
Measuring the E�ectiveness of Various Design Validation

Approaches For PowerPCTM �Microprocessor Arrays

Li-C. Wang and Magdy S. Abadir Jing Zeng

Somerset PowerPC Design Center Somerset PowerPC Design Center

Motorola, Inc., Austin, Texas IBM, Austin, Texas

Abstract

Design validation for embedded arrays remains as a

challenging problem in today's microprocessor design en-

vironment. At Somerset, validation of array designs re-

lies on both formal veri�cation and vector simulation. Al-

though several methods for array design validation have

been proposed and had great success [[6], [9], [10], [13]],

little evidence has been reported for the e�ectiveness of

these methods with respect to the detection of design er-

rors. In this paper, we propose a new way of measuring

the e�ectiveness of di�erent validation approaches based

on automatic design error injection and simulation. This

technique provides a systematic way for the evaluation of

the quality of various validation approaches. Experimen-

tal results using di�erent validation approaches on recent

PowerPC microprocessor arrays will be reported.

1 Introduction

Among various design blocks in an advanced micropro-

cessor, embedded arrays represent one of the most chal-

lenging parts for design validation. The arrays usually

comprise large number of storage elements, together with

complex timing and control logic that determine how they

are used and updated. Arrays are custom designed so that

their performance can be optimized to the greatest extent.

In general, these arrays comprise more than 50% of the on-

chip area and up to 80% of the total number of transistors

[6].

In general, an array design is represented by three dif-

ferent views. They are: the high-level (or RTL) view,

the gate-level test view, and the transistor-level

schematic view. These views form the design data tri-

angle. Each view on this triangle represents design data

required for a particular set of tools and applications.

The RTL view is the most abstract, in the sense that it

is the high-level speci�cation of a design, where all func-

tionality is described using high-level constructs. For cus-

tom design blocks such as arrays, transistor-level schemat-

�IBM and PowerPC are trademarks of IBM Corporation in

the United States, or other countries, or both

ics are drawn according to the RTL speci�cation. Usually,

the gate-level views of these custom blocks are generated

from the RTL model directly, which are used for test gen-

eration.

In a normal design ow, the RTL model for a mod-

ule is �rst derived. Extensive functional simulation at the

full chip level is carried out to verify the correctness of

the RTL speci�cation before the design is actually imple-

mented. Then, various methods are applied to validate the

correctness of these design views. These methods include:

� Simulation using manually generated test vectors.

� Simulation using tests generated by a commercial

ATPG tool

� Formal veri�cation based on Symbolic Trajectory

Evaluation

� Simulation using tests generated based on formal ver-

i�cation results

Each of the methods has been reported with success

[[6], [9], [10], [13]]. However, not much has been done

in order to quantify the completeness of each approach

with respect to design error detection. In this paper, we

will present a systematic way to evaluate the quality of

a validation method, based on logic error injection and

detection. This approach provides an answer to the ques-

tion of how complete a particular validation approach is.

Experimental results based on applying various validation

methods to recent PowerPC microprocessor arrays will be

analyzed and discussed.

2 Overview of Various Validation Ap-

proaches

To validate the correctness of various design views, tra-

ditionally, vector simulation is used. This approach breaks

down for arrays due to the exponentially large number

of patterns required for exhaustive veri�cation. Boolean

equivalence checking is not completely suitable for arrays

either because of the large number of storage elements and

the complex timing scheme involved [8].



2.1 ATPG Based Test Vectors

One method that we have employed in the past with

success to verify the equivalence between the gate level and

the transistor level views of a design relied on the use of

test vectors generated by ATPG tools and then simulating

these vectors on the transistor level view [6].

Usually ATPG generated scan tests are used to cover all

the logic surrounding the memory cells because core array

elements are tested by Built-In Self Test (BIST) circuitry

implementing certain marching algorithms [7]. In order for

ATPG tools to understand the array logic, proper gate-

level view is created. In practice, sequential ATPG tools

are inadequate for handling arrays because of their large

number of storage elements. Instead, arrays are modeled

as combinational circuit with transparent primitives, such

as prede�ned sequentially transparent latches and RAMs.

