
8

Measuring the Impact of

Alternative Parallel Process Architectures

on Communication Subsystem Performance

Douglas C. Schmidt and Tatsuya Suda

schmidt@ics.uci.edu and suda@ics.uci.edu

Department of Information and Computer Science

University of California, Irvine, California 92717*

Abstract

A communication subsystem consists of protocol functions and operating system mechanisms that

support the implementation and execution of protocol stacks. To effectively parallelize a communi

cation subsystem, careful consideration must be given to the process architecture used to structure

multiple processing elements. A process architecture binds one or more processing elements with the

protocol tasks and messages associated with protocol stacks in a communication subsystem. This

paper outlines the two fundamental types of process architectures (task-based and message-based)

and describes performance experiments conducted on three representative examples of these two

types of process architectures - Layer Parallelism, which is a task-based process architecture, and

Message-Parallelism and Connectional Parallelism, which are message-based process architectures.

These experiments measure the impact of the process architecture on connectionless and connection

oriented protocol stacks (based upon UDP and TCP) in a shared-memory multi-processor operating

system. The results from these experiments indicate that the chaice of process architecture signifi

cantly affects communication subsystem performance.

1 Introduction

Advances in VLSI and fiber optic technology are shifting performance bottlenecks from the under

lying networks to the communication subsystem. A communication subsystem consists of protocol

functions (such as connection management, end-to-end flow control, remote context management,

segmentation/reassembly, demultiplexing, message buffering, error protection, session control, and

*This research is supported in part by grants from the University of California MICRO program, Hughes Aircraft,

Nippon Steel Information and Communication Systems Inc. (ENICOM), Hitachi Ltd., Hitachi America, and Tokyo

Electric Power Company.

G. Neufield et al. (eds.), Protocols for High Speed Networks IV

© Springer Science+Business Media Dordrecht 1995

124 Part Four Parallel Implementations and Error Handling

presentation conversions) and operating system mechanisms (such as process management, asyn

chronous event invocation, message buffering, and layer-to-layer flow control) that support the im

plementation and execution of communication protocol stacks composed of protocol functions.

Executing protocol functions and OS mechanisms in parallel on multi-processor platforms is a

promising technique for increasing protocol processing rates and reducing latency. To significantly

increase communication subsystem performance on shared memory multi-processor platforms, how

ever, the speed-up obtained from parallelism must outweight the context switching and synchroniza

tion overhead associated with parallel processing. A context switch is triggered when an executing

process relinquishes its associated processing element (PE) voluntarily or involuntarily. Depending

on the underlying OS and hardware platform, performing a context switch may involve dozens to hun

dreds of instructions to flush register windows, memory caches, instruction pipelines, and translation

look-aside buffers. Synchronization overhead arises from locking mechanisms that serialize access to

shared objects (such as messages, message queues, protocol connection records, and demultiplexing

tables) used when processing protocols in parallel.

A number of process architectures have been proposed as the basis for parallelizing communica

tion subsystems [1, 2, 3, 4]. There are two fundamental types of process architectures: task-based

and message-based. Task-based process architectures are formed by binding one or more PEs to

units of protocol functionality (such as presentation layer formatting or transport layer segmenta

tion/reassembly, acknowledgment processing, end-to-end flow control, and retransmission timer pro

cessing). In a task-based process architecture, parallelism is achieved by executing protocol tasks in

separate PEs and passing data messages and control messages between the tasks/PEs. In contrast,

message-based process architectures are formed by binding the PEs to data messages and control

messages received from applications and network interfaces. In a message-based process architec

ture, parallelism is achieved by escorting multiple data messages and control messages on separate

PEs through a stack of protocol tasks.

Protocol suites (such as the Internet and ISO OSI reference models) may be implemented using

either task -based or message-based process architectures. However, these two types of process archi

tectures exhibit significantly different performance characteristics that are affected by the underlying

operating system and hardware platform. For instance, on shared memory multi-processor platforms,

task-based process architectures often result in high data movement and context switching overhead

[5]. Likewise, in a message-passing transputer multi-processor environment, message-based process

architectures typically result in high levels of synchronization overhead [2].

