
Measuring the Impact of Code
Dependencies on Software

Architecture Recovery Techniques

by

Thibaud Lutellier

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Thibaud Lutellier 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Many techniques have been proposed to automatically recover software architectures
from software implementations. A thorough comparison among the recovery techniques is
needed to understand their effectiveness and applicability. This study improves on previous
studies in two ways.

First, we study the impact of leveraging more accurate symbol dependencies on the
accuracy of architecture recovery techniques. In addition, we evaluate other factors of the
input dependencies such as the level of granularity, the impact of virtual call resolution,
global variable usage and whether using direct dependencies provides better results than
using transitive dependencies. Previous studies have not extensively studied how the qual-
ity of the input might affect the quality of the output for architecture recovery techniques.
Second, we study a system (Chromium) that is substantially larger (10 million lines of
code) than those included in previous studies. Obtaining the ground-truth architecture of
Chromium involved two years of collaboration with its developers. As part of this work
we developed a new submodule-based technique to recover preliminary versions of ground-
truth architectures. The other systems that we study have been examined previously. In
some cases, we have updated the ground-truth architectures to newer versions, and in other
cases we have corrected newly discovered inconsistencies.

Our evaluation of nine variants of six state-of-the-art architecture recovery techniques
on 8 types of dependencies shows that symbol dependencies generally produce architectures
with higher accuracies than include dependencies. We also observed that using a higher
level of granularity (i.e., module level) and direct dependencies helps generating better
architectures.

Despite this improvement, the overall accuracy is low for all recovery techniques. The
results suggest that (1) in addition to architecture recovery techniques, the type of de-
pendencies used as their inputs is another factor to consider for high recovery accuracy,
and (2) more accurate recovery techniques are needed. Our results show that some of the
studied architecture recovery techniques (ACDC, Bunch-SAHC, WCA and ARC) scale to
the 10M lines-of-code range (the size of Chromium), whereas others do not.

iii

Acknowledgements

I would like to take this opportunity to thank my supervisor, Professor Lin Tan, for
investing her time and providing me guidance. Without her, this thesis would not have
been possible. In addition, I would like to thank the readers, Professor Derek Rayside,
for suggesting the idea of studying the accuracy of dependencies and Professor Michael
Godfrey, for his valuable time and comments. I would also like to extend my appreciation
to my project colleague, Devin Chollak, for his help concerning evaluating Java projects.
Joshua Garcia, Nenad Medvidovic also deserve my gratefulness for providing architecture
recovery techniques and giving me valuable feedbacks. Finally, I would like to thank Robert
Kroeger for his help in obtaining Chromium and Pei Wang for his feedback and help with
extracting dependencies for C++ projects.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Related Work 5

2.1 Comparison of Software Architecture Recovery Techniques 5

2.2 Recovery of Ground-Truth Architectures 6

3 Approach 8

3.1 Obtaining Dependencies for C/C++ Projects 8

3.2 Obtaining Dependencies for Java Projects 9

3.3 Relative accuracy of Include and Symbol Dependencies 10

3.4 Obtaining Ground-Truth Architectures . 10

4 Selected Recovery Techniques 14

5 Experimental Method 17

5.1 Projects and Experimental Environment 17

5.2 Extracted Dependencies . 17

5.3 Ground-truth architectures . 18

v

5.4 Architecture Recovery Software and Parameters 19

5.5 Accuracy Measures . 19

6 Results 23

6.1 RQ1: Can accurate dependencies improve the accuracy of recovery techniques? 24

6.2 RQ2: What is the impact of different input factors, such as the granu-
larity level, the use of transitive dependencies, the use of different symbol
dependencies and virtual call graph construction algorithms, on existing
architecture recovery techniques? . 35

6.2.1 Impact of function calls and global variables 35

6.2.2 Impact of virtual call resolution . 36

6.2.3 Direct vs. transitive dependencies 38

6.2.4 Impact of the level of granularity of the dependencies 39

6.3 RQ3: Can existing architecture recovery techniques scale to large projects
comprising 10MSLOC or more? . 39

6.4 Comparison with the Prior Work . 40

7 Threats to Validity 41

8 Discussion 42

8.1 Metrics Limitations . 42

8.2 Architecture Recovery Techniques . 43

8.3 Dependencies Matter for Evaluating Architecture Recovery Techniques . . 44

8.4 Selecting Metrics and Recovery Techniques 45

9 Conclusions 46

References 48

vi

List of Tables

4.1 Evaluated projects and architectures. 15

6.1 MoJoFM results for Bash. 24

6.2 a2a results for Bash. 24

6.3 Normalized TurboMQ results for Bash. 25

6.4 c2ccvg results for Bash. 25

6.5 MoJoFM results for ITK. 26

6.6 a2a results for ITK. 26

6.7 Normalized TurboMQ results for ITK. 27

6.8 c2ccvg results for ITK. 27

6.9 MoJoFM results for Chromium. 28

6.10 a2a results for Chromium. 28

6.11 Normalized TurboMQ results for Chromium. 29

6.12 c2ccvg results for Chromium . 29

6.13 MoJoFM results for ArchStudio. 30

6.14 a2a results for ArchStudio. 30

6.15 Normalized TurboMQ results for ArchStudio. 31

6.16 c2ccvg results for ArchStudio. 31

6.17 MoJoFM results for Hadoop. 32

6.18 a2a results for Hadoop. 32

6.19 Normalized TurboMQ results for Hadoop. 33

6.20 c2ccvg results for Hadoop. 33

vii

List of Figures

3.1 Example Project Layout . 11

3.2 Example Project Submodules . 11

viii

Chapter 1

Introduction

Software architecture is crucial for program comprehension, programmer communication,
and software maintenance. Unfortunately, documented software architectures are either
nonexistent or outdated for many software projects. While it is important for developers
to document software architecture and keep it up-to-date, it is costly and difficult. Even
medium-sized projects, of 70K to 280K source lines of code (SLOC), require an experienced
recoverer to expend an average of 100 hours of work to create an accurate “ground-truth”
architecture [26]. In addition, as software grows in size, it is often infeasible for developers
to have complete knowledge of the entire system to build an accurate architecture.

Many techniques have been proposed to automatically or semi-automatically recover
software architectures from software code bases [4,16,27,32,42,59]. Such techniques typi-
cally leverage code dependencies to determine what implementation-level units (e.g., sym-
bols, files, and modules) form a semantic unit in a software system’s architecture. To under-
stand their effectiveness, thorough comparisons of existing architecture recovery techniques
are needed. Among the studies conducted to evaluate different architecture recovery tech-
niques [4, 43, 66], the latest study [25] compared nine variants of six existing architecture
recovery techniques. This study found that, while the accuracy of the recovered archi-
tectures varies and some techniques outperform others, their overall accuracy is relatively
low.

This previous study used include dependencies as inputs to the recovery techniques.
These are file-level dependencies established when one file declares that it includes another
file. In general, the include dependencies are inaccurate. For example, file foo.c may
declare that it includes bar.h, but may not use any functions or variables declared or
defined in bar.h. Using include dependencies, one would conclude that foo.c depends on

1

bar.h, while foo.c has no actual code dependency on bar.h.

In contrast, symbol dependencies are more accurate. A symbol can be a function or a
variable name. For example, consider two files Alpha.c and Beta.c: file Alpha.c contains
method A; and file Beta.c contains method B. If method A invokes method B, then method
A depends on method B. Based on this information, we can conclude that file Alpha.c

depends on file Beta.c.

A natural question to ask is, to what extent would the use of symbol dependencies
affect the accuracy of architecture recovery techniques? We aim to answer this question
empirically, by analyzing a set of real-world systems implemented in Java, C, and C++.

Dependencies can be grouped to different levels of granularity, which can affect the
manner in which recovery techniques operate. Generally, dependencies are extracted at
the file level. For large projects, dependencies can be grouped to the module level, where
a module is a semantic unit defined by system build files. Module dependencies can be
used to recover architectures even when finer-grained dependencies do not scale. In this
paper, we study the extent to which the granularity of dependencies affects the accuracy
of architecture recovery techniques.

Another key factor affecting the accuracy of a recovery technique is whether dependen-
cies utilized as input to a technique are direct or transitive. Transitive dependencies can
be obtained from direct dependencies by using a transitive-closure algorithm, and may add
relationships between strongly related components, making it easier for recovery techniques
to extract such components from the architecture. However, as the number of dependencies
increases, the use of transitive dependencies with some recovery techniques may not scale
to large projects.

Different symbols can be used (functions, global variables, etc.) to create a symbol
dependency graph, but it is unclear which symbols have the most impact on the accuracy
of architecture recovery techniques. In this paper, we study the impact of function calls
and global variable usage on the quality of architecture recovery techniques. In addition,
both C++ and Java offer the possibility to create virtual functions. Several techniques
exist to build virtual call graphs [6,18,56] and, despite the existence of an early study [55]
of the impact of call graph construction algorithms on basic architecture recovery, no work
has been done to study the effect of virtual calls resolution on recent architecture recovery
techniques.

The last question we study pertains to the scalability of existing architecture recovery
techniques. The largest software system used in the published evaluations of architecture
recovery techniques comprises 4MSLOC, and it revealed the scalability limits of several
recovery techniques [25]. The size of software is increasing, and many software projects

2

are significantly bigger than 4MSLOC. For example, the Chromium open-source browser
contains nearly 10MSLOC. In this paper, we test whether existing architecture recovery
techniques can scale to software of such size.

To this end, this paper compares the same nine variants of six architecture recovery
techniques from the previous study [25] using eight different types of dependencies on five
software projects to answer the following research questions (RQ):

RQ1: Can more accurate dependencies improve the accuracy of existing architecture
recovery techniques?

RQ2: What is the impact of different input factors, such as the granularity level, the
use of transitive dependencies, the use of different symbol dependencies and virtual call
graph construction algorithms, on existing architecture recovery techniques?

RQ3: Can existing architecture recovery techniques scale to large projects comprising
10MSLOC or more?

This paper makes the following contributions:

• We compared nine variants of six architecture recovery techniques using eight types
of dependencies at different levels of granularity to assess their affects on accuracy.
This is the first substantial study to compare different types of dependencies for
architecture recovery.

• We found that the types of dependencies and the recovery algorithms have a signifi-
cant effect on recovery accuracy. In general, symbol dependencies produce software
architectures with higher accuracy than include dependencies (RQ1). Our results
suggest that, apart from the selection of the “right” architecture recovery techniques,
other factors to consider for improved recovery accuracy are the virtual call graph
resolution algorithm, the granularity of the dependencies, and whether such depen-
dencies are direct or transitive (RQ2).

• Our results show that the accuracy is low for all studied techniques. This corroborates
past results [25] but does so on a different set of subject systems, including one
significantly larger system, and for a different set of dependency relationships.

• We recovered the ground-truth architectures of one open-source project, Chromium
(svn revision 171054). At 10M, to the best of our knowledge, Chromium is the
largest project used for evaluating architecture recovery techniques to date. The
ground-truth architecture of Chromium was not available previously. We obtained
it through two years of regular discussions and meetings with Chromium developers.

3

We also updated the architectures of Bash and ArchStudio that were reported in [26].
All ground-truth architectures have been certified by the developers of the different
projects.

• We propose a new submodule-based architecture recovery technique that combines
directory layout and build configurations. The proposed technique was effective in
assisting in the recovery of ground-truth architectures. Compared to FOCUS [19],
which is used in previous work [26], to recover ground-truth architectures, the submodule-
based technique is conceptually simple. Since the technique is used for generating a
starting point, its simplicity can be beneficial; any issues potentially introduced by
the technique itself can later be mitigated by the manual verification step.

