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ABSTRACT

We present a simple and efficient anisotropic generalization of the semi-isotropic (two-integral)

axisymmetric Jeans formalism, which is used to model the stellar kinematics of galaxies. The

following is assumed: (i) a constant mass-to-light ratio (M/L) and (ii) a velocity ellipsoid that is

aligned with cylindrical coordinates (R, z) and characterized by the classic anisotropy parameter

βz = 1−v2
z/v

2
R . Our simple models are fit to SAURON integral-field observations of the stellar

kinematics for a set of fast-rotator early-type galaxies. With only two free parameters (βz

and the inclination), the models generally provide remarkably good descriptions of the shape

of the first (V) and second (Vrms ≡
√

V 2 + σ 2) velocity moments, once a detailed description of

the surface brightness is given. This is consistent with previous findings on the dynamical

structure of these objects. With the observationally motivated assumption that βz � 0, the

method is able to recover the inclination. The technique can be used to determine the dynamical

M/L and angular momenta of early-type fast-rotators and spiral galaxies, especially when the

quality of the data does not justify more sophisticated modelling approaches. This formalism

allows for the inclusion of dark matter, supermassive black holes, spatially varying anisotropy

and multiple kinematic components.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation

– galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

According to the theory that best reproduces the observations,

galaxy formation proceeds in a hierarchical fashion, driven by grav-

ity, in a Universe dominated by dark matter of unknown nature

(e.g. Springel et al. 2005). The hierarchy of merging is accompa-

nied by changes in galaxy structure and morphology. In particu-

lar, early-type galaxies (Es and S0s) are thought to form by the

gas-rich merging of spiral galaxies or by gas starvation of spi-

rals, followed by subsequent collisionless mergers (e.g. Faber et al.

2007).

Three key global parameters can be used to characterize galaxies

structure while studying this sequence of merging of galaxies and

dark matter: (i) the angular momentum, which varies during mergers

and increases with the amount of gas dissipation, (ii) the stellar

population, which records the history of star formation events during

the gas-rich mergers and (iii) the mass-to-light ratio (M/L), which

is affected by both the population and the dark matter fraction.

The large majority of the galaxies in the Universe are to first-

order axisymmetric (except for bars) and posses discs. This includes

fast-rotator early-type galaxies (Cappellari et al. 2007; Emsellem

⋆E-mail: cappellari@astro.ox.ac.uk

et al. 2007) and spiral galaxies. Both the fast-rotator early-types

(Gerhard et al. 2001; Rusin & Kochanek 2005; Cappellari et al.

2006; Koopmans et al. 2006; Thomas et al. 2007) and the spiral

galaxies (Persic, Salucci & Stel 1996; Palunas & Williams 2000;

Bell & de Jong 2001; Kassin, de Jong & Weiner 2006) appear dom-

inated by the stellar matter inside one half-light radius (Re). Obser-

vations suggest that they have a dynamical structure characterized

by a flattening of the velocity ellipsoid in the z direction parallel

to the galaxy symmetry axis (Gerssen, Kuijken & Merrifield 1997,

2000; Shapiro, Gerssen & van der Marel 2003; Cappellari et al.

2007; Noordermeer, Merrifield & Aragon-Salamanca 2008).

The goal of this paper is to include the knowledge of the struc-

ture of the fast-rotator and spiral galaxies, into a realistic but simple

dynamical modelling method, which can be applied to the measure-

ment of both the M/L and the amount of rotation (for which the

inclination is needed) in the central regions of these galaxies, while

also allowing for the inclusion of dark matter and the study of mul-

tiple kinematical components. The success of the adopted model’s

assumptions in describing the kinematics of real galaxies is verified

against integral-field observations of the stellar kinematics obtained

with SAURON (Bacon et al. 2001).

In Section 2, we briefly review the theory and past applications

of the Jeans equations and of the shape of the velocity ellipsoid

in galaxies. In Section 3, we describe our new anisotropic Jeans
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72 M. Cappellari

formalism, which we apply and test in Section 4. Finally our results

are summarized in Section 5.

