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Abstract

We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being
able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed
that many of these networks change, or ‘‘rewire’’, at different rates. It is therefore important to develop a framework to
quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple
models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available
biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time
divergences, because of saturation in potential substitutions. However, different types of biological networks consistently
rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring
rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and
metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks
between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those
obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in
particular, we showed how it could be applied to analyze changes in a range of ‘‘commonplace’’ networks such as family
trees, co-authorships and linux-kernel function dependencies.
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Introduction

With the advent of large-scale genomic and proteomic

technologies in discovering interacting and regulatory relationships

in cells, many types of biological networks, though incomplete,

have been constructed in various eukaryotic species [1–19]. The

kinds of networks currently include, but are not limited to, protein

interaction, genetic interaction, transcription factor-target regula-

tory, miRNA-target regulatory, kinase-substrate phosphorylation,

and metabolic pathway. Biological networks have been used to

explain differences between closely related species that share high

sequence similarities [1,2,7]. For example, human and chimpan-

zee genomic sequences are found to have only 1.23% differences

in SNPs and 3% in indels [20]. However, the subtle sequence

divergence is hardly sufficient to explain phenotypical, behavioral

and social differences between the two species. As a result,

biological networks (organizations of molecules) are proposed to

play a central role in speciation complementary to individual

molecules [1,2,7]. However, it is still largely unknown how fast

biological networks evolve.

Biological network research has followed the path of sequence

research to some degree. In the past three decades, biological

sequence research has experienced three stages: initial sequencing

data generation, pairwise alignment and evolutionary rate

analysis. Simple models such as the Jukes-Cantor model [21]

describe evolutionary sequence divergence in terms of time. In

fact, various biological sequences evolve at different rates

depending upon their functional importance [22,23]. Genomic

sequence analyses in various species have helped us to learn levels

of conservation among genomic regions and genes [24–26].

Similarly, proteomic sequence and structure analyses show that

protein regions have varied evolutionary constraints [27,28].

Analogous to sequence analysis, the development of biological

network research has three similar stages: network construction by

large-scale experiments and computational predictions [1–19],

pairwise network comparison to find conserved edges as interologs

or regulogs [29,30] and building general network alignment tools

[31,32], and finally investigating levels of conservation and

evolutionary change on biological networks.

One of the advantages of network study is that we can make

analogies to draw intuition. For example, in commonplace social

contexts, we readily observe that some ‘‘network’’ relationships

change faster than others. Personal acquaintance networks may

change in days, friendship networks and co-worker networks in
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months or years, while family networks change over decades. This

intuition of network stability differences could be quantified and

compared by the rewiring rate that reflects the nature of network

relationships. Similarly, in cellular systems biological networks

may rewire at various rates during evolution.

Increasingly we have seen many approaches to compare

biological networks across organisms, uncovering interesting

relationships of network evolution and the functional implications

[7,33–39]. Due to current limitations of network construction

technologies and the large evolutionary distance between the

species compared, the overlap between current network datasets is

small. Nevertheless, the estimation of the rewiring rate in protein

interaction networks is possible [33]. Various methods were used

in different studies inconsistent for direct comparison, with each

focused on one of the biological network types. Also, most of the

studies were species specific that did not compare species with

large evolutionary divergence.

Given that previous studies have set the stage, now is an

opportune time to quantify network rewiring in all these

comparisons in a unified way. In the past three years, more data

has become available for a greater number of species covering

many types of biological networks [1,2,4,5,7]. The comprehensive

set of network data allows systematic comparison of rewiring rates

of biological networks and drawing more robust conclusions by

using a set of species pairs.

We show here the rewiring rates of several types of biological

networks in eukaryotes. The approach used is consistent across

network types and robust to network data quality. We observed

that the rewiring rate is characteristic of the type of edge

(relationship between node entities) in both biological and

commonplace networks. This analysis gives an initial picture of

biological network rewiring and provides intuition and useful tools

for the future when more network data becomes available.

Results

Rewiring rate as a discriminating characteristic of
networks

To calculate the rewiring rate of biological networks, we first

established node orthology between two species, and then defined

edge orthology as a conserved relationship between orthologous

entities across different species, which is a generalization of

‘‘interologs’’ in protein interaction network and ‘‘regulogs’’ in TF

regulatory network [29,30]. One species network is considered

reference, and three sets of nodes are identified. Common nodes

(CNs) are nodes present in both networks, loss nodes (LNs) only in

reference network and gain nodes (GNs) only in the other

compared network. Four types of rewired edges are then identified

and counted including gain or loss edges between CNs, loss edges

involving LNs, and gain edges involving GNs (see Figure 1). The

rewiring rate was measured by the total number of rewired edges

(R) between two networks normalized by the combined network

size, the total number of possible edges if two networks were both

‘‘complete’’ (C), and divergence time (T). Total number of rewired

edges (R) counts all non-conserved edges (interologs, regulogs or

other type of ‘‘logs’’) in two networks. The total number of possible

edges (C) has five components: total possible edges of complete

networks consisting of only common nodes (CNs), nodes that are

only present in one of the two networks (GNs or LNs), and total

possible edges between the two (between CNs and LNs, or CNs

and GNs) (see Figure S1, see Materials and Methods). The

measure is in essence percentage edge change of network in a

given time period. We have collected data for each type of network

for different species (see Table S1), and calculated rates for

different time divergence species pairs (see Figure 1).

For all types of biological networks, we observed faster rewiring

rates for smaller divergence species pairs and slower rewiring rates for

larger divergence species pairs, with a strong negative linear

relationship between rewiring rate (per edge per Mys) and divergence

time (Mys) in Log-Log scale (see Figure 2, Table S2). It was thus

inappropriate to use the rewiring rate calculated from a specific

species pair as a general measure for a network type. Using species

pairs with different divergence times could result in large differences.

However, different species pairs with similar divergence times tended

to have close rewiring rates. This indicated that our rewiring rate

measure was dependent upon divergence time but not on species.

We then asked the question whether the observed negative

linear relationship in Log-Log scale between rate and divergence

time in networks is parallel to what is seen in nucleotide sequence

evolution. For sequence evolution, we use the equation

P~ 3
4
{ 3

4
e{8aT from the Jukes-Cantor model, where P is the

percentage of sequence change and T is divergence time [21].

Though it is a simple model with only one parameter (a), Jukes-

Cantor model captures the core relationship between P and T, and

is sufficient in this case for comparing sequences with networks. P/

T is the approximation of the instantaneous sequence evolutionary

rate (dP/dT) and can be used for direct comparison with rewiring

rate of networks. A negative linear relationship was observed in

Log-Log scale between P/T and T (see Figure 2), and was

especially strong at large divergence times.

Further, we used simulated networks to determine whether the

observed relationship is specific to real biological networks. A

simulation-based network rewiring model was built based on four

parameters, corresponding to node changes, edge changes, and

preferential attachment to rewiring networks while maintaining

scale-free topology (see Materials and Methods). As a simulation of

evolutionary divergence, two branches of networks were compared

after the same number of rewiring steps and rewiring rates

calculated (see Figure S2). The rewiring rate calculated from the

simulation model also shows a negative linear relationship in Log-

Log plot with number of rewiring steps (see Figure 2).

