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ABSTRACT

In this paper we explore the evolution of both the Internet’s most

heavily used transport protocol, TCP, and the current network envi-

ronment with respect to how the network’s evolution ultimately im-

pacts end-to-end protocols. The traditional end-to-end assumptions

about the Internet are increasingly challenged by the introduction

of intermediary network elements (middleboxes) that intentionally

or unintentionally prevent or alter the behavior of end-to-end com-

munications. This paper provides measurement results showing the

impact of the current network environment on a number of tradi-

tional and proposed protocol mechanisms (e.g., Path MTU Dis-

covery, Explicit Congestion Notification, etc.). In addition, we

investigate the prevalence and correctness of implementations us-

ing proposed TCP algorithmic and protocol changes (e.g., selective

acknowledgment-based loss recovery, congestion window growth

based on byte counting, etc.). We present results of measurements

taken using an active measurement framework to study web servers

and a passive measurement survey of clients accessing information

from our web server. We analyze our results to gain further under-

standing of the differences between the behavior of the Internet in

theory versus the behavior we observed through measurements. In

addition, these measurements can be used to guide the definition of

more realistic Internet modeling scenarios. Finally, we present sev-

eral lessons that will benefit others taking Internet measurements.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-

cols; C.2.3 [Computer-Communication Networks]: Network Op-

erations

General Terms

Measurement, Design, Reliability, Standardization, Verification

Keywords

TCP, middleboxes, Internet, evolution

1. INTRODUCTION
In this paper, we investigate the evolution of TCP [45], the In-

ternet’s most heavily used transport protocol, on its own and in the
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context of ongoing changes to the Internet’s basic architecture. As

part of this work, we study the ways in which so-called “middle-

boxes” (firewalls, NATs, proxies, etc.) — which change the In-

ternet’s basic end-to-end principle [47] — impact TCP. We seek

to elucidate unexpected interactions between layers and ways in

which the Internet differs from its textbook description, including

the difficulties various real-world “gotchas” impose on the evolu-

tion of TCP and end-to-end protocols in general. The measure-

ments presented in this paper also serve as lessons for efforts that

wish to further evolve end-to-end protocols and the Internet archi-

tecture.

While the Internet’s architecture, protocols and applications are

constantly evolving, there is often competing evolution between

various network entities. This competing evolution can impact per-

formance and robustness, and even halt communications in some

cases. For instance, [41] shows that when setting up a TCP con-

nection to a web server, attempting to negotiate the use of Explicit

Congestion Notification (ECN) [46] interfered with connection es-

tablishment for over 8% of the web servers tested in 2000 (but down

to less than 1% of the web servers tested for this paper in 2004). For

such web servers, the client can only establish a TCP connection by

re-attempting the connection without negotiating ECN usage. The

connection failures in the presence of ECN negotiation were caused

by firewalls configured to interpret the attempt to negotiate ECN as

the signature of a port-scanning tool [25]. On the one hand, these

firewalls can be seen as incorrectly associating new functionality

with one of the first appearances of that new functionality in an un-

desirable application. On the other hand, the firewalls can also be

seen as doing their job of blocking unwanted traffic. This example

shows the fundamental problem of different evolution paths that

can cross to the detriment of smooth traffic flow on the Internet.

Internet research is driven by simulations, experiments, analysis,

and deployment studies designed to address particular problems in

the Internet. However, the design of effective and accurate net-

work models is challenging due to the intrinsic complexity of the

Internet and the dynamic nature of the elements composing it. Re-

searchers need better models of networks and protocols to ground

their investigations, such that they can provide practical benefit on

the evolving network [28]. Therefore, a second component of our

work assesses the current deployment status of various proposed

TCP algorithmic and protocol modifications and updates the litera-

ture with respect to the capabilities of a “modern” TCP stack. This

will help us learn about TCP as it is actually deployed in the Inter-

net, and aid researchers in accurately conducting future evaluations

of the network and proposed changes.

In this paper, we bring both active and passive measurement

techniques to bear to study web traffic in the context of the above



stated issues. We use extensive active measurements to assess the

capabilities and algorithms used by web servers (the primary data

senders in web transactions). Data senders are ultimately in control

of TCP’s congestion control and reliability algorithms. Therefore,

our active measurements are focused on studying which conges-

tion control algorithms, loss recovery schemes and options are im-

plemented and how the interaction with today’s evolving network

environment influences the correctness and performance behavior

of actual web servers.

These active measurements use and extend the TCP Behavior In-

ference Tool (TBIT) from [41], revising and rerunning the earlier

tests on Selective Acknowledgment (SACK) and ECN capability,

Reno vs. NewReno, initial congestion windows, and proper win-

dow halving after a loss.1 The tests show that over the last four

years, almost all web servers tested still appropriately halve their

congestion window after a packet loss (Table 8); most web servers

tested are still not ECN-capable (Table 3); the fraction of tested

web servers that are SACK-capable increased from 41% in 2001

to 68% in 2004 (Table 7); and the fraction of successfully-tested

web servers that use NewReno instead of Reno loss recovery with

a non-SACK receiver has increased from 42% in 2001 to 76% in

2004 (Table 6).

We have also added a range of new active measurement tests

exploring Path MTU Discovery, the effects of IP and TCP options

on the TCP connection, the content of received SACK blocks, the

congestion window increase during slow-start, the response to one

or two duplicate acknowledgements, congestion window increases

in the face of a receive window limitation, effective RTO values,

and more. Tables 11 and 12 at the end of the paper give a summary

of the results of these tests.

We also conducted passive measurements of the capabilities and

limits imposed by web clients (the primary data receivers). Al-

though data receivers do not directly control the data flow on a

TCP connection, clients can optionally provide information to the

data sender to effectively increase performance (e.g., selective ac-

knowledgments). In addition, limits imposed by receivers (e.g., the

advertised window size) can have a dramatic impact on connection

performance [12].

The remainder of this paper is organized as follows. Section 2

describes related work on measurement studies of transport pro-

tocols. Section 3 describes the tools and methodology we use in

our study. Section 4 explores interactions between middleboxes

and transport protocols. Section 5 presents the results of our mea-

surements of the deployment of various TCP mechanisms in web

servers. Section 6 reports the results of our measurements about the

deployment of TCP mechanisms in web clients. Section 7 discusses

lessons learned in the study that challenged our assumptions and

ultimately shaped our measurements and tools. Section 8 presents

our conclusions, and discusses open questions and future work.

2. RELATED WORK
This paper uses and extends TBIT, which performs active mea-

surements to characterize TCP on remote hosts [41]. For the mea-

surements presented in this paper, TBIT’s functionality was ex-

tended in two ways. New tests were implemented to assess differ-

ent types of web server behavior, and the general design of the tool

was extended to enable the implementation of tests that elicit path

behavior by, for example, allowing the use of IP options and the

1
It was necessary to revise the old tests to add robustness to reordering, be-

cause minor reordering seems to have increased since we last ran these tests
in 2000. As discussed in Section 7, it was also necessary to use larger pack-
ets, as many web servers wouldn’t use the small MSS of 100 bytes specified
in 2000. The current tests also test a much larger set of web servers.

generation of ICMP messages. This paper is an extension of [39].

Independent and parallel work on TBIT extensions detailed at [34,

33] includes tests for Limited Transmit, Early Retransmit, and sup-

port for the Window Scaling option in TCP. TBIT, the measurement

tool used in our work, follows an earlier history of active probing of

TCP. For instance, [22] treats TCP implementations as black boxes,

observing how they react to external stimuli, and studying specific

TCP implementations in order to assess the adherence to the spec-

ification.

There is also a considerable body of work on passive tests of

TCP based on the analysis of packet traces. [43] outlines tcpanaly,

a tool for analyzing a TCP implementation’s behavior by inspect-

ing sender and receiver packet traces of TCP connections run be-

tween pairs of hosts, while [44] outlines observed packet dynamics

based on tcpanaly’s analysis. Finally, [49] and [12] each consider

packet traces of TCP connections to a single web server, with [49]

studying TCP dynamics (e.g., the response to loss, the relationship

between ACK compression and subsequent loss, the use of parallel

connections) and [12] assessing the properties of web clients.

In addition, there is some research in the literature on the effect

of middleboxes on transport protocol performance (e.g., [13]). We

do not discuss the body of research on general architectural eval-

uations of middleboxes, or on the effect of middleboxes on DNS,

BGP, and the like. Rather, the study presented in this paper focuses

on interactions between middleboxes and transport protocols.

Finally, there is a large body of literature on active and passive

approaches for estimating end-to-end network path properties using

TCP (e.g., [43, 14, 6]). In this paper we do not discuss TCP-based

tests for estimating path properties such as loss rates, available or

bottleneck bandwidth and durations of congestion episodes. Also

prevalent in the literature, yet out of scope for the current effort,

is the body of work based on passive measurements of traffic on a

particular link to determine the breakdown of the traffic in terms of

round-trip times, application layer protocols, transfer sizes, etc.

3. MEASUREMENTS: TOOLS AND DATA
As discussed above, we employ both active and passive mea-

surements in our study into the characteristics of web clients and

servers. Web servers act as data senders and web clients as data re-

ceivers in web transactions. Therefore, we use active measurements

to probe web servers for congestion control and loss recovery capa-

bilities, while using passive measurements to assess the options and

resource limits enforced by web clients. Our motivation, approach

and methodology is presented in the following two subsections.