2 SO LV I N G T H E A X I S Y M M E T R I C J E A N S
E QUAT I O N S

2.1 The collisionless Boltzmann equation

The positions x and velocities v of a large system of stars can

be described by the distribution function (DF) f (x, v). When the

system is in a steady state under the gravitational influence of a

smooth potential �, the DF must satisfy the fundamental equation of

stellar dynamics, the steady-state collisionless Boltzmann equation

(Binney & Tremaine 1987, hereafter BT; equation 4–13b):

3
∑

i=1

(

vi

∂f

∂xi

−
∂�

∂xi

∂f

∂vi

)

= 0. (1)

Given that f is a function of six variables, an infinite family of

solutions satisfies equation (1). Additional assumptions and sim-

plifications are required for a practical application of the equation.

One classic way of constraining the problem consists of drastically

reducing it, from that of recovering the DF, to that of studying only

the velocity moments of the DF. This approach leads to the Jeans

equations, which are discussed in the next section.

2.2 The Jeans equations

2.2.1 Summary of derivation

If we rewrite equation (1) in standard cylindrical coordinates (R,

z, φ) and we make the important assumption of axial symmetry

(∂�/∂φ = ∂f /∂φ = 0), we obtain (cf. BT equation 4–17)

vR

∂f

∂R
+ vz

∂f

∂z
+

(

v2
φ

R
−

∂�

∂R

)

∂f

∂vR

−
∂�

∂z

∂f

∂vz

−
vRvφ

R

∂f

∂vφ

= 0.

(2)

Multiplying equation (2), respectively, by vR and vz, and integrating

over all velocities, we obtain the two1 Jeans equations (Jeans 1922;

BT equation 4–29a,c)

νv2
R − νv2

φ

R
+

∂(νv2
R)

∂R
+

∂(νvRvz)

∂z
= −ν

∂�

∂R
(3)

νvRvz

R
+

∂(νv2
z )

∂z
+

∂(νvRvz)

∂R
= −ν

∂�

∂z
, (4)

where we use the notation

νvkvj ≡
∫

vkvjf d3
v. (5)

These equations are still quite general, as they derive from the

steady-state Boltzmann equation (1) with the only assumption of

axisymmetry. They do not require self-consistency (a potential �

generated by the luminosity density ν) and they make no assump-

tion on the DF. However, even if one assumes � to be known (it

may be derived from the observed ν via the Poisson equation), the

two equations (3) and (4) are still a function of the four unknown

v2
R, v2

z , v
2
φ and vRvz and do not uniquely specify a solution.

1 All terms in the third Jeans equation, involving a multiplication by vφ , are

zero in axisymmetry.

2.2.2 Closing the axisymmetric Jeans equations

Given that the axisymmetric Jeans equations relate four functions of

the meridional plane (R, z) coordinates, one needs to specify at least

two functions of (R, z) for a unique solution. A natural way to pro-

vide a unique solution for the Jeans equations consists of specifying

the shape and orientation of the intersection of the velocity ellipsoid

everywhere in the meridional plane. In fact, the three components

v2
R, v2

z and vRvz, of the velocity dispersion tensor, uniquely describe

the equation of the velocity dispersion ellipse, whose shape can be

derived by diagonalizing the tensor. The velocity dispersion ellipse

will have the major axis at an angle θ with respect to the equatorial

plane:

tan 2θ =
2 vRvz

v2
R − v2

z

(6)

and an axial ratio 0 ≤ q ≤ 1 given by

q2 =
v2

R + v2
z −

√

(v2
R − v2

z )2 + 4 vRvz
2

v2
R + v2

z +
√

(v2
R − v2

z )2 + 4 vRvz
2

. (7)

The specification of the ellipse geometry (θ and q) is then sufficient

to write two of the three variables as a function of the remaining

one.

The most common choice which is made consists of assuming2

a circular velocity ellipsoid in the meridional plane (sometimes

called semi-isotropy condition). This assumption implies v2
R = v2

z

and vRvz = 0, and is sufficient to ‘close’ the set of equations to

provide a unique solution for the remaining variables v2
z and v2

φ .