The analysis above indicated that the negative linear relation-

ship between the rewiring rate and time in real networks could be

universal and reflect underlying principles in evolution. This

intuitively corresponds to the saturation of percentage change. For

Author Summary

Biological networks represent various types of molecular
organizations in a cell. During evolution, molecules have
been shown to change at varying rates. Therefore, it is
important to investigate the evolution of biological
networks in terms of network rewiring. Understanding
how biological networks evolve could eventually help
explain the general mechanism of cellular system. In the
past decade, a large amount of high-throughput experi-
ments have helped to unravel the different types of
networks in a number of species. Recent studies have
provided evolutionary rate calculations on individual
networks and observed different rewiring rates between
them. We have chosen a systematic approach to compare
rewiring rate differences among the common types of
biological networks utilizing experimental data across
species. Our analysis shows that regulatory networks
generally evolve faster than non-regulatory collaborative
networks. Our analysis also highlights future applications
of the approach to address other interesting biological
questions.
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nucleotide sequences, as divergence becomes larger, the percent-

age of sequence change saturates at 0.75 according to the Jukes-

Cantor model. New nucleotide changes happen on top of previous

changes, which have little effect on percentage difference. Our

analysis showed that the same is true for networks.

We used the fitted rates from linear models for each type at

800 Mys divergence, roughly half the time of eukaryotic history

(see Table 1). The ‘‘banding’’ of networks on the plot into

characteristic groups with order of magnitude rate differences

between them indicates the robustness of the rewiring rate

calculation and the actual rate difference between networks.

In fact, the above described rewiring rate is an ‘‘average’’ rate

rather than ‘‘instantaneous’’ rate for networks. As the Jukes-

Cantor model shows for sequences, evolutionary rate (a) could

only be approximately measured using instantaneous rate (dP/dT)

between closely related species (dT is small), where a is

proportional to dP/dT. When the divergence gets large, the

approximation of instantaneous rate with the average rate is poor

and the relationship between a and dP/dT becomes non-linear.

The logic is directly applicable to our case for networks.

Ideally, instantaneous rewiring rate should be measured using

networks between closely related species. However, little network

data are available for close species, which inhibits the calculation

of instantaneous rewiring rates. The disadvantage of using the

average rates described above is that at large evolutionary

distance, network rewiring approaches saturation and is hard to

compare. And the limited number of species network comparisons

does not allow accurate estimations of instantaneous rates by the

linear model at less than 10Mys divergence (see Table S2).

Another idea of comparing rewiring of biological networks is to

use networks for a given divergence of the same species pairs. Since

networks are of the same divergence, we use the percentage of edge

changes among total possible changes, which is R/C, to measure the

extent of rewiring (see Table 2). This method circumvents the

disadvantages of average rewiring rate and limited species

comparisons of networks, while it maintains the ability to distinguish

the extent of network rewiring. For each of the 11 species

comparisons listed in Table 2, biological networks are ordered

according to their percentage of rewiring. We then count the

number of cases where one type of biological network is observed to

rewire more or less than another (see Table 3). Thus for each

comparison between species (at a given level of divergence), we get

an ordering of network rewiring (e.g. transcription regulatory.pho-

sphorylation regulatory.protein interaction.metabolic pathway).

We found that the ordering is consistent amongst all the 11

comparisons in this study. This result further supports the

differences found in network rewiring using averaged rates.

The formalism of network rewiring was also applicable to non-

biological networks to get some intuition for fast or slow rewiring

processes (see Table 4). Three different representative common-

place networks with very different divergences were constructed,

including co-authorship networks, family trees and Linux kernel

design networks (see Figure S3). The three types of non-biological

networks showed differential rewiring rates in the order of

magnitudes (see Table 4). Consistent with our intuition, for

example, family trees have less rewiring than co-authorship

networks. Contrary to popular opinion of frequent computer

software updates, Linux kernel design network in fact evolves

approximately one order of magnitude slower than a typical family

tree (more family samples needed for statistically significant

arguments). It is clear that rewiring rate could help us understand

the nature of edge relationship in networks, thus can be used for

Figure 1. Measuring network rewiring by comparing networks of species pairs. (A) Types of biological networks with currently available
data for different species are collected. Selected types of commonplace networks with multiple time-point data are also collected. (B) For each
network type, we perform edge rewiring analysis for pairs of species. Three types of nodes are first identified as CNs, GNs and LNs. Four types of
rewired edges are then identified and counted including gain/loss edges between CNs (red) and those involving GNs or LNs (green). Rewiring rate
from comparing the networks is calculated (see Materials and Methods). (C) Rewiring rate calculated from schematic (B) corresponds to a typical
result point.
doi:10.1371/journal.pcbi.1001050.g001

Measuring Biological Network Evolutionary Rewiring
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Figure 2. Ordering of extent of biological network rewiring. (A) Rewiring rates calculated for seven types of real biological networks (each
with a different color) are shown as points on the Log-Log scale plot. Each rewiring rate corresponds to a divergence time of its two species
comparison. (B) Relationship on Log-Log scale between sequence evolution rate, as number of nucleotide change per nucleotide per million years
according to the Jukes-Cantor model, and divergence time. (C) Relationship on Log-Log scale between network rewiring rate from simulation and
number of rewiring steps. Strong negative correlations between evolutionary rate, as percentage change per unit of time, and time are present for
real networks, sequences and simulated networks.
doi:10.1371/journal.pcbi.1001050.g002

Table 1. Rewiring rate spectrum of eukaryotic biological networks.

Estimated Divergence Time (Mys) ,25 ,75 ,270 ,800 ,1500 Fitted 800

Metabolic Pathway Network 7.4E-6 3.1E-6 4.1E-6 5.4E-7 3.7E-7 5.7E-7

Protein Interaction Network - - - 1.1E-6 1.1E-6 2.2E-6

Genetic Interaction Network - - - 1.3E-5 4.0E-6 8.3E-6

Metabolic Enzyme Network 4.8E-4 1.5E-4 - 1.7E-5 8.4E-6 1.6E-5

miRNA Regulatory Network 8.6E-4 3.3E-5 - 4.1E-6 - 3.1E-6

Kinase Phosphorylation Network - - 3.5E-4 - 2.2E-5 6.5E-5

Transcription Factor Regulatory Network 2.3E-2 - 3.5E-3 2.1E-4 4.4E-5 2.4E-4

Using estimated divergence time between species pairs (see Table S1), we calculate rewiring rates for multiple time divergence of each type of biological networks (see
Materials and Methods), and show a subset of results here. ‘Fitted 800’ column is the fitted rewiring rate from linear regression at 800 Mys divergence time (see Figure 2).
Network data is unavailable for rewiring rate calculation for blank cells. Rewiring rate is measured as rewiring per edge per Mys.
doi:10.1371/journal.pcbi.1001050.t001

Measuring Biological Network Evolutionary Rewiring
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direct comparisons among all kinds of biological and social

networks.