• We found some recovery techniques do, and some do not, scale to the size of Chromium.
Working with coarser-grained dependencies and using direct dependencies are two
possible solutions to make those techniques scale (RQ2 and RQ3).

4

Chapter 2

Related Work

2.1 Comparison of Software Architecture Recovery

Techniques

This thesis builds on work that was previously reported in [39]. Novelty with respect to
this previous work includes a study of the impact of virtual call resolution algorithms,
function calls, and global variable usage on the accuracy of recovery algorithms. We also
expand the previous work by studying whether using a higher level of granularity and using
transitive dependencies improves the accuracy of recovery techniques.

Many architecture recovery techniques have been proposed [4,16,27,32,42,51,59]. The
most recent study [25] collected the ground-truth architectures of eight systems and used
them to compare the accuracy of nine variants of six architecture recovery techniques.
Two of those recovery techniques—Architecture Recovery using Concerns (ARC) [27] and
Algorithm for Comprehension-Driven Clustering (ACDC) [59]—routinely outperformed
the others; however, even the accuracy of these techniques showed significant room for
improvement.

Architecture recovery techniques have been evaluated against one another in many
other studies [4, 25,32,37,43,66].

The results of the different studies are not always consistent. scaLable InforMation
BOttleneck (LIMBO) [3], a recovery technique leveraging an information loss measure,
and ACDC performed similarly in one study [4]; however, in a different study, Weighted
Combined Algorithm (WCA) [44], a recovery technique based on hierarchical clustering,
outperformed Complete Linkage (CL) [44]. In yet another study, CL is shown to be

5

generally better than ACDC [66]. In the most recent study, ARC and ACDC surpass
LIMBO and WCA [25]. Wu et al. [66] compared several recovery techniques utilizing
three criteria: stability, authoritativeness, and non-extremity. For this study, no recovery
technique was consistently superior to others on multiple measures. A possible explanation
for the inconsistent results of these studies is their use of different assessment measures.

The types of dependencies which serve as input to recovery techniques vary among
studies: some recovery techniques leverage control and data dependencies [22,23,58]; other
techniques use static and dynamic dependency graphs [4]. Previous work [55] examined the
effect of different polymorphic call graph construction algorithms on automatic clustering.
In their work [42], Mancoridis et al. tried to improve the architectures recovered by Bunch
by removing omnipresent dependencies.

None of the papers mentioned above assess the influence of symbol dependencies on
recovery techniques when compared to include dependencies. This paper is the first to
study (1) the impact of symbol dependencies on the accuracy of recovery techniques and
(2) the scalability of recovery techniques to a large project with nearly 10MSLOC.

2.2 Recovery of Ground-Truth Architectures

Ground-truth architectures enable the understanding of implemented architectures and the
improvement of automated recovery techniques. Several prior studies invested significant
time and effort to recover ground-truth architectures for several systems.

Garcia et al. [26] describe a method to recover the ground-truth architectures of four
open-source systems. The method involves extensive manual work, and the mean cost
of recovering the ground-truth architecture of seven systems ranged from 70KSLOC to
280KSLOC was 107 hours.

Bowman et al. [10] and Xiao et al. [67] recovered the ground-truth architectures of
the Linux kernel 2.0 and Mozilla 1.3 respectively. The Linux kernel and Mozilla are large
systems, but the evaluated versions are more than a decade old. The version of the Linux
kernel recovered was from 1996 and at that time, it contained only 750KSLOC. Mozilla
1.3 is from 2003 with 4MSLOC.

Grosskurth et al. [28] studied the architecture and evolution of web browsers and provide
guidance for obtaining a reference architecture for web browsers. Their work does not
address the challenges of recovering an accurate ground-truth architecture in general. In
addition, it is not clear if their approach is accurate for modern web browsers such as

6

Chromium, which use new design principles such as a modern threading model for tabbed
browsing.

Several commercial tools such as Lattix [61] and Structure101 [14] are used to ensure
the quality of a given architecture and monitor its evolution. As far as we know, none of
those tools claim to generate automatically the ground-truth architecture of a project.

7

Chapter 3

Approach

Our approach consists of two parts: the extraction of dependencies and obtaining a ground-
truth architecture. In the rest of this chapter, we describe the manner in which we extract
the dependencies we study for C/C++ (Section 3.1) and Java (Section 3.2), discuss why
symbol dependencies are more accurate than include dependencies (Section 3.3), and elab-
orate on our approach for obtaining ground-truth architectures (Section 3.4).

3.1 Obtaining Dependencies for C/C++ Projects

To extract symbol dependencies for C/C++, we use the technique built by our team that
scales to software systems comprising millions of lines of code [62]. The technique compiles
a project’s source files into LLVM bitcode, analyzes the bitcode to extract the symbol
dependencies for all symbols inside the project, and groups dependencies based on the files
containing the symbols. At this stage, our extraction process has not considered symbol
declarations. As a result, header-file dependencies are often missed because many header
files only contain symbol declarations. To ensure we do not miss such dependencies, we
augment symbol dependencies by analyzing #include statements in the source code.

These symbol dependencies are direct dependencies, which may be used at the file level
or grouped at the module level. To group code-level entities at the module level, we ex-
tract module information from the build files of the project provided by the developers.
Transitive dependencies are obtained for all projects using the Floyd-Warshall [24] algo-
rithm. Because the Floyd-Warshall algorithm did not scale for Chromium, we also tried to
use Crocopat [8] to obtain transitive dependencies for Chromium and encountered similar
scalability issues.

8

To extract include dependencies we use the compiler flag -MM. Include dependencies are
similar to the dependencies used in prior work [25].

3.2 Obtaining Dependencies for Java Projects

To extract symbol dependencies for Java, we leverage a tool that operates at the Java
bytecode level and extracts high-level information from the bytecode in a structured and
human readable format [54]. This allows for method calls and member access (i.e., rela-
tionships between symbols) to be recorded without having to analyze the source code itself.
Using this information provides a complete picture of all used and unused parts of classes
to be identified. We can identify which file any symbol belongs to, since the Java compiler
follows a specific naming convention for inner classes and anonymous classes. With infor-
mation about usage among symbols and resolving the file location for each symbol, we can
build a complete graph of the symbol dependencies for the Java projects. This method
accounts only for symbols used in the bytecode and does not account for runtime usage
which can vary due to reflective access.

We approximate include dependencies for Java by extracting import statements in
Java source code by utilizing a script to determine imports and their associated files. The
script used to extract the dependencies detects all the files in a package. Then for every
file, it evaluates each import statement and adds the files mentioned in the import as a
dependency. When a wildcard import is evaluated, all classes in the referred package are
added as dependencies.

The Java projects studied do not contain well-defined modules. In addition, our ground-
truth architecture is finer-grained than the package level. For example, Hadoop ground-
truth architecture contains 67 clusters when the part of the project we study contains only
52 packages. Therefore, we cannot use Java packages as an equivalent of C++ modules for
our module-level evaluation for those specific projects. When studying projects without
well-defined modules, using C++ namespaces or Java packages could be a good alternative
to modules defined in the configuration files.

9

3.3 Relative accuracy of Include and Symbol Depen-

dencies

C/C++ include dependencies tend to miss or over-approximate relationships between
files, rendering such dependencies inaccurate. Specifically, include dependencies over-
approximate relationships in cases where a header file is included but none of the functions
or variables defined in the header file are used (recall Chapter 1).

In addition, include dependencies ignore relationships between non-header files (e.g.,
.cpp to .cpp files), resulting in a significant number of missed dependencies. For example,
consider the case where A.c depends on a symbol defined in B.c because A.c invokes a
method defined in B.c. Include dependencies will not contain a dependency from A.c to B.c
because A.c includes B.h but not B.c. For example, in Bash, we only identified 4 include
dependencies between two non-header files, although there are 1035 actual dependencies
between non-header files based on our symbol results. Include dependencies miss many
important dependencies since non-header files are the main semantic components of a
project.

A recovery technique can treat non-header and header files whose names before their
extensions match (e.g., B.c and B.h) as a single unit to alleviate this problem. However,
this remedy does not handle cases where such naming conventions are not followed or when
the declarations for types are not in a header file.

Include dependencies use transitive dependencies for header files. Consider an example
of three files A.c, A.h, and B.h, where A.c includes A.h and A.h includes B.h; A.c has
an include dependency with B.h because including A.h implicitly includes everything that
A.h includes.

For Java projects, include dependencies miss relationships between files because they do
not account for intra-package dependencies or fully-qualified name usage. At the same time,
include dependencies can represent spurious relationships because some imports are unused
and wildcard imports (e.g., java.util.*) are overly inclusive. Include dependencies are
therefore significantly less accurate than symbol dependencies.

3.4 Obtaining Ground-Truth Architectures

To measure the accuracy of existing software architecture recovery techniques, we need to
know the “ground-truth” architecture of a target project. Since it is prohibitively expensive

10

Figure 3.1: Example Project Layout

Figure 3.2: Example Project Submodules

to build architectures manually for large and complex software, such as Chromium, we use
a semi-automated approach for ground-truth architecture recovery.

We initially showed the architecture recovered using ACDC to a Chromium developer.
He explained that most of the ACDC clusters did not make sense and suggested that we
start by considering module organization in order to recover the ground truth.

In response, we have introduced a simple submodule-based approach to extract auto-
matically a preliminary ground-truth architecture by combining directory layout and build
configurations. Starting from this architecture, we worked with developers of the target
project to identify and fix mistakes in order to create a ground-truth architecture.

The submodule-based approach groups closely related modules, and considers which
modules are contained within another module. It consists of three steps. First, we de-
termine the module that each file belongs to by analyzing the configuration files of the
project.

Second, we determine the submodule relationship between modules. We define a sub-
module as a module that has all of its files contained within the subdirectory of another
module. We first determine a module’s location, which is defined as the common parent
directories that contain at least one file belonging to the module. We look at the common
parent directories because some modules may have files in many different directories. Then
we can determine if a particular module has a relation to another module.

For example, assume a project has four modules named A, B, C, and D. The file

11

structure of the project is shown in Figure 3.1, while the module structure that we generate
is shown in Figure 3.2.

• Module A: contains fileA1.cpp and fileA2.cpp. Location is project/folder2.

• Module B: contains fileB1.cpp and fileB2.cpp. Location is project/folder2/

folder2_2.

• Module C: contains fileC1.cpp. Location is project/folder2/folder2_3.

• Module D: contains fileD1.cpp and fileD2.cpp. Location is both project/

folder1 and project/folder2/folder2_3.

Based on the modules’ locations, we determine that module B is a submodule of module
A because module B’s location project/folder2/folder2_2 is within module A’s location
project/folder2. Similarly, module C is a submodule of module A. The reason module D
has two folder locations is because there is no common parent between the two directories.
If module D had a file in the project folder, then its location would simply be project.
Module D is not a submodule of module A because it has a file located in project/folder1.

This preliminary version of the ground-truth architecture does not accurately reflect
the “real” architecture of the project and additional manual corrections are necessary.
For example, Chromium has two modules webkit gpu, located in the folder webkit/gpu,
and content gpu, located in the folder content/gpu. The two modules are in completely
separate folders and are grouped in different clusters by the submodule approach. However,
both are involved with displaying GPU-accelerated content and should be grouped together
to indicate their close relationship to the gpu modules. This is an example where the
submodule approach based on folder structure may not accurately reflect the semantic
structure of modules and needs to be manually corrected.

Hundreds of hours of manual work are then required to investigate the source code of
the system to verify and fix the relationships obtained. When we are satisfied with our
ground-truth version, we send it to the developers for certification. Multiples rounds of
verifications, based on developers’ feedback, are necessary to obtain an accurate ground-
truth architecture. For Chromium, it took two years of meetings and email exchanges with
Chromium developers to obtain the ground truth.

