obtained from a VAR of the country

factors over a sample window of 5 years through 7 years, along with total connectedness

indexes obtained from the VEC1 model of monthly industrial production indexes.

When we use 5-year and 6-year rolling windows to calculate the connectedness index,

the behavior of the country- factor- and industrial-production-based connectedness indexes

is quite similar. In the case of 7-year window there is a level difference between the two

indexes. The industrial-production-based index tends to be higher than the country- factor-

based index. Despite that level difference, however, the two indexes behave quite similarly

21



20

30

40

50

60

70

80

90

1965 1970 1975 1980 1985 1990 1995 2000 2005

DY ADKT

(a) 5-year window

20

30

40

50

60

70

80

90

1965 1970 1975 1980 1985 1990 1995 2000 2005

DY ADKT

(b) 6-year window

20

30

40

50

60

70

80

90

1965 1970 1975 1980 1985 1990 1995 2000 2005

DY ADKT

(c) 7-year window

Figure 7: Total Connectedness as Assessed Using Country Factors vs. Industrial
Production. We show the country-factor version in red and the industrial production version in black.
See text for details.
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U.S. Germany Japan France U.K. Italy

U.S.A. – 2.4 2.7 1.4 1.6 0.6
Germany -0.6 – 0.1 -2.4 -5.0 -1.7
Japan -1.2 -0.2 – -0.1 -1.6 -0.1
France -0.1 1.6 0.02 – 0.1 0.8
U.K. -0.1 1.5 0.3 0.7 – 0.9
Italy -0.2 1.1 0.02 -0.2 -1.2 –

Total -2.0 6.5 3.1 -0.5 -6.1 0.5

Table 5: Bilateral Manufacturing Trade Balance Relative to Local Manufacturing
Production, 1999-2008 Average. Each cell shows the manufacturing trade balance of the column
country with the row country, divided by the industrial production of the column country. For example,
Germany’s manufacturing trade surplus with the U.S. is 2.4% of German industrial production, the corre-
sponding U.S. manufacturing trade deficit with Germany is 0.6% of U.S. industrial production. (Source:
Authors’ calculations based on OECD data.)

over time. Based on Figure 7, we can conclude that the connectedness of business cycles

across the G-6 countries are well captured by the use of industrial production data.

3.6 International Trade and Directional Connectedness

Germany has been the biggest economy and the manufacturing powerhouse of Europe. It is

therefore not easy to reconcile some of the above dynamic directional connectedness results

with the image of Germany as the engine of growth in the EU. Now, let’s discuss the logic

behind this result in some detail. Trade flows play a key role in the transmission of shocks

across countries. When there is a shock to domestic demand in country i, this shock is

transmitted to other countries through the trade channel. As the aggregate demand in

country i takes the hit, the demand for imports is affected as well. As a result, the domestic

shock is likely to be transmitted to other countries that are major exporters to that country.

As can be seen in Table 5, from 1999 to 2008, Germany’s average trade surplus in

manufacturing vis-a-vis the other five countries was equivalent to 6.5% of its industrial

output. Over the same period the U. K., the U. S., and France ran manufacturing trade

deficits, while Japan and Italy ran manufacturing trade surpluses vis-a-vis the other G-6

countries. Germany happens to be the most important exporter of manufacturing goods

to France, the U.K. and Italy, and it ranks only second or third among exporters to the

U.S. and Japan. As a result, when there is a negative shock to industrial production in one

or more of the G-6 countries, this shock is likely to be transmitted, first and foremost, to

Germany and then to the other countries. From this perspective, it is logical for Germany

to have a higher connectedness from others compared to its connectedness to others.

In order to better understand the possible link between the trade balance and the busi-
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1963:04-2010:02 1990:01-2010:02
Coefficient R2 Coefficient R2

France 2.45 0.70 -4.95 0.80
(2.91) (4.36)

Germany -3.85 0.70 -6.31∗∗ 0.61
(2.63) (2.4)

Italy 0.59 0.68 -4.10∗∗ 0.56
(1.42) (1.17)

Japan -1.16 0.75 -6.98∗∗ 0.74
(1.34) (2.46)

U.K. 6.43∗ 0.74 6.46+ 0.71
(2.61) (3.45)

U.S.A. -1.76∗∗ 0.76 -2.59∗∗ 0.63
(0.49) (0.91)

Table 6: Directional Connectedness and the Trade Balance. We regress logarithmic net
directional connectedness (Log(C•←i/Ci←•)) on the logarithmic trade balance (Log(Exports/Imports)),
lagged 12 months.

ness cycle connectedness, we undertake a linear regression analysis. In the regressions, the

dependent variable is logarithmic net directional connectedness (Log(C•←i/Ci←•)). On the

right-hand side, we include only the logarithmic trade balance (Log(Exports/Imports)),

with a lag of 12 months. Regression results for the full sample (1963:04 - 2010:02) as well as

for the sub-sample that covers the period from January 1990 to the end of the sample are

presented in Table 6.