Existing research has generally selected a single type of process architecture (either task-based

or message-based) and studied it in isolation. Moreover, since different studies have been performed

on different OS and hardware platforms, using different protocols and implementation techniques,

it is difficult to compare the results obtained from these studies in a controlled manner. This paper

describes results obtained from systematic comparisons of the performance impact of task-based and

message-based process architectures. These results were obtained using an object-oriented frame

work that facilitates controlled experiments with alternative process architectures on shared memory

multi-processor platforms [6]. The framework controls for a number of key confounding factors (such

as protocol functionality, concurrency control schemes, and application traffic characteristics) in or

der to precisely measure the performance impact of different process architectures for parallelizing

Alternative parallal process architecture and communication subsystem performance 125

(1) PROCESS ARCHITECTURE

COMPO ENTS

(2) T K·BA ED

PROCESS ARCHITECTURE

-ll<th-.:

ll<tl ..
1

~ ~ ~ ~
(3) MESSAGE· BA ED

PROCESS ARCI:OTECTURE

Figure 1: Basic Process Architecture Components and Interrelationships

communication protocol stacks.

Ill
MF.SSACE

~
•• INC

EU:MF.NT

0
PROTOCOL

TASK

This paper is organized as follows: Section 2 outlines the fundamental types of process archi

tectures and compares related work accordingly; Section 3 describes the design and implementation

of the protocol stacks and process architectures used in the experiments reported in Section 4; and

Section 5 presents concluding remarks.

2 Alternative Process Architectures

Figure 1 (1) illustrates the basic elements that form the foundation of a process architecture:

• Control messages and data messages - which are sent and received from one or more applica

tions and network devices

• Protocol processing tasks- which are the units of protocol functionality that process the control

messages and data messages

• Processing elements (PEs)- which execute protocol tasks

There are two fundamental types of process architectures (task-based and message-based) that struc

ture these basic elements differently. Task-based process architectures bind one or more PEs to proto

col processing tasks. In this architecture, tasks are the active elements, whereas messages processed

by the tasks are the passive elements (shown in Figure 1 (2)). Conversely, message-based process

architectures bind the PEs to the control messages and data messages received from applications and

network interfaces. In this architecture, messages are the active elements and tasks are the passive

elements (shown in Figure 1 (3)).

The remainder of this section briefly examines several alternative process architectures in each

category.

126 Part Four Parallel Implementations and Error Handling

2.1 Task-based Process Architectures

Task-based process architectures associate processes' with clusters of one or more protocol tasks.

Two representative examples of task-based process architectures are the Layer Parallelism and Func

tional Parallelism process architectures. The primary difference between these two process architec

tures involves the granularity of the protocol processing tasks. Layers are more "coarse-grained" than

functions since they cluster multiple protocol tasks together to form a composite service (such as the

end-to-end transport service provided by the OSI transport layer).

Layer Parallelism associates a separate process with each layer (e.g., the presentation, transport,

and network layers) in a protocol stack. Certain protocol header and data fields in the outgoing and

incoming messages may be processed in parallel as they flow through a pipeline of protocol stack

layers. Buffering and flow control are generally necessary since processing activities in each layer

may execute at different rates.

Functional Parallelism associates a separate process with each protocol function (such as header

composition, acknowledgement, retransmission, segmentation, reassembly, and routing). These pro

tocol functions execute in parallel and communicate by passing control messages and data messages

to each other.

In general, implementing pipelined task-based process architectures is relatively straightforward.

Task-based process architectures map directly onto conventional layered communication models us

ing well-structured "producer/consumer" designs. Moreover, minimal synchronization mechanisms

are necessary within a layer or function since parallel processing is typically serialized at a service ac

cess point (such as the transport layer or application layer interface). However, as shown in Section 4,

task-based process architectures are susceptible to high context switching overhead on shared mem

ory platforms. This problem is exacerbated when the number of protocol tasks exceeds the number

of PEs, due to the context switching performed when transferring messages between protocol tasks.

2.2 Message-based Process Architectures

Message-based process architectures associate processes with messages rather than protocol layers or

functions. Two common examples of message-based process architectures are Connectional Paral

lelism and Message Parallelism. The primary difference between these approaches involves the gran

ularity at which messages are demultiplexed onto processes. Connectional Parallelism demultiplexes

all messages bound for the same connection onto the same process, whereas Message Parallelism

demultiplexes messages onto any available process.

Connectional Parallelism uses a separate process to handle the messages associated with each open

connection. Within a connection, a series of protocol processing tasks are invoked sequentially on

each message as it flows through a protocol stack. Outgoing messages generally borrow the thread

of control from the application process and use it to escort messages down a protocol stack. For

1 In this paper, the term "process" is used to refer to a series of instructions executing within an address space; this

address space may be shared with other processes. Different terminology (such as lightweight processes [6] or threads

[7]) has also been used to denote the same basic concepts. Our use of the term process is consistent with the definition

adopted in [8].

Alternative parallal process architecture and communication subsystem peiformance 127

incoming messages, a network interface or packet filter typically performs demultiplexing operations

to determine the correct process for each message.