The final ground truth we obtain is a nested architecture. Because most of the ar-
chitecture recovery techniques produce a flat architecture, we flatten our ground-truth
architecture by grouping modules that are submodules of one another into a cluster. In

12

the example above, we cluster modules A, B and C into a single cluster and leave module
D on its own.

Previous work [19,26] mentioned there might exist different ground-truth architectures
for the same project. Despite the fact that our submodule-based approach only recover
one ground truth, it is possible to use the submodule-based approach as a starting point
for recovering several ground truths, by having different recoverers and receiving feedback
from different developers.

Prior work [26] used a different approach, FOCUS [19], to recover preliminary versions
of ground-truth architectures. Compared to FOCUS, the proposed submodule-based tech-
nique is conceptually simpler. However, the submodule-based technique uses the same
general strategy as FOCUS and can, in fact, be used as one of FOCUS’s pluggable el-
ements. This fact, along with the extensive manual verification step, suggests that the
strategy used as the starting point for ground-truth recovery does not impact the resulting
architecture (as already observed in [26]).

13

Chapter 4

Selected Recovery Techniques

We select the same nine variants of six architecture recovery techniques as in previous
work [25] for our evaluation. Four of the selected techniques (ACDC, LIMBO, WCA, and
Bunch [42]) use dependencies to determine clusters, while the remaining two techniques
(ARC and ZBR [16]) use textual information from source code. We include techniques that
do not use dependencies to (1) assess the accuracy of finer-grained, accurate dependencies
against these information retrieval-based techniques and to (2) determine their scalability.

Algorithm for Comprehension-Driven Clustering
(ACDC) [59] is a clustering technique for architecture recovery. We included ACDC
because it performed well in several previous studies [4, 25,43,66]. ACDC aims to achieve
three goals. First, to help understand the recovered architecture, the clusters produced
should have meaningful names. Second, clusters should not contain an excessive number of
entities. Third, the grouping is based on identified patterns that are used when a developer
describes the components of a software system. The main pattern used by ACDC is called
the “subgraph dominator pattern”. To identify this pattern, ACDC detects a dominator
node n0 and a set of nodes N = {ni | i ∈ N} that n0 dominates. A dominator node n0

dominates another node ni if any path leading to ni passes through n0. Together, n0, N ,
and their corresponding dependencies form a subgraph. ACDC groups the nodes of such
a subgraph together into a cluster.

Bunch [41, 42] is a technique that transforms the architecture recovery problem into
an optimization problem. An optimization function called Modularization Quality (MQ)
represents the quality of a recovered architecture. Bunch uses hill-climbing and genetic
algorithms to find a partition (i.e., a grouping of software entities into clusters) that max-
imizes MQ. As in previous work [25], we evaluate two versions of the Bunch hill-climbing

14

Table 4.1: Evaluated projects and architectures. †Cluster denotes the number of clusters
in the ground-truth architectures. N/A means the value is not available.

Project Version Description SLOC File Cluster† Inc Dep. Sym Dep. Trans Dep. Mod Dep.
Chromium svn-171054 Web Browser 10M 18,698 67 1,183,799 297,530 N/A 4,455
ITK 4.5.2 Image Segmentation Toolkit 1M 7,310 11 169,017 30,784 19,281,510 2,700
Bash 4.2 Unix Shell 115K 373 14 2,512 2,481 26,225 N/A
Hadoop 0.19.0 Data Processing 87K 591 67 1,656 3,101 79,631 N/A
ArchStudio 4 Architecture Development 55K 604 57 866 1,697 10,095 N/A

algorithms—Nearest and Steepest Ascent Hill Climbing (NAHC and SAHC).

Weighted Combined Algorithm (WCA) [44] is a hierarchical clustering algorithm
that measures the inter-cluster distance between software entities and merges them into
clusters based on this distance. The algorithm starts with each entity in its own cluster
associated with a feature vector. The inter-cluster distance between all clusters is then
calculated, and the two most similar clusters are merged. Finally, the feature vector of
the new cluster is recalculated. These steps are repeated until WCA reaches the specific
number of clusters defined by the user. Two measures are proposed to measure the inter-
cluster distance: Unbiased Ellenberg (UE) and Unbiased Ellenberg-NM (UENM). The
main difference between these measures is that UENM integrates more information into
the measure and thus might obtain better results. In a recent study [25], UE and UENM
performed differently depending on the systems tested, therefore, we evaluate both.

LIMBO [3] is a hierarchical clustering algorithm that aims to make the Information
Bottleneck algorithm scalable for large data sets. The algorithm works in three phases.
Clusters of artefacts are summarized in a Distributational Cluster Feature (DCF) tree.
Then, the DCF tree leaves are merged using the Information Bottleneck algorithm to
produce a specified number of clusters. Finally, the original artefacts are associated with a
cluster. The accuracy of this algorithm was evaluated in several studies. It performed well
in most of the experiments [4, 43], except in one recent study [25] where LIMBO achieved
surprisingly poor results.

Architecture Recovery using Concerns (ARC) [27] is a hierarchical clustering
algorithm that relies on information retrieval and machine learning to perform a recovery.
This technique does not use dependencies and is therefore not used to evaluate the influence
of different levels of dependencies. ARC considers a program as a set of textual documents
and utilizes a statistical language model, Latent Dirichlet Allocation (LDA) [9], to extract
concerns from identifiers and comments of the source code. A concern is as a role, concept
or purpose of the system studied. The extracted concerns are used to automatically identify
clusters and dependencies. ARC is one of the two best-scoring techniques in the previous
evaluation [25] and thus is important to compare against when evaluating for accuracy.

15

Similar to ARC, Zone Based Recovery (ZBR) [16] is a recovery technique based
on natural language semantics of identifiers and comments found in the source code. Each
file is represented as a textual document and divided into zones. For each word in a zone,
ZBR evaluates the term frequency-inverse document frequency (tf-idf) score. Each zone
is weighted using the Expectation-Maximization algorithm. ZBR has multiple methods
for weighting zones. The initial weights for each zone can be uniform (ZBR-uni), or set
to the ratio of the number of tokens in the zone to the number of tokens in the entire
system (ZBR-tok). We chose these two weighting variations to ensure consistency with
the previous study [25]. The last step of ZBR consists of clustering this representation
of files by using group-average agglomerative clustering. ZBR demonstrated accuracy in
recovering Java package structure [16] but struggled with memory issues when dealing with
larger systems [25].

16

Chapter 5

Experimental Method

5.1 Projects and Experimental Environment

We conduct our comparative study on five open source projects: Bash, ITK, Chromium,
ArchStudio, and Hadoop. Detailed information about these projects can be found in
Table 4.1.

To run our experiments, we leveraged two machines and parallel processing, due to
the large size of some projects. We ran ZBR with the two weight variations described in
Chapter 4 on a 3.2GHz i7-3930K desktop with 12 logical cores, 6 physical cores, and 48GB
of memory. We ran all the other recovery techniques on a 3.3GHz E5-1660 server with 12
logical cores, 6 physical cores, and 32GB memory.

For Bash, Hadoop, and ArchStudio, all techniques take a few seconds to a few minutes
to run. For large projects, such as ITK and Chromium, each technique takes several hours
to days to run. Running all experiments for Chromium would take more than 20 days of
CPU time on a single machine. Consequently, we parallelized our experiments.

5.2 Extracted Dependencies

For the C/C++ projects, the number of include dependencies is much larger than the
number of symbol dependencies, e.g., 297,530 symbol dependencies versus 1,183,799 include
dependencies for Chromium. This is the result of both transitive and over-approximation
of dependencies, detailed in Section 3.3.

17

The number of transitive dependencies shown in Table 4.1 for ITK is strikingly high.
We leverage Class Hierarchy Analysis (CHA) [18] to build the virtual call dependency
graph of symbol dependencies which, in turn, is used for extracting dependencies. For
ITK, more than 75% of the dependencies extracted are virtual function calls, as opposed
to just 11% for Chromium for example. This high proportion of virtual calls results in an
extremely large number of transitive dependencies.

For Chromium, the algorithm to obtain transitive dependencies ran out of memory on
our 32GB server. None of the recovery technique scaled for ITK with transitive depen-
dencies. Given that Chromium is around ten times larger than ITK, it is safe to assume
that, even if we were able to obtain the transitive dependencies for Chromium, none of the
technique would scale to Chromium with transitive dependencies.

5.3 Ground-truth architectures

To assess the effect of different types of dependencies on recovery techniques, we obtained
ground-truth architectures for each selected project. Compared to previous work [25],
we do not use Linux 2.0.27 and Mozilla 1.3 because our tool that extracts symbol-level
dependencies for C++ projects works with LLVM. Making those two projects compatible
with LLVM would require heavy manual work. In place of those medium-sized projects,
we included ITK. We also included a very large project, Chromium, for which we recovered
the ground truth. Due to issues resolving library dependencies with an older version of
OODT, for which a ground-truth architecture is available [26], we were unable to use it for
our study.

For Chromium, the ground-truth architecture was extracted using the submodule ap-
proach outlined in Section 3.4. ITK was refactored in 2013 and its ground-truth architec-
ture, extracted by ITK’s developers, is available. ITK developers involved in the ITKv4
project confirmed that this architecture was still valid for ITK 4.5.2.

The version of Bash used in a recent architecture-recovery study [25] was from 1995.
Bash has been changed significantly since then (e.g., from 70KSLOC to 115KSLOC). re-
covered the ground-truth architecture of the latest version of Bash and used it in our study.
Our certifier for Bash is one of Bash’s primary developers and its sole maintainer, who also
recently authored a chapter on Bash’s idealized architecture [11].

The scope of our results focuses only on the core of ArchStudio. The ground-truth
architecture for ArchStudio was updated, from prior work [26], to be defined at the file level
instead of at the class level. Additionally, ArchStudio’s original ground-truth architecture

18

had a number of inconsistencies and missing files, which were verified and corrected by
ArchStudio’s primary architect.

Hadoop, an open-source Java project used in a recent architecture-recovery study [25],
was the other Java project we evaluated. Its original ground-truth architecture was based
on version 0.19.0 and had to be converted from the class level to the file level for our
analysis. For our analysis, we focused on the HDFS, Map-Reduce, and core parts of
Hadoop.

5.4 Architecture Recovery Software and Parameters

To answer the research questions, we compare the clustering results obtained from nine
variants of the six architecture recovery techniques, using different types of dependencies.
We obtained ACDC and Bunch from their authors’ websites. For the other techniques, we
used our implementation from the previous study [25]. Each of those implementations was
shared with the original authors of the recovery techniques and confirmed as correct [25].
Due to the non-determinism of the clustering algorithms used by ACDC and Bunch, we
ran each algorithm five times and reported only the best results. WCA, LIMBO, and ARC
can take varying numbers of clusters as input. Based on the number of clusters in the
ground-truth architectures, we experimented with 5 to 75 clusters as inputs for Bash and
ITK, 25 to 75 for Chromium and 30 to 80 for Hadoop and ArchStudio with an increment
of 5 for all cases. ARC also takes a varying number of concerns as input. We experimented
with 10 to 150 concerns in increments of 10. We report only the best results for each
technique.