3.1 Active Tests
We use TBIT [41] to conduct active measurements that probe

web servers for their characteristics. A few of the active TBIT tests

we present, such as the test that determines the size of the initial

window, could just as easily be performed by passive packet trace

analysis. However, many of the TBIT tests are not amenable to

straightforward post-facto analysis of packet traces. For example,

consider a test to determine if a TCP data sender is responding cor-

rectly to SACK information. To evaluate the data sender, a certain

pattern of loss events is required (e.g., multiple packets lost per

window of data). An active tool like TBIT can easily induce such a

specific loss pattern and evaluate the behavior of the data sender in

comparison to the expected behavior. Meanwhile, passive analysis

would require a tool that possessed a very general understanding of

a range of loss patterns and the expected responses — which would

be quite tricky to get right. Inducing a specific loss pattern does

run the risk of tripping pathological behavior that is not indicative

of the overall behavior of the TCP implementation under study. We



believe the risk for biasing our overall results in this way is small

given our large sample of web servers (discussed below).

Another class of tests that involve actively attempting alterna-

tive schemes in connection initiation cannot be performed by pas-

sive trace analysis alone. For instance, consider a test for middle-

boxes that block TCP SYN segments when the SYNs carry adver-

tisements for ECN. Packet traces can indicate whether connections

attempting to use ECN succeed or fail. However, determining that

the failure of a connection attempting to negotiate ECN is due to a

middlebox blocking ECN-capable SYNs requires the active inser-

tion of SYNs with and without ECN advertisements.

TBIT provides a set of tests, each of which is designed to exam-

ine a specific aspect of the behavior of the remote web servers, or

of the path to and from the web server. Most of these tests examine

the characteristics of the TCP implementations on the web servers.

However, the tests are not restricted to TCP (e.g., the Path MTU

Discovery [40] tests). TBIT establishes a TCP connection with the

remote host at the user level. TBIT composes TCP segments (or

segments from another protocol), and uses raw IP sockets to send

them to the remote host. TBIT also sets up a host firewall to prevent

incoming packets from reaching the kernel of the local machine; a

BSD packet filter is used to deliver incoming packets to the TBIT

process. TBIT’s user-level connection is used to control the sending

of carefully constructed packets (control, data, acknowledgment,

etc.) as desired from the local host. Note that all the TBIT tests are

susceptible to network conditions to some degree. For instance, if

an ACK sent by TBIT is lost in transit to the web server the result of

the test could be inconclusive or even wrongly reported. We have

taken test-specific measures to make each of our tests as robust as

possible. In addition, our large set of web servers (described be-

low) helps to minimize any biases that bogus tests introduce into

our results.

The original TBIT paper [41] repeated each test five times for

each server, accepting a result as valid only if at least three of the

five attempts returned results, and all of the results were the same.

We did not follow that methodology in this paper; instead, we ran

each test once for each server. This allowed us to process a larger

set of tests.

The list of target web servers used in our study was gathered

from IRcaches, the NLANR Web Caching project [2]. We used

web cache logs gathered from nine different locations around the

United States. Table 1 shows the cache logs used from February

2004, along with the log sizes, expressed as the number of unique

IP server addresses from each cache. Since the caches are located

within the continental US, most of the cached URLs correspond to

domain names within the US. However, the cache logs also contain

a sizable set of web servers located in the other continents. Of the

84,394 unique IP addresses2 found in the cache logs: 82.6% are

from North America, 10.2% are from Europe, 4.9% are from Asia,

1.1% are from Oceania, 1.0% are from South America and 0.2%

are from Africa. A subset of the tests were also done on a list of

809 IP addresses corresponding to a list of 500 popular web sites

[1].

All the TBIT tests outlined in this paper were conducted between

February and May 2004. The TBIT client was always run from a

machine on the local network at the International Computer Sci-

ence Institute in Berkeley, CA, USA. There is no local firewall be-

tween the machine running TBIT and the Internet.

Given that data senders (web servers in our study) implement

2
We note that the list of servers could be biased by a single machine having

multiple unique IP addresses – which would tend to skew the results. How-
ever, due to the size of the server list, we believe that such artifacts, while
surely present, do not highly skew the overall results.

Server name Location Cache size

pb.us.ircache.net Pittsburgh, PA 12867

uc.us.ircache.net Urbana-Champain, IL 18711

bo.us.ircache.net Boulder, CO 42120

sv.us.ircache.net Silicon Valley, CA 28800

sd.us.ircache.net San Diego, CA 19429

pa.us.ircache.net Palo Alto, CA 5511

sj.us.ircache.net MAE-West, San Jose, CA 14447

rtp.us.ircache.net Research Triangle, NC 33009

ny.us.ircache.net New York, NY 22846

Table 1: IRCache servers and locations

most of TCP’s “smarts” (congestion control, loss recovery, etc.),

most of the remainder of this paper outlines active TBIT tests to

determine various characteristics of TCP implementations and net-

works and where the evolutionary paths collide.

3.2 Passive Tests
When characterizing web clients, passive packet trace analysis is

more appropriate than active probing for two main reasons. First,

initiating a connection to a web client to probe its capabilities is dif-

ficult because often web clients are user machines that do not run

publicly available servers. In addition, data receivers (web clients)

do not implement subtle algorithms whose impact is not readily ob-

servable in packet headers (as is the case with data senders). Rather,

data receivers expose their state, limits and capabilities to the data

sender in packet headers and options (e.g., SACK information, ad-

vertised window limits, etc.). Therefore, by tracing packets near a

web server, client TCP implementations can be well characterized

with respect to client impact on web traffic. Section 6 outlines our

observations of web clients.

4. MIDDLEBOX INTERACTIONS
The increased prevalence of middleboxes calls into question the

general applicability of the end-to-end principle. Middleboxes in-

troduce dependencies and hidden points of failure, and can affect

the performance of transport protocols and applications in the In-

ternet in unexpected ways. Middleboxes that divert an IP packet

from its intended destination, or modify its contents, are generally

considered fundamentally different from those that correctly termi-

nate a transport connection and carry out their manipulations at the

application layer. Such diversions or modifications violate the basic

architectural assumption that packets flow from source to destina-

tion essentially unchanged (except for TTL and QoS-related fields).

The effects of such changes on transport and application protocols

are unpredictable in the general case. In this section we explore the

ways that middleboxes might interfere in unexpected ways with

transport protocol performance.

4.1 Web Server SACK Generation
In Section 5 we evaluate the behavior of web servers in response

to incoming SACK information from a web client. The use of

SACK information by a web server is the primary performance en-

hancement SACK provides to web traffic. In this section, however,

we focus on whether web servers generate accurate SACK infor-

mation. In the normal course of web transactions this matters lit-

tle because little data flows from the web client to the web server.

However, while not highly applicable to web performance, this test

serves to illustrate potential problems in passing SACK informa-

tion over some networks. This test calls for the client to split an

HTTP GET request into several segments. Some of these segments

are not actually sent, to appear to the server as having been lost.

These data losses seen by the server should trigger SACK blocks



% of

Type of Server Number Total

Total Number of Servers 84394 100%

I. Not SACK-Capable 24361 28.8%

II. SACK Blocks OK 54650 64.7%

III. Shifted SACK Blocks 346 0.5%

IV. Errors 5037 6.0%

IV.A. No Connection 4493 5.3%

IV.B. Early Reset 376 0.4%

IV.C. Other 160 0.2%

Table 2: Generating SACK Information at Web Servers

(with known sequence numbers) to be appended to the ACKs sent

by the server.

Table 2 shows the results of the server SACK generation test.

The row “Not SACK-Capable” shows the number of servers that

did not agree to the SACK Permitted option during connection

setup. The row listed “SACK OK” shows the number of web servers

that generated SACK blocks correctly. As Table 2 shows, most of

the servers show proper SACK behavior.

A relatively small number of servers, however, return improper

SACK blocks. The row listed as “Shifted SACK Blocks” indicates

cases where the SACK blocks received contained sequence num-

bers that did not correspond to the sequence space used by connec-

tion. Instead, the sequence space in the SACK blocks was shifted.

This shifting could have been caused by a buggy TCP implementa-

tion, or by incorrect behavior from middleboxes on the path from

the server to the client. We note that none of the web sites from the

list of 500 popular web sites had shifted SACK blocks.

Plausible scenarios whereby middleboxes may cause incorrect

SACK blocks to be returned to the web client include NATs and

fingerprint scrubbers:

• NATs: Shifting of TCP sequence numbers can be done by

a NAT box that modifies the URL in a request, and as a conse-

quence has to shift the TCP sequence numbers in the subsequent

data packets. In addition, the cumulative acknowledgment num-

ber and SACK blocks should be altered accordingly in the ACKs

transmitted to the clients. However, due to ignorance or a bug, the

SACK blocks may not be properly translated, which could explain

the results of our tests.

• Fingerpring Scrubbers: The shifting of TCP sequence num-

bers also occurs with fingerprint scrubbers [50] designed to modify

sequence numbers in order to make it hard for attackers to predict

TCP sequence numbers during an attack. One way that TCP/IP

fingerprint scrubbers modify sequence numbers is by choosing a

random number for each connection, Xi. Then, the sequence num-

ber in each TCP segment for the connection traveling from the un-

trusted network is incremented by Xi. Likewise, each segment

traveling in the opposite direction has its acknowledgment num-

ber decremented by Xi. However, if the sequence numbers in the

SACK blocks are not modified as well, then the SACK blocks could

be useless to the data sender.

In some cases these bogus SACK blocks will simply be thrown

away as useless by the data sender. In cases when the SACK blocks

are merely offset a little from the natural segment boundaries, but

otherwise are within the connection’s sequence space, these incor-

rect SACK blocks can cause performance problems by inducing

TCP to retransmit data that does not need to be retransmitted and

by forcing reliance on the (often lengthy) retransmission timeout to

repair actual loss.