Message Parallelism associates a separate process with every incoming or outgoing message. A

process receives a message from an application or network interface and escorts the message through

the protocol processing tasks in the protocol stack. As with Connectional Parallelism, outgoing mes

sages generally borrow the thread of control from the application that initiated the message transfer.

In general, a large degree of potential parallelism exists with the message-based process architec

tures. The degree of parallelism depends on characteristics that change dynamically (such as mes

sages or connections), rather than on the relatively static characteristics (such as the number of layers

or protocol functions) that are associated with task-based process architectures. Depending on other

communication subsystem characteristics (such as memory and bus bandwidth), this dynamism may

enable message-based process architectures to effectively use a larger number of PEs.

2.3 Related Work

A number of studies have investigated the performance characteristics of task-based process archi

tectures developed to run on either message passing or shared memory platforms. [5] measures the

impact of several implementations of the transport and session layers in the OSI reference model using

an ADA-like rendezvous-style of Layer Parallelism in a nonuniform access shared memory environ

ment. [9] measures the performance of a Functional Parallelism process architecture for presentation

layer and transport layer functionality on a shared memory multi-processor. [10] measures the per

formance of a de-layered, function-oriented transport system [11] using Functional Parallelism on a

message passing transputer multi-processor platform. An earlier study [2] measured the performance

of the OSI transport layer and network layer in a similar transputer environment. [12] also uses a

multi-processor transputer platform to measure the performance of several data-link layer protocols.

Other studies have investigated message-based process architectures. All these studies utilize

shared memory platfonns. [13] measured the performance of the TCP, UDP, and IP protocols using a

Message Parallelism process architecture on a uniprocessor platform running the x-kemel. [1] mea

sures the impact of synchronization on Message Parallelism implementations of TCP and UDP trans

port protocols built within a multi-processor version of the x-kernel. [8] measures the performance

of the Nonet transport protocol on a multi-processor version of Plan 9 STREAMS developed using

Message Parallelism. [3] measures the performance of the OSI protocol stack, focusing primarily on

the presentation and transport layers using Message Parallelism. [14] measures the performance of

the TCPIIP protocol stack using Connectional Parallelism in a multi-processor version of System V

STREAMS.

The work presented in this paper extends existing work by measuring a number of task-based

and message-based process architectures in a controlled environment. Our experiments consider

the impact of both synchronization and context switching overhead. In addition to measuring data

link, network, and transport layer performance, our experiments also investigate presentation layer

performance. The presentation layer is widely considered to be one of the primary bottlenecks in

high-performance communication subsystems.

128 Part Four Parallel Implementations and Error Handling

TREAM
Head -MESSAGE

OIIJl!CT

MODIJI.Il

08JECT

WRITE READ

QUEUE Q EUE

08JECT 08JECT

Figure 2: Components in the ADAPTIVE Service eXecutive Framework

3 Structure of the Experiments

This section describes the object-oriented framework, communication protocols, and process archi

tectures we developed and used in the performance experiments reported in Section 4.

3.1 The ADAPTIVE Service eXecutive Framework

The communication protocols and process architectures in this study were developed using com

ponents provided by the ADAPTIVE Server eXecutive (ASX) framework [15]. The ASX framework

is an integrated set of object-oriented components that facilitate experimentation with task-based and
message-based process architectures on shared memory multi-processor platforms.

Components in the ASX are responsible for coordinating one or more Streams. A Stream is an
object used to configure and execute protocol-specific functionality in the ASX framework run-time

environment. As illustrated in Figure 2, a Stream contains a series of inter-connected Modules that

may be linked together by developers at installation-time or by applications at run-time. Modules

are objects that developers use to decompose the architecture of a protocol stack into a series of inter
connected, functionally distinct layers. Each layer implements a cluster of related protocol-specific

functions (such as an end-to-end transport service, a presentation layer formatting service, or a real

time PBX signal routing service). Every Module contains a pair of Queue objects that partition a

layer into its constituent read-side and write-side protocol-specific processing functionality.

Alternative parallal process architecture and communication subsystem peiformance 129

Any layer that performs multiplexing and demultiplexing of message objects between related

Streams may be developed using a Multiplexor object. A Multiplexor is a C++ template

based container class that provides mechanisms to route messages between Modules in a collection

of related Streams. A complete Stream is represented as an inter-connected series of Module objects

that communicate by exchanging messages with adjacent objects. Modules and Multiplexors

may be joined together in essentially arbitrary configurations in order to satisfy application require

ments and enhance component reuse.