5.5 Accuracy Measures

There might be multiple ground-truth architectures for a system [10, 26]; that is, experts
might disagree. Therefore, a recovered architecture may be different from a ground-truth
architecture used in this paper, but close to another ground-truth architecture of the same
project. To mitigate this threat, we selected four different metrics to evaluate recovery
techniques. One of the metrics—normalized TurboMQ—is independent of any ground-
truth architecture, which calculates the quality of the recovered architectures. When we
use normalized TurboMQ to compare different recovery techniques, the threat of multiple
ground-truth architectures should not apply. The remaining three metrics—MoJoFM ,

19

a2a and c2ccvg—calculate the similarity between a recovered architecture and a ground-
truth architecture. If one recovery technique consistently performs well according to all
metrics, it is less likely due to the bias of one metric or the particular ground-truth archi-
tecture. Although using four metrics cannot eliminate the threat of multiple ground-truth
architectures entirely, it should give our results more credibility than using MoJoFM
alone.

MoJoFM [64] is defined by the following formula,

MoJoFM(M) = (1−
mno(A,B)

max(mno(∀A,B))
)× 100% (5.1)

where mno(A,B) is the minimum number of Move or Join operations needed to transform
the recovered architecture A into the ground truth B. This measure allows us to compare
the architecture recovered by the different techniques according to their similarity with the
ground-truth architecture. A score of 100% indicates that the architecture recovered is the
same as the ground-truth architecture. A lower score results in greater disparity between
A and B. MoJoFM has been shown to be more accurate than other measures and was
used in the latest empirical study of architecture recovery techniques [25,32].

Architecture-to-architecture [36] (a2a) is designed to address some of MoJoFM
drawbacks. MoJoFM ’s Join operation is excessively cheap for clusters containing a high
number of elements. This is particularly visible for large projects. This results in high
MoJoFM values for architectures with many small clusters. In addition, we discovered
that MoJoFM does not properly handle discrepancy of files between the recovered ar-
chitecture and the ground truth. This observation corroborates results obtained in recent
work [36]. We tried to reduce this problem by adding the missing files to the recovered
architecture into a separate cluster before measuring MoJoFM , but this does not entirely
solve the issue. In complement of MoJoFM , we use a new metric, a2a, based on architec-
ture adaptation operations identified in previous work [46, 53]. a2a is a distance measure
between two architectures:

a2a(Ai, Aj) = (1− mto(Ai, Aj)

aco(Ai) + aco(Aj)
)× 100%

mto(Ai, Aj) = remC(Ai, Aj) + addC(Ai, Aj) +

remE(Ai, Aj) + addE(Ai, Aj) +movE(Ai, Aj)

aco(Ai) = addC(A∅, Ai) + addE(A∅, Ai) +movE(A∅, Ai)

20

where mto(Ai, Aj) is the minimum number of operations needed to transform architec-
ture Ai into Aj; and aco(Ai) is the number of operations needed to construct architecture
Ai from a “null” architecture A∅.

mto and aco are used to calculate the total numbers of the five operations used to
transform one architecture into another: additions (addE), removals (remE), and moves
(movE) of implementation-level entities from one cluster (i.e., component) to another; as
well as additions (addC) and removals (remC) of clusters themselves.

Cluster-to-cluster coverage (c2ccvg) is a metric used in previous work [?] to as-
sess component-level accuracy. This metric measures the degree of overlap between the
implementation-level entities contained in two clusters:

c2c(ci, cj) =
|entities(ci) ∩ entities(cj)|

max(|entities(ci)| , |entities(cj)|)
× 100%

where ci is a technique’s cluster; cj is a ground-truth cluster; and entities(c) is the set
of entities in cluster c. The denominator is used to normalize the entity overlap in the
numerator by the number of entities in the larger of the two clusters. This ensures that
c2c provides the most conservative value of similarity between two clusters.

To summarize the extent to which clusters of techniques match ground-truth clusters,
we leverage architecture coverage (c2ccvg). c2ccvg is a change metric from previous work [?]
that indicates the extent to which one architecture’s clusters overlap the clusters of another
architecture:

c2ccvg(A1 ,A2) =
|simC (A1 ,A2)|
|A2 .C |

× 100%

simC (A1 ,A2) = {ci | (ci ∈ A1,∃cj ∈ A2) ∧
(c2c(ci, cj) > thcvg)}

A1 is the recovered architecture; A2 is a ground-truth architecture; and A2.C are the clus-
ters of A2. thcvg is a threshold indicating how high the c2c value must be for a technique’s
cluster and a ground-truth cluster in order to count the latter as covered.

normalized Turbo Modularization Quality (normalized TurboMQ) is the final
metric we are using in this paper. Modularization metrics measure the quality of the
organization and cohesion of clusters based on the dependencies. They are widely accepted
metrics which have been used in several studies [5,40,49]. We implemented the TurboMQ
version because it has better performance than BasicMQ [47].

21

To compute TurboMQ two elements are required: intra-connectivity, and extra-connectivity.
The assumption behind this metric is that architectures with high intra-connectivity are
preferable to architectures with a lower intra-connectivity. For each cluster, we calculate
a Cluster Factor as followed:

CFi =
µi

µi + 0.5×
∑

j εij + εji

µi is the number of intra-relationships;εij + εji is the number of inter-relationships
between cluster i and cluster j. TurboMQ is defined as the sum of all the Cluster Factors:

TurboMQ =
k∑

i=1

CFi

We note that TurboMQ by itself is biased toward architectures with a large number
of clusters because the sum of CFi will be very high if the recovered architecture contains
numerous clusters. Indeed, we found that for Chromium, the architecture recovered by
ACDC contains thousands of clusters. The TurboMQ value for this architecture was
400 times higher than the TurboMQ values of architectures obtained with other recovery
techniques. To address this issue, we normalized TurboMQ by the number of clusters in
the recovered architecture.

22

Chapter 6

Results

This chapter presents the results of our study that answer the three research questions,
followed by a comparison of our results and those of prior work. Tables 6.1-6.20 show
the results for all four metrics when applied to a combination of a recovery technique and
system; and, if applicable for such a combination, the results for a type of dependency:
Include, Symbol, Funct ion alone, function and global variables (F-GV), Trans itive, and
Module-level dependencies. Symbol dependencies may be resolved by ignoring virtual calls
(No Vir) or using a class hierarchy analysis of virtual calls (S-CHA) or with interface-
only resolution of virtual calls (S-Int). Bash does not contain virtual calls because it is
implemented in C, and our tool cannot extract function pointers.

For certain combinations of recovery techniques and systems, a result may not be attain-
able due to inapplicable combinations (NA), techniques running out of memory (MEM),
or timing out (TO). For example, information retrieval-based techniques such as ARC
and ZBR do not rely on dependencies. Therefore, normalized TurboMQ results are not
meaningful when studying the impact of the different factors of the dependencies. For this
reason, we only report normalized TurboMQ for include and symbol dependencies and
mark the other combinations as inapplicable.

We do not report results obtained utilizing transitive dependencies for Chromium and
ITK because, as discussed above, the use of such dependencies with those projects caused
scalability problems. Module-level dependencies are only reported for ITK and Chromium,
since they are the only projects that define modules in their documentation or configuration
files.

23

Table 6.1: MoJoFM results for Bash.
Bash

Algo. Inc. Sym. Trans. Funct. F. GV.

ACDC 41 59 42 49 50
Bunch-NAHC 44 47 40 52 51
Bunch-SAHC 45 58 41 45 53
WCA-UE 28 37 45 43 43
WCA-UENM 28 34 36 39 38
LIMBO 27 28 30 26 26
ARC 40
ZBR-tok 35
ZBR-uni 39

Table 6.2: a2a results for Bash.
Bash

Algo. Inc. Sym. Trans. Funct. F. GV.

ACDC 64 81 81 41 41
Bunch-NAHC 66 86 85 41 41
Bunch-SAHC 68 87 85 41 42
WCA-UE 63 81 81 41 41
WCA-UENM 63 81 81 41 41
LIMBO 63 80 80 39 39
ARC 67
ZBR-tok 31
ZBR-uni 32

6.1 RQ1: Can accurate dependencies improve the ac-

curacy of recovery techniques?

As explained in section 3.3, include dependencies present some issues (e.g. missing re-
lationships between non-header files, etc.) which can be solved by using more accurate
dependencies based on symbol interactions. Therefore, to answer this research question,
we focus on results obtained using include (Inc) and symbol dependencies (Sym, S-Int, and
S-CHA), which are presented in Tables 6.1-6.20.

24

Table 6.3: Normalized TurboMQ results for Bash.
Bash

Algo. Inc. Sym. Trans. Funct. F. GV.

ACDC 10 23 6 29 29
Bunch-NAHC 34 42 28 41 35
Bunch-SAHC 50 40 28 40 37
WCA-UE 1 16 18 28 28
WCA-UENM 23 16 18 28 28
LIMBO 22 24 20 19 20
ARC 16 25 NA
ZBR-tok 1 3 NA
ZBR-uni 2 2 NA

Table 6.4: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Bash.

Bash
Algo. Inc. Sym. Trans. Funct. F. GV.

ACDC 21 50 71 36 79 92 14 42 100 0 7 50 0 7 21
Bunch-NAHC 14 36 71 7 28 85 7 21 50 7 14 50 7 14 57
Bunch-SAHC 14 36 71 21 57 92 7 21 57 0 21 50 0 21 50
WCA-UE 14 36 64 0 21 92 14 28 92 0 14 50 0 14 64
WCA-UENM 0 14 64 0 21 92 0 21 71 0 21 64 0 7 71
LIMBO 0 14 64 0 21 78 0 14 86 0 7 50 0 7 50
ARC 28 57 86
ZBR-tok 0 0 21
ZBR-uni 0 0 7

25

Table 6.5: MoJoFM results for ITK.
ITK

Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 59 56 52 48 84 60 60
B.-NAHC 37 41 39 43 87 48 51
B.-SAHC 33 62 60 53 86 61 61
WCA-UE 31 32 45 45 90 36 36
WCA-UENM 31 32 45 45 89 36 36
LIMBO 31 31 45 38 87 36 36
ARC 59
ZBR-tok MEM
ZBR-uni MEM

Table 6.6: a2a results for ITK.
ITK

Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 67 74 63 58 84 48 48
Bunch-NAHC 71 80 69 59 87 48 48
Bunch-SAHC 69 80 67 59 86 49 48
WCA-UE 74 82 48 39 90 48 48
WCA-UENM 74 82 48 39 89 48 48
LIMBO 71 80 45 36 87 47 47
ARC 60
ZBR-tok MEM
ZBR-uni MEM

26

Table 6.7: Normalized TurboMQ results for ITK.
ITK

Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 33 24 18 32 47 40 40
Bunch-NAHC 15 24 28 25 58 43 41
Bunch-SAHC 10 46 32 31 65 54 49
WCA-UE 5 20 7 2 74 22 19
WCA-UENM 15 20 7 2 66 22 19
LIMBO 11 21 9 1 47 20 20
ARC 9 33 NA
ZBR-tok MEM
ZBR-uni MEM

Table 6.8: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
ITK.

ITK
Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 0 0 62 0 0 53 0 0 31 0 0 31 8 8 54 0 8 38 0 8 38
B.-NAHC 0 0 30 0 0 61 0 0 46 0 0 46 15 46 76 0 0 38 0 0 38
B.-SAHC 0 0 0 0 7 92 0 0 46 0 0 38 15 62 92 0 0 38 0 0 38
WCA-UE 0 0 23 0 0 30 0 0 0 0 0 23 38 69 100 0 0 38 0 0 38
WCA-UENM 0 0 23 0 0 23 0 0 0 0 0 23 46 62 100 0 0 38 0 0 38
LIMBO 0 0 23 0 0 23 0 0 0 0 0 0 38 69 100 0 0 30 0 0 30
ARC 7 7 54
ZBR-tok MEM
ZBR-uni MEM

27

Table 6.9: MoJoFM results for Chromium. † Scores denote results for intermediate archi-
tectures obtained after the technique timed out.