The results for the full sample (1963:04 - 2010:02) are not encouraging. Only the United

States has a statistically and economically meaningful coefficient estimate with the expected

negative sign. The estimated coefficient implies that when the ratio of one-year lagged U.S.

exports to U.S. imports increases by 1%, the ratio of the connectedness from the U.S. to

the connectedness received by the U.S. will decline by 1.76%. The estimated coefficient for

the United Kingdom (6.43) is also statistically significant, and its positive sign implies that

a decrease in the export-import ratio will lead to a decrease in the connectedness from the

U.K. relative to the connectedness received by the U.K.

With the globalization process underway, trade flows became more and more important

in the 1990s. Therefore, it makes sense to focus on the recent decades. For that reason, we

restrict the sample to the post-1990 period. Five out of six estimated coefficients for the

post-1990 period had negative signs as expected. For four of these countries (France is the

exception), the negative coefficient estimates are statistically different from zero at the 1%
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significance level. The estimated elasticity for the U.K. is still positive, but it is different

from zero at the 10% level of significance only.7

4 Concluding Remarks

We have applied the connectedness methodology to the study of business cycles in several

leading economies. In doing so we have made several contributions to the literature on

international business cycles.

First, the connectedness methodology is different from, and complements, the empirical

approaches typically used. While the factor model approach aims to obtain a world business

cycle measure, the connectedness framework distinguishes between idiosyncratic shocks to

industrial production and the connectedness of industrial production shocks across countries.

Furthermore, the connectedness index is based on a multivariate VECM, which is better able

to capture the increased comovement of business fluctuations in more than two countries

compared to analyses based on pairwise correlations.

Second, the analysis sheds new light on the nature of business cycles, clearly showing that

the cross-country comovement of business fluctuations is not constant over time, and that it

does follow an upward trend. Rather, business cycle connectedness fluctuates substantially

over time. However, the band within which the connectedness index fluctuates has increased

since 1984. This result is consistent with the findings of both Kose et al. (2003) and Doyle

and Faust (2005): When shocks in individual countries are small, they cannot be expected

to be transmitted to other countries regardless of the integration among countries, but when

the shocks are large enough, they are transmitted, and the cross-country correlation of

macroeconomic aggregates increases.

Third, we use directional connectedness measures to identify each country as a gross

and/or net transmitter of business cycle shocks to other countries as well as a gross/net

recipient of business cycle shocks from other countries over different time periods. The

directional connectedness measures show that the U.S. (1980s and 2000s) and Japan (1970s

and 2000s) are the major net transmitters of shocks to other countries, while Germany is

the major net receiver of shocks in the 2000s.

7The U.K. runs chronic deficits in merchandise trade, which is financed by chronic trade surpluses in
services. Being a deficit country in merchandise trade the U.K. is likely to be a net transmitter of shocks
to other countries. However, given the large size of its trade surplus in services (service exports revenue
reached $249 billion in 2009 compared to $117 billion in merchandise exports) the U.K. is likely to be a net
receiver of shocks in services sectors from other countries. As a result, when we regress the log of the ratio
of connectedness transmitted and received by the U.K. on the log of the export-import ratio for goods, the
coefficient turns out to be positive but statistically insignificant.
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Fourth, with an unprecedented jump between May and December 2008, the business cycle

connectedness index captures well the global nature of the current recession. The quick and

large increase in cross-country connectedness suggests that recovery from “the great global

recession” may require coordinated policy actions among the major industrial and emerging

market economies.

Fifth, we showed that the sign of a country’s net business cycle connectedness is closely

related to the country’s trade balance. Those countries that run trade surpluses tend to be

net recipients of shocks, whereas countries that run trade deficits are likely to be transmitters

of shocks.
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