The ASX framework employs a number of object-oriented design techniques (such as design pat

terns [16] and hierarchical decomposition) and C++ language features (such as inheritance, dynamic

binding, and parameterized types). These design techniques and language features enable devel

opers to incorporate protocol-specific functionality into a Stream without modifying the protocol

independent framework components. For example, incorporating a new level of protocol functional

ity into a Stream at installation-time or at run-time involves the following steps:

I. Inheriting from the Queue interface and selectively overriding several methods (described

below) in the Queue subclass to implement protocol-specific functionality

2. Allocating a new Module that contains two instances (one for the read-side and one for the

write-side) of the protocol-specific Queue subclass

3. Inserting the Module into a Stream object at the appropriate level (e.g., the transport layer,

network layer, data-link layer, etc.)

The ASX framework incorporates concepts from several other modular communication frame

works including System V STREAMS [17], the x-kemel [13], and the Conduit [18] (a survey of these

and other communication frameworks appears in [19]). These frameworks all contain features that

support the flexible configuration of communication subsystems by inter-connecting building-block

protocol components. These frameworks encourage the development of standard reusable protocol

components by decoupling protocol-specific processing functionality from the surrounding frame

work infrastructure. In addition to supplying building-block protocol and service components, the

ASX framework also extends the existing communication frameworks by providing additional com

ponents that decouple protocol functionality from the following configuration decisions:

• The type of locking mechanisms used to synchronize access to shared objects

• The use of message-based and task-based process architectures

• The use of kernel-level vs. user-level execution agents

3.2 Communication Protocols

Two types of protocol stacks are used in the experiments. One protocol stack is based on the connec

tionless UDP transport protocol. The other protocol stack is based on the connection-oriented TCP

transport protocol. The protocol stacks contain the data-link, network, transport, and presentation

layers. The presentation layer is included in the experiments since it represents a major bottleneck in

high-performance communication subsystems, due primarily to the large amount of data movement

overhead it often incurs.

130 Part Four Parallel Implementations and Error Handling

Both the connectionless and connection-oriented protocol stacks were developed by specializing

reusable components in the ASX framework via inheritance and parameterized types. Inheritance and

parameterized types are used to hold the protocol functionality constant while systematically varying

the process architecture. Each layer in a protocol stack is implemented as a Module whose read

side and write-side both inherit interfaces and implementations from the Queue class described in

[15]. The necessary synchronization and demultiplexing mechanisms are parameterized using C++

template arguments that are instantiated based on the type of process architecture being tested.

Data-link layer processing in each protocol stack is performed by the DLP Module. This Module

transforms network packets received from a network interface into the canonical message format used

internally by the Stream components.2 The network and transport layer components of the protocol

stacks are based on the IP, UDP, and TCP implementation in the BSD 4.3 Reno release. The 4.3 Reno

TCP implementation contains the TCP header prediction enhancements, as well as the slow start al

gorithm and congestion avoidance features. The UDP and TCP transport protocols are configured

into the ASX framework via the UDP and TCP Modules. Network layer processing is performed by

the IP Module. This Module performs routing and segmentation/reassembly of Internet Protocol

(IP) packets.

Presentation layer functionality is implemented in the XDR Module using marshalling routines

produced by the ONC eXternal Data Representation (XDR) stub generator (rpcgen). The ONC

XDR stub generator automatically translates a set of type specifications into marshalling routines.

These routines encode/decode implicitly-typed messages before/after they are exchanged among hosts

that may possess heterogeneous processor byte-orders. The ONC presentation layer conversion mech

anisms consist of a type specification language (XDR) and a set of library routines that implement

the appropriate encoding and decoding rules for built-in integral types (e.g., char, short, int, and long)

and real types (e.g., float and double). In addition, these library routines may be combined to produce

marshalling routines for arbitrary user-defined composite types (such as record/structures, unions, ar

rays, and pointers). Messages exchanged via XDR are implicitly-typed, which improves marshalling

performance at the expense of run-time flexibility. The XDR functions selected for both the connec

tionless and connection-oriented protocol stacks convert incoming and outgoing messages into and

from variable-sized arrays of structures containing both integral and real values. This conversion

processing involves byte-order conversions, as well as dynamic memory allocation and deallocation.

3.3 Process Architectures

The remainder of this section outlines the structure of connectionless and connection-oriented proto

col stacks developed using task-based and message-based process architectures.

3.3.1 Structure of the Task-based Process Architecture

2Preliminary tests using the widely-available t tcp benchmarking tool indicated that the PE, bus, and memory per

formance of the Sun OS multi-processor platform used in the experiments was capable of processing messages through

the protocol stack at a much faster rate than the I 0 Mbps Ethernet network interface was capable of handling. Therefore,

for our process architecture experiments, the network interface was simulated with a single-copy pseudo-device driver

operating in loop-back mode.