Chromium
Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 63 70 73 71 62 71 71
Bunch-NAHC 28 31 24 66 70 29 35
Bunch-SAHC 13† 70† 43† 66 63 39 29
WCA-UE 23 23 23 27 90 29 29
WCA-UENM 23 23 23 27 89 29 29
LIMBO TO 23 23 26 85 27 27
ARC 45
ZBR-tok MEM
ZBR-uni MEM

Table 6.10: a2a results for Chromium. † Scores denote results for intermediate architectures
obtained after the technique timed out.

Chromium
Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 71 73 74 64 82 62 62
Bunch-NAHC 69 73 76 66 82 63 63
Bunch-SAHC 60† 71† 66† 66 84 64 62
WCA-UE 70 75 78 68 85 66 66
WCA-UENM 70 75 78 68 84 67 66
LIMBO TO 71 74 64 84 61 62
ARC 56
ZBR-tok MEM
ZBR-uni MEM

28

Table 6.11: Normalized TurboMQ results for Chromium. † Scores denote results for
intermediate architectures obtained after the technique timed out.

Chromium
Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 15 19 18 20 47 24 24
Bunch-NAHC 4 24 9 100 56 16 19
Bunch-SAHC 2† 30† 11† 3 51 29 11
WCA-UE 0 4 4 83 41 4 4
WCA-UENM 0 4 4 98 44 4 4
LIMBO TO 4 4 70 37 4 4
ARC 4 10 NA
ZBR-tok MEM
ZBR-uni MEM

Table 6.12: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Chromium. † Scores denote results for intermediate architectures obtained after the tech-
nique timed out.

Chromium
Algo. Inc. S-CHA S-Int No Vir. Mod. Funct. F. GV.

ACDC 16 30 80 22 48 92 17 38 87 10 23 82 13 17 29 7 17 80 10 17 80
B.-NAHC 0 0 7 0 0 26 0 0 3 0 0 9 12 25 52 0 0 4 0 3 24
B.-SAHC 0 6 19 14 33 80 7 12 36 4 10 53 14 23 54 0 1 38 0 0 4
WCA-UE 0 0 4 0 0 3 0 0 3 0 0 3 35 65 94 0 0 3 0 1 6
WCA-NM 0 0 4 0 0 3 0 0 3 0 0 3 28 59 94 0 0 3 0 1 6
LIMBO TO 0 0 0 0 0 0 0 0 0 42 65 83 0 0 0 0 0 0
ARC 3 7 80
ZBR-tok MEM
ZBR-uni MEM

29

Table 6.13: MoJoFM results for ArchStudio.
ArchStudio

Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 60 60 77 79 71 76 74
Bunch-NAHC 52 46 59 56 50 61 53
Bunch-SAHC 62 48 62 50 53 61 64
WCA-UE 32 31 33 47 33 32 32
WCA-UENM 32 31 33 47 33 32 32
LIMBO 26 25 25 26 25 26 25
ARC 62
ZBR-tok 48
ZBR-uni 48

Table 6.14: a2a results for ArchStudio.
ArchStudio

Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 71 86 88 83 92 87 88
Bunch-NAHC 71 80 83 76 82 82 84
Bunch-SAHC 72 82 85 76 82 82 83
WCA-UE 71 84 84 82 84 82 83
WCA-UENM 71 84 84 82 84 82 83
LIMBO 67 79 79 74 79 78 79
ARC 87
ZBR-tok 85
ZBR-uni 86

Three recovery techniques—ARC, ZBR-tok, and ZBR-uni—do not rely on dependen-
cies; however, we include them to assess the accuracy of symbol dependencies against these
information retrieval-based techniques. The best score obtained for each recovery technique
across all type of dependencies is highlighted in dark gray; the best score between include
and symbol dependencies when applied to a particular technique, is highlighted in light
gray.

Our results indicate that symbol dependencies generally improve the accuracy of re-
covery techniques over include dependencies. According to a2a scores (Tables 6.2-6.18)
relying on both types of symbol dependencies outperforms relying on include dependen-

30

Table 6.15: Normalized TurboMQ results for ArchStudio.
ArchStudio

Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 66 41 76 84 71 73 74
Bunch-NAHC 79 50 79 100 46 79 84
Bunch-SAHC 76 47 80 100 73 84 81
WCA-UE 1 13 24 69 20 11 20
WCA-UENM 1 13 24 69 20 11 20
LIMBO 48 12 32 38 8 25 28
ARC 26 30 NA
ZBR-tok 6 17 NA
ZBR-uni 5 15 NA

Table 6.16: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
ArchStudio.

ArchStudio
Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 9 21 47 21 54 77 56 77 93 53 75 89 52 72 86 44 65 77 44 63 77
B.-NAHC 4 9 33 9 11 54 11 19 61 5 19 53 5 12 37 9 19 61 7 25 61
B.-SAHC 7 16 49 7 18 54 11 19 54 11 14 37 9 17 67 5 18 70 9 17 67
WCA-UE 0 9 39 0 7 30 7 18 39 30 37 53 7 18 40 0 14 39 7 18 40
WCA-NM 0 9 39 0 7 30 7 18 39 30 37 53 7 18 40 0 14 39 7 18 40
LIMBO 0 0 77 0 0 91 0 0 93 0 0 91 0 0 84 0 0 88 0 0 84
ARC 21 49 88
ZBR-tok 4 16 65
ZBR-uni 4 23 47

cies for all of the combinations of techniques and systems which use dependencies. The
only exception is in the case of ITK, where relying on include dependencies outperforms
interface-only resolution for virtual calls. As ITK contains a large number of virtual call
dependencies (more than 75%), using interface-only resolution likely results in a significant
loss of information, making those dependencies inaccurate. When doing a complete anal-
ysis of the virtual call dependencies of ITK (S-CHA), using symbol dependencies with a
class hierarchy analysis of virtual calls outperforms using include dependencies for all tech-
niques. Similar results are observed for MoJoFM , despite a few exceptions where include

31

Table 6.17: MoJoFM results for Hadoop.
Hadoop

Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 24 29 41 41 32 41 41
Bunch-NAHC 29 27 29 34 22 37 29
Bunch-SAHC 32 38 40 41 26 37 38
WCA-UE 14 13 17 40 17 17 17
WCA-UENM 14 13 17 37 17 17 17
LIMBO 17 14 15 16 14 15 15
ARC 49
ZBR-tok 29
ZBR-uni 38

Table 6.18: a2a results for Hadoop.
Hadoop

Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 68 81 84 79 80 84 84
Bunch-NAHC 68 81 81 78 80 82 81
Bunch-SAHC 69 83 83 80 79 82 83
WCA-UE 68 80 81 79 81 81 82
WCA-UENM 68 80 81 79 81 81 82
LIMBO 68 80 80 76 80 79 80
ARC 84
ZBR-tok 81
ZBR-uni 83

dependencies outperformed symbol dependencies by a few percentage points. On average,
using symbol dependencies respectively improves the accuracy by 9 percentage points (pp)
and 5 pp according to a2a and MoJoFM . For MoJoFM and a2a, the technique obtaining
the greatest improvement from the use of symbol dependencies, as compared to include de-
pendencies, is Bunch-SAHC, with an average improvement of almost 17 pp for MoJoFM
and a 11.5 pp for a2a.

Tables 6.4-6.20 show c2ccvg for three different values of thcvg , i.e., 50%, 33%, and 10%,
(from left to right) for each combination of technique and dependency type. The first
value depicts c2ccvg for thcvg = 50% which we refer to as a majority match. We select

32

Table 6.19: Normalized TurboMQ results for Hadoop.
Hadoop

Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 48 29 59 65 29 57 29
Bunch-NAHC 44 31 61 81 35 59 35
Bunch-SAHC 50 36 56 70 31 57 31
WCA-UE 2 6 8 37 11 8 11
WCA-UENM 2 6 9 36 11 8 11
LIMBO 3 7 19 26 4 18 4
ARC 10 15 NA
ZBR-tok 5 10 NA
ZBR-uni 7 13 NA

Table 6.20: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Hadoop.

Hadoop
Algo. Inc. S-CHA S-Int No Vir. Trans. Funct. F. GV.

ACDC 0 3 43 4 13 39 7 18 49 7 18 45 4 10 37 7 16 52 9 16 52
B.-NAHC 1 3 35 1 4 47 0 12 49 3 9 43 1 7 34 4 10 55 4 9 49
B.-SAHC 1 3 32 4 21 81 4 10 49 7 21 85 1 6 25 4 13 58 3 10 46
WCA-UE 0 7 37 0 13 30 1 15 34 3 10 73 1 13 33 3 19 39 1 16 36
WCA-NM 0 7 37 0 13 30 1 15 34 3 12 69 1 13 33 3 19 39 1 16 36
LIMBO 0 0 64 0 0 81 0 0 79 0 1 81 0 0 84 0 0 82 0 0 79
ARC 21 49 88
ZBR-tok 4 16 65
ZBR-uni 4 23 47

this threshold to determine the extent to which clusters produced by techniques mostly
resemble clusters in the ground truth. The other two c2ccvg scores show the portion of
moderate matches (33%) and weak matches (10%).

Dark gray cells show the highest c2ccvg for each recovery technique across all type
of dependencies. Light gray cells show the highest c2ccvg between include and symbol
dependencies for each technique, when applied to a particular technique for a specific
threshold thcvg . Several rows do not have any highlighted cells; such rows indicate that
c2ccvg is identical for include and symbol dependencies. We observe significant improvement

33

when using symbol dependencies over include dependencies, even for thcvg = 50%. For
example, in Table 6.16, for ACDC on ArchStudio, the c2ccvg for thcvg = 50% for include
dependencies is 9%, while using symbol dependencies increased it to 56% with symbol
dependencies and interface-only resolution. Overall, Tables 6.4 to 6.20 indicate that (1) the
use of symbol dependencies generally produces more accurate clusters (majority matches);
and that (2) c2ccvg is low regardless of the types of dependencies used.

Tables 6.3 to 6.19 presents the normalized TurboMQ results, which measure the orga-
nization and cohesion of clusters independent of ground-truth architectures. Both types of
symbol dependencies obtain higher normalized TurboMQ scores than include dependen-
cies. In other words, symbol dependencies help recovery techniques produce architectures
with better organization and internal component cohesion than include dependencies.

The overall conclusion from applying these four metrics is that symbol dependencies
allow recovery techniques to increase their accuracy for all systems in almost every case,
independently of the metric chosen. The different metrics sometimes contradict one an-
other. For example, in the case of the ITK’s architecture recovered using ACDC, include
dependencies outperform symbol dependencies with CHA, as measured using MoJoFM .
However, when measured using a2a, the opposite result occurs. This difference is likely
due to the perspective from which the metrics measure an architecture. Nevertheless, our
results tend to be similar for the four metrics, indicating that symbol dependencies increase
the accuracy of architecture recovery.

Despite the accuracy improvement of using symbol dependencies over include depen-
dencies, c2ccvg results for majority match are low. This indicates that these techniques’
clusters are significantly different from clusters in the corresponding ground truth. It sug-
gests that improvement is needed for all the evaluated recovery techniques. Our results also
reinforce the observation made in our recent related study [25] that multiple ground-truth
architectures for a system may be needed.

34

6.2 RQ2: What is the impact of different input fac-

tors, such as the granularity level, the use of tran-

sitive dependencies, the use of different symbol

dependencies and virtual call graph construction

algorithms, on existing architecture recovery tech-

niques?