While the topic of web server SACK generation is not important

in terms of the performance of web transactions, the interactions

Year: 2000 2004

ECN Status Hosts % Hosts %

Number of Servers 24030 100% 84394 100%

I. Classified Servers 21879 91% 80498 95.4%

I.A. Not ECN-capable 21602 90% 78733 93%

I.B. ECN-Capable 277 1.1% 1765 2.1%

I.B.1. no ECN-Echo 255 1.1% 1302 1.5%

I.B.2. ECN-Echo 22 0.1% 463 0.5%

I.C. Bad SYN/ACK 0 183 0.2%

II. Errors 2151 9% 3896 4.6%

II.A. No Connection 2151 9% 3194 3.8%

II.A.1. only with ECN 2151 9% 814 1%

II.A.2. without ECN 0 2380 2.8%

II.B. HTTP Error – 336 0.4%

II.C. No Data Received – 54 0%

II.D. Others – 312 0.4%

Table 3: ECN Test Results

illustrated are germane to all TCP connections, and are possible ex-

planations for some of the results in Section 5.2 when web servers

negotiate SACK but do not use “Proper SACK” recovery.

4.2 ECNcapable Connections
Explicit Congestion Notification (ECN) [46] is a mechanism that

allows routers to mark packets to indicate congestion, instead of

dropping them. After the initial deployment of ECN-capable TCP

implementations, there were reports of middleboxes (in particular,

firewalls and load-balancers) that blocked TCP SYN packets at-

tempting to negotiate ECN-capability, either by dropping the TCP

SYN packet, or by responding with a TCP Reset [25]. [41] in-

cludes test results showing the fraction of web servers that were

ECN-capable and the fraction of paths to web servers that included

middleboxes blocking TCP SYN segments attempting to negotiate

ECN-capability. The TBIT test for ECN is described in [41].

Table 3 shows the results of the ECN test for 84,394 web servers.

Only a small fraction of servers are ECN-Capable – this percentage

has increased from 1.1% of the web servers tested in 2000 to 2.1%

in 2004. After a web server has successfully negotiated ECN we

send a data segment marked “Congestion Experienced (CE)” and

record whether the mark is reflected back to the TBIT client via

the ECN-Echo in the ACK packet. The results are given on lines

I.B.1 and I.B.2 of the table. In roughly three-quarters of cases when

ECN is negotiated, a congestion indication is not returned to the

client. This could be caused by a bug in the web server’s TCP

implementation or by a middlebox that is clearing the congestion

mark as the data packet traverses the network; further investigation

is needed to explore this behavior. Finally, we also observe a small

number of web servers send a malformed SYN/ACK packet, with

both the ECN-Echo and Congestion Window Reduced (CWR) bits

set in the SYN/ACK packet (line I.C of the table).

For 3194 of the web servers, no TCP connection was established.

For our TBIT test, if the initial SYN packet is dropped, TBIT re-

sends the same SYN packet – TBIT does not follow the advice in

RFC 3168 of sending a new SYN packet that does not attempt to

negotiate ECN. Similarly, if TBIT receives a TCP Reset in response

to a SYN packet, TBIT drops the connection, instead of sending a

subsequent SYN packet that does not attempt to negotiate ECN-

capability.

In order to assess how many of these connection failures are

caused by the attempt of ECN negotiation, we run two back-to-

back TBIT tests to each server. The first test does not attempt to



% of

ECN fields in data packets Number total

ECN-capable servers 1765 100%

Received packets w/ ECT 00 (Not-ECT) 758 42%

Received packets w/ ECT 01 (ECT(1)) 0 0%

Received packets w/ ECT 10 (ECT(0)) 1167 66%

Received packets w/ ECT 11 (CE) 0 0%

Received packets w/ ECT 00 and ECT 10 174 10%

Table 4: Data-packet codepoints for ECN-Capable Servers

negotiate ECN. After a two-second idle period, another connec-

tion is attempted using ECN. We observe that 814 connections (1%

of the web servers, or 25% of the connection failures) are appar-

ently refused because of trying to negotiate ECN, since the connec-

tion was established successfully when no ECN negotiation was

attempted. A test limited to 500 popular web servers gives a sim-

ilar result. Table 3 indicates that the fraction of web servers with

ECN-blocking middleboxes on their path has decreased substan-

tially since September 2000 – from 9% in 2000 to 1% in 2004.

We further explored the behavior of ECN-capable servers by

recording the ECT codepoints in the data packets received by TBIT.

Table 4 shows the number of servers from which the different code-

points were observed. TBIT received data packets with the ECT 00

codepoint from about 42% of the ECN-capable servers. The ECN

specification defines two ECT code points that may be used by a

sender to indicate its ECN capabilities in IP packets. The speci-

fication further indicates that protocols that require only one such

a codepoint should use ECT (1) = 10. We observe that ECN-

capable servers do use ECT(1) and found no server made use of the

ECT (0) = 01 codepoint. We further observe that no router be-

tween our TBIT client and the ECN-capable servers reported Con-

gestion Experienced (CE) in any segment. Finally, TBIT received

both data segments with ECT = 00 and ECT = 10 in the same

connection from about 10% of the ECN-capable servers. This be-

havior may indicate that the ECT code point is being erased by a

network element (e.g. router or middlebox) along the path between

the ECN-capable server and the client.

4.3 Path MTU Discovery
TCP throughput is generally proportional to the segment size

employed [32]. In addition, [32] argues that packet fragmenta-

tion can cause poor performance. As a compromise, TCP can use

Path MTU Discovery (PMTUD) [40, 38] to determine the largest

segment that can be transmitted across a given network path with-

out being fragmented. Initially, the data sender transmits a seg-

ment with the IP “Don’t Fragment” (DF) bit set and whose size is

based on the MTU of the local network and the peer’s MSS ad-

vertisement. Routers along the path that cannot forward the seg-

ment without first fragmenting it (which is not allowed because DF

is set) will return an ICMP message to the sender noting that the

segment cannot be forwarded because it is too large. The sender

then reduces its segment size and retransmits. Problems with PM-

TUD are documented in [35], which notes that many routers fail

to send ICMP messages and many firewalls and other middleboxes

are often configured to suppress all ICMP messages, resulting in

PMTUD failure. If the data sender continues to retransmit large

packets with the DF bit set, and fails to receive the ICMP messages

indicating that the large packets are being dropped along the path,

the packets are said to be disappearing into a PMTUD black hole.

We implemented a PMTUD test in TBIT to assess the prevalence of

web servers using PMTUD, and the success or failure of PMTUD

for these web servers. The test is as follows:

% of

PMTUD Status Number total

Total Number of Servers 81776 100%

I. Classified Servers 71737 88%

I.A. PMTUD not-enabled 24196 30%

I.B. Proper PMTUD 33384 41%

I.C. PMTUD Failed 14157 17%

II. Errors 9956 12%

II.A. Early Reset 545 0.6%

II.B. No Connection 2101 2.5%

II.C. HTTP Errors 2843 3.4%

II.D. Others 4467 5.5%

Table 5: PMTUD Test Results

1. TBIT is configured with a virtual link MTU, MTUv . In our

tests, we set MTUv to 256 bytes.

2. TBIT opens a connection to the web server using a SYN

segment containing an MSS Option of 1460 bytes (which is

based on the actual MTU of the network to which the TBIT

client is attached).

3. The TCP implementation at the server accepts the connec-

tion and sends MSS-sized segments, resulting in transmitted

packets of MSS + 40 bytes. If the data packets from the

server do not have the DF bit set, then TBIT classifies the

server as not attempting to use PMTUD. If TBIT receives a

packet with the DF bit set that is larger than MTUv it rejects

the packet, and generates an ICMP message to be sent back

to the server.

4. If the server understands such ICMP packets, it will reduce

the MSS to the value specified in the MTU field of the ICMP

packet, minus 40 bytes for packet headers, and resume the

TCP connection. In this case, TBIT accepts the proper-sized

packets and the communication completes.

5. If the server is not capable of receiving and processing ICMP

packets it will retransmit the lost data using the same packet

size. Since TBIT rejects packets that are larger than MTUv

the communication will eventually time out and terminate

and TBIT classifies the server/path as failing to properly em-

ploy PMTUD.

Checking for the robustness of this test involves verifying that

TBIT is sending properly assembled ICMP messages back to the

server upon receiving packets that are larger than the stipulated

MTU size. We do such a check for this and other tests using a

public domain network protocol analyzer called ethereal [7] which

behaves in a tcpdump-like fashion but allows the user to observe

easily the structure and composition of the captured packets. Using

ethereal we analyze the communications between TBIT and differ-

ent servers and observe the exchange of ICMP packets from TBIT

to the servers, check if they are properly assembled (e.g. proper

checksums), and observe the associated server response to these

packets.

Table 5 shows that PMTUD is used successfully for slightly less

than half of the servers on our list. For 31% of the servers on our

list, the server did not attempt Path MTU Discovery. For 18% of

the servers on our list, Path MTU Discovery failed, presumably

because of middleboxes that block ICMP packets on the path to the

web server. The results were even worse for the list of 500 popular

web servers, with Path MTU Discovery failing for 35% of the sites.

Alternate methods for determining the path MTU are being con-

sidered in the Path MTU Discovery Working Group in the IETF,

based on the sender starting with small packets and progressively



increasing the segment size. If the sender does not receive an ACK

packet for the larger packet, it changes back to smaller packets.

In a similar sender-based strategy called black-hole detection,

if a packet with the DF bit set is retransmitted a number of times

without being acknowledged, then the MSS will be set to 536 bytes

[3]. We performed a variant of the PMTUD test in which TBIT

does not send the ICMP packets, to see if any server reduces the

size of the packets sent simply because it didn’t receive an ACK

for the larger packet. We didn’t find any servers performing black-

hole detection.