Alterruuive parallal process architecture and communication subsystem performance 131

Figure 3: Layer Parallelism

0
MODUU!
OBJECT

.--------,
I I
I I

'--------1
PROCESS

OR lliREAD

• MESSAGE
OBJECT

• Layer Parallelism: Figure 3 illustrates the ASX framework components that implement a Layer

Parallelism process architecture for the TCP-based connection-oriented and UDP-based connection-

Jess protocol stacks. Protocol-specific processing at each protocol layer is performed via the Queue : : svc

method. This method is invoked by a daemon process associated with the Module that implements
the protocol layer (e.g., LP _xnR, LP _TCP, LP _IP, and LP ...DLP). These daemon processes cooperate
in a producer/consumer manner, operating on the header and data fields of messages corresponding

to their particular protocol layer in parallel. Each svc method performs its protocol functions before

passing the message to an adjacent Module that runs asynchronously in a separate daemon process.
Since daemon processes all share a common address space, messages are not copied when passed
between adjacent Modules. However, moving messages between processes may invalidate per-PE

data caches.

The connectionless and connection-oriented Layer Parallelism process architecture protocol stacks
are designed in a similar manner. The primary difference is that the objects in the connectionless

transport layer Module implement the simpler UDP functionality. UDP does not generate acknowl
edgements, keep track of round-trip time estimates, or manage congestion windows, etc.

3.3.2 Structure of the Message-based Process Architectures

• Connectional Parallelism: The protocol stack depicted in Figure 4 (1) illustrates an ASX-based

implementation of the Connectional Parallelism process architecture. Each connection is associated

132 Part Four Parallel implementations and Error Handling

(1) CONNECTIONAL PARALLEL lit (2) MESSAGE PARALLELISM

: : . ~-------· I
1...-------·
""""ll'imo ~

Figure 4: Message-based Process Architectures

with a separate process that performs the data-link, network, transport, and presentation layer func
tionality for that connection. Protocol tasks are divided into four inter-connected Modules, corre
sponding to the data-link, network, transport, and presentation layers in the ISO OSI communication
model. Data-link processing is performed in the CP _DLP Module. This Module uses its read-side
svc method to (1) transform network messages into the canonical internal message format that is
processed by higher-level components in a Stream and (2) demultiplex incoming messages onto the
appropriate transport layer connection.3 Once a message has been demultiplexed onto a connection,
all that connection's context information is directly accessible within the address space of the associ
ated process. This is beneficial since (I) pointers to messages may be passed between protocol layers
via simple procedure calls (rather than using more complicated and costly interprocess communica
tion mechanisms used for Layer Parallelism process architecture), (2) cache affinity properties may
be preserved since messages are processed largely within a single PE cache, and (3) minimal inter
nal locking is required within a connection. Therefore, a process may operate on its connection's
messages without incurring additional demultiplexing, synchronization, and context switching over
head. The CP_IP, CP_TCP, and CP...XDR Modules all perform their processing synchronously in
their respective put methods.

• Message Parallelism: Figure 4 (2) illustrates a message-based process architecture for the connection
oriented protocol stack. When an incoming message arrives, it is handled by the MP _DLP: : svc
method, which manages a pool of pre-spawned threads. Each message is associated with a sep-

3The connection-oriented implementation of Connectional Parallelism perfonns "eager demultiplexing" via a packet
filter at the data-link layer.

Alternative parallal process arr:hitecture and communication subsystem performance 133

arate thread that escorts the message synchronously through a series of inter-connected Queues

in a Stream. Each layer of the protocol stack performs its protocol functions and then makes an

upcall to the next adjacent layer in the protocol stack by invoking the Queue : :put method in

that layer. The put method executes the protocol tasks associated with its layer. For instance,

the MP _TCP: :put method utilizes mutual exclusion (mutex) objects that serialize access to per

connection control blocks as separate messages from the same connection ascend the protocol stack

in parallel.

The connectionless message-based protocol stack is structured in a similar manner, though it per

forms the simpler set of UDP functionality. Unlike the MP _TCP: :put method, the MP _UDP: :put

method handles each message concurrently and independently, without explicitly preserving inter

message ordering. This reduces the number of synchronization operations required to locate and

update shared resources, which improves performance.

4 Communication Subsystem Performance Experiment Results

This section describes experiments that measure the performance impact of different combinations

of the protocol stacks and process architectures described above. The multi-processor platform and

the measurement tools used in the experiments are also discussed.

4.1 Multi-processor Platform

All experiments were conducted on an otherwise idle Sun 690MP SPARCserver, which contains 4

SPARC 40 MHz processing elements (PEs), each capable of performing at 28 MIPs. The memory

bandwidth of the SPARCserver platform was measured at approximately 150 Mbits/sec, which rep

resents an upper limit on protocol processing throughput. Protocol processing throughput is also

significantly affected by context switching and synchronization overhead exhibited by the different

task-based and message-based process architectures. The costs of context switching and synchro

nization overhead in the SPARCserver platform are described below.