There are several types of dependencies that can be used as input to recovery techniques.
First, we can break symbol dependencies based on the type of symbol (functions, global
variables, etc.). Another important factor to take into consideration concerns the way we
resolve virtual calls. Finally, we also look at the transitivity and the granularity level of
the dependencies. Those different factors are considered as important for other software
analyzes and have a significant impact on the quality of the recovered architectures.

6.2.1 Impact of function calls and global variables

Function calls are the most common type of dependencies in a system. The question we
study pertains to whether the most common dependencies have the most significant impact
on the quality of the recovery techniques.

Global variables typically represent a small, but important part of a program. If two
functions use the same global variables, they might be similar and the files they belong
to could be clustered together. Adding global variable dependencies to our dependency
graph could help connect similar elements, that do not directly interact with one another
via function calls.

We do not use global variable dependencies alone, because for most of the systems,
only a minority of elements accesses global variables. Therefore, by considering global
variable dependencies alone, we would miss a large number of elements of the system,
making several metrics inaccurate. Instead, we measure the improvement on the quality of
the recovered architectures obtained by adding global variable dependencies to functions
calls compared to using function calls alone.

Overall, MoJoFM and normalized TurboMQ values for function calls alone and symbol
dependencies are highly similar. However, for c2ccvg and a2a, results from all symbol
dependencies are significantly better than results from function calls alone. For example,

35

a2a results are, on average 16.5 pp better when using all symbol dependencies available
(S-CHA) than when using function calls alone. Despite the fact that function calls have
a major impact on the accuracy of architecture recovery techniques, using function calls
alone is not sufficient for obtaining accurate recovered architectures.

The impact of global variable usage is minor. For example, on average, adding global
variable usage to function call dependencies improves the results by 0.3 pp according to a2a.
The impact of global variables is reduced because of the small number of global variable
accesses in the projects used in our study. For example, Chromium’s C and C++ Style
Guide 1 discourages the use of global variables. We acknowledge that our results would
likely be different for a system relying heavily on global variables, such as the Toyota ETCS
system, which contains about 11,000 global variables [31, 34].

6.2.2 Impact of virtual call resolution

Virtual call resolution is a known problem in software engineering, and several possible
strategies for addressing it have been proposed [6,18,56]. Due to the high number of virtual
calls in C++ and Java projects, the type of resolution chosen when extracting symbol
dependencies can significantly impact the accuracy of recovery techniques. However, it is
unclear which type of virtual call resolution has the greatest impact on the architecture of
a system. To determine which virtual call resolution to utilize for recovery techniques, we
evaluate three different resolution strategies: (1) ignoring virtual calls, (2) interface-only
resolution, and (3) CHA-based resolution.

Ignoring virtual calls is the easiest solution to follow. More importantly, including it as
a possible resolution strategy allows us to determine whether doing any virtual call analysis
improves recovery results.

For interface-only resolution, we only consider the interface of the virtual functions
as being invoked and discard potential calls to derived functions. This is the simplest
resolution that can be performed that does not ignore virtual calls.

For the third resolution strategy, we use Class Hierarchy Analysis (CHA) [18], which is
a well-known analysis that is computationally costly to perform. For this type of resolution,
we consider all the derived functions as potential calls. This resolution also creates a larger
dependency graph than interface-only resolution.

The results obtained when ignoring virtual calls are shown in column No Vir. The re-
sults for symbol dependencies obtained with CHA and Interface-only virtual call resolution

1https://www.chromium.org/developers/coding-style

36

are respectively presented in column S-CHA and S-Int. Bash, written in C, is the only
project which does not contain any virtual calls.

The results obtained when discarding virtual calls (column No Vir.) are generally less
good than with other symbol dependencies. According to a2a and c2ccvg, using only non-
virtual call dependencies reduces the accuracy of the recovery techniques for all projects
and all techniques when compared to using virtual calls. According to a2a the average
results without virtual calls are 11 pp lower than the results with CHA and 6 pp lower
than the results with interface-only resolution.

There are a few exceptions for Chromium, Hadoop, and ArchStudio with the metrics
MoJoFM and normalized TurboMQ. The reason for unexpectedly high results with
MoJoFM and normalized TurboMQ is that using partial symbol dependencies is not
well handled by those two metrics. Using partial symbol dependencies—in our case, we
discard symbol dependencies that are virtual calls—results in (1) a significant mismatch
of files between the ground-truth architecture and the recovered architectures, and (2)
a disconnected dependency graph. The file mismatches create artificially high MoJoFM
results, and the disconnected dependency graphs can lead to extremely high or even perfect
normalized TurboMQ scores, as it is the case for ArchStudio when using Bunch without
virtual call dependencies.

When looking at interface-only and CHA resolutions, we observe a difference in behav-
ior of the two Java projects and the two C/C++ projects. For Java-based Hadoop and
ArchStudio, using an interface-only resolution seems to greatly improve the results over
using CHA. Those results are obtained for both projects and for all metrics, with only
three exceptions for c2ccvg in Hadoop (Table 6.16) where using CHA provides slightly bet-
ter results. On average, according to normalized TurboMQ, using interface-only resolution
improves the results by 20 pp for ArchStudio and Hadoop. However, for C++-based ITK
and Chromium, the normalized TurboMQ results are improved by 7 pp when using CHA
for virtual-call resolution.

There could be several reasons for this difference. First, the two C++ projects are
between 10 and 200 times larger than the two Java projects we studied. It is possible
that a complete analysis of virtual calls only becomes necessary for large projects with
many complex virtual objects. Second, in Java, methods are virtual by default, while
in C++, methods have to be declared as virtual by using the keyword virtual. C and
C++ developers also have the possibility to use function pointers instead of virtual calls,
which are currently not handled properly by our symbol dependency extractor. Those two
elements could also be a reason why we observed different affects of virtual-call resolutions
for C++ and Java projects.

37

Our overall results indicate that, to obtain a more accurate recovered architecture, the
choice of the virtual-call resolution algorithm depends on the project studied. Specifically,
if the project contains a high number of virtual calls, CHA is likely to produce better
recovery results. Otherwise, interface-only resolution is preferable. Ignoring virtual calls
is ill-advised in all cases.

6.2.3 Direct vs. transitive dependencies

A transitive dependency can be built from direct dependencies. For example, if A depends
on B, and B depends on C, then A transitively depends on C. Recovery techniques can use
as input (1) direct dependencies only or (2) transitive dependencies. To compare direct
dependencies against transitive dependencies, we run a transitive closure algorithm on
the symbol dependencies and study the effect of adding transitive dependencies on the
accuracy of architecture recovery. We did not use include dependencies for this study
because, as explained in Section 3.3, include dependencies for C and C++ projects are not
direct dependencies. Furthermore, we did not include Chromium because the algorithm
generating transitive dependencies does not scale to that size, even when we tried to use
advanced computational techniques, such as Crocopat’s use of binary decision diagrams [8].
For ITK, although we were able to obtain transitive dependencies, none of the architecture
recovery techniques scaled to its size. Therefore, we cannot report those results. Results
for Bash, Hadoop, and ArchStudio, are reported in the tables corresponding to the different
metrics (column Trans).

When comparing the results obtained with direct (Sym for Bash and S-Int for Hadoop
and ArchStudio) and transitive (Trans) symbol dependencies, we observe that using direct
dependencies generally provides similar or better results. Results with MoJoFM , nor-
malized TurboMQ, and c2ccvg tend to favor the use of direct dependencies over transitive
dependencies (+11 pp on average for normalized TurboMQ when using direct dependen-
cies, +4.6 pp on average for MoJoFM).

According to a2a, using transitive dependencies has a minor impact (-0.7 pp on average)
on the results. a2a gives importance to the discrepancy of files between the recovered
architecture and the ground truth. As no files are added or removed when obtaining the
transitive dependencies from the direct dependencies, this discrepancy is exactly the same
between the direct and transitive dependencies. This is why we do not observe a significant
difference between direct and transitive dependencies results when using a2a.

With fewer dependencies, using direct dependencies is more scalable than transitive
dependencies. In summary, direct dependencies help generate more accurate architectures

38

than transitive dependencies in most cases.

6.2.4 Impact of the level of granularity of the dependencies

Results at the module level are reported for ITK and Chromium under the column Mod.
of Tables 6.9, 6.5, 6.6, 6.10, 6.11, 6.7, 6.8, and 6.12. Module dependencies are obtained
by adding information extracted from the configuration files to group files together. This
information is written by the developers and could represent the architecture of the project
as it is understood by developers. Given the inherent architectural information in such
dependencies, it is expected that they would improve a recovery technique’s accuracy.

Overall, our results indicate that module information, when available, significantly im-
proves recovery accuracy and scalability of all recovery techniques. As shown in Table 4.1,
the number of module dependencies is almost 70 times lower than the number of file depen-
dencies. Because of this reduction in the number of dependencies, we obtain results from
all recovery techniques in a few seconds when working at the module level, as opposed to
several hours for each technique when working at the file level. On average, compared to
using the best file-level dependencies, using module-level information improves the results
by 8 pp according to a2a.

6.3 RQ3: Can existing architecture recovery tech-

niques scale to large projects comprising 10MSLOC

or more?

Overall, ACDC is the most scalable technique. It took only 70-120 minutes to run ACDC on
Chromium on our server. The WCA variations and ARC have a similar execution time (8
to 14 hours), with WCA-UENM slightly less scalable than WCA-UE. Bunch-NAHC is the
last technique which was able to terminate on Chromium for both kinds of dependencies,
taking 20 to 24 hours depending on the kind of dependencies used. LIMBO only terminated
for symbol dependencies after running for 4 days on our server.

Bunch-SAHC timed out after 24 hours for both include and symbol dependencies. We
report here the intermediate architecture recovered at that time. Bunch-SAHC investigates
all the neighboring architectures of a current architecture and selects the architecture
that improves MQ the most; Bunch-NAHC selects the first neighboring architecture that

39

improves MQ. Bunch-SAHC’s investigation of all neighboring architectures makes it less
scalable than Bunch-NAHC.

LIMBO failed to terminate for include dependencies after more than 4 days running on
our server. Two operations performed by LIMBO, as part of hierarchical clustering, result
in scalability issues: construction of new features when clusters are merged and computa-
tion of the measure used to compare entities among clusters. Both of these operations are
proportional to the size of clusters being compared or merged, which is not the case for
other recovery techniques that use hierarchical clustering (e.g., WCA).

ZBR needs to store data of the size nzV , where n is the number of files being clustered,
z is the number of zones, and V is the number of terms. For large software (i.e., ITK and
Chromium), with thousands of files and millions of terms, ZBR ran out of memory after
using more than 40GB of RAM.

The use of symbol dependencies improves the recovery techniques’ scalability over in-
clude dependencies for large projects (i.e., ITK and Chromium). The main reason for this
phenomenon is that include dependencies are less direct than symbol dependencies.

As mentioned in the discussion of the previous research question, working at the module-
level significantly reduces the number of dependencies and, therefore, greatly improves the
scalability of all dependency-based techniques for large projects. Indeed, at the module-
level we were able to obtain results in a few seconds, even for techniques that did not scale
with file-level dependencies.

6.4 Comparison with the Prior Work

As previously mentioned, three of our subject systems were also used in the previous
study [25]. It is difficult to compare our results with the prior study because of the
differences described in Section 5.3. When using the same type of dependencies (Inc) as in
the previous study, we observe that the MoJoFM scores drop by 6 pp on average for all
techniques over the scores reported in [25]. It is possible that the newer version of Bash is
more complex and its architecture harder to automatically recover. In the cases of Hadoop
and ArchStudio, the previous study used a different level of granularity (class level), which
makes comparison with current work irrelevant.