Such a modeling approach is limited in the sense that the

behavior of some designs can fall beyond the modeling ca-

pacity of these prede�ned primitives.

For high speed microprocessor design, arrays are de-

signed with very complex timing scheme to optimize their

performance. As a result, DFT engineers spend much of

their time developing proper test view models for arrays

using the available primitives. This process can be itera-

tive and tedious. For the most complex array blocks, it is

simply impossible to model them properly.

If an array can be modeled properly and a high fault

coverage can be obtained, ATPG tests do have the advan-

tage that they cover almost all structural sites in a cir-

cuit. Since design errors associated with a particular site

whose stuck-at faults have been detected will likely be for-

tuitously detected [2], high fault coverage test set can be

e�ective for detecting design errors.

2.2 STE Assertions

Formal veri�cation with Symbolic Trajectory Evalua-

tion (STE) [12] provides another alternative for validation.

In STE, a set of assertions are created for an array design.

Assertions represent a set of high level properties for which

the design should satisfy under normal operations. There-

fore, assertions can be thought as the golden model view of

a design, which will be proved to be equivalent to all other

views under STE. The advantage of this scenario is that

not only the equivalence between two views can be veri-

�ed but also the correctness of RTL model can be checked

again independently. Therefore, if there is any unexpected

error left in the RTL model after the extensive functional

simulation, the error will be captured during the STE ver-

i�cation process.

STE [12] is a descendant of symbolic simulation [4]. At

the core of symbolic simulation, Ordered Binary Decision

Diagram [5] is used to e�ciently manipulate boolean func-

tions. In STE, a circuit is speci�ed in terms of a set of

properties in a restricted temporal logic form. Proper-

ties are expressed by so-called assertions which are of the

form \Antecedent =) Consequent" where both \An-

tecedent" and \Consequent" consist of a number of formu-

lae. Formulae can be simple predicates such as \line A is

`a"' (line A holds the symbolic value `a' at current time), or

conjunctions of these simple predicates. Formulae can be

applied with the next time operator in order to state the

facts such as \line A remains `a' in the next time step." It

is also possible to apply domain restriction so that \line A

remains `a' when D is true" can be expressed. This simple

logic in STE is su�cient for array veri�cation purpose [[6]

[9] [10]].

With STE, operations speci�ed in the antecedent are

symbolically simulated, and then conditions declared in

the consequent are asserted. The assertion set represents a

high level functional speci�cation for a design. A Somerset

in-house tool called VerSys built on top of Voss [11] is used

to verify that all three views satisfy the same assertions.

There are two major limitations on the STE method.

First, for large design, the OBDD size can easily blow up if

too many symbols are used in a single assertion. Usually,

selected non-critical symbolic values such as those used on

the data path are replaced with constant values in order

to reduce overhead. Second, the completeness of asser-

tion set is not guaranteed. Since the STE veri�cation is

as complete as the corresponding assertions, it is possible

that a particular design error will be missed due to the

incompleteness of the assertion set.

Although STE provides the most comprehensive veri-

�cation for arrays, simulation based methods are still re-

quired for the following reasons. Designer generated tests

provide perhaps the cheapest and fastest way for detecting

errors in the early design cycle. In addition, because of the

limitations of the switch level simulation model [3], delays

and other detailed electrical properties (crosstalk, power,

noise) are not veri�ed during STE, and hence detailed sim-

ulation is required for further design validation.