The operating system used for the experiments is release 5.3 of SunOS, which provides a multi

threaded kernel that allows multiple system calls and device interrupts to execute in parallel [6].

All the process architectures in these experiments execute protocol tasks in separate unbound threads

multiplexed over 1, 2, 3, or 4 Sun OS lightweight processes (LWPs) within a process. Sun OS 5.3 maps

each LWP directly onto a separate kernel thread. Since kernel threads are the units of PE scheduling

and execution in SunOS, this mapping enables multiple LWPs (each executing protocol processing

tasks in an unbound thread) to run in parallel on the SPARCserver's PEs.

Rescheduling and synchronizing a SunOS LWP involves a kernel-level context switch. The time

required to perform a context switch between two LWPs was measured to be approximately 30 usecs.

During this time, the OS performs system-related overhead (such as flushing register windows, in

struction and data caches, instruction pipelines, and translation lookaside buffers) on the PE and

therefore does not process protocol tasks. Measurements also revealed that it requires approximately

2 usecs to acquire or release a Mu tex object implemented using a Sun OS spin-lock. Likewise,

measurements indicated that approximately 90 usecs are required to synchronize two LWPs using

134 Part Four Parallel Implementations and Error Handling

35,-------.-------~------.------,

30,_-------r------~------~ ~ ----~

~25~---- ---- +-------~ ~ ~-----H .. -..- ~
.c

"' ~po ~--------+-------~ --~--

~
g 1!) -t---------+•r------+1--
~

~ 10 -lf=:-----+1·

2 3 4

Number of Processing Elements

• CLMessage

D Cllayer

• CO Connectional

Ill CO Message

D COLayer

Figure 5: Process Architecture Throughput

Condition objects implemented using SunOS sleep-locks. The larger amount of overhead for the

Condition object operations compared with the Mu tex object operations occurs from the more
complex locking algorithms involved, as well as the additional context switching incurred by SunOS

sleep-Jocks.

4.2 Measurement Results

This section presents results obtained by measuring the data reception portion of the connection

oriented and connectionless protocol stacks implemented using the Layer Parallelism task-based pro

cess architecture and the Connectional Parallelism and Message Parallelism message-based process
architectures. Three types of measurements were obtained for each combination of process architec

ture and protocol stack: total throughput, context switching overhead, and synchronization overhead.
Total throughput was measured by holding the protocol functionality, application traffic patterns,

and network interfaces constant and systematically varying the process architecture to determine the
resulting performance impact. Each benchmarking session consisted of transmitting 10,000 4 Kbyte
messages through an extended version of the widely available t tcp protocol benchmarking tool. The

original t tcp tool measures the processing resources and overall user and system time required to

transfer data between a transmitter process and a receiver process communicating via TCP or UDP.
The flow of data is uni-directional, with the transmitter flooding the receiver with a user-specified

number of data buffers. Various sender and receiver parameters (such as the number of data buffers
transmitted and the size of data buffers and protocol windows) may be selected at run-time.

The version of t tcp used in our experiments was enhanced to allow a user-specified number

of communicating applications to be measured simultaneously. This feature measured the impact of
multiple connections on the performance of process architectures (the connection-oriented process

Alternative parallal process architecture and communication subsystem peifonnance 135

ra
..II
Ul

Ell

i 1..- IlL li

· CL--

I 0 CL"-
•co ~

co-- I
• co"-

f
15

I
z

-
-

- -
- -
- -

~ 1 ilif I•
2 3

-d"""'-'"'11~ ..

Figure 6: Process Architecture Context Switching Overhead

architecture tests were run using 4 connections). The t tcp tool was also modified to use the ASX

based protocol stacks configured according to the process architectures described in Section 4.2. To

measure the impact of parallelism on throughput, each test was run using 1, 2, 3, and 4 PEs. Further

more, each test was performed multiple times to detect the amount of spurious interference incurred

from other internal OS tasks (the variance between test runs proved to be insignificant).

Context switching and synchronization measurements were obtained to help explain differences

in the throughput results. These metrics were obtained from the Sun OS 5.3 /proc file system, which

records the number of voluntary and involuntary context switches incurred by threads in a process,

as weJI as the amount of time spent waiting to obtain and release Jocks on Mutex and Condition

objects.