Other common options are discussed in Section 2.4.

A well-studied special case of semi-isotropic system is one in

which the three-integral DF which generally characterizes a sta-

tionary system, is assumed to depend only on the two classical

integrals of motion f = f (E, Lz), where E is the potential energy and

Lz is the angular momentum with respect to the symmetry z-axis.

For this reason, the semi-isotropic Jeans models are often called

two-integral Jeans models.

In this paper, we are investigating whether it is possible to make an

alternative assumption on the shape of the velocity ellipsoid, which

retains the simplicity of the widely used semi-isotropic assumption,

while also providing a better description of real galaxies and still

leading to an efficient solution of the Jeans equations.

2.2.3 Past applications of the semi-isotropic Jeans equations

Due to its simplicity, the semi-isotropy assumption has proven re-

markably useful in a large variety of applications of the Jeans equa-

tions. It was used to quantify the amount of rotation in galax-

ies (Nagai & Miyamoto 1976; Satoh 1980; Binney, Davies &

Illingworth 1990; van der Marel, Binney & Davies 1990), to search

for hidden discs in elliptical galaxies (Rix & White 1992; Cinzano

& van der Marel 1994; Rix, Carollo & Freeman 1999), to measure

their M/L (van der Marel 1991; Statler, Dejonghe & Smecker-Hane

1999; Cappellari et al. 2006; Cortes, Kenney & Hardy 2008) and

dark matter profiles (Carollo et al. 1995), to study the connection

between line-strength in galaxies and the local escape velocities

(Davies, Sadler & Peletier 1993; Carollo & Danziger 1994), to

2 In the original paper by Jeans (1922), this was not an assumption. Stellar

orbits were thought to conserve only two isolating integrals of motion, in

which case the DF naturally possess that special semi-isotropic form.
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Anisotropic axisymmetric Jeans models 73

study the scatter in the Fundamental plane (van Albada, Bertin &

Stiavelli 1995; Lanzoni & Ciotti 2003; Riciputi et al. 2005), to

measure the deviations of the gas kinematics from circular veloc-

ities (Bertola et al. 1995; Cinzano et al. 1999; Corsini et al. 1999;

Young, Bureau & Cappellari 2008) and to estimate the masses of su-

permassive black holes (Magorrian et al. 1998; van der Marel et al.

1998; Cretton & van den Bosch 1999; Joseph et al. 2001). Although

these models have been largely superseded by Schwarzschild (1979)

orbit-superposition method, when good kinematic data are available

and the maximum generality is required, they are becoming useful

to study the M/L and rotation of galaxies at high redshift, where

the data quality still does not justify more sophisticated approaches

(van der Marel & van Dokkum 2007a,b; van der Wel & van der

Marel 2008).

2.3 Shape and orientation of the velocity ellipsoid in galaxies

To explore the possibility of making a simple but sufficiently realis-

tic assumption on the shape and orientation of the velocity ellipsoid

in the meridional plane of axisymmetric galaxies, we need to un-

derstand what that shape is expected to be.

2.3.1 Theory

A qualitative insight into the orientation of the velocity ellipse

in real galaxies can start from the analysis of the special case of

separable potentials (de Zeeuw 1985). In an axisymmetric oblate

separable potential, the equations of motion for the stellar obits

can be separated in a prolate spheroidal coordinates system (λ,

φ, ν) which also defines the boundaries of the orbits. In other

words, the orbital motions can be written as the linear combination

of two independent oscillations in λ and ν, plus a non-uniform

rotation around the symmetry axis. For this reason, the velocity

ellipse is aligned with the coordinate system and the cross-term

vλvν vanishes (Eddington 1915; de Zeeuw & Hunter 1990). The

prolate spheroidal coordinates are characterized by the fact that

they tend to be aligned with the cylindrical coordinates (R, z, φ) at

small radii and with the polar ones (r, θ , φ) at large radii. Separable

potentials are characterized by a central constant-density region.