2.3 Assertion Based Test Vectors

Test generation based on STE assertion has been devel-

oped recently to combine the advantages of both ATPG

method and STE approach. It has been shown that al-

though \assertion tests" are generated without any struc-

tural information, they can achieve a higher stuck-at fault

coverage than traditional ATPG tests due to the limita-

tions of the ATPG tools on properly handling the arrays

[13]. The basic idea is to replace the symbolic values used

in the antecedent with a set of constant test vectors based

on each condition speci�ed in the consequent. The basic

techniques include (details can be found in [13])

� replace a symbolic address comparison expression

with address marching sequences

� replace a symbolic data comparison expression with

data marching sequences

� replace stand-alone symbolic values with random vec-

tors

� construct assertion decision tree and generate tests to

cover all branches



� construct control signal decision tree in order to gen-

erate tests to cover abnormal functional space

Note that assertion tests are well-suited to validate de-

sign and to debug errors since they are based on the func-

tional properties/operations of the arrays. They can also

be used to detect defects and perform timing and noise

analysis at the circuit level.

Since assertion tests do not exhaust all possible test

space associated with an assertion, they are less complete

than the assertion. On the other hand, assertion tests do

explore the abnormal functional space which is generally

not considered by assertions, and hence provide additional

check on the design. One thing to note is that assertion

tests use no structural information of the design, and thus

may not provide a complete coverage on all sites as a 100%

stuck-at fault test set is able to.

3 Design Error Model and Error Injec-

tion

None of the three approaches described earlier guaran-

tees a complete validation. Stuck-at fault simulation can

be used to provide some estimation of the quality of ATPG

tests and assertion tests. This involves using a separate

fault simulator other than the logic simulator such as Ver-

ilog. For STE veri�cation, since the underline symbolic

simulator does not have fault injection capability, it is dif-

�cult to perform fault simulation under the STE engine.

To evaluate the validation quality, we require a more

systematic way which can be achieved with the existing

logic simulator in use. We thus propose to use logic er-

ror design injection and simulation. This provides us a

method to analyze the strength and weakness of various

validation approaches, and hence quanti�es how complete

each approach is.

Several design error models were developed at the logic

level in [6]. These models include: Extra inverter, Gate

Substitution, Extra wire, Extra gate, Missing gate, Wrong

wire, etc. For initial experiments, we will consider only

the simple types of error described above. However, the

framework can be extended to cover other types of design

error models easily.

Since simulating all possible design errors is usually too

expensive, a set of n� 1 design errors are inject randomly,

where n is usually linearly proportional to the number of

gates in a design. To inject n�1 random errors, we modify

the design in the following way. log(n) additional primary

inputs are �rst added to the design. These additional in-

puts are then decoded to select n� 1 errors, plus one case

where no error is injected. Error injection is essentially

controlled by a multiplexer, where either the good design

or a faulty design is selected locally. Figure 1 shows the

modi�cation for the extra inverter error model.

Thus with control input bus of width log(n), there are

total of n possible input combinations where n � 1 can

be used to select design errors. The modi�ed design is

then fed into a logic simulator. Expected results from the

Decoder

add_in[1:log(n)]

Modified Circuit

box1

box2 box2

box2

design error module for
extra inverter design error

add_in[i]

Figure 1: Error Injection of an Extra Inverter

original design are compared and if there is a mismatch, a

detection is reported. Note that parallel error simulation

(similar to parallel fault simulation) is not implemented

here due to the sequential nature of array designs, and

because an existing logic simulator is used, only one error

can be simulated at a time.

4 Results

For the initial experiment, an eight-way set associative

tag array design is selected. The control logic surrounding

the memory core consists of around 5500 gates. As de-

scribed earlier, memory core and the address decoder are

tested by Built-In Self Test (BIST) circuitry implementing

certain marching algorithms [7]. ATPG tests are used to

cover only the surrounding logic. Since memory core is

constructed in a regular way and is usually not a major

concern for validation purpose, design errors are injected

only in the surrounding logic as well.

Two sets of 1023 design errors were randomly injected

for the two experiments denoted as EXP I and EXP II.

This creates 10 additional primary inputs to the design.

Design error coverages are obtained for ATPG tests and

for the assertion tests. Table 1 shows the stuck at fault

coverage comparison between the two test sets, given that

the fault coverage by assertion tests has been normalized

to 1.

Tables 2 and 3 present the comparison of design error

detection by the two test sets. For a given normalized

fault coverage �gure, assertion tests are generally better

than the ATPG tests with respect to design error detec-

tion, except for normalized FC = 0:6 where ATPG tests

temporarily outperform assertion tests.