Network rewiring and gene content turnover
Rewiring of biological networks consist of two sources: edge

change between conserved nodes, and edge change from node

gain and loss. We observed that a large fraction and in many cases

the majority of network rewiring is attributed to the gain and loss

of nodes (see Table S3). In fact, gene content turnover of two

species contributes to the gain and loss of nodes in networks. Some

studies have suggested differential gene content turnover of gene

families, such as transcription factors and metabolic enzymes, in

completely sequenced genomes [40–42]. Therefore, it is important

to assess the impact of gene family evolution on the extent of their

respective network rewiring.

In order to examine whether the turnover of a specific set of

genes, such as kinases and TFs, have impact on their correspond-

ing network rewiring, we examined the gene content turnover of 3

GO categories using 3 species pairs (see Table 5). The 3 GO

categories (transcription factor activity, kinase activity, and

metabolic process) are selected to be compared with TF-target

regulatory network, kinase-substrate phosphorylation network,

and metabolic enzyme network, respectively. For the 3 categories

of proteins, we did not observe a clear pattern in which some

categories had faster turnover than others. This suggests that

differences in network rewiring across networks may not come

from the gene content turnover of corresponding GO category

proteins. The rewiring of networks should mostly reflect the

characteristic of biological relationships rather than specific GO

category molecules themselves.

It is also interesting to notice that even if the fungi S. cerevisiae and K.

lactis have the largest divergence of 150 Mys among three species

pairs, the gene content turnover is much less than the other two pairs.

This slow gene content turnover with a large species divergence

further supports the role of network rewiring during evolution.

Biological networks evolve in rates comparable to
protein sequences

Cellular molecules, as nodes in biological networks, are under

differentiated selection pressure, and therefore evolve at different

Table 2. Percentage of rewired edges of eukaryotic biological networks.

Species Pair

Estimated
Divergence
Time (Mys)

Metabolic
Pathway

Protein
Interaction

Genetic
Interaction

Metabolic
Enzyme

miRNA
Regulatory

Kinase
Phosphorylation

Transcription
Factor
Regulatory

S. cer, S. mik 10 0.015% - - - - - 43%

S. cer, S. bay 20 0.015% - - - - - 46%

H. sap, M. mul 25 0.013% - - 1.2% - - -

C. ele, C. bri 30 0.025% - - - 2.6% - -

H. sap, M. mus 75 0.006% - - 1.1% 0.25% - -

S. cer, K. lac 150 0.032% - - - - - 87%

S. cer, C. alb 270 0.11% - - - - 9.5% 95%

S. cer, S. pom 420 0.033% 0.37% 0.67% - - 9.2% -

D. mel, C. ele 600 - - - - - - 13%

H. sap, D. mel 800 0.033% 0.088% 1.04% 1.36% 0.32% - -

H. sap, C. ele 800 0.043% 0.088% 0.42% 1.36% 0.33% - -

S. cer, D. mel 1500 - - - - - - 6.5%

S. cer, H. sap 1500 0.056% 0.17% 0.6% 1.26% - 3.3% -

doi:10.1371/journal.pcbi.1001050.t002

Table 3. Consistency of species comparison cases of network rewiring.

TF regulatory
(T)

Kinase
phosphorylation (K)

Metabolic
enzyme (E)

Genetic
interaction (G)

miRNA
regulatory (M)

Protein
interaction (I)

Metabolic
pathway (P)

T

K T.K: 1/1

E - K.E: 1/1

G - K.G: 2/2 E.G: 3/3

M - - E.M: 3/3 G.M: 2/2

I - K.I: 2/2 E.I: 3/3 G.I: 4/4 M.I: 2/2

P T.P: 4/4 K.P: 3/3 E.P: 5/5 G.I: 4/4 M.P: 4/4 I.P: 4/4

The percentages of network rewiring calculated in Table 2 are compared for the extent of rewiring and summarized. ‘.’ denotes the argument of greater rewiring
extent of the column type of biological network over the row type. Network types are abbreviated using capital letters in rows. Only the lower triangle of this symmetric
table is filled. The ratio denotes the number of cases supporting the argument out of the total number cases compared. All arguments are supported with full
consistency of species pair comparisons.
doi:10.1371/journal.pcbi.1001050.t003
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rates. Genomic analyses from model organisms have shown the

spectrum of sequence conservation among types of genomic

annotations, in which protein coding exon sequences are the most

conserved, intron sequences are the least conserved, and

regulatory cis/trans elements are somewhere in between [43].

Proteins as the products of DNA coding sequences are generally

thought to be under great constraint. Another special product

from DNA sequences is ribosomal RNA, which is considered the

most conserved locus in the genome [44].

We asked whether the edge rewiring rates in biological networks

were in the range of node changes. Since there is no analogous

concept of ‘‘total possible edges between nodes’’ in sequence

comparisons, a naı̈ve sequence/network identity-based method

was used to measure the percentage change between two

sequences/networks for consistency (see Materials and Methods).

Here, only edge changes in networks are counted to compare with

nucleotide change in sequences. Sequence identity is calculated as

the percentage of the number of unchanged nucleotides or amino

acids in global alignment per length of the alignment. Similarly,

network identity is calculated as the percentage of the number of

unchanged edges out of total number of edges in two networks.

Then, the rate can be calculated as (1- percentage identity)/

(divergence time) for both sequence and network. This equates one

edge change with one nucleotide or amino acid change. We

realized this might not be the best, but a default to start with.

Using this definition, we observed that biological networks

evolve in a range comparable to that of protein sequences in both

species cases (see Figure 3). Transcription factor-target regulatory

networks, the fastest rewiring biological networks, were compara-

ble to the top 0.1% and 4% of the fastest evolving protein

sequences in Homo sapiens and Sacchromyces cerevisiae, respectively.

The slowest rewiring metabolic pathway network was comparable

to the bottom 23% and 36% of the slowest evolving protein

sequences. The density distribution of protein coding DNA

sequence rates had a similar peak position but a smaller standard

deviation than protein sequence rates, because an amino acid

change does not necessarily result from changes of all its three

codon positions. Therefore the evolutionary rate distinction

between protein coding sequences and biological networks became

more significant: with 0.5% and 4% of sequences slower than

metabolic pathway networks in human and yeast, respectively, and

0% and 4% of sequences faster than transcription factor-target

regulatory networks. The 18S rRNA sequences evolved slower

than all biological networks analyzed here: approximately 60%

rate of the slowest rewiring metabolic pathway network in human

and 1% of the rate in yeast.

Permanent protein interactions rewire slower than
transient interactions

Since rewiring rates are capable of distinguishing different

network types, we attempted to use rewiring rates to study

different subtypes of edges within protein interaction networks.

Relating protein 3-D structures to protein interaction networks

helped us to distinguish simultaneously possible (permanent)

interactions from mutually exclusive (transient) interactions [45].

The difference between the two types of interactions is whether an

interaction between two proteins has competition from a third

potential interacting protein for the same interacting site. It has

long been hypothesized that protein pairs of permanent interac-

tions tend to co-evolve during evolution [46]. The co-evolutionary

effect could help to maintain the stability of permanent

interactions.