The cylindrical alignment happens in that region, as the stars there

tend to move like an harmonic oscillator. For these reasons, one

expects the velocity dispersion ellipse to be cylindrically aligned at

small radii and radially aligned at large radii.

The gravitational potential of real galaxies is not of the separable

form. Separable potentials are in fact necessarily characterized by

smooth analytic centres, while real galaxies possess central singu-

larities due to cusped density profiles (e.g. Ferrarese et al. 1994;

Lauer et al. 1995) and supermassive black holes (Magorrian et al.

1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000). Still, numer-

ical integrations of orbits in non-separable axisymmetric potentials

show that most of them are still bounded by curves, which quali-

tatively resemble the spheroidal coordinates (e.g. Richstone 1982;

Dehnen & Gerhard 1993; Cretton et al. 1999). For this reason, one

can expect the velocity dispersion ellipse to behave in real galaxies

in a way that is qualitatively similar to the separable case. Numerical

calculations confirm this fact in non-separable triaxial and axisym-

metric potentials (Merritt 1980; Dehnen & Gerhard 1993). In the

limit of a point mass, the velocity ellipsoid has to be spherically

aligned for symmetry. This suggests that at small radii, where the

supermassive black hole or the stellar cusp dominates, the velocity

ellipsoid in real galaxies should be more spherically oriented than

in the separable case.

2.3.2 Observations

The DF of a stationary system is a function of the three separable

integrals of motion (Jeans 1915). In general, it cannot be recovered

from real galaxies without at least another three-dimensional ob-

servable quantity. This quantity is now being provided by integral-

field observations of the stellar kinematics (e.g. Emsellem et al.

2004), which allow the stellar line-of-sight (LOS) velocity distri-

bution to be measured at every position of the galaxy image on

the sky. We used these observations, in combination with orbit-

based three-integral axisymmetric models, to measure the shape

and orientation of the velocity ellipsoid at every position within the

meridional plane (within Re), for a sample of 25 early-type galaxies

(Cappellari et al. 2007). Fig. 1 qualitatively summarizes the main

findings of that paper regarding the shape of the velocity dispersion

ellipsoid for the fast-rotator galaxies: (i) the ellipsoids qualitatively

behave like in separable potentials and already near 1Re they are es-

sentially spherically oriented and (ii) the axial ratio of the ellipsoids

varies gradually as a function of the polar angle, in such a way that

the ellipsoid has nearly the same shape on both the equatorial plane

(where the density is the highest) and the symmetry axis. The net

effect is that to first order the global anisotropy of the galaxies can

be described as a simple flattening of the velocity ellipsoid in the

z-direction (v2
z < v2

R).

2.4 Choice of the coordinate system for the Jeans solution

One can think of three physically motivated choices of the coordi-

nates system in which to align the velocity ellipsoid, for a unique

solution of the axisymmetric Jeans equations. In this section, we

examine advantages and problems of each one in turn.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

R

z

Figure 1. Qualitative description of the shape and orientation of the velocity

ellipsoid in the meridional plane (R, z) of the fast-rotator early-type galaxies

(derived from Cappellari et al. 2007). The ellipses show the intersection

of the velocity ellipsoid with the (vR, vz) plane. The solid lines show a

representative prolate spheroidal system of coordinates. The dashed line is a

representative iso-density contour. The ellipsoids are aligned in spheroidal

coordinates, but the axial ratio of the ellipses varies with the polar angle in

such a way that the shape and orientation of the ellipsoids are similar on

both the equatorial plane and the symmetry axis.
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74 M. Cappellari

2.4.1 Prolate spheroidal coordinates

The observed behaviour of the ellipsoid could be approximated

by solving the Jeans equations in prolate spheroidal coordinates

in a generic axisymmetric potential (Dejonghe & de Zeeuw 1988;

Evans & Lynden-Bell 1991; Arnold 1995; van de Ven et al. 2003). To

qualitatively reproduce the behaviour of Fig. 1, the simplest realistic

model would need at least four free parameters. Two parameters are

required to define the coordinate system. A third parameter could

define the shape of the velocity ellipse on the equatorial plane and

another parameter would describe the angular variation. A problem

of this approach is that the general solution, to derive the observables

for realistic galaxy potentials, requires at least a computationally

expensive triple3 numerical quadrature. The derived equations are

also rather cumbersome and not justified by the fact that these

models can at best provide a qualitative description of real galaxies.