Figure 5 ilJustrates throughput (measured in Mbits/sec) as a function of the number of PEs for the

task-based and message-based process architectures used to implement the connection-oriented (CO)

and connectionless (CL) protocol stacks.4 The results in this figure indicate that increasing the number

of PEs improves throughput for all the process architectures. However, the message-based process

architectures significantly outperformed their task-based counterparts as the number of PEs increased

from 1 to 4. For example, the performance of the connection-oriented task-based process architecture

was only slightly better using 4 PEs (approximately 16 Mbits/sec, or 1.92 miJiiseconds per-message

processing time) than the message-based process architecture was using 2 PEs (14 Mbits/sec, or 2.3

milliseconds per-message processing time). Moreover, if a larger number of PEs had been available,

it appears likely that the performance improvement gained from parallel processing in the task-based

process architectures would have leveled off sooner than the message-based tests due to the higher

rate of growth for context switching and synchronization shown in Figure 6 and Figure 7.

The Connection ParaJlelism process architecture exhibited the highest levels of throughput for the

connection-oriented protocol stacks when the number of PEs equaled the number of connections. The

major limitation with Connectional Parallelism, however, is that it only utilizes parallelism to improve

aggregate end-system performance since each individual connection stili executes sequentially. In

4The Connectional Parallelism process architecture does not support the connectionless protocol stack.

136 Part Four Parallel Implementations and Error Handling

1f o+---+-----+---+---1

!s~---r----+---+---1
<I>
E
t= 4 +----+---+--
.iii

~3+----4~~-+
.><

.9 2+----1----1

2 3

Number of Processing Elements

4

• CLMessage

D Cllayer

• CO Connectional

1J CO Message

1m CO Layer

Figure 7: Process Architecture Locking Overhead

contrast, Message Parallelism also utilizes multiple PEs effectively for a single connection.

Figure 6 illustrates the number of involuntary and voluntary context switches incurred by the pro

cess architectures measured in this study. An involuntary context switch occurs when the OS kernel

preempts a running thread. For example, the OS preempts running threads periodically when their

LWP time-slice expires in order to schedule other threads to execute. A voluntary context switch is

triggered when a thread puts itself to sleep until certain resources (such as I/0 devices or synchroniza

tion locks) become available. For example, when a protocol task attempts to acquire a resource that

may not become available immediately (such as obtaining a message from an empty list of messages

in a Que ue), the protocol task puts itself to sleep by invoking the wait method of a Condition

object. This action causes the OS kernel to preempt the current thread and perform a context switch

to another thread that is capable of executing protocol tasks immediately.

As shown in Figure 6, The Layer Parallelism task-based process architectures exhibited slightly

higher levels of involuntary context switching than the message-based process architectures. This

is due mostly to the fact that the Layer Parallelism tests required more time to process the 10,000

messages and were therefore pre-empted a greater number of times. Furthermore, the task-based

process architectures also incurred significantly more voluntary context switches, which accounts for

the substantial improvement in overall throughput exhibited by the message-based process architec

tures. The primary reason for the increased context switching is that the locking mechanisms used

by the message-based process architectures utilize adaptive spin-locks (which rarely trigger a context

switch), rather than the sleep-locks used by task-based process architectures (which do trigger a con

text switch). Note that the Connectional Parallelism process architecture incurred the least amount of

context switching for the connection-oriented protocol stacks.

Figure 7 indicates the amount of execution time that the / proc metrics reported as being devoted

Alternative parallal process architecture and communication subsystem performance 137

to waiting to acquire and release locks in the connectionless and connection-oriented benchmark pro

grams. As with context switching benchmarks, the message-oriented process architectures incurred

considerably less synchronization overhead, particularly when 4 PEs were used. As with context

switching, the spin-locks used by message-based process architecture reduce the amount of time spent

synchronizing, in comparison with the sleep-locks used by the task-based process architectures.

5 Concluding Remarks

Despite an increase in the availability of operating system and hardware platforms that support net

working and parallel processing, developing communication subsystems that effectively utilize par

allel processing remains a complex and challenging task. A key aspect of communication subsystem

performance involves the type of process architecture selected to structure parallel processing of pro

tocol tasks. Measurement results reported in this paper indicate that task -based process architectures

incur much higher levels of context switching and synchronization overhead on a shared memory

platform, which significantly reduces performance. Conversely, the message-based process architec

tures (particularly Connectional Parallelism) incur much less context switching and synchronization,

and therefore exhibit higher performance.

The ASX framework contributed to these performance experiments by helping to decouple the

protocol-specific functionality from the underlying of process architecture. This decoupling increased

reuse and simplified development, configuration, and experimentation with parallel protocol stacks.