Structural interaction networks (SINs) for both human and yeast

were constructed using updated and coherent datasets. Permanent

and transient interactions were identified through interacting site

regions in proteins and number of interacting partners for each

site. Conservation of permanent and transient interactions was

measured by their presence in another reference species network

(see Table 6). Significant conservation distinction was observed for

permanent and transient interactions in both yeast (p-val-

ue = 0.001) and human networks (p-value = 0.05) using Fisher’s

Exact Test. Stronger conservation of permanent protein interac-

Table 4. Rewiring rates of selected commonplace network.

Years of
Change

Rewiring Rate
(per edge per year)

Linux Kernel Design Network 2 1.7E-4

Family Tree 26 9.5E-4

Lab Co-authorship Network 3 2.9E-1

Rewiring rates are calculated using the same method as for biological networks
(see Materials and Methods). Notice that rewiring rate for social networks is
measured in per year unit, as compared to per Mys unit in biological networks.
doi:10.1371/journal.pcbi.1001050.t004

Table 5. Gene content turnover of 3 GO categories.

H. sapiens – M. musculus C. elegans – C. briggsae S. cerevisiae – K. lactis

Transcription factor Non-conserved proteins 1864 409 19

activity Total proteins 2785 781 235

Content turnover 67% 52% 8%

Kinase activity Non-conserved proteins 1977 423 7

Total proteins 2684 817 250

Content turnover 74% 52% 3%

Metabolic process Non-conserved proteins 3452 606 68

Total proteins 5227 1540 1172

Content turnover 66% 39% 6%

Proteins in H. sapiens, C. elegans and S. cerevisiae from 3 GO categories are identified from annotations. In the counter species (M. musculus, C. briggsae and K. lactis) their
orthologous counterparties are mapped. Gene content turnover for the species pair is measured as the number of non-conserved proteins over the total number of
proteins in the GO category.
doi:10.1371/journal.pcbi.1001050.t005

Measuring Biological Network Evolutionary Rewiring
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tions indicated that the interacting sites within two proteins were

more constrained to maintain the interaction via co-evolution of

interacting sites.

Paralogs rewire at a close pace in protein interaction
networks

The results above showed that the rewiring rate of network edges

reflects the biological nature of edge types. It is also plausible that

proteins with different characteristics might have different rewiring

rates than their network partners. Here, we used protein interaction

networks to investigate how protein paralogs behave during

evolution in terms of changing their interacting partners. We

collected all paralog pairs present in human and yeast interaction

networks and calculated the rewiring rate difference between each

pair (see Materials and Methods). The distribution of the rate

difference was then compared with a background distribution

calculated for all protein pairs in the networks (see Figure 4).

In both human and yeast networks, the paralog pairs had rate

difference distribution shifted to zero compared to background

(Wilcoxon test p-value,e215 in yeast, p-value = 0.004 in human).

The result suggested that paralog pairs tend to have a smaller

rewiring rate difference, demonstrating a closer evolutionary rate

of network change. In fact, as paralogs emerge from the event of

gene duplication in ancestral species, they share sequence

similarities [47]. Here, we showed that paralogs also shared

network similarities as the network rewiring rates of paralogs were

similar. After the gene duplication events which lead to their

formation in ancestral species, paralogs are likely to have similar

constraint on sequences and network partners due to their shorter

evolutionary history than random protein pairs.

Discussion

King and Wilson proposed [48] and Bourman et al. [1] then

demonstrated that fast changing regulatory relationships in

transcription factor-target networks could account for the species

differences, which could hardly be explained by the highly

conserved protein and DNA coding sequences. Following that

study, small- and large-scale evidence has been presented to

support the view that after the divergence of two species, fast

change in regulatory relationships may have a critical role in

speciation [2,7]. As we have shown above, transcription factor-

target regulatory networks and kinase-substrate phosphorylation

networks are two major types of regulatory networks that have the

fastest evolutionary changing rates among networks and protein

sequences, confirming the importance of regulation in species

evolution.

Assessing network data quality to rewiring rate
Unlike sequence data that one is essentially sure of every base,

network data either generated from experiments or computational

predictions are currently subject to high number of false positives

and false negatives. Because many distinct experimental ap-

proaches are used to generate network data, different biological

networks may have varied systematic bias during their construc-

tion. It is inevitable that our results might be subject to change

when new network data become available.

For each type of biological networks, we used consistent data

source and method to build networks for species, which ensures

the uniform definition of edges and facilitates comparison between

species.

Figure 3. Network rewiring rates is comparable to molecular sequence change. (A) Network rewiring evolution is compared to molecular
sequence evolution using H. sapiens and M. musculus data, and (B) using S. cerevisiae and S. mikatae data. Two density distributions of identity-based
evolutionary rate are shown as for protein sequences (black line) and protein coding DNA sequences (purple line). 18S rRNA rate (orange arrow),
transcription factor regulatory network rate (red arrow) and metabolic pathway network rate (blue arrow) are also shown for relative positions to
sequence rate distributions.
doi:10.1371/journal.pcbi.1001050.g003

Table 6. Permanent protein interactions rewires slower than
transient interactions.

Edge Type
Human
Permanent

Human
Transient

Yeast
Permanent

Yeast
Transient

Conserved 8 8 38 66

Non-Conserved 1088 2874 318 1106

Total 1096 2882 356 1172

We distinguish permanent and transient edges for protein physical interactions.
Fisher’s Exact Test is performed to test conservation difference between
permanent and transient edges, with P-value = 0.05 for human and P-value = 0.002
for yeast. Human network edges are compared to D. melanogaster for
conservation, and yeast S. cerevisiae network is compared to S. pombe.
doi:10.1371/journal.pcbi.1001050.t006
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Instead of trying to build high quality networks for all biological

networks in multiple species, which is difficult due to lack of gold-

standard positives and negatives, we applied a general method to

assess the influence of false positives and negatives to rewiring rate

calculation for all biological networks. Beltrao et al. have used a

sampling-based sensitivity analysis to assess the robustness of

rewiring rate relative to the amount of protein interaction data

used [33]. Here, we applied a similar method to six representative

types of biological networks used in this study. The effects of false

negatives and false positives are simulated by random sampling.

That is, we randomly add and remove a fraction of edges of the

two compared real networks, forming simulated ‘‘corrected’’

networks, and then calculate rewiring rates. A series of disruption

fractions of random edges are used to simulate false positive and

negative rates from low to high (see Figure S5, see Materials and

Methods).

Rewiring rates of most of the biological networks are robust to

network size change and disruption, especially when the disruption

fraction is lower than 50%. However, the rates of metabolic

pathway networks have shown clear deviations at large disruption

levels. The observed one order of magnitude difference between

metabolic pathway networks and protein interaction networks

(1025 for protein interaction network, 1026 for metabolic

pathway) disappears at approximately 70% disruption level. We

conclude from these results that the network rewiring rate is only

slightly affected by network size, and is especially robust at

sampling levels above 50%. The results of this study should still

hold when new network data arrives.