40

Chapter 7

Threats to Validity

There is not necessarily a unique, correct architecture for a system [10, 26]. Recovering
ground-truth architectures require heavy manual work from experts. Therefore, it is chal-
lenging to obtain different certified architectures for the same system. As we are using
only one ground-truth architecture, there is a threat that our study is biased toward that
specific architecture. To reduce this threat, we use four different metrics, including one
independent of the ground-truth architecture. Two of the metrics used in this study were
developed by some authors of this paper, which might have caused a bias in this study.
However, all four metrics, including metrics developed independently, follow the same
trend—symbol dependencies are better than include dependencies—which mitigates some
of the potential bias.

The metrics chosen in this paper measure the similarity and quality of an architecture
at different levels—the system level (measured by MoJoFM and a2a), the component
level (measured by c2ccvg) and the dependency-cohesion level (measured by normalized
TurboMQ). In future work, we intend to measure the accuracy of an architecture from an
additional perspective, by analyzing whether the architecture contains undesirable patterns
or follows good design principles.

We have evaluated recovery techniques on only five systems. To mitigate this threat, we
selected systems of different sizes, functionalities, architecture paradigms, and languages.

41

Chapter 8

Discussion

This chapter describes several secondary results of our research such as issues encountered
with the different metrics, extreme architectures, and guidelines concerning the dependen-
cies, the architecture recovery techniques, and the metrics to use in future work.

8.1 Metrics Limitations

As mentioned in section 5.5, some metrics have limitations and can be biased toward
specific architectures. In this section, we explain the limitations we encountered with two
of the metrics we used. Those limitations appeared because, the metrics in question were
neither explicitly intended for nor adapted to specific types of dependencies.

The dependencies are often incomplete. For example, include dependencies generally
contain fewer files than the ground-truth architecture. The reasons were explained in Sec-
tion 3.3, including the fact that non-header-file to non-header-file dependencies are missing.
Unfortunately, one of the most commonly used metrics, MoJoFM , assumes that the two
architectures under comparison contain the same elements. Given this limitation, one can
create a recovery technique that achieves 100% MoJoFM score easily but completely ar-
tificially. The technique would simply create a file name that does not exist in a project,
and place it in a single-node architecture. The MoJoFM score between the single-node
architecture and the ground truth will be 100%. By contrast, the a2a metric is specifically
designed to compare architectures containing different sets of elements.

In addition to the “file mismatch” issue with MoJoFM , we also identified issues with
TurboMQ, as discussed in Section 5.5. Replacing TurboMQ by its normalized version

42

yielded an improvement. However, one has to be careful when using normalized TurboMQ.
We identified two boundary cases where normalized TurboMQ results are incorrectly high.
It is possible to obtain the maximum score for normalized TurboMQ by grouping all the
elements of the recovered architecture in a single cluster. As there will be no inter-cluster
dependencies, the score will be 100%. We manually checked all recovered architectures to
make sure this specific case never happened in our evaluation. The second “extreme case”
occurs when the dependency graph used as input is not fully connected. This can happen
when using only partial symbol dependencies (i.e., global variable usage, non-virtual call
dependency graph, etc.). In this case, some recovery techniques will create architectures
in which clusters are not connected to one another. This also results in a normalized
TurboMQ score of 100%. In our evaluation, this issue occurs when using non-virtual call
dependencies for ArchStudio and Chromium in Tables 6.11 and 6.15. This is a limit of
normalized TurboMQ when using partial dependencies.

Those are specific issues we observed performing our analysis. It is conceivable that
biases towards other types of architecture have yet to be discovered. This suggests that
a separate, more extensive study on the impact of different architectures on the metrics
would be useful in order to obtain a better understanding of those metrics. Such a study
has not been performed to date.

Metrics are convenient because they quantify the accuracy of an architecture with a
score, allowing comparisons between recovery techniques. Our study has included, devel-
oped, adapted, and evaluated a larger number of metrics than prior similar studies. How-
ever, the value of this score by itself must be treated judiciously. Obviously, the “best”
recovered architecture is the one that is the closest to the ground-truth. At the same
time, important questions such as “Is the recovered architecture good enough to be used
by developers?”, “Can an architecture with an a2a score of 90% be used for maintenance
tasks?” cannot be answered by solely using metrics. A natural outgrowth of this work,
then would be to involve real engineers in performing maintenance tasks in real settings.
Then it would be possible to evaluate the extent to which the metrics are indicative of the
impact on completing such tasks. We are currently preparing such a study with the help
of several of our industrial collaborators.

8.2 Architecture Recovery Techniques

The architecture recovery techniques evaluated in this study all recover “flat”, i.e., non-
hierarchical architectures. This design choice is not necessarily the best. Indeed, when

43

discussing with Google developers during the recovery of Chromium’s ground truth, it ap-
peared that they view their architecture as a nested architecture in which files are clustered
into small entities, themselves clustered into larger entities. This kind of architecture is not
well supported by current architecture recovery techniques and metrics. Possible future
work may focus on developing or updating architecture recovery techniques to be able to
obtain a hierarchical organization of the information which is potentially more useful to
developers.

8.3 Dependencies Matter for Evaluating Architecture

Recovery Techniques

This paper explores whether the type of dependencies used affects the quality of the ar-
chitecture recovered, and answers in the affirmative: each recovery technique gets better
if more detailed input dependencies are used. This paper has not focused on the question
of which architecture recovery technique is best. The results in this paper show, however,
that any attempted evaluation of architecture recovery techniques must be careful about
dependencies: For example, if we look at the best architecture recovery technique to re-
cover Bash, MoJoFM would select a different best technique in four out of five cases with
different input dependencies; c2ccvg in 3/5 cases; and normalized TurboMQ in 2/5 cases.
a2a is more stable and would select Bunch-SAHC in all the cases, but a2a also shows that
most of the techniques perform similarly for Bash when using similar dependencies. If we
look at the other projects, we also observe that none of the metrics always pick the same
best recovery technique when using different dependencies.

In this paper, we evaluate architecture recovery techniques using source-code depen-
dencies. Other types of dependencies can alternatively be used. For example, one can look
at a developers’ activity (e.g., files modified together) to obtain code dependencies [33].

In addition, we do not consider the weights on the dependencies. For example, con-
sider FileA that uses one symbol from FileB, and FileC that uses 20 symbols from FileB.
Intuitively, it seems that FileB and FileC are more connected than FileA and FileB. Un-
fortunately, the current implementations of the architecture recovery techniques do not
consider weighted graphs. Using weighted dependencies could be a way to improve the
quality of the recovered architectures.

44

8.4 Selecting Metrics and Recovery Techniques

Using only one metric is not enough to assess the quality of architectures. However, some
metrics are better than others depending on the context. When working on software
evolution, the architectures being compared will likely include a different set of files. In
this case, a2a, c2ccvg, and normalized TurboMQ are more appropriate than MoJoFM ,
which assumes that no files are added or removed across versions. If the architectures being
compared contain the same files (e.g., comparing different techniques with the same input),
a2a will give results with a small range of variations, making it difficult to differentiate the
results of each technique. In this case, MoJoFM results are easier to analyze than the
ones obtained with a2a.

We do not claim that one recovery technique is better than the others. However, we can
provide some guidelines to help practitioners choose the right recovery technique for their
specific needs. According to our scalability study, ACDC, ARC, WCA, and Bunch-NAHC
are the most adapted to recover large software architectures. When trying to recover
the low-level architecture of a system, practitioners should favor ACDC, as it generally
produces a high number of small clusters. If a different level of abstraction is needed,
WCA, LIMBO, and ARC allow the user to choose the number of clusters of the recovered
architecture. Those techniques will be more helpful for developers who already have some
knowledge of their project architecture.

45

Chapter 9

Conclusions

The paper evaluates the impact of using more accurate symbol dependencies, versus the
less accurate include dependencies used in previous studies, on the accuracy of automatic
architecture recovery techniques. We also study the effect of different factors on the accu-
racy and scalability of recovery techniques, such as the type of virtual-call resolution, the
granularity-level of the dependencies and whether the dependencies are direct or transitive.
We studied nine variants of six architecture recovery techniques on five open-source sys-
tems. To perform our evaluation, we recovered the ground-truth architecture of Chromium,
and updated ArchStudio and Bash architectures. In addition, we proposed a simple but
novel submodule-based architecture recovery technique to recover preliminary versions of
ground-truth architectures. In general, each recovery technique extracted a better quality
architecture when using symbol dependencies instead of the less-detailed include dependen-
cies. Working with direct dependencies at module level also helps with obtaining a more
accurate recovered architecture. Finally, it is important to carefully choose the type of
virtual-call resolution when working with symbol dependencies, as it can have a significant
impact on the quality of the recovered architectures.

In some sense this general conclusion that quality of input affects quality of output
is not surprising: the principle has been known since the beginning of computer science.
Butler et al. [12] attribute it to Charles Babbage, and note that the acronym “GIGO” was
popularized by George Fuechsel in the 1950’s. What is surprising is that this issue has
not previously been explored in greater depth in the context of architecture recovery. Our
results show that not only does each recovery technique produce better output with better
input, but also that the highest scoring technique often changes when the input changes.

More empirical work is also needed to explore the idea of multiple ground-truth archi-

46

tectures for a given system. One possible direction is to do ground-truth extraction with
different groups of engineers on the same system. Another direction would be to have
system engineers develop “ground-truth” architectures starting from automatically recov-
ered architectures. The ground-truth architecture is an important input into this kind of
evaluation and deserves greater examination.

The results presented here clearly demonstrate that there is room for more research
both on architecture recovery techniques and on metrics for evaluating them.

47

References

[1] 8th International Workshop on Program Comprehension (IWPC 2000), 10-11 June
2000, Limerick, Ireland. IEEE CS Press, 2000.

[2] TIOBE Index for April 2014. http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html, 2014.

[3] Periklis Andritsos, Panayiotis Tsaparas, Renée J Miller, and Kenneth C Sevcik.
LIMBO: Scalable Clustering of Categorical Data. In Adv. Database Technol. - EDBT
2004, pages 531–532. 2004.

[4] Periklis Andritsos and Vassilios Tzerpos. Information-Theoretic Software Clustering.
IEEE Trans. on Softw. Eng., 31(2), February 2005.

[5] Mahir Arzoky, Stephen Swift, Allan Tucker, and James Cain. Munch: An Efficient
Modularisation Strategy to Assess the Degree of Refactoring on Sequential Source
Code Checkings. In Proc. ICST Workshops, pages 422–429, 2011.

[6] David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual function
calls. ACM Sigplan Notices, 31(10):324–341, 1996.

[7] Adam Barth, Collin Jackson, Charles Reis, and The Google Chrome Team. The
Security Architecture of the Chromium Browser. Technical report, 2008.

[8] Dirk Beyer. Relational Programming with CrocoPat. In Proc. ICSE, pages 807–810,
Shanghai, China, 2006. IEEE.

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. J.
Mach. Learn. Res., 3:993–1022, March 2003.

48

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[10] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux As a Case Study:
Its Extracted Software Architecture. In Proc. ICSE, pages 555–563, New York, NY,
USA, 1999. ACM.

[11] A. Brown and G. Wilson. In The Architecture of Open Source Applications. Lulu,
2011.

[12] Jill Butler, William Lidwell, and Kritina Holden. Universal Principles of Design.
Rockport Publishers, Gloucester, MA, 2nd edition, 2010.

[13] Yuanfang Cai, Hanfei Wang, Sunny Wong, and Linzhang Wang. Leveraging Design
Rules to Improve Software Architecture Recovery. In Proc. QoSA, QoSA ’13, pages
133–142, New York, NY, USA, 2013. ACM.