For these reasons, those solutions have currently only been applied

to a handful of analytic potentials, and no application to real galaxies

exist.

2.4.2 Spherical coordinates

Given that the velocity ellipsoids in Fig. 1 are nearly spheri-

cally aligned, a much simpler choice would consist of solving the

anisotropic Jeans equation in spherical coordinates. A solution for

this case was presented by Bacon, Simien & Monnet (1983) and

applied to real galaxies by Bacon (1985) and Fillmore (1986). How-

ever, even under this spherical assumption the solution still has the

same form as in the spheroidal coordinates. The computation still

involves a triple numerical quadrature. This is in fact a generic fea-

ture of the axisymmetric Jeans solution: even in the simple case

in which the density is assumed to be stratified on similar oblate

spheroids, one quadrature is needed to obtain the potential, a sec-

ond quadrature provides the intrinsic velocity’s second moments

and a third quadrature finally gives the projected observables. In the

spherically oriented case, the coordinates system has no free pa-

rameters and the simplest realistic model to reproduce Fig. 1 could

have two parameters (anisotropy and its angular variation).

2.4.3 Cylindrical coordinates

A more radical alternative is to assume the velocity ellipse is ori-

ented with the cylindrical coordinate system. This option was tested,

for example, by Fillmore (1986), however until now, for the rea-

sons described in Section 2.4.1, it was not considered a sensible

choice to describe the shape of the velocity ellipsoid in real galaxies.

Our new results, based on the SAURON integral-field observations

(Cappellari et al. 2007), make this choice worth exploring again.

This option cannot provide a formally accurate representation of

Fig. 1, however it is accurate near the equatorial plane, where the

density is at its maximum, and near the minor axis. Models with

cylindrically oriented velocity ellipsoid provide a good qualitative

description of the empirical observation that the global anisotropy

in fast-rotator galaxies is best characterized as a flattening of the

velocity ellipsoid in the vertical z-direction (Cappellari et al. 2007,

their fig. 2). The near-cylindrical orientation of the velocity ellipsoid

may be due to the presence of discs, where this orientation appears

3 For typical accuracies, every additional numerical quadrature generally

increases the computation time by about two orders of magnitude.

natural. For this reason, the cylindrical orientation is certainly ap-

propriate to describe the dynamics of spiral galaxies (Gerssen et al.

1997, 2000; Shapiro et al. 2003; Noordermeer et al. 2008).

In the next section, we show that the assumption of a cylindrically

aligned velocity dispersion ellipsoid, combined with the powerful

Multi-Gaussian Expansion (MGE) method of Emsellem, Monnet

& Bacon (1994), can generate simple solutions that well reproduce

the integral-field kinematics of real galaxies, and also allow for

variable M/L (e.g. dark matter), spatially varying anisotropy and

multiple kinematical components. All this while still requiring a

single numerical quadrature to predict the observables on the sky

plane (or any other projection).

3 ANI SOTROPI C J EANS SOLUTI ONS

3.1 Axisymmetric case

3.1.1 General solution

We start from the general axisymmetric Jeans equations (3) and

(4) and we make the following two assumptions: (i) the velocity

ellipsoid is aligned with the cylindrical coordinate system (R, z, φ)

and (ii) the anisotropy is constant and quantified by v2
R = b v2

z . In

this case, the Jeans equations reduce to

b νv2
z − νv2

φ

R
+

∂(b νv2
z )

∂R
= −ν

∂�

∂R
(8)

∂(νv2
z )

∂z
= −ν

∂�

∂z
, (9)

which corresponds to the semi-isotropic case (two integral) when

b = 1. With the boundary condition νv2
z = 0 as z → ∞, the solution

reads

νv2
z (R, z) =

∫ ∞

z

ν
∂�

∂z
dz (10)

νv2
φ(R, z) = b

[

R
∂(νv2

z )

∂R
+ νv2

z

]

+ Rν
∂�

∂R
. (11)

A general caveat regarding the Jeans equations is that the existence

of a solution does not guarantee the existence of a correspond-

ing physical positive DF. This can only be verified using different

techniques.