Since a non-trivial number of network elements discard well-

known ICMP packets, the results of our tests do not offer hope for

protocol designers proposing to use new ICMP messages to signal

various network path properties to end systems (e.g., for explicit

corruption notification [23], handoff or outage notification, etc.).

4.4 IP Options
IP packets may contain options to encode additional information

at the end of IP headers. A number of concerns have been raised

regarding the use of IP options. One concern is that the use of IP

options may significantly increase the overhead in routers, because

in some cases packets with IP options are processed on the slow

path of the forwarding engine. A second concern is that receiv-

ing IP packets with malformed IP options may trigger alignment

problems on many architectures and OS versions. Solutions to this

problem range from patching the OS, to blocking access to packets

using unknown IP options or using IP options in general. A third

concern is that of possible denial of service attacks that may be

caused by packets with invalid IP options going to network routers.

These concerns, together with the fact that the generation and pro-

cessing of IP options is nonmandatory at both the routers and the

end hosts, have led routers, hosts, and middleboxes to simply drop

packets with unknown IP options, or even to drop packets with stan-

dard and properly formed options. This is of concern to designers

of transport protocols because of proposals for new transport mech-

anisms that would involve using new IP options in transport proto-

cols (e.g., [31, 23]).

TBIT’s IP options test considers TCP connections with three

types of IP options in the TCP SYN packet, the IP Record Route

Option, the IP Timestamp Option, and a new option called IP Op-

tion X, which is an undefined option and represents any new IP

option that might be standardized in the future. We experimented

with two variants of Option X, both of size 4. The first variant

uses a copy bit of zero, class bits set to zero and 25 as the option

number. The second variant of IP Option X sets the class bits to a

reserved value, and uses an option number of 31. The results for

experiments with both Option X variants are similar.

Checking for the robustness of this test involves verifying that

TBIT is sending properly assembled IP options in the messages

sent to the servers. We also observe the server’s response to options

such as the Record Route option to verify that the server is properly

understanding the options sent to it by TBIT.

Figure 1 shows the TCP connection behavior with different IP

options in the associated SYN packets. For each attempted connec-

tion there are three possible outcomes: no connection established,

connection established with the IP option ignored, or IP option ac-

cepted. As Figure 1 shows, in many cases no connection was es-

tablished when the Record Route Option or the Timestamp Option

was included in the SYN packet. When IP Option X is included in

the SYN segment, the connection was not established to over 70%

of the web servers tested. The results were slightly worse when

limited to the list of 500 popular web sites. This does not bode well

for the deployment of new IP options in the Internet.
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Figure 1: Handling IP Options in TCP SYN packets.

Most IP options are usually expressed in the first packet (e.g., the

TCP SYN packet) in the communication between end hosts. We

performed an additional test to assess the behavior when IP option

X is placed in data packets in the middle of an established connec-

tion. For each established connection TBIT offers two classifica-

tions: “success” or “broken connection”. The former indicates that

the server successfully delivered its data regardless of the IP op-

tion insertion. The latter classification indicates that the insertion

of the IP option forced the connection to be idle for at least 12 sec-

onds (which we then define as “broken”). We performed two sets

of tests, with and without insertion of option X. Across both sets

of tests roughly 3% of the connection attempts failed. The tests

without IP options show nearly 6% of the connections are “bro-

ken” for some reason. Meanwhile, when inserting IP option X into

the middle of the transfer, 44% of the connections are broken, in-

dicating a significant issue when attempting to utilize IP options in

mid-connection.

4.5 TCP Options
Next we turn our attention to potential problems when TCP op-

tions are employed. TCP options are more routinely used than

IP options. For instance, TCP uses the timestamp option [30] to

(among other things) take round-trip time measurements more fre-

quently than once per round-trip time, for the Protection Against

Wrapped Sequences [30] algorithm and for detecting spurious time-

outs [36].

However, middleboxes along a path can interfere with the use

of TCP options, in an attempt to thwart attackers trying to finger-

print hosts. Network mapping tools such as NMAP (Network Map-

per) use information from TCP options to gather information about

hosts; this is called fingerprinting. Countermeasures to fingerprint-

ing, sometimes called fingerprint scrubbers [50], attempt to block

fingerprinting by inspecting and minimally manipulating the traffic

stream. One of the strategies used by fingerprint scrubbers is to re-

order TCP options in the TCP header; any unknown options may

be included after all other options. The TBIT test for TCP options

checks to see if sites reject connections negotiating specific or un-

known TCP options, or drop packets encountered in the middle of

the stream that contain those options.

The TCP options test first assesses the behavior of the web server

when the TCP Timestamp option is included in the SYN packet. To

test for performance with unknown TCP options, we also initiate

connections using an unallocated option number, TCP Option Y ,

in the SYN packet.

Checking for the robustness of this test involves verifying that

TBIT is sending properly assembled TCP options in the messages

sent to the servers.

Our tests indicate a connection failure rate of about 0.2% in all

scenarios. Option Y is ignored in the remainder of the connections.

The timestamp option is ignored by roughly 15% of the servers (but

the connection is otherwise fine). The reason the servers ignore



the timestamp option is not visible to TBIT, but could be either a

middlebox stripping or mangling the option or the web server not

supporting timestamps. Next we assess the use of TCP options in

the middle of a TCP connection, by establishing a connection with-

out TCP options and then using the Timestamp option or Option Y

on a data packet in the middle of the connection. The connection

failure rate for both options is roughly 3% – indicating that sending

unknown TCP options midstream is not problematic for most web

servers.

5. DEPLOYMENT OF TRANSPORT MECH

ANISMS
This section describes TBIT tests to assess the deployment status

of various TCP mechanisms in web servers. Such tests are useful

from a number of angles. First, it is useful for protocol design-

ers to understand the deployment cycle for proposed changes. In

addition, as discussed previously, it is useful to test the actual be-

havior of proposed mechanisms in the Internet, keeping an eye out

for unexpected behaviors and interactions. Another goal of this

section is to guide researchers in constructing models for the de-

sign and evaluation of transport protocols. For example, if TCP

deployments are dominated by NewReno and SACK TCP, then it

is counter-productive for researchers to evaluate congestion control

performance with simulations, experiments, or analysis based on

Reno TCP.

5.1 Reno/NewReno Test
The Reno/NewReno test, adapted from the original TBIT [41],

determines whether a web server uses Tahoe, Reno, or NewReno

loss recovery for a TCP connection that is not SACK-capable. It

is well-known that Reno’s congestion control mechanisms perform

poorly when multiple packets are dropped from a window of data

[24]. Tracking the deployment of NewReno can guide researchers

in their choices of models for simulations, experiments, or analy-

sis of congestion control in the Internet; researchers that use Reno

instead of NewReno or SACK TCP in their simulations or experi-

ments could end up with significantly-skewed results that have lit-

tle relevance for the current or future Internet. Another reason for

these tests is to look for unanticipated behaviors; for example, the

Reno/NewReno tests in [41] discovered a variant of TCP without

Fast Retransmit that resulted from a vendor’s buggy implementa-

tion.

The Reno/NewReno test determines the sender’s congestion con-

trol mechanism by artificially creating packet drops that elicit the

congestion control algorithm of the server. In order to enable the

server to have enough packets to send, TBIT negotiates a small

MSS (256 bytes in our tests). However, using a small MSS in-

creases the chances of observing reordering packets (see Section

7), and this reordering can change the behavior elicited from the

server. Therefore, the current test has evolved from the original

TBIT test to make it more robust to packet reordering, and conse-

quently to be able to classify behavior the original TBIT was not

able to understand. The framework of the Reno/NewReno test is

as described in [41], with the receiver dropping the 13th and 16th

data packets.

Table 6 shows the results of the Reno/NewReno test. The Tahoe,

Tahoe without Fast Retransmit (FR), Reno, and NewReno variants

are shown in [41]. Reno with Aggressive Fast Retransmit, called

RenoPlus in [41], is also shown in [41]; Reno with Aggressive Fast

Retransmit has some response to a partial acknowledgment during

Fast Recovery, but does not take the NewReno step of retransmit-

ting a packet in response to such a partial acknowledgment. For

each TCP variant, the table shows the number and percentage of

Date: May 2001 Feb. 2004

% of % of

TCP Stack Num. total Num. total

Total Number of Servers 4550 84394

I. Classified Servers 3728 72% 27914 33%

I.A. NewReno 1571 35% 21266 25%

I.B. Reno 667 15% 3925 5%

I.C. Reno, Aggressive-FR 279 6% 190 0.2%

I.D. Tahoe 201 4% 983 1.2%

I.E. Tahoe, No FR 1010 22% 1181 1.4%

I.F. Aggr. Tahoe-NoFR 0 0% 7 0%

I.G. Uncategorized 362 0.4%

II. Classified but ignored 11529 14%

(due to unwanted drops)

III. Errors 822 18% 44950 53%

III.A. No Connection 2183 2.6%

III.B. Not Enough Packets 22767 27%

III.C. No Data Received 3352 4%

III.D. HTTP Error 13903 16%

III.E. Request Failed 839 1%

III.F. MSS Error 266 0.3%

III.G. Other 2035 2.4%

Table 6: Reno/NewReno Deployment in Web Servers.

web servers using that variant. We note that the results from May

2001 and February 2004 are not directly comparable; they use dif-

ferent lists of web servers, and the February 2004 list is consid-

erably larger than the May 2001 list. However, Table 6 implies

that the deployment of NewReno TCP has increased significantly

in the last few years; NewReno is now deployed in 76% of the web

servers on our list for which we could classify the loss recovery

strategy. In addition, the deployment of TCP without Fast Retrans-

mit has decreased significantly; this poorly-behaving variant was

discovered in [41], where it was reported to be due to a vendor’s

failed attempt to optimize TCP performance for web pages that are

small enough to fit in the socket buffer of the sender.