At the end, assertion tests achieve higher error coverage.

Such results are expected given the higher fault coverage

by the assertion tests. As it has been established in [2],

stuck-at faults and logic design errors considered here are

highly correlated. Hence, although it is not necessarily

true, in general higher stuck-at fault coverage does imply

a higher design error coverage.



Note that undetected design errors could be redundant.

Further research e�orts are required to explore the nature

of those errors. An interesting result to note was that in

both Table 2 and 3 all design errors detected by the ATPG

tests were also detected by the assertion tests. However,

this is not true for the stuck-at fault results shown in Ta-

ble 1.

Normalized Results ATPG Assertion Tests

SAF Coverage 0.8 1.0

Table 1: Results of Normalized SAF Coverages

Errors Detected ATPG Tests Assertion Tests

at FC 0.5 578 642

at FC 0.6 672 643

at FC 0.7 717 776

at FC 0.8 728 917

Final # 728 965

Table 2: Results of Design Error Detection at Di�erent

Normalized Fault Coverages (FC) - EXP I

Errors Detected ATPG Tests Assertion Tests

at FC 0.5 618 644

at FC 0.6 760 658

at FC 0.7 784 816

at FC 0.8 809 891

Final # 809 932

Table 3: Results of Design Error Detection at Di�erent

Normalized Fault Coverages (FC) - EXP II

To better understand the correlation between the

ATPG tests and assertion tests, Figure 3 in the Appendix

shows the normalized fault coverage curves (with respect to

the number of tests applied) for assertion tests and ATPG

tests. Figure 4 in the Appendix shows the design error de-

tection curves for experiment I. The curves for experiment

II are similar and hence, are omitted.

It can be seen that ATPG tests are very e�ective for the

�rst 300 vectors, and then become relatively ine�ective for

the remaining vectors. This is true for detecting both the

stuck-at faults and the design errors.

To understand the behavior of the assertion tests, it is

necessary to explain how those tests are generated �rst.

In Figure 2, assertion tests are divided into six di�erent

blocks. The �rst block is for setting the initial content of

some of the array cells. Then, the next three blocks con-

tain both address marching and data marching sequences

which are generated for the two major assertions, Tag

Store (write) and Tag Load (read). The �fth block is for

other assertions that treat the Tag as a static cache array.

1 63

64 448

449 472
Initial
Setup

1st Level
Address
Marching

Random
Selected
Addresses
For Extra
Read and
Write

473 608

609 640

641 682Data
Marching

Tests
From
Other
Assertions

Tests
for
Abnormal
Behavior

Figure 2: Illustration of Assertion Vectors

No marching is used here. Instead, random selected ad-

dresses are used. The last block contains tests from the

control signal trees for all assertions in order to cover the

abnormal functional space.

It can be seen that address marching tests are less ef-

fective with respect to both stuck-at fault and design er-

ror detection. This is because no faults or errors were in-

jected in the decoder circuitry, and hence, address march-

ing tests which primary target on the decoder and mem-

ory cell faults are not of much use. On the other hand, all

other blocks of tests are very e�ective and necessary for

detecting both faults and design errors.

It is interesting to note that tests for abnormal func-

tional space do detect unique faults and design errors, and

hence cannot be ignored.

Table 4 demonstrates the design error detection results

by STE assertions. It is interesting to note that these

symbolic assertions do not outperform the assertion tests

although the later are generated based upon the former.

This is because the assertions considered here are con-

structed to verify the normal functional space only while

assertion tests include vectors speci�cally targeting on

those abnormal space. Hence, a design error that changes

the behavior of a circuit in the abnormal functional space

(such as \don't care" area) will usually not be considered

as a true error by assertion veri�cation. Note that asser-

tions for detecting errors in the abnormal functional space

can also be achieved.