3.1.2 Summary of MGE formalism

To derive solutions for the Jeans equations, we make an explicit

choice for the parametrization of the stellar density and the total

density (which can include dark matter and a central black hole).

We adopt for both the MGE parametrization of Emsellem et al.

(1994) due to its flexibility in accurately reproducing the surface

brightness of real galaxies and the availability of robust routines4 to

fit the galaxy photometry (Cappellari 2002). If the x-axis is aligned

with the photometric major axis, the surface brightness 
 at the

location (x′, y′) on the plane of the sky can be written as


(x ′, y ′) =
N
∑

k=1

Lk

2πσ 2
k q ′

k

exp

[

−
1

2σ 2
k

(

x ′2 +
y ′2

q ′2
k

)]

, (12)

4 Available from http://www-astro.physics.ox.ac.uk/∼mxc/idl/.
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Anisotropic axisymmetric Jeans models 75

where N is the number of the adopted Gaussian components, having

total luminosity Lk , observed axial ratio 0 ≤ q′
k ≤ 1 and dispersion

σk along the major axis.

The deprojection of the surface brightness to obtain the intrinsic

luminosity density is not unique unless the axisymmetric galaxy is

seen edge-on (i = 90◦) (Rybicki 1987; Kochanek & Rybicki 1996),

and the degeneracy becomes especially severe when the galaxy is

seen at low inclinations (Gerhard & Binney 1996; Romanowsky

& Kochanek 1997; van den Bosch 1997; Magorrian 1999). The

MGE method provides a simple possible choice for the deprojection

(Monnet, Bacon & Emsellem 1992). One of the advantages of the

MGE method is that one can easily enforce the roundness of the

model (Cappellari 2002), thus producing realistic densities, which

look like real galaxies when projected at any angle. The method

cannot eliminate the intrinsic degeneracy of the deprojection and

this has to be considered when interpreting results of galaxies that

are close to face-on. The deprojected MGE oblate axisymmetric

luminous density ν can be written as

ν(R, z) =
N
∑

k=1

Lk

(
√

2π σk)3qk

exp

[

−
1

2σ 2
k

(

R2 +
z2

q2
k

)]

, (13)

where the individual components have the same luminosity Lk and

dispersion σk as in the projected case (12), and the intrinsic axial

ratio of each Gaussian becomes

qk =
√

q ′2
k − cos2 i

sin i
, (14)

where i is the galaxy inclination (i = 90◦ being edge-on).

The total density ρ can be generally described by a different set

of M Gaussian components

ρ(R, z) =
M
∑

j=1

Mj

(
√

2π σj )3qj

exp

[

−
1

2σ 2
j

(

R2 +
z2

q2
j

)]

. (15)

In the self-consistent case, the Gaussians are the same as in equa-

tion (13) and one has M = N, σj = σk , qj = qk and Mj =ϒkLk , where

ϒk is the M/L, which can be different for different components. In

the non-self-consistent case, the density can be described with the

sum of two sets of Gaussians: the first derived by deprojecting the

surface brightness with equation (13), and the second, for exam-

ple, obtained by fitting a (one-dimensional) MGE model to some

adopted analytic parametrization for the dark matter (e.g. Navarro,

Frenk & White 1996).

The gravitational potential generated by the density of equa-

tion (15) is given by (Emsellem et al. 1994)

�(R, z) = −
√

2/π G

∫ 1

0

M
∑

j=1

Mj Hj (u)

σj

du, (16)

where G is the gravitational constant and with

Hj (u) =
exp

{

− u2

2σ 2
j

[

R2 + z2

1−(1−q2
j

)u2

]}

√

1 − (1 − q2
j )u2

. (17)

A supermassive black hole can be modelled by adding a Keplerian

potential

�•(R, z) = −
GM•√
R2 + z2

(18)

to equation (16). However, as pointed out by Emsellem et al. (1994),

an even simpler approach consists of modelling the black hole as

a small Gaussian in equation (16), having mass Mj = M•, qj = 1

and 3σj � rmin, where rmin is the smallest distance from the black

hole that one needs to accurately model (e.g. one could choose

rmin ≈ σ psf).