5.2 Web Server SACK Usage
The SACK Behavior test reports the fraction of servers that are

SACK-capable, and categorizes the variant of SACK congestion

control behavior for a TCP connection with a SACK-capable client.

TCP’s Selective Acknowledgment (SACK) option [37] enables the

transmission of extended acknowledgment information to augment

TCP’s standard cumulative acknowledgment. SACK blocks are

sent by the data receiver to inform the data transmitter of non-

contiguous blocks of data that have been received and queued. The

SACK information can be used by the sender to retransmit only

the data needed by the receiver. SACK TCP gives better perfor-

mance than either Reno or NewReno TCP when multiple packets

are dropped from a window of data [24].

The SACK Behavior test builds on the original TBIT test, with

added robustness against packet reordering. TBIT first determines

if the server is SACK-capable by attempting the negotiation of the

SACK Permitted option during the connection establishment phase.

For a SACK-capable server, the test determines if the server uses

the information in the SACK blocks sent by the receiver. TBIT

achieves this by dropping incoming data packets 15, 17 and 19,

and sending appropriate SACK blocks indicating the blocks of re-

ceived data. Once the SACK blocks are sent, TBIT observes the

retransmission behavior of the server.

Table 7 shows the results for the SACK test. The servers re-

ported as “Not SACK-Capable” are those that did not agree to the



Date: May 2001 Feb. 2004

% of % of

SACK Type Num. total Num. total

Total Number of Servers 4550 100% 84394 100%

I. Not SACK-Capable 2696 59% 24607 29%

II. SACK-Capable 1854 41% 57216 68%

II.A. Uses SACK Info: 550 12% 23124 27%

II.A.1. Proper SACK – 15172 18%

II.A.2. Semi-Sack – 7952 9%

II.B. Doesn’t use SACK 759 17% 2722 3%

Info:

II.B.1. NewReno – 1920 2%

II.B.2. TahoeNoFR – 802 1%

II.C. Inconsistent Results 545 12% 173 0.2%

II.D. Not enough Packets 20740 24.5%

II.E. No Data Received 549 0.5%

II.F. HTTP Errors 9853 12%

II.G. Request Failed 2 0%

II.H. MSS Error 55 0%

III. Errors 2569 3%

III.A. No Connection 1770 2%

III.B. Other 799 1%

Table 7: SACK Deployment in Web Servers

SACK Permitted option negotiated by TBIT. The servers listed as

“Proper SACK” are those that responded properly by re-sending

only the data not acknowledged in the received SACK blocks. The

servers listed as “Semi-SACK” make some use of the information

in the SACK blocks3. In contrast, the servers listed as “NewReno”

and “Tahoe-NO-FR” make no use of the information in the SACK

blocks, even though they claim to be SACK-capable. The four

types of SACK behaviors are shown in Figure 4 in [41].

While the 2001 and 2004 results are not directly comparable,

the results in Table 7 indicate that the fraction of web-servers that

report themselves as SACK-capable has increased since 2001, and

that most (90%) of the successfully-classified SACK-capable web

servers now make use of the information in SACK blocks.

As suggested by the results in Section 4.1, some of the results in

Table 7 that are not “Proper SACK” could be influenced by mid-

dleboxes that translate the TCP sequence space, but do not properly

translate SACK blocks.4

An additional D-SACK test measures the deployment of D-SACK

(duplicate-SACK), an extension to the TCP SACK option for ac-

knowledging duplicate packets [26]. When deployed at TCP re-

ceivers, D-SACK can help TCP servers detect packet replication

by the network, false retransmits due to reordering, retransmit time-

outs due to ACK loss, and early retransmit timeouts [20]. Our tests

show that roughly half of the SACK-capable web servers imple-

ment D-SACK. The more relevant question is whether D-SACK is

also deployed in web clients; we comment on this aspect further in

Section 6.

5.3 Initial Congestion Window
The Initial Congestion Window (ICW) test from [41] determines

the initial congestion windows used by web servers. Traditionally,

3
There is a chance that the Semi-SACK servers actually perform Proper

SACK, but have fallen prey to ACK loss. However, since SACKs are sent a
number of times, the ACK loss would have to be quite bad before the server
missed a block entirely. Therefore, while possible, we do not believe that
ACK loss biases our aggregate conclusions in a large way.
4

We note that the results in Section 4.1 are from a different run from those
in Table 7, and have slightly different numbers for the prevalence of not-
SACK-capable servers.

TCP started data transmission with a single segment using slow

start to increase the congestion window [17]. However, [16] allows

an initial window of two segments, and [11] allows an initial win-

dow of three or four segments, depending on the segment size. In

particular, an initial window of two or more segments can reduce

the number of round-trip times needed for the transfer of a small

object, and can shorten the recovery time when a packet is dropped

from the initial window of data (by stimulating duplicate ACKs

that potentially can trigger fast retransmit rather than waiting on

the retransmission timeout).

The test starts with TBIT establishing a TCP connection to a

given web server using a 256 byte MSS. The small MSS increases

the chances that the server will have enough packets to exercise its

ICW. TBIT then requests the corresponding web page, and receives

all packets initially sent by the server, without ACKing any of the

incoming segments. The lack of ACKs forces the server to retrans-

mit the first segment in the ICW. TBIT then counts the number of

segments received, reports the ICW value computed and terminates

the test.

Despite the small MSS, there still may be some servers without

enough data to fill their ICW. TBIT detects such cases by watching

for the FIN bit set in one of the data segments. Such tests are incon-

clusive; the corresponding servers have an ICW equal to or larger

than the number of packets received. We report only those servers

that had enough data to send their entire ICW without setting the

FIN bit.
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Figure 2: Initial Window Test, for an MSS of 256 bytes.

Figure 2 shows the distribution of ICWs used by the measured

web servers. The figure shows that most web servers use an initial

window of one or two segments, and a smaller number of servers

use an initial window of three or four segments. In addition, there

are a few servers using ICW values of more than four segments –

including some servers using ICWs larger than 10 segments. These

results are similar to those from 2001 [41], which show 2% of the

web servers had an initial window of three or four segments, and

3% had initial windows larger than four segments. Thus, TCP ini-

tial windows of three or four segments are seeing very slow deploy-

ment in web servers.

We note that the ICWs shown in Figure 2 could change with dif-

ferent values for the MSS. For example, www.spaceimaging.com

uses an ICW of 64 segments when the MSS is restricted to 256

bytes, but an ICW of only 14 segments with an MSS of 1460 bytes.

Figure 3 shows the fraction of connections with dropped or re-

ordered packets, as a function of the ICW used by the server. The

web servers with larger initial windows of three or four packets

do not have a higher percentage of connections with packet drops.

Even the occasional TCP connections with ICWs greater than four
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Figure 3: Percent of connections with dropped/reordered pack-

ets vs. ICW

Date: May 2001 April 2004

% of % of

Window Halving Num. total Num. total

Total Number of Servers 4550 100% 84394 100%

I. Classified Servers 3461 76% 30690 36%

I.A. Window Halved 3330 73% 29063 34%

I.B. Window Not Halved 131 2.8% 1627 2%

II. Errors 1089 24% 53704 64%

II.A. No Connection 5097 6%

II.B. Not Enough Packets 22362 26%

II.C. No Data Received 4966 6%

II.D. HTTP Error 13478 16%

II.E. Request Failed 976 1.7%

II.G. Unwanted Reordering 4622 5.5%

II.H. Unwanted drops 732 0.9%

II.I. Other 1117 1.3%

Table 8: Window Halving Test Results

segments are not more likely to see packet drops. In addition, re-

ordering rates are similar for ICWs of 1–3 segments and then the

percentage of connections experiencing reordering drops off.

5.4 Congestion Window Halving
A conformant TCP implementation is expected to halve its con-

gestion window after a packet loss [16]. This congestion control

behavior is critical for avoiding congestion collapse in the network

[27]. The Congestion Window Halving test in May 2001, from the

original TBIT, verified that servers effectively halve their conges-

tion window upon a loss event; in this section we run the test again

on a much larger set of web servers, and show that the early re-

sult still holds. Because much of the traffic in the Internet consists

of TCP traffic from web servers to clients, this result implies that

much of the traffic in the Internet is using conformant end-to-end

congestion control. This is consistent with the view that, unlike

clients, busy web servers have a stake in the use of end-to-end con-

gestion control in the Internet [27].

The Congestion Window Halving test works by initiating a trans-

fer from the web server, waiting until the server has built up to a

congestion window of eight segments, and then dropping a packet.

After the loss, the server should reduce the congestion window

to four segments. We classify the result as “Window Halved” if

the congestion window is reduced to at most five packets after the

loss, and we classify the result as “Window Not Halved” otherwise.

TBIT is only able to determine a result for those servers that have

enough data to send to build up a congestion window of eight seg-

ments. A detailed description of the test is available in [41]. TBIT

maintains a receive window of eight segments, to limit the conges-

tion window used by the sender.

Table 8 shows the results for the Congestion Window Halving

test. Table 8 shows that, as in 2001, most of the servers exhibited

correct window halving behavior. For the servers that did not halve

the congestion window, a look at the packet traces suggests that

these are servers limited by the receive window, whose congestion

windows at the time of loss would otherwise have been greater than

eight segments. One possibility is that these servers maintain the

congestion window independently from the receive window, and

do not properly halve the effective window when the congestion

window is greater than the receive window. We note that RFC 2581

specifies that after a loss, the sender should determine the amount

of outstanding data in the network, and set the congestion window

to half that value in response to a loss.