Components in the ASX framework are freely available via anonymous ftp from ics 0 uci 0 edu in

the file gnu/C++_wrappers o taro z. This distribution contains complete source code, documen

tation, and example test drivers for the C++ components. Components in the ASX framework have

been ported to both UNIX and Windows NT. The ASX framework is currently being used in a number

of commercial products including the AT&T Q.port ATM signaling software product, the Ericsson

EOS family of PBX monitoring applications, and the network management portion of the Motorola

Iridium mobile communications system.

References

[1] Mats Bjorkman and Per Gunningberg, "Locking Strategies in Multiprocessor Implementations
of Protocols," in SIGCOMM Symposium on Communications Architectures and Protocols, (San
Francisco, California), ACM, 1993.

[2] M. Zitterbart, "High-Speed Transport Components," IEEE Network Magazine, pp. 54-63, Jan
uary 1991.

[3] M. Goldberg, G. Neufeld, and M. Ito, "A Parallel Approach to OSI Connection-Oriented Proto
cols," in Proceedings of the 3rd IFIP Workshop on Protocols for High-Speed Networks, (Stock
holm, Sweden), May 1992.

[4] J. Jain, M. Schwartz, and T. Bashkow, "Transport Protocol Processing at GBPS Rates," in
SIGCOMM Symposium on Communications Architectures and Protocols, (Philadelphia, PA),
pp. 188-199, ACM, Sept. 1990.

138 Part Four Parallel Implementations and Error Handling

[5] C. M. Woodside and R. G. Franks, "Alternative software architectures for parallel protocol ex
ecution with synchronous ipc," IEEE/ACM Transactions on Networking, vol. 1, Apr. 1993.

[6] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah, M. Smith, D. Stein, J. Voll,
M. Weeks, and D. Williams, "Beyond Multiprocessing ... Multithreading the SunOS Kernel," in
Summer USENIX Conference, (San Antonio, Texas), June 1992.

[7] A. Tevanian, R. Rashid, D. Golub, D. Black, E. Cooper, and M. Young, "Mach Threads and the
Unix Kernel: The Battle for Control," in USENIX Summer Conference, USENIX, August 1987.

[8] D. Presotto, "Multiprocessor Streams for Plan 9," in United Kingdom UNIX User Group Summer
Proceedings, (London, England), Jan. 1993.

[9] B. Lindgren, B. Krupczak, M. Ammar, and K. Schwan, "Parallelism and Configurability in High
Performance Protocol Architectures," in Proceedings of the Second Workshop on the Archi
tecture and Implementation of High Performance Communication Subsystems, (Williamsburg,
Virgina), IEEE, September 1993.

[10] T. Braun and M. Zitterbart, "Parallel Transport System Design," in Proceedings of the .fh IFIP
Conference on High Performance Networking, (Belgium), IFIP, 1993.

[11] M. Zitterbart, B. Stiller, and A. Tantawy, "A Model for High-Performance Communication Sub
systems," IEEE Journal on Selected Areas in Communication, vol. 11, pp. 507-519, May 1993.

[12] D. Giarrizzo, M. Kaiserswerth, T. Wicki, and R. Williamson, "High-Speed Parallel Protocol
Implementations," in Proceedings of the 1st International Workshop on High-Speed Networks,
pp. 165-180, May 1989.

[13] N. C. Hutchinson and L. L. Peterson, "The x-kernel: An Architecture for Implementing Network
Protocols," IEEE Transactions on Software Engineering, vol. 17, pp. 64-76, January 1991.

[14] S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krishnan, "Pitfalls in Multithreading SVR4
STREAMS and other Weightless Processes," in Winter USENIX Conference, (San Diego, CA),
pp. 85-106, Jan. 1993.

[15] D. C. Schmidt and T. Suda, "The ADAPTIVE Service eXecutive: an Object-Oriented Archi
tecture for Configuring Concurrent Distributed Applications," in The proceedings of the 81h

International Working Conference on Upper Layer Protocols, Architectures, and Applications,
(Barcelona, Spain), IFIP, June 1994.

[16] D. C. Schmidt, "Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplexing
and Dispatching," in 1"1 Annual Conference on the Pattern Languages of Programs, (Monti
cello, Illinois), ACM, August 1994.

[17] D. Ritchie, "A Stream Input-Output System," AT&T Bell Labs Technical Journal, vol. 63,
pp. 311-324, Oct. 1984.

[18] J. M. Zweig, "The Conduit: a Communication Abstraction in C++," in USENIX C++ Confer
ence Proceedings, pp. 191-203, USENIX Association, April1990.

[19] D. C. Schmidt and T. Suda, "Transport System Architecture Services for High-Performance
Communications Systems," IEEE Journal on Selected Areas in Communication, vol. 11,
pp. 489-506, May 1993.