3.1.3 MGE Jeans solution

Now we apply the MGE formalism to the solution of the axisymmet-

ric anisotropic Jeans equations of Section 3.1.1. Our derivation is

an extension of what was done in the semi-isotropic self-consistent

case (bk = 1 and Mj = ϒLk) in section 3.4 of Emsellem et al. (1994).

As already pointed out by Jeans (1922), his equations can be used to

model the kinematics of different dynamical tracers, as long as they

all move in the same potential (e.g. Rix & White 1992; Cinzano

& van der Marel 1994). To maintain generality, we will then write

the solution for the individual N luminous Gaussian components,

which can then be assumed to have different anisotropy. This fact

can be used, for example, to model anisotropy gradients, or to study

the anisotropy of kinematical subcomponents in galaxies (e.g. bulge

and disc). Substituting equations (13) and (16) into equations (10)

and (11), the integral in z can be performed analytically and we

obtain

[νv2
R]k = bk[νv2

z ]k (19)

[νv2
z ]k = 4πG

∫ 1

0

M
∑

j=1

σ 2
k q2

k νkqjρ0jHj (u) u2

1 − Cu2
du (20)

[νv2
φ]k = bk[νv2

z ]k

+ 4πG

∫ 1

0

M
∑

j=1

νkqjρ0jHj (u) u2

1 − Cu2
DR2du

= 4πG

∫ 1

0

M
∑

j=1

νkqjρ0jHj (u) u2

1 − Cu2

(

DR2 + bkσ
2
k q2

k

)

du,

(21)

where we defined νk = νk(R, z), ρ0j = ρj (0, 0) and

C = 1 − q2
j −

σ 2
k q2

k

σ 2
j

(22)

D = 1 − bk q2
k −

[

(1 − bk) C + (1 − q2
j ) bk

]

u2. (23)

In all the equations of this paper, the index k refers to the param-

eters, or the anisotropy, of the Gaussians describing the galaxy’s

luminosity density (equation 13), while the index j refers to the pa-

rameters of the Gaussians describing the total mass (equation 15),

from which the potential is obtained.

When bk is not the same for the individual luminous Gaussians,

the total luminosity-weighted anisotropy at a certain spatial location

(R, z) of an MGE model is given by the standard definition (Binney

& Mamon 1982), combined with equation (19):

βz(R, z) ≡ 1 −
v2

z

v2
R

= 1 −
∑

k[νv2
z ]k

∑

k bk[νv2
z ]k

≈ 1 −
∑

k νk
∑

k bkνk

. (24)

The last approximation comes from the fact that [v2
z ]k , being mostly

a function of the total MGE potential, varies relatively little for

the different Gaussians, while νk can be completely different and

varies by many orders of magnitude for the various luminous MGE

components. This allows the global anisotropy of an MGE model,

at a certain spatial location in the meridional plane, to be approxi-

mately estimated from a simple luminosity-weighted sum of bk . A

similar reasoning applies to the estimation of the total κ parameter

in Section 3.1.5 and the total β parameter in Section 3.2.2.
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76 M. Cappellari