[14] Chris Chedgey, Paul Hickey, Paul O’Reilly, and Ross McNamara. Structure101.

[15] Alistair Cockburn and Jim Highsmith. Agile Software Development, the People Factor.
Computer, 34(11):131–133, 2001.

[16] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scanniello. Investi-
gating the use of lexical information for software system clustering. In Proc. CSMR,
pages 35–44. IEEE, 2011.

[17] Lakshitha De Silva and Dharini Balasubramaniam. Controlling Software Architecture
Erosion: A Survey. Journal of Systems and Software, 85(1):132–151, 2012.

[18] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP95Object-Oriented Pro-
gramming, 9th European Conference, Åarhus, Denmark, August 7–11, 1995, pages
77–101. Springer, 1995.

[19] Lei Ding and Nenad Medvidovic. Focus: A Light-Weight, Incremental Approach
to Software Architecture Recovery and Evolution. In Proc. WICSA, pages 191–200,
Washington, DC, USA, 2001. IEEE CS Press.

[20] Stéphane Ducasse and Damien Pollet. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. IEEE Trans. Software Eng., 35(4):573–591, 2009.

[21] Stephane Ducasse and Damien Pollet. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. IEEE Trans. Softw. Eng., 35(4):573–591, July 2009.

49

[22] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. A Clich-Based Environment to
Support Architectural Reverse Engineering. In Proc. ICSM, pages 319–328. IEEE CS
Press, 1996.

[23] Roberto Fiutem, Giulio Antoniol, Paolo Tonella, and Ettore Merlo. ART: an Architec-
tural Reverse Engineering Environment. Journal of Software Maintenance, 11(5):339–
364, 1999.

[24] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

[25] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative analysis of soft-
ware architecture recovery techniques. In Proc. ASE, pages 486–496. IEEE, 2013.

[26] Joshua Garcia, Ivo Krka, Chris Mattmann, and Nenad Medvidovic. Obtaining
Ground-truth Software Architectures. In Proc. ICSE, ICSE ’13, pages 901–910, Pis-
cataway, NJ, USA, 2013. IEEE Press.

[27] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuanfang
Cai. Enhancing Architectural Recovery Using Concerns. In Perry Alexander, Corina S.
Pasareanu, and John G. Hosking, editors, ASE, pages 552–555, 2011.

[28] Alan Grosskurth and Michael W. Godfrey. A Case Study in Architectural Analysis:
The Evolution of the Modern Web Browser, 2007.

[29] Halûk Gümüşkaya. Core Issues Affecting Software Architecture in Enterprise Projects.
Proceedings of the Enformatika, 9:32–37, 2005.

[30] Anton Jansen, Paris Avgeriou, and Jan Salvador van der Ven. Enriching Software Ar-
chitecture Documentation. Journal of Systems and Software, 82(8):1232–1248, 2009.

[31] MT Kirsch, VA Regenie, ML Aguilar, O Gonzalez, M Bay, ML Davis, CH Null,
RC Scully, and RA Kichak. Technical support to the national highway traffic safety
administration (nhtsa) on the reported toyota motor corporation (tmc) unintended
acceleration (ua) investigation. NASA Engineering and Safety Center Technical As-
sessment Report (January 2011), 2011.

[32] Kenichi Kobayashi, Manabu Kamimura, Koki Kato, Keisuke Yano, and Akihiko Mat-
suo. Feature-gathering Dependency-based Software Clustering using Dedication and
Modularity. Proc. ICSM, 0:462–471, 2012.

50

[33] Martin Konôpka and Mária Bieliková. Software developer activity as a source for
identifying hidden source code dependencies. In SOFSEM 2015: Theory and Practice
of Computer Science, pages 449–462. Springer, 2015.

[34] Phil Koopman. A case study of toyota unintended acceleration and software safety.
Presentation. Sept, 2014.

[35] Rainer Koschke. Architecture Reconstruction. In Proc. ISSSE, pages 140–173, 2008.

[36] Duc Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shahbazian, and
Nenad Medvidovic. An Empirical Study of Architectural Change in Open-Source
Software Systems. In Technical Report USC-CSSE-2014-509, Center for Systems and
Software Engineering, University of Southern California, 2014.

[37] Timothy Lethbridge and Nicolas Anquetil. Comparative Study of Clustering Algo-
rithms and Abstract Representations for Software Remodularization. IEE Proceedings
- Software, 150(3):185–201, 2003.

[38] Peng Liang and Paris Avgeriou. Tools and Technologies for Architecture Knowl-
edge Management. In Software Architecture Knowledge Management, pages 91–111.
Springer, 2009.

[39] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidovic, and Robert Kroeger. Comparing software architecture recovery tech-
niques using accurate dependencies. Proc. ICSE (SEIP), 2015.

[40] Ali Safari Mamaghani and Mohammad Reza Meybodi. Clustering of Software Systems
Using New Hybrid Algorithms. In Proc. CIT, pages 20–25, 2009.

[41] S. Mancoridis, B. S. Mitchell, and C. Rorres. Using Automatic Clustering to Produce
High-Level System Organizations of Source Code. In Proc. IWPC, pages 45–53, 1998.

[42] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn Chen, and Emden R. Gansner. Bunch:
A Clustering Tool for the Recovery and Maintenance of Software System Structures.
In Proc. ICSM, 1999.

[43] Onaiza Maqbool and Haroon Babri. Hierarchical Clustering for Software Architecture
Recovery. IEEE Trans. Softw. Eng., 33(11):759–780, November 2007.

[44] Onaiza Maqbool and Haroon Atique Babri. The Weighted Combined Algorithm: A
Linkage Algorithm for Software Clustering. In Proc. CSMR, pages 15–24. IEEE CS
Press, 2004.

51

[45] Matthew McCormick, Xiaoxiao Liu, Julien Jomier, Charles Marion, and Luis Ibanez.
ITK: Enabling Reproducible Research and Open Science. Front Neuroinform, 8(13),
02 2014.

[46] Nenad Medvidovic. ADLs and Dynamic Architecture Changes. In Proc. ISAW, ISAW
’96, pages 24–27, New York, NY, USA, 1996. ACM.

[47] Brian S. Mitchell. A Heuristic Approach to Solving the Software Clustering Problem.
In Proc. ICSM, pages 285–288. IEEE CS Press, 2003.

[48] Brian S. Mitchell and Spiros Mancoridis. Comparing the Decompositions Produced
by Software Clustering Algorithms Using Similarity Measurements. In ICSM, pages
744–753, 2001.

[49] Brian S. Mitchell and Spiros Mancoridis. On the Automatic Modularization of Soft-
ware Systems Using the Bunch Tool. IEEE Trans. Softw. Eng., 32(3):193–208, March
2006.

[50] J. David Morgenthaler, Misha Gridnev, Raluca Sauciuc, and Sanjay Bhansali. Search-
ing for Build Debt: Experiences Managing Technical Debt at Google. In Proc. MTD,
pages 1–6, 2012.

[51] Gail C Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: Bridg-
ing the gap between source and high-level models. ACM SIGSOFT Software Engi-
neering Notes, 20(4):18–28, 1995.

[52] John Noll, Sarah Beecham, and Ita Richardson. Global Software Development and
Collaboration: Barriers and Solutions. ACM Inroads, 1(3):66–78, 2010.

[53] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based Run-
time Software Evolution. In Proc. ICSE, pages 177–186, Washington, DC, USA, 1998.
IEEE CS Press.

[54] Derek Rayside and Kostas Kontogiannis. Extracting Java Library Subsets for De-
ployment on Embedded Systems. Sci. Comput. Program., 45(2-3):245–270, November
2002.

[55] Derek Rayside, Steve Reuss, Erik Hedges, and Kostas Kontogiannis. The Effect of
Call Graph Construction Algorithms for Object-Oriented Programs on Automatic
Clustering. In Proc. IWPC [1], pages 191–200.

52

[56] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick
Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call resolution for
Java, volume 35. ACM, 2000.

[57] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and Roberto S Bigonha.
Recommending Refactorings to Reverse Software Architecture Erosion. In Proc.
CSMR, pages 335–340. IEEE, 2012.

[58] Paolo Tonella, Roberto Fiutem, Giuliano Antoniol, and Ettore Merlo. Augmenting
Pattern-Based Architectural Recovery with Flow Analysis: Mosaic -A Case Study. In
Proc. WCRE, pages 198–207, 1996.

[59] Vassilios Tzerpos and R. C. Holt. ACDC : An Algorithm for Comprehension-Driven
Clustering. In Proc. WCRE, pages 258–267. IEEE, 2000.

[60] Vassilios Tzerpos and Richard C. Holt. MoJo: A Distance Metric for Software Clus-
terings. In Proc. WCRE, pages 187–193, 1999.

[61] F Waldman. Lattix LDM. In 8th International Design Structure Matrix Conference,
Seattle, Washington, USA, October 24-26. 2006.

[62] Pei Wang, Jinqiu Yang, Lin Tan, Robert Kroeger, and David Morgenthaler. Gen-
erating Precise Dependencies For Large Software. In Proc. MTD, pages 47–50, May
2013.

[63] Zhihua Wen and Vassilios Tzerpos. An Optimal Algorithm for MoJo Distance. vol-
ume 0, page 227, Los Alamitos, CA, USA, 2003. IEEE CS Press.

[64] Zhihua Wen and Vassilios Tzerpos. An Effectiveness Measure for Software Clustering
Algorithms. In Proc. IWPC, pages 194–203, 2004.

[65] Zhihua Wen and Vassilios Tzerpos. Evaluating Similarity Measures for Software De-
compositions. In Proc. ICSM, pages 368–377. IEEE CS Press, 2004.

[66] Jingwei Wu, Ahmed E. Hassan, and Richard C. Holt. Comparison of Clustering
Algorithms in the Context of Software Evolution. In Proc. ICSM, pages 525–535,
2005.

[67] Chenchen Xiao and Vassilios Tzerpos. Software Clustering Based on Dynamic De-
pendencies. In Proc. CSMR, CSMR ’05, pages 124–133, Washington, DC, USA, 2005.
IEEE CS Press.

53

[68] Lu Xiao, Yuanfang Cai, and Rick Kazman. Design Rule Spaces: a New Form of
Architecture Insight. In Proc. ICSE, pages 967–977, 2014.

54

	List of Tables
	List of Figures
	Introduction
	Related Work
	Comparison of Software Architecture Recovery Techniques
	Recovery of Ground-Truth Architectures

	Approach
	Obtaining Dependencies for C/C++ Projects
	Obtaining Dependencies for Java Projects
	Relative accuracy of Include and Symbol Dependencies
	Obtaining Ground-Truth Architectures

	Selected Recovery Techniques
	Experimental Method
	Projects and Experimental Environment
	Extracted Dependencies
	Ground-truth architectures
	Architecture Recovery Software and Parameters
	Accuracy Measures

	Results
	RQ1: Can accurate dependencies improve the accuracy of recovery techniques?
	RQ2: What is the impact of different input factors, such as the granularity level, the use of transitive dependencies, the use of different symbol dependencies and virtual call graph construction algorithms, on existing architecture recovery techniques?
	Impact of function calls and global variables
	Impact of virtual call resolution
	Direct vs. transitive dependencies
	Impact of the level of granularity of the dependencies

	RQ3: Can existing architecture recovery techniques scale to large projects comprising 10MSLOC or more?
	Comparison with the Prior Work

	Threats to Validity
	Discussion
	Metrics Limitations
	Architecture Recovery Techniques
	Dependencies Matter for Evaluating Architecture Recovery Techniques
	Selecting Metrics and Recovery Techniques

	Conclusions
	References