We also investigated the potential size effect of fungi TF-target

regulatory networks used in our study. These networks were

constructed using binding sites from ChIP-chip experiments of one

or two TFs, which results in relatively small networks. Besides the

simulated disruption described previously on these small networks,

edges were added to the S. cerevisiae network from another ChIP-

chip study between the existence nodes to generate a larger

network [49]. The same disruption analysis was performed on the

larger network. Rewiring rates calculated from the larger network

decreased about half order of magnitude than from the original

small network (see Figure S5). This is largely due to the increase of

total possible edge changes in our calculation. As a result, the

current subnetwork of TF-target regulatory network might lead to

a bias of faster rewiring rate.

A comprehensive simulation analysis was further performed to

assess the effects of both network size and network quality (see

Materials and Methods). Two simulated scale-free networks were

constructed with some common edges, and sub-samples of both

networks were taken for comparison. Random rewiring of both

sub-network were performed to mimic false positives and

negatives. Percentage of edge change (R/C) was calculated for

each sub-sampling fraction. As the size of the compared sub-

networks decreases, percentage of rewiring increases (see Table

S4). The upward bias of percentage of rewiring is approximately

one order of magnitude corresponding to 1% sub-sampling

fraction. Because the fungi TF regulatory network used in this

study is approximately 20–100 times smaller than the complete

networks estimated by the number of edges and the number of

TFs [49]. We thus estimated that the true rate of fungi TF

regulatory network could be half to one order of magnitude slower

than we calculated. Considering the above estimation of network

size effect on rewiring measurement, fungi TF regulatory network

should still rewire faster than or in a similar pace as kinase

phosphorylation network, and much faster than other types of

biological networks (see Table 1).

miRNA regulatory networks were constructed using a consistent

miRNA target prediction method [50]. In the current stage of

miRNA research, most miRNAs are found or predicted using

sequence conservation, and regulatory relationship is predicted

mainly by searching for complementary sequence in 39 UTRs

[9–11]. Therefore, the turnover of miRNAs is small with lack of

species-specific miRNAs and their corresponding targets. For

example, a total of 459 conserved miRNAs are present in the

networks comparing human and mouse. However, only 18 and 9

miRNAs are human-specific and mouse-specific, respectively. The

mere gene content turnover of only 6% for miRNAs is much less

than 67% and 74% for TFs and kinases (see Table 5). This

ascertainment bias could result in under-estimation of rewiring

rates.

To estimate the effect of novel miRNAs to our rewiring

measurements, we randomly added a series numbers of hypothet-

ical novel miRNAs to actual human and mouse miRNA

Figure 4. Rewiring rate difference of paralog pairs in protein interaction networks. (A) Boxplot of rewiring rate difference in yeast and (B)
human protein interaction networks between paralog pairs (blue) and between all node pairs as background (pink). Paralog pairs tend to have
smaller rewiring rate difference than expected.
doi:10.1371/journal.pcbi.1001050.g004
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regulatory networks. The targets of those hypothetical miRNAs

are also randomly selected with degree distribution maintained.

Rewiring rates calculated from these simulations showed that

discovering potential species-specific miRNAs could result in an

increase of rewiring rate (see Table S5). With the advance of

miRNA research from novel miRNA discovery to better target

prediction methods, it is possible that the current rewiring rates of

miRNA regulatory networks will be adjusted higher.

Rewiring rate calculation and sensitivity analysis
For all types of biological networks and simulated networks we

observe a negative linear relationship between rewiring rate and

divergence time (see Figure 2). Generally speaking, the average

rewiring rate calculated comparing distant species networks tends

to be smaller than the instantaneous rate comparing close species

networks. For networks from two distant species, overlap of their

nodes becomes smaller due to loss of conservation. As a result, the

total number of possible edges C increases and rewiring rate

decreases correspondingly. In conclusion, a larger difference

between node sets of two distant species networks might be the

main reason for this bias.

The major effect of node gain and loss on rewiring rate was

further confirmed by a sensitivity analysis based on network

rewiring simulation model (see Materials and Methods). Each of

four independent parameters in our model was tested for its

relative importance to model output—rewiring rate. Not surpris-

ingly, we found that some parameters are more significant to the

model than others. Removal of node has the strongest effect

(negative linear) on rewiring rate, because rewired edges associated

with a node are removed along with the node, which decreases the

total number of rewired edges. Adding node also has some effect

(positive linear) on rewiring rate, because of the increased number

of total rewired edges associated with the node. Nevertheless,

removing and adding edges have only small effects on rewiring

rate (see Figure S4). It is reasonable that removing and adding

nodes has a major influence on rewiring rate as it affects all edges

associated with nodes rather than individual edges.

It is also possible that there are ‘‘cores’’ for each type of

networks that slow down the rewiring process when it approaches

the cores. The cores are partial networks that are the most

constrained and conserved during evolution, possibly reflecting

their functional importance. Therefore, network types with a

smaller ratio of rewiring rate changes and divergence time (flat

lines) might have larger cores, because of greater resistance to

rewire the cores; while network types with a larger ratio (steep

lines) might have smaller cores (see Figure 2).

Collaborative networks and regulatory networks
Biological networks are characterized by their functional

relationships: protein binding, expression regulation, phosphory-

lation, etc. We introduce another way to categorize biological

networks into collaborative and regulatory networks by the

reversibility of edges to help understand rewiring rate distinction

among network types. Collaborative networks are the biological

networks with reversible edges—either the edges are undirected or

directed but reversible. By reversibility we mean that a reversed

edge is biologically possible between a pair of nodes. Regulatory

networks have irreversible edges: a reversed edge may not be

biologically possible. By this definition, transcription factor-target

regulatory networks, miRNA-target regulatory networks, and

kinase-substrate phosphorylation networks fall into the regulatory

network group; and protein interaction networks, genetic interac-

tion networks, and metabolic networks fall into the collaborative

network group.

Our network rewiring analysis shows that in general, regulatory

networks tend to rewire faster than collaborative networks (see

Table 1). Two of the regulatory networks, transcription factor-

target regulatory networks and kinase-substrate phosphorylation

networks, are the fastest rewiring biological networks in this study.

Transcriptional regulation of gene expression by transcription

factors is carried out by transcription factor binding to the

transcription start site commonly upstream of a gene. Recognition

of a binding site is often specific to a sequence pattern buried in the

site [51]. Post-translational modification of protein substrate by

kinases also involves recognition of sequence patterns in substrate’s

phosphorylation site [52]. Sequence pattern matching as a major

factor in establishing regulatory relationships could be an

important reason of fast rewiring. A single nucleotide/amino acid

change in the target’s binding-recognition sites, could lead to a

‘‘digital’’ recognition site change. Besides, a number of studies

have showed that both transposable element insertion and

genomic rearrangement led to considerable indel changes at

transcription factor binding sites [53–58]. The digital and indel

changes in binding-recognition sites greatly contribute to the large

turnover of transcription factor-target regulatory network.