5.5 Byte Counting
As described in RFC 2581 [16], TCP increases the congestion

window (cwnd) by one MSS for each ACK that arrives during slow

start (so-called “packet counting”, or “PC”). Delayed ACKs, de-

scribed in [17, 16], allow a TCP receiver to ACK up to two seg-

ments in a single ACK. This reduction in the number of ACKs

transmitted effectively leads to a reduction in the rate with which

the congestion window opens, when compared to a receiver that

ACKs each incoming segment. In order to compensate for this re-

tarded growth, [8, 9] propose increasing cwnd based on the number

of bytes acknowledged by each incoming ACK, instead of basing

the increase on the number of ACKs received. [9] argues that such

an Appropriate Byte Counting (ABC) algorithm should only be used

in the initial slow start period, not during slow start-based loss re-

covery. In addition to improving slow-start behavior, ABC closes

a security hole by which receivers may induce senders to increase

the sending rate inappropriately by sending ACK packets that each

ACK a fraction of the sequence space in a data packet [48].

The Byte Counting test is sensitive to the specific slow start be-

havior exhibited by the server. We have observed a large number of

possible slow start congestion window growth patterns in servers

which do not correspond to standard behavior. For this reason, we

were forced to implement an elaborate test for an algorithm as sim-

ple as Byte Counting. The test works as follows, for an initial con-

gestion window of one segment:

1. Receive and acknowledge the first data packet. After this

ACK is received by the server, the congestion window should

be incremented to two packets (using either PC or ABC).

2. ACK the second and third data packets with separate ACK

packets. After these two ACKs are received, the server should

increment its congestion window by two packets (using ei-

ther PC or ABC).

3. ACK the next four packets with a single cumulative ACK

(e.g., with an acknowledgment of the seventh data packet).

4. Continue receiving packets without ACKing any of them un-

til the server times out and retransmits a packet.

5. Count the number of new packets, N , that arrived at least

three quarters of a round-trip time after sending the last ACK.

6. Count the number of earlier ACKs, R, (out of the three ear-

lier ACKs) which were sent within an RTT of the first of the

N packets above. These are ACKs that were sent shortly

before the last ACK. For servers with the standard expected

behavior, R should be 0.

7. Compute the increase, L, in the server congestion window

triggered by the last ACK as follows:

L = N − 4 − 2 ∗ R (1)

• If L = 1, then PC was used.



% of

Slow-Start Behavior Number total

Total Number of Servers: 44579 100%

I. Classified Servers 23170 52%

I.A. Packet Counting 15331 51.9%

I.B. Appropriate Byte Counting 65 0.1%

II. Unknown Behvaior 288 0.6%

III. Errors 21121 47.4%

III.A. No Connection 528 1.2%

III.B. Not enough packets 13112 29.4%

III.C. No data received 386 0.9%

III.D. HTTP Error 215 0.5%

III.E. Request Failed 181 0.4%

III.F. Packet Size Changed 5762 13%

III.G. Unwanted Reordering 827 2%

III.H. Other 7 0%

Table 9: Byte Counting Test Results

• If L > 1, then the server increased its congestion win-

dow by L segments in response to this ACK. We clas-

sify this as the server performing Byte Counting with a

limit of at least L.

The observation behind the design of this test is that N is the

number of packets that the server sent after receiving the ACK

packets in the preceding RTT. These N packets are assumed to

include two packets for each ACK received that ACKed only one

packet. These N packets are also assumed to include four packets

due to the advance in the cumulative acknowledgment field when

the last ACK was received. Any extra packets sent should be due

to the increase in the congestion window due to the receipt of the

last ACK. We note that the complexity of this test is an example

in which the difference between theory and practice in protocol be-

havior significantly complicates the scenarios that need to be con-

sidered. Table 9 shows the results of the Byte Counting test, show-

ing that Byte Counting had minimal deployment when these tests

were performed.

We note that our Byte Counting test is not sufficient to distin-

guish between Packet Counting, and ABC with L = 1. The Ap-

propriate Byte Counting test in [34] returns two split acknowl-

edgements for a single packet, and can distinguish between Packet

Counting and ABC with L = 1. [34] reports that 80 of the 200

servers tested used ABC with L = 1, and none of the servers used

ABC with L = 2.

Our Byte Counting test uses the estimated RTT in inferring which

data packets were sent by the server after the server received the fi-

nal ACK packet, and this use of the estimated RTT is a possible

source of error. From looking at packet traces, we observed one

or two tests that were labeled by TBIT as Byte Counting, where

the actual RTTs in the connection were unclear, and the packet

trace was consistent with either Byte Counting or Packet Counting.

However, from the traces that we looked at, we don’t think that this

possible source of error is a significant factor in our overall results.

5.6 Limited Transmit
TCP’s Limited Transmit algorithm, standardized in [10], allows

a TCP sender to transmit a previously unsent data segment upon the

receipt of each of the first two duplicate ACKs, without inferring a

loss or entering a loss recovery phase. The goal of Limited Trans-

mit is to increase the chances of connections with small windows to

receive the three duplicate ACKs required to trigger a fast retrans-

mission, thus avoiding a costly retransmission timeout. Limited

Transmit potentially improves the performance of TCP connections

% of

Limited Transmit (LT) Behavior Number total

Total Number of Servers 38652 100%

I. Classified Servers 29023 75%

I.A. LT Implemented 8924 23%

I.B. LT Not Implemented 20099 52%

II. Errors 9629 25%

II.A. No Connection 420 1.1%

II.B. Not enough packets 3564 9.2%

II.C. No Data Received 257 0.7%

II.D. HTTP Errors 224 0.6%

II.E. Request Failed 163 0.4%

II.F. Packet Size Changed 4900 12.7%

II.G. Other 101 0.3%

Table 10: Deployment of Limited Transmit

with small windows.

The Limited Transmit test assesses deployment in web servers.

Like the Byte Counting test, this test is sensitive to the size of the

initial window employed by the server. The strategy of the test in all

cases is the same but the presence or absence of Limited Transmit

must be determined in the context of a specific ICW. For an ICW

of four packets, the test works as follows:

1. Acknowledge the first data segment in the initial window of

four segments. Upon receiving this ACK, the server should

open its window from four to five segments, and send two

more packets, the 5th and 6th segments.

2. Drop the second segment.

3. TBIT sends two duplicate ACKs triggered by the reception of

segments 5 and 6. TBIT does not send ACKs when segments

3 and 4 arrive, to provide for increased robustness against

unexpected server congestion window growth. Only one du-

plicate ACK would suffice to trigger the Limited Transmit

mechanism at the server but TBIT sends two to account for

the possibility of ACK losses.

4. If the server does not implement Limited Transmit, then it

will do nothing when it receives the duplicate ACKs. If the

server does implement Limited Transmit, then it will send

another segment when it receives each duplicate ACK.

We note that if the duplicate ACKs sent by TBIT are dropped in

the network, then TBIT will see no response from the web server,

and will interpret this as a case where Limited Transmit is not de-

ployed. Greater accuracy could be gained by running the test sev-

eral times for each web server, as done with the TBIT tests in [41].

Table 10 shows the results from our tests. The table shows that

Limited Transmit is deployed in at least a fifth of the web servers in

our dataset. The Limited Transmit test is sensitive to the size of the

initial window and therefore care needs to be exercised with respect

to the size of packets being received from the server. Note that if

there is a change in the packet size for packets in the middle of the

connection, TBIT flags the result “Packet Size Changed”, and does

not classify that server. As shown in the table, this happened with

some frequency and renders that test inconclusive. Furthermore,

a certain minimum number of packets need to be transferred for

TBIT to be able to classify a server, therefore servers with small

web pages are classified as not having enough packets.

5.7 Congestion Window Appropriateness
When the TCP sender does not have data to send from the ap-

plication, or is unable to send more data because of limitations of

the TCP receive window, its congestion window should reflect the



data that the sender has actually been able to send. A congestion

window that doesn’t reflect current information about the state of

the network is considered invalid [29]. TBIT’s Congestion Win-

dow Appropriateness test examines the congestion window used

by web servers following a period of restrictions imposed by the

receive window.

In this test, TBIT uses a TCP receive window of one segment to

limit the web server’s sending rate to one packet per RTT. After five

RTTs, TBIT increases the receive window significantly, and waits

to see how many packets the web server sends in response. Con-

sider a web server using standard slow-start from an initial window

of K segments, increasing its congestion window without regard

to whether that window has actually been used. Such a web server

will have built up a congestion window of K + 5 segments af-

ter five round-trip times of sending one packet per round-trip time,

because each ACK increases the congestion window by one seg-

ment. The web server could suddenly send K +5 packets back-to-

back when the receive window limitation is removed. In contrast,

a web server using the Congestion Window Validation procedure

from [29] will have a congestion window of either two segments or

the ICW, whichever is larger.5
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Figure 4: The congestion window after a receive-window-

limited period

Figure 4 shows the number of segments that each server sends in

response to the increased receive window at the end of the Conges-

tion Window Appropriateness test. The majority of servers respond

with a window of two to four packets, showing moderate behavior

consistent with Congestion Window Validation. A smaller fraction

of the servers respond with a large window of eight or nine packets,

suggesting that the server increases its congestion window without

regard for the actual number of segments sent.

In some cases the number of segments transmitted shows that

the server is violating the standard rules for opening the conges-

tion window during slow-start, even aside from the issue of the

appropriateness of a congestion window that has never been used.

Because a conformant web server can have an initial window of

at most four segments, a conformant web server can have a con-

gestion window of at most nine segments after five single-packet

acknowledgments have been received.