Assertions Store Load Others Total

(EXP I) 282 758 373 964

(EXP II) 256 709 340 929

Table 4: Results of Design Error Detection by Sym-

bolic Assertions



5 Conclusion

In this paper, three di�erent validation approaches are

investigated for their e�ectiveness with respect to design

error detection. The initial results demonstrate that de-

sign error injection is a feasible approach to evaluate the

quality of various validation approaches. For all experi-

ments, no additional special simulator is required. Logic

simulation is used to measure the e�ectiveness of ATPG

tests and assertion tests while the STE symbolic simula-

tion engine is used for assertions. Current results indicate

that assertion tests are the most comprehensive approach

among the three. However, STE assertions can be im-

proved to detect more design errors if individual assertion

is included for each abnormal operation in the assertion

control signal tree.

References

[1] Magdy S. Abadir, and H. K. Reghbati, Testing of

random access memories, ACM Computing Surveys,

September 1983.

[2] Magdy S. Abadir, Jack Ferguson and Tomas E. Kirk-

land, Logic Design Veri�cation via Test Generation,

IEEE Transactions on Computer-Aided Design, Vol.7,

No.1, January 1988.

[3] Randal E. Bryant, A switch-level model and simulator

for MOS digital systems, IEEE Transactions on Com-

puters, Vol C-33, No. 2, February 1984, pp. 160-177.

[4] Randal E. Bryant, Symbolic simulation | techniques

and applications, 27th Design Automation Confer-

ence, 1990.

[5] Randal E. Bryant, Symbolic Boolean Manipulation

with Ordered Binary Decision Diagrams, ACM Com-

puting Surveys, Vol. 24, No. 3, Sep. 1992.

[6] Neeta Ganguly, Magdy S. Abadir, and Manish

Pandey, PowerPC Array Veri�cation Methodology

Using Formal Veri�cation Techniques, International

Test Conference, Washington DC., 1996. pp. 857-864.

[7] C. Hunter, J. Slaton, J. Eno, R. Jessani, C. Dietz, The

PowerPC603(tm) Microprocessor: An Array Built-In

Self Test Mechanism, International Test Conference,

1994, pp. 388-394.

[8] Charles H. Malley and M. Dieudonne, Logic Veri�ca-

tion Methodology for PowerPC Microprocessors, 32nd

Design Automation Conference, 1995, pp. 234-240.

[9] Manish Pandey, Richard Raimi, Derek L. Beatty,

and Randal E. Bryant, Formal veri�cation of

PowerPCTM arrays using symbolic trajectory evalua-

tion, 33rd Design Automation Conference, Las Vegas,

NV., 1996.

[10] Manish Pandey, Richard Raimi, Randal E. Bryant,

and Magdy S. Abadir Formal veri�cation of Con-

tent Addressable Memories Using Symbolic Trajectory

Evaluation, to appear in 34rd Design Automation

Conference, 1997.

[11] C,J.H. Seger Voss | a formal hardware veri�cation

system: user's guide, Technical Report 93-45, De-

partment of Computer Science, University of British

Columbia, 1993.

[12] C,J.H. Seger and Randal E. Bryant, Formal veri�ca-

tion by symbolic evaluation of partially-ordered trajec-

tories, Formal Methods in System Design 6, 1995, pp.

147-189.

[13] Li-Chung Wang, and Magdy S. Abadir, A New Vali-

dation Methodology Combining Test and Formal Ver-

i�cation for PowerPCTM Microprocessor Arrays, to

appear in International Test Conference, 1997.

Appendix

0.5

0.7

0.9

63 300 472 608 682 1263

N
or

m
al

iz
ed

 S
A

F
 C

ov
er

ag
es

Number of Vectors Applied

"ATPG"
"AsserTG"

Figure 3: Normalized Stuck-at Fault Coverage Curves:

ATPG Vs. Assertion Vectors

0.5

0.8

0.9

63 300 472 608 682 1263

D
es

ig
n 

E
rr

or
 C

ov
er

ag
es

Number of Vectors Applied

"ATPG-EXP-I"
"AsserTG-EXP-I"

Figure 4: Design Error Coverage Curves (EXP I):

ATPG Vs. Assertion Vectors