Collaborative networks show slower rewiring rates than

regulatory networks. Contrary to ‘‘digital’’ or ‘‘indel’’ changes in

regulatory networks, changes tend to be ‘‘structurally continuous’’

in collaborative networks. Here, we generally refer to the globular

interactions which are the majority in physical interaction

networks. On the other hand, the general collaborative physical

interaction network in this study still includes interactions

mediated by kinases and domains such as SH3 which are in fact

regulatory relationships. In fact, protein functions gradually

change as sequence changes, and most proteins do not change

their functions radically with their sequences conserved. As a

natural implication of the sequence-function paradigm, it is not

surprising that collaborative protein networks rewire as protein

sequences evolve. In this study we include two representations of

metabolic networks. Metabolic enzyme networks are constructed

using enzymes as nodes and edges connect two nodes if the

product of one serves as the substrate of the other. The rewiring

rates of metabolic enzyme networks are similar to other

collaborative networks (see Table 2). On the other hand, metabolic

pathway networks that are constructed using chemical compounds

as nodes and reactions as edges rewire the slowest. For example,

the biosynthesis metabolic pathway of acetyl-CoA from pyruvate is

identical in human and yeast, but the corresponding metabolic

enzyme network rewires (see Figure S6). In fact, metabolic

reactions process chemical compounds into energy and nutrition,

and are mostly essential for living. Our results suggest that the

essentiality is partly reflected in the slower rewiring rate of

metabolic pathway networks than that of other types of biological

networks and protein sequences. Based on these results, we think

that enzymes for reactions are less constrained to change while the

underlying reactions remain highly conserved.

Network rewiring as an important aspect of cellular
system evolution

We now know that there are two layers of cellular evolution,

individual molecules and organizations of molecules. Therefore, it

is our ultimate goal to understand how individual molecule

changes affect cells and their organization and collaboration.

Some factors may also influence and shape the landscape of

biological networks (see Figure 5). It has been shown that external

environment can influence the conservation of regulatory

relationship and network motifs in prokaryotic transcription

factor-target networks [59,60]. Relationships tend to be conserved
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in organisms living in similar environmental niches, despite large

evolutionary distance. Whole-genome duplication events rapidly

reorganized transcription regulatory networks through the sur-

vived duplicates and their functional divergence afterwards [61–

65]. And the regulatory networks, in a feedback way, could affect

the survival of duplicated genes [66].

This study attempts to systematically investigate the evolution-

ary rate of all known types of biological networks in terms of

rewiring. According to our results, it is possible that small changes

of molecular sequences lead to large network re-organizations and

this augmentation effect makes small molecular changes more

detectable by natural selection. This is especially true for

regulatory networks with the greatest augmentation effects caused

by minor changes of regulators. If the above assumptions are true,

network rewiring should be an essential tool to understand the

differences between closely related species such as human and

chimpanzee, because their molecular sequences are nearly

identical. More importantly, intra-species network rewiring

variations will help at an individual level beyond SNPs and

structural variations.

Future directions of network rewiring analysis
In the future, we foresee additional calculations and analyses

that could be performed when accurate and more complete

network data becomes available for more species. Analogous to

sequence analysis, we can build species trees comparing biological

networks and infer branch lengths using rewiring rates. From this

study, we know that types of biological networks and molecular

sequences evolve at different rates, but it is still unclear whether

network rewiring ‘‘speeds up’’ in some species and ‘‘slows down’’

in others. We can use benchmark rates and develop comparative

ratios to measure this. This is actually quite similar to using dN/dS

ratio (non-synonymous changes versus synonymous changes) to

measure selection pressure on coding sequences. Building the tree

is important to understanding biological system evolution

compared to traditional molecular evolution.

Network hubs and bottlenecks are of general interest in

biological research due to their topological importance. Both

hub and bottleneck proteins in human and yeast protein

interaction networks tend to rewire their edges faster than non-

hub non-bottleneck proteins (see Figure S7). One reason for this is

that hubs with large degrees tend to have more rewired edges, and

therefore faster rewiring rates. Further detailed analysis is needed

to understand the rewiring rates of bottleneck proteins.

It is also interesting to look for rewiring ‘‘hotspots’’ and

‘‘coldspots’’ within biological networks. Subnetworks and motifs

that are enriched in fast or slow rewiring edges may have

biological function implications. Immune response, transport and

localization associated genes in human protein interaction

networks have been found to change interacting partners relatively

quickly [33]. The analysis could also be applied to other types of

biological networks.

Further network rewiring analysis will possibly investigate

factors affecting network rewiring (see Figure 5). These efforts

will greatly increase our understanding of cellular system

evolution, intra-species variation, and speciation.

Materials and Methods

Datasets of networks, sequences and homologs
For different types of biological networks, we gathered data

from multiple sources. Binary protein physical interaction

networks and genetic interaction networks were extracted from

BioGRID database v2.0.55 (http://thebiogrid.org/) for 5 species:

H. sapiens, C. elegans, D. melanogaster, S. pombe and S. cerevisiae [67].

Metabolic pathway networks of compound reactions were

obtained from KEGG database (http://www.genome.jp/kegg/)

for 16 species: H. sapiens, M. mulatta, M. musculus, C. elegans, C.

briggsae, D. melanogaster, D. pseudoobscura, S. pombe, D. hansenii, C.

albicans, K. lactis, C. glabrata, S. bayanus, S. mikatae, S. paradoxus and S.

cerevisiae [68]. Metabolic enzyme networks were constructed from

the pathway networks for 7 species: H. sapiens, M. mulatta, M.

musculus, C. elegans, D. melanogaster, D. hansenii, and S. cerevisiae, by

establishing directed edges from upstream reaction enzymes to

downstream reaction enzymes. miRNA-target regulatory networks

were constructed from miRBase (http://www.mirbase.org/)

predictions with edges pointing from miRNAs to target genes in

5 species: H. sapiens, M. musculus, D. rerio, C. elegans and D.

melanogaster [50]. Transcription factor-target regulatory networks

were extracted from various sources: S. cerevisiae, C. elegans and D.

melanogaster networks from large-scale ChIP-Chip and ChIP-Seq

experiments [3–5], C. albicans, K. lactis, S. bayanus, S. mikatae

networks from recent small-scale experiments [1,2]. Kinase-

substrate phosphorylation network for S. cerevisiae was obtained

from large-scale protein chip experiments [6]. Phosphorylation

networks of yeast species S. cerevisiae, C. albicans and S. pombe were

constructed in two steps. We first obtained phosphorylation sites

identified by MassSpec [7], and also obtained kinase binding

specificity data from kinase binding specificity experiments [69];

then used MOTIPS analysis pipeline to identify responsible

kinases for each phosphorylation site by matching position weight

matrices (PWMs) [70]. Structural Interaction Networks (SINs) for

H. sapiens and S. cerevisiae were constructed in a similar way as the

first version of yeast SIN [43], using protein domain interaction

data from iPfam database Release 20.0 (http://ipfam.sanger.ac.

uk/) [71].

For social co-authorship network, we parsed the co-author lists

of 2009 Nobel Prize Winner Thomas A. Steitz’s 2009 and 2006

publications from PubMed (http://www.ncbi.nlm.nih.gov/

pubmed/) [69], and constructed co-authorship networks for Dr.

Steitz. For social family tree network, we obtained data from a

typical family with its trees in 1983 and 2009 (see Figure S3).