It would also be possible to use TBIT to explore the conges-

tion window used by web servers after an application-limited pe-

riod. TBIT can create an application-limited period by using re-

peated HTTP requests, once per round-trip time, each requesting

5
RFC 2861 [29] was written when the ICW was still only one packet, so

RFC 2861 doesn’t explicitly say that the ICW should be taken as a lower
bound for the reduced congestion window. However, RFC 3390 says that
the sender MAY use the initial window as a lower bound for the restart
window after an idle period, and it makes sense that the sender would use
the initial window as a lower bound in this case as well.

only a range of bytes from the web page. After this enforced

application-limited period, TBIT would follow by requesting the

full web page.

5.8 Minimum RTO
TCP uses a retransmit timer to guarantee the delivery of data

in the absence of feedback from the receiver. The duration of

this timer is referred to as the Retransmit TimeOut (RTO). A de-

tailed description of the algorithm for computing the RTO can be

found in [17, 42]. [42] recommends a minimum RTO of one sec-

ond, though it is well-known that many TCP implementations use a

smaller value for the minimum RTO. A small minimum RTO gives

better TCP performance in high-congestion environments, while a

larger minimum RTO is more robust to reordering and variable de-

lays [15].

The TBIT test to explore minimum RTO values initiates a con-

nection with a given server, and receives and acknowledges packets

as usual until packet 20 has been received. By this time, the TCP

sender has taken a number of measurements of the round-trip time,

and has estimated the average and mean deviation of the round-trip

time for computing the RTO. Upon packet 20’s reception, TBIT

stops ACKing packets and measures the time until the retransmis-

sion for the last packet; this is used as an estimate of the RTO used

by the server.
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Figure 5: RTO vs. Initial RTT

Figure 5 shows the RTO values used by servers for retransmitting

the given packet. The x-axis shows the initial round-trip time, and

the y-axis shows the measured RTO for the server. The RTO used

by a server will often be larger than the minimum RTO enforced by

that server. However, of the 37,000 servers shown in Figure 5, 40%

responded with an RTO of less than a second.6

6. PASSIVE CLIENT MEASUREMENTS
The previous sections discuss results from active measurements

from a TBIT client machine to a target set of web server desti-

nations. Such analysis sheds light on the correctness and perfor-

mance characteristics of a significant population of in-the-field web

servers, and also provides insights into the characteristics of the in-

termediate nodes on the paths that carry packets between the TBIT

client and the servers. However, this is only one part of the story.

We are also interested in observing the Internet from the perspective

6
The minimum RTO test requires a transfer of at least 20 packets and there-

fore we could not assess the minimum RTO to over half the web servers in
our list.



of web clients. To achieve this perspective we collect full packet

traces of traffic to and from the web server of our research labora-

tory. In this section we present the result from the analysis of those

traces.

We collected packet traces of full TCP packets to and from port

80 on our lab’s web server (www.icsi.berkeley.edu) for roughly two

weeks (from February 24, 2004 to March 10, 2004). Such a dataset

provides a wealth of information about a disparate set of web clients.

However, given the heterogeneity of the Internet we do not claim

this dataset is representative. Rather we present it as a data point.

Capturing entire packets allowed us to verify the TCP checksum

and discard packets that did not pass. In the dataset we observed

206,236 connections from 28,364 clients (where a “client” is de-

fined as an IP address). Of these, 613 (or, 0.3%) connections were

not analyzed due to the packet trace missing the initial SYN sent

by the client and therefore throwing off our analysis.7 We do not

believe that deleting these connections biased our results.

The first set of items we measure are the capabilities the client

TCPs advertise during connection startup. Of all the clients, 205

(or 0.7%) show inconsistent capabilities across connections from

the same IP address. An example inconsistency would be one con-

nection from a particular IP address advertising support for SACK,

while a subsequent connection does not. Our inconsistency check

includes the SACK permitted option, the timestamp option, the

window scale option (and the advertised value), the MSS option

(and the MSS value) and whether the connection advertises support

for ECN. Options may be inconsistent due to a NAT between the

client and our server that effectively hides multiple clients behind a

single IP address. Alternatively, system upgrades and configuration

changes may also account for inconsistency over the course of our

dataset.

We next study TCP’s cumulative acknowledgment and the selec-

tive acknowledgment (SACK) option [37]. In our dataset, 24,906

clients (or 87.8%) advertised “SACK permitted” in the initial SYN.

Across the entire dataset 236,192 SACK blocks were returned from

the clients to our web server. We observe loss (retransmissions

from the server) without receiving any SACK blocks with only two

clients that advertised SACK capability. This could be due to a

bug in client implementations, middlebox interference or simple

network dynamics (e.g., ACK loss). Therefore, we conclude that

clients advertising “SACK permitted” nearly always followup with

SACK blocks, as necessary.

As outlined in Section 4.1, the TBIT SACK tests yield some

transfers where the sequence numbers in the SACK blocks from the

clients are “shifted” from the sequence numbers in the lost packets.

Inaccurate SACK blocks can lead to the sender spuriously retrans-

mitting data that successfully arrived at the receiver, and waiting on

a timeout to resend data that was advertised as arriving but which

was never cumulatively acknowledged. To look for such a phe-

nomenon in web clients or middleboxes close to clients we ana-

lyzed the SACK blocks received from the clients and determined

whether they fall along the segment boundaries of the web server’s

transmitted data segments. We found 1,242 SACK blocks (or 0.5%)

that do not fall along data segment boundaries. These SACK blocks

were generated by 49 clients (or 0.2%). The discrepancy between

the rate of receiving strange SACK blocks and the percentage of

hosts responsible for these SACK blocks suggests a client-side or

middlebox bug. These results roughly agree with the results in Sec-

tion 4.1. Of the bogus SACK blocks received, 397 were offset – i.e.,

the sequence numbers in the SACK block were within the sequence

7
The dataset is really composed from separate 24-hour packet traces, and

so connections which continue across two of these traces are lost mid-
connection.

space used by the connection, but did not fall along data segment

boundaries. Meanwhile, the remaining 845 bogus SACK blocks

were for sequence space never used by the connection. Note: a pos-

sible explanation for some of the strange SACK blocks is that our

packet tracing infrastructure missed a data segment and therefore

when a SACK arrives we have no record of the given packet bound-

aries. However, given that (i) the discrepancy between the overall

rate of observing these SACKs when compared to the percentage

of clients involved and (ii) many of the bogus SACK blocks were

completely outside the sequence space used by the connection, we

believe that packet capturing glitches are not the predominant cause

of these bogus SACK blocks.

Next we outline the prevalence of Duplicate SACK (D-SACK)

[26] blocks in our dataset. D-SACK blocks are used by data re-

ceivers to report data that has arrived more than once and can be

used for various tasks, such as attempting to set a proper dupli-

cate ACK threshold and reversing needless changes to TCP’s con-

gestion control state caused by spurious retransmissions [20]. In

our dataset we observed 809 hosts (or, 3% of all hosts) sending

D-SACK blocks. Note that more than 3% of the hosts may support

D-SACK, but were not faced with a situation whereby transmission

of a D-SACK was warranted.

We also investigated whether there were cases when the cumula-

tive acknowledgment in incoming ACKs did not fall on a segment

boundary. Of the roughly 4.7 million ACKs received by our web

server, 18,387 ACKs contained cumulative ACK numbers that did

not agree with the segments sent. These ACKs were originated by

36 clients. The rate of receiving these strange ACKs is 0.4% in

the entire dataset, meanwhile the number of clients responsible for

these ACKs represents 0.1% of the dataset, indicating that buggy

clients or middleboxes may be the cause of these ACKs.

In our dataset, the timestamp option is advertised by 6,106 clients

(or 21.5%). Clients that do not accurately echo timestamp values

to the server or middleboxes that alter the timestamp of a passing

packet may cause performance degradation to the connection by

increasing or reducing the retransmission timeout (RTO) estimate

of the server. If the RTO is too small the data sender will timeout

prematurely, needlessly resending data and reducing the conges-

tion window. If the RTO is too large performance will suffer due

to needless waiting before retransmitting a segment. In our dataset,

20 clients returned at least one timestamp that the server never sent

(some of the timestamps returned by these clients were valid). This

result suggests that the network and the endpoints are faithfully car-

rying timestamps in the vast majority of cases.
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clients.

We next examine the advertised windows used by web clients.



[12] shows how the client’s advertised window often dictates the

ultimate performance of the connection. Figure 6 shows the distri-

bution of the maximum window advertisement observed for each

client in our dataset. Roughly, the distribution shows modes at

8 KB, 16 KB and 64 KB. These results show an increase in ad-

vertised window sizes over those reported in [12] (in 2000). In our

dataset the median advertised window observed is just over 32 KB

and the mean is almost 44 KB, whereas [12] reports the median ad-

vertised window as 8 KB and a mean of 18 KB. Additionally, 7,540

clients (or 26.6% of our dataset) advertised support for TCP’s win-

dow scaling option [30], which calls for the advertised window to

be scaled by a given factor to allow for larger windows than can

naturally be advertised in the given 16 bits in the TCP header. Just

over 97% of the clients that indicate support for window scaling

advertise a window scale factor of zero — indicating that the client

is not scaling its advertised window (but understands window scal-

ing if the server wishes to scale its window). Just over 1% of the

clients in our dataset use a scale factor of 1, indicating that the ad-

vertised window in the client’s segments should be doubled before

using. We observed larger window scale factors (as high as 9) in

small numbers in our dataset.

We next look at the MSS advertised by web clients in the initial

three-way handshake. Two-thirds of the clients used an MSS of

1460 bytes (Ethernet-sized packets). Over 94% of the clients used

an MSS of between 1300 bytes and 1460 bytes. The deviation from

Ethernet-sized packets may be caused by tunnels. Roughly 4% of

the clients in our dataset advertised an MSS of roughly 536 bytes.