Edges in family trees stand for either marriage or child/parent

relationship. Linux kernel design networks are obtained for 3

versions, v2.6.4, v2.6.15 and v2.6.27. From v2.6.4 to v2.6.15 and

from v2.6.15 to v2.6.24, the time separations are around 2 years

and 2.5 years, respectively [72]. One edge in Linux kernel design

networks represents one function calling or using another function.

Protein sequences and protein coding DNA sequences for H.

sapiens, M. musculus and S. cerevisiae were downloaded from BioMart

database (http://www.biomart.org/) [73], and from SGD (http://

Figure 5. Factors shaping network rewiring.
doi:10.1371/journal.pcbi.1001050.g005
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www.yeastgenome.org/) for S. mikatae. 18S ribosome RNA

sequences for all 4 species were extracted from Entrez database

(http://www.ncbi.nlm.nih.gov/Entrez/) [74]. Orthologous se-

quences in H. sapiens-M. musculus and S. cerevisiae-S. mikatae pairs

were then aligned using MUSCLE software v4.0 (http://www.

drive5.com/muscle/) [75] for calculations of sequence identity.

Sequence orthology for non-fungi species pairs used in this

study was downloaded from InParanoid database v7.0 (http://

inparanoid.sbc.su.se/cgi-bin/index.cgi) [76]. Orthology for fungi

species pairs was obtained from Fungal Orthogroups Repository

v1.1 (http://www.broadinstitute.org/regev/orthogroups/) [77].

Paralog pairs in H. sapiens and S. cerevisiae were extracted from

HomoloGene database Release 64 (http://www.ncbi.nlm.nih.

gov/homologene) [74].

Calculating network rewiring rates
We used a consistent method to calculate rewiring rates

comparing two networks for all network types. First, orthology

relationships between nodes from the same network type in two

species were established. Second, three sets of nodes were

distinguished. Common Node (CN) set includes nodes having

orthologous counterparts present in both networks. Loss Node

(LN) set includes nodes present in the reference network but absent

of orthologous counterparts in the compared network. And Gain

Node (GN) set includes nodes present in the compared network

but not having orthologous counterparts present in the reference

network. Third, we counted the total number of rewired edges (R)

between two networks. Rewired edges between two networks were

defined as the union of edges between pairs of CNs that only

present in one network and all edges involving LNs and GNs.

Fourth, we counted the total number of possible edges (C) in the

two networks. This was basically the number of non-redundant

edges if two networks are both fully connected. Finally, the

following equation was used to calculate the rewiring rate for a

pair of networks:

Rewiring rate~
R

C|Time divergence

The time divergence is either estimated evolutionary divergence

time (in Mys) between two species in biological networks or passed

period of time (in years, and then coerced to Mys) in commonplace

networks (see Table S1). Thus, the rewiring rate was measured as

the number of rewired edges per edge per Mys. It can be

interpreted as the averaged fraction of rewired edges among all

possible edges in a period of one million years.

However, total number of possible edges was calculated

differently among network types. Calculation for collaborative

networks, including social networks, is simpler because their edges

are reversible (see Figure S1):

Collaborative network C~

CNs| CNs{1ð ÞzGNs| GNs{1ð ÞzLNs| LNs{1ð Þ
2

zCNs| GNszLNsð Þ

Note that here we did not allow self interactions and only allowed

one edge between two nodes. For metabolic networks that allow

two reciprocal edges between two nodes (for directional reactions),

we just multiplied the above calculated result by 2. For regulatory

networks involving irreversible edges, we further separated nodes

into regulators (Regs) and targets (Tars) and only allowed edges

from Regs to Tars, but not from Tars back to Regs. In addition,

regulators in transcription factor-target regulatory network and

kinase-substrate phosphorylation network could themselves be

targets of other regulators, but not in miRNA-target regulatory

network. Considering all these factors (see Figure S1),

TF or Kinase network C~

Reg CNs| Reg CNs-1ð ÞzReg GNs| Reg GNs-1ð ÞzReg LNs| Reg LNs-1ð Þ
2

zReg CNs|Tar CNszReg GNs|Tar GNszReg LNs|Tar LNs

zReg CNs| Tar GNszTar LNsð ÞzTar CNs| Reg GNszReg LNsð Þ

and

microRNA network C~

Reg CNs|Tar CNszReg GNs|Tar GNszReg LNs|Tar LNsz

Reg CNs| Tar GNszTar LNsð ÞzTar CNs| Reg GNszReg LNsð Þ

Correlation between rewiring rate and divergence time
Rewiring rates and their corresponding estimated divergence

times were plotted on Log-Log scale and then fitted with linear

regression model. Using species pairs with divergence time of t

Mys, the rewiring rates, r, was then regressed for each type of

biological networks (see Table S2).

Calculating evolutionary rates in network and sequence
comparisons

The rewiring rate calculation described above was not directly

comparable to sequence evolution rate calculation, as there is no

equivalent to the ‘total number of possible edges’ as in networks.

Therefore, we used identity-based evolutionary rate measures

instead to compare networks and sequences as:

Sequence identity (%)~

Number of unchanged nucleotide=amino acid positions in the alignment

Total length of sequence alignment

|100%

Network identity (%)~

Number of common edges between orthologous nodes present in both networks

Total number of edges in two networks

|100%

The evolutionary rate calculated based on identity was:

Identity based evolutionary rate~
1-Identity(%)

Time divergence

Calculating rewiring rate difference for paralog pairs in
protein interaction networks

Rewiring rates for all individual nodes were calculated for H.

sapiens and S. cerevisiae protein interaction networks by comparing

them to D. melanogaster and S. pombe networks, respectively.

Number of rewired edges for each node was counted as the

number of gained or lost edges involving this node. This number

was then divided by network size and by divergence time to get

rewiring rate for a node. Network size is difference for CNs, GNs

and LNs. For CNs, network size is the sum of the number of CNs,

GNs and LNs from the two networks; for GNs, network size is the
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sum of CNs and GNs; and for LNs, network size is the sum of CNs

and LNs. Rewiring rate difference was then calculated for all node

pairs including all paralog pairs.

Simulation model of network rewiring
The model had four parameters: probabilities of adding a node

(adding one edge with that node using preferentially attachment),

removing a node (randomly for all existing nodes and all edges

with that node), adding an edge (using preferentially attachment)

and removing an edge (randomly for all existing edges).

Preferential attachment mechanism maintains the scale-free

topology of networks. To begin with, a small scale-free network

was used as a seed to the model. For each rewiring step, nodes and

edges were added/removed according to the probability param-

eters, and the resulting network was recorded for the next step.

For the relationship analysis of rewiring rate and rewiring steps,

two independent rewiring branches were simulated with each 1000

steps (see Figure S2). The networks from the two branches were

compared after every 50 steps and rewiring rate was calculated.

For parameter sensitivity analysis, 200 parameter-set samples

were generated, with the four probability parameters randomly

generated from a uniform distribution on the interval [0,1]. The

same seed network was used for all 200 simulations using the 200

random parameter-sets. All simulations were stopped after 100

steps and rewiring rate was calculated corresponding to each of the

200 parameter-sets.