We observed advertisements as small as 128 bytes and as large as

9138 bytes. This analysis roughly agrees with [12].

Finally, we note that we observed 48 clients (or 0.2% of the

clients in our dataset) advertising the capability to use Explicit Con-

gestion Notification (ECN) [46]. That is, only 48 clients sent SYNs

with both the ECN-Echo and Congestion Window Reduced bits in

the TCP header set to one.

7. MEASUREMENT LESSONS
In conducting the measurements presented in this paper we ob-

served a number of properties of the network and the end systems

that challenged our assumptions and ultimately shaped our tools.

In this section, we distill several lessons learned that others con-

ducting similar measurements should keep in mind.
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Figure 7: Minimum MSS Test

The TBIT tests presented in this paper attempt to use a small

MSS so that the web server splits the data transfer into more seg-

ments than it naturally would. In turn, this provides TBIT with

additional ways to manipulate the data stream. For instance, if a

server transmits one segment of 1280 bytes then TBIT cannot easily

conduct certain tests, such as assessing the Initial Window. How-

ever, if the server is coaxed into sending 10 segments of 128 bytes

more tests become possible (due to the increased variety of scenar-

ios TBIT can present to the server). The set of TBIT tests presented

in [41] employed a 100 byte MSS. When we initiated the present

study we found this MSS to be too small for a significant num-

ber of web servers. Therefore, determining the smallest allowable

MSS is important for TBIT-like measurements. Figure 7 shows the

distribution of minimum MSS sizes we measured across the set of

web servers used in our study. As shown, nearly all servers will ac-

cept an MSS as small as 128 bytes, with many servers supporting

MSS sizes of 32 and 64 bytes. Another aspect of the segment size

that surprised us is that segment sizes sometimes change during the

course of a connection (e.g., as reported in the tests of ABC in Sec-

tion 5) . Therefore, we encourage researchers to design tests that

are robust to changing packet sizes (or, at the least warn the user of

a test when such an event is observed).
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Figure 8: Reordering vs MSS

Choosing a small MSS to maximize the number of segments the

web server transmits is a worthy goal. However, we also find that

as the MSS is reduced the instances of packet reordering increase.

Figure 8 shows the percentage of reordered segments as a function

of the MSS size.

One explanation of this phenomenon is that using a smaller MSS

yields transfers that consist of more segments and therefore have

more opportunities for reordering. Alternatively, small packets may

be treated differently in the switch fabric — which has been shown

to be a cause of reordering in networks [18]. Whatever the cause,

researchers should keep this result in mind when designing experi-

ments that utilize small segments. Additionally, the result suggests

that performance comparisons done using small segments may not

be directly extrapolated to real-world scenarios where larger seg-

ments are the rule (as shown in Section 6) since reordering impacts

performance [18, 19].

As outlined in Section 5, we find web servers’ slow start behav-

iors to be somewhat erratic at times. For instance, Section 5.5 finds

some web servers using “weak slow start” where the web server

does not increase the congestion window as quickly as allowed by

the standards8. In addition, we also found cases where the conges-

tion window is opened more aggressively than allowed. These dif-

ferences in behavior make designing TBIT-like tests difficult since

the tests cannot be staked around a single expected behavior.

Also, we found that some of our TBIT measurements could not

be as self contained as were all the tests from the original TBIT

work [41]. Some of the tests we constructed depended on pecu-

liarities of each web server. For instance, the Limited Transmit

test outlined in Section 5.6 requires apriori knowledge of the web

server’s initial window. This sort of test complicates measurement

because multiple passes are required to assess some of the capabil-

ities of the web servers.

Finally, we note that in our passive analysis of web client char-

acteristics verifying the TCP checksum is key to some of our ob-

servations. In our dataset, we received at least one segment with

a bad TCP checksum from 120 clients (or 0.4% of the clients in

8
Such non-aggressive behavior is explicitly allowed under the standard

congestion control specification [16], but we found it surprising that a web
server would be more conservative than necessary.



TCP Mechanism Section Deployment Status

Loss Recovery 6, 5.2 SACK is prevalent (in two-thirds of servers and nine-tenths of clients).

5.1 NewReno is the predominant non-SACK loss recovery strategy.

D-SACK 6, 5.2 D-SACK is gaining prevalence (supported by 40% of servers and at least 3% of clients).

Congestion Response 5.4 Most servers halve their congestion window correctly after a loss.

Byte Counting 5.5 Most web servers use packet counting to increase the congestion window.

Initial Cong. Window 5.3 Most web servers use an ICW of 1 or 2 segments.

ECN 4.2 ECN is not prevalent.

Advertised Window 6 The most widely used advertised window among clients is 64 KB with many clients

using 8 KB and 16 KB, as well.

MSS 6 Most of the clients in our survey use an MSS of around 1460 bytes.

Table 11: Information for modeling TCP behavior in the Internet.

Behavior Section Possible Interactions with Routers or Middleboxes

SACK 5.2,6 In small numbers of cases, web clients and servers receive SACK blocks with incorrect

sequence numbers.

ECN 4.2 Advertising ECN prevents connection setup for a small (and diminishing) set of hosts.

PMTUD 4.3 Less than half of the web servers successfully complete Path MTU Discovery.

PMTUD is attempted but fails for one-sixth of the web servers.

IP Options 4.4 For roughly one-third of the web servers, no connection is established when the client includes

an IP Record Route or Timestamp option in the TCP SYN packet.

For most servers, no connection is established when the client includes an unknown IP Option.

TCP Options 4.5 The use of TCP options does not interfere with connection establishment. Few problems

were detected with unknown TCP options, and options included in data packets in mid-stream.

Table 12: Information on interactions between transport protocols and routers or middleboxes.

the dataset). This prevalence of bogus checksums is larger than

the prevalence of some of the identified characteristics of the web

client (or network). For instance, we identified only 49 clients that

advertise support for ECN and report receiving bogus SACK blocks

from 36 clients. If we had not verified the TCP checksum these two

characteristics could have easily been skewed by mangled packets

and we’d have been none-the-wiser. In our experiments, we used

tcpdump [4] to capture full packets and then tcpurify [5] to verify

the checksums and then store only the packet headers in the trace

files we further analyzed.9

8. CONCLUSIONS AND FUTURE WORK
The measurement study reported in this paper has explored the

deployment of TCP mechanisms in web servers and clients, and

has considered the interactions between TCP performance and the

behavior of middleboxes along the network path (e.g., SACK infor-

mation generation, ECN, Path MTU Discovery, packets with IP or

TCP options). Our concerns have been to track the deployment (or

lack of deployment) of transport-related mechanisms in transport

protocols; to look out for the ways that the performance of mecha-

nisms in the Internet differs from theory; to consider how middle-

boxes interfere with transport protocol operation; and to consider

how researchers should update their models of transport protocols

in the Internet to take into account current practice and a more re-

alistic network environment (Table 11). The main contribution of

this work is to illustrate the ways that the performance of protocol

mechanisms in the Internet differ from theory. The insights gath-

ered from our measurements involving the interactions between

TCP and middleboxes along the network path are summarized in

Table 12.

There exist significant avenues for future work in the light of

9
Before truncating a captured packet to store on the headers for later pro-

cessing, tcpurify stores a code in the TCP checksum field indicating whether
the checksum in the original packet was right, wrong or whether tcpurify did
not have enough of the packet to make a determination.

the results presented in this paper. There are a wealth of impor-

tant TCP behaviors that have not been examined, and new TCP

mechanisms are continually being proposed, standardized and de-

ployed. Assessing their deployment, characteristics and behaviors

in the context of the evolving Internet architecture are useful av-

enues of future work.

Another class of extensions to this work is exploring the behavior

of TCP in additional applications (e.g., peer-to-peer systems, email,

web caching, etc.). Also, we performed all our tests having the

measurement client machine in our research laboratory. Further

network and host dynamics may be elicited by performing TBIT-

like tests in different environments such as having the TBIT client

behind different types of middleboxes (e.g. firewalls, NATs, etc.)

at different security levels.

An additional interesting area for future investigation is using

TBIT-like tools for performance evaluation. For instance, a perfor-

mance comparison of servers using various initial congestion win-

dow values or servers with and without SACK-based loss recovery

may prove useful. Developing techniques for conducting this kind

of performance comparison in a solid and meaningful way (and de-

tecting when such a comparison is not meaningful) is a rich area for

future investigation. Furthermore, performing tests from multiple

vantage points to assess middlebox prevalence and behavior on a

wider scale would be useful.

As new transport protocols such as SCTP and DCCP begin to

be deployed, another area for future work will be to construct tools

to monitor the behavior, deployment and characteristics of these

protocols in the Internet.

While we examined some ways that middleboxes interfere with

TCP communications, a key open question is that of assessing ways

that middleboxes affect the performance of transport protocols or of

applications. One middlebox that clearly affects TCP performance

is that of Performance Enhancing Proxies (PEPs) [21] that break

single TCP connections into two connections potentially changing

end-to-end behavior. While [13] presents some results in this gen-



eral area, additional active tests would be useful to investigate this

area further.

Finally, a completely different kind of test that may benefit from

the active probing approach outlined in this paper would be one

to detect the presence or absence of Active Queue Management

mechanisms at the congested link along a path. To some extent, this

can be done with passive tests, by looking at the pattern of round-

trip times before and after a packet drop. However, active tests may

be more powerful, by allowing the researcher to send short runs of

back-to-back packets, as well as potentially problematic, in that the

tool might need to induce transient congestion in the network to

assess the queueing strategy.
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