Simulation of network size, false positive and false
negative rates

Two simulated scale-free networks were built with some

common edges for comparison. The pair of networks were sub-

sampled of their edges to a series of fractions, from 95% to 1%. To

assess the amount of false positives and false negatives in network

data to rewiring rate calculation, we further perturbed the

compared network pair (either real biological networks or

simulated networks) by randomly adding and removing edges on

both networks. Edges were added using preferential attachment. A

series of perturbation percentages were used to simulate levels of

false positive and negative rates.

Supporting Information

Figure S1 Schematic of total number of possible edges

calculation in rewiring rate. (A) For collaborative networks

including protein interaction network, genetic interaction network

and metabolic networks. Solid circles represent sets of nodes, as

common nodes (CN), gain nodes (GN) and loss nodes (LN); dashed

circles conceptually represent individual networks. Lines represent

complete number of undirected edges between node sets, with

each corresponding to a term in total number of possible edges

summation. (B) For TF target regulatory network and kinase-

substrate phosphorylation network. TFs or kinases are shown as

regulators (Reg), and TF target genes or substrates as targets (Tar).

Arrows represent complete number of directed edges between

node sets. (C) For miRNA target regulatory network. miRNAs are

shown as regulators (Reg) and their target genes as targets (Tar).

Found at: doi:10.1371/journal.pcbi.1001050.s001 (0.24 MB TIF)

Figure S2 Simulation of network rewiring and rewiring rate

calculation. Simulation of network rewiring started from a seed

network, and had two independent branches of simulation. Each

branch had 1000 rewiring steps, and snapshots of rewired

networks were taken every 50 steps. For each rewiring step, the

starting network was rewired to generate the next network

according to the same parameter set. Rewiring rate was calculated

comparing two independently rewired networks from two

branches with the same number of steps, e.g. 50, 100, 150, 200

and all the way to 1000. This simulated rewiring rate calculation

comparing species of different time divergence.

Found at: doi:10.1371/journal.pcbi.1001050.s002 (0.05 MB TIF)

Figure S3 Visualization of types of social networks. (A) A typical

family tree in 1983 (red edges) and in 2009 (blue edges), with

unchanged nodes aligned. (B) Dr. Steitz Lab co-authorship

network in 2006 (red edges) and in 2009 (blue edges).

Found at: doi:10.1371/journal.pcbi.1001050.s003 (0.23 MB TIF)

Figure S4 Sensitivity analysis of four network rewiring param-

eters to rewiring rate. Four parameters in our rewiring simulation

model - probabilities of adding a node, removing a node, adding

an edge and removing an edge, are analyzed for their importance

to calculated network rewiring rate. Removing node probability

has the greatest negative effect on rewiring rate calculation.

Found at: doi:10.1371/journal.pcbi.1001050.s004 (0.10 MB TIF)

Figure S5 Sensitivity analysis of false positive and false negative

rates to rewiring rate. We sampled biological networks in order to

test the false positive and false negative rates to rewiring rate

calculation. Six biological networks are included here: protein

interaction network, genetic interaction network, miRNA-target

regulatory network, kinase-substrate phosphorylation network,

metabolic pathway network (S. cerevisiae compared to S. pombe) and

transcription factor target regulatory network (S. cerevisiae com-

pared to S. bayanus). For each type of network, we randomly delete

and add edges from the original network as a simulation of false

positives and false negatives, with each a series of percentage

disruptions. For transcription factor target regulatory network, we

also tested rewiring rate sensitivity to network size by using a larger

original network for S. cerevisiae.

Found at: doi:10.1371/journal.pcbi.1001050.s005 (0.11 MB TIF)

Figure S6 Example rewiring of metabolic pathway network and

metabolic enzyme network. (A) The biosynthesis pathway of

acetyl-CoA from pyruvate showing metabolites (circles) and

reactions (arrows). The pathway is identical in human and yeast.

(B) The corresponding metabolic enzyme networks in yeast and

human showing enzymes (rectangles) and product-substrate

relationships (arrows). Each enzyme corresponds to a reaction in

(A). Purple rectangles represent orthologous enzymes from two

species, while green rectangles represent non-orthologous en-

zymes. The dashed circle shows one yeast enzyme coded by

YER178W catalyzes two consecutive reactions, but different

enzymes catalyze each reaction in human.

Found at: doi:10.1371/journal.pcbi.1001050.s006 (0.19 MB TIF)

Figure S7 Rewiring rate of hubs and bottlenecks in protein

interaction networks. Rewiring rates are calculated for all proteins

in (A) human and (B) yeast protein interaction networks. Hubs are

defined as top 20% proteins ranked by their degree, and

bottlenecks as top 20% ranked by betweenness. Proteins are

grouped into 4 categories: Bottleneck hubs (BH), Non-bottleneck

hubs (NB-H), Non-hub bottlenecks (NH-B) and Non-hub non-

bottlenecks (NH-NB). Either hubs or bottlenecks are found to have

faster rewiring rates than NH-NBs (Wilcoxon p-val,e-15).

Found at: doi:10.1371/journal.pcbi.1001050.s007 (0.09 MB TIF)

Table S1 Estimated divergence times between species pairs. All

species pairs used in this study for calculating rewiring rates

comparing species networks are listed with estimated divergence

time in evolution. The types of networks used for each of these

species pairs are also listed.
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Found at: doi:10.1371/journal.pcbi.1001050.s008 (0.04 MB

DOC)

Table S2 Linear regression models of biological network

rewiring rate and divergence time. For each type of biological

network, rewiring rates (r) from different species pairs are regressed

with divergence time (t), both in Log scale. Pearson correlation

coefficient is also calculated.

Found at: doi:10.1371/journal.pcbi.1001050.s009 (0.04 MB

DOC)

Table S3 Detailed rewiring rates for networks and species pairs.

Detailed information of rewiring rate results for all networks and

species-pairs studied. Numbers of common nodes, gain nodes and

loss nodes are provided. Four types of rewired edges (gain edge

between common nodes, loss edge between common nodes, gain

edge involving gain/loss nodes, loss edge involving gain/loss

nodes) are also distinguished for separate rewiring rates. Note for

biological networks, rewiring rates are measured by per edge per

Mys, while for commonplace networks by per edge per year.

Found at: doi:10.1371/journal.pcbi.1001050.s010 (0.17 MB

DOC)

Table S4 Simulation of network size, false positives, and false

negatives to rewiring rate. Based on two simulated scale-free

networks, sub-networks are sampled to mimic the fact that data of

many biological networks used in this study are not complete, such

as the fungi TF regulatory networks. Extra random rewiring by

adding and removing edges and nodes is performed to mimic the

false positives and negatives in the current network data.

Percentage of network rewiring is then calculated to assess the

effects of those perturbations.

Found at: doi:10.1371/journal.pcbi.1001050.s011 (0.05 MB

DOC)

Table S5 Simulation analysis of the effect of novel miRNAs to

miRNA regulatory network. Based on current miRNA regulatory

networks for human and mouse, simulated novel miRNAs are

added to both networks with their target randomly sampled, while

maintaining the power-law distribution of target number distri-

bution. Statistics are calculated comparing the simulated networks.

Found at: doi:10.1371/journal.pcbi.1001050.s012 (0.04 MB

DOC)
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