3.1.4 Line-of-sight integration of the velocity second moment

The intrinsic quantities have to be integrated along the LOS to

generate the observables that can be compared with the galaxy

kinematics. For this, we define a system of sky coordinates with

the z′-axis along the LOS and the x′-axis aligned with the galaxy-

projected major axis (see equation 12). The galaxy coordinates (x,

y, z) are related to the ones in the sky plane by
⎛

⎜

⎜

⎝

x

y

z

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 0 0

0 − cos i sin i

0 sin i cos i

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x ′

y ′

z′

⎞

⎟

⎟

⎠

, (25)

where the z-axis coincides with the galaxy symmetry axis and the

cylindrical radius is defied by R2 = x2 + y2. The projected sec-

ond velocity moment along the LOS v2
los ≡ v2

z′ , for one luminous

Gaussian component, is then given by5

[
 v2
los]k =

∫ ∞

−∞

{

[νv2
z ]k cos2 i

+
(

[νv2
R]k sin2 φ + [νv2

φ]k cos2 φ
)

sin2 i
}

dz′, (26)

where cos φ = x/R, while the total observed second moment, for

the whole MGE model, will be


 v2
los =

N
∑

k=1

[
 v2
los]k. (27)

After substitution of equations (19)–(21), the z′ integral can be

written explicitly. Summing over all the N luminous Gaussian com-

ponents, we obtain the final expression


 v2
los(x

′, y ′) = 4π
3/2G

∫ 1

0

N
∑

k=1

M
∑

j=1

ν0k qj ρ0j u2

×
σ 2

k q2
k

(

cos2 i + bk sin2 i
)

+ D x ′2 sin2 i
(

1 − Cu2
)

√

(

A + B cos2 i
) [

1 − (1 − q2
j )u2

]

× exp

{

−A

[

x ′2 +
(A + B)y ′2

A + B cos2 i

]}

du, (28)

where we defined ν0k = νk(0, 0) and

A =
1

2

(

u2

σ 2
j

+
1

σ 2
k

)

(29)

B =
1

2

{

1 − q2
k

σ 2
k q2

k

+
(1 − q2

j )u4

σ 2
j

[

1 − (1 − q2
j )u2

]

}

. (30)

As expected, equation (28) reduces6 to equation (61) of Emsellem

et al. (1994) when bk = 1 and Mj = ϒ Lk . As in the semi-isotropic

case, this formula is very quick to evaluate as it still requires a sin-

gle numerical quadrature and involves no special functions. All this

starting directly from a fit to the galaxy surface brightness, with-

out the need for numerical deprojection or point spread function

(PSF) deconvolution, as required in other approaches. The formula

5 Completely analogue expressions can be found for the proper motions,

using, for example, the formulas in appendix A of Evans & de Zeeuw

(1994). We found that all three components of the projected proper motion

dispersion tensor can be written via single quadratures and using no special

functions.
6 As in Cappellari et al. (2006), we corrected the typo in the expression for

B in equation (63) of Emsellem et al. (1994).

has various possible applications, as it can be used to model real-

istic galaxies with variable anisotropy or multiple kinematic com-

ponents, dark matter, variable stellar M/L and supermassive black

holes (representing the point mass with a small Gaussian as de-

scribed in the last paragraph of Section 3.1.2).

Simple expressions, involving a single quadrature, can be derived

for the second velocity moments also for the case of the Keplerian

potential (equation 18) of a black hole, as done in the semi-

isotropic case in appendix A of Emsellem et al. (1994). The black

hole moments can then be quadratically co-added to the ones in

equation (28) to obtain the observed velocity moments for the

galaxy. We found no advantage in speed or accuracy when per-

forming a separate calculation for the black hole and the galaxy

potential. For this reason, we will then not give separate expres-

sions for the Keplerian case. Using equation (28) with a black hole,

it is however important to use a quadrature routine which samples

the integrand function at a sufficiently high number of initial points,

to properly recognize the sharp peak in the integrand near u =
0. Here, we used the vectorized adaptive quadrature algorithm of

Shampine (2008).

The second moments v2
los provided by equation (28) are a good

approximation for the observed quantity V2
rms = V2 + σ 2, where

V is the stellar mean velocity and σ is the velocity dispersion. In

Cappellari et al. (2006), we used realistic semianalytic dynamical

models of galaxies and found that, to extract v2
los from the simulated

data, one should use a single Gaussian LOSVD and adopt as V and

σ the mean velocity and dispersion of that Gaussian. Due to the

sensitivity of the second moments to the uncertain wings of the

LOSVD, this approach is preferable than trying to extract a more

complex LOSVD, e.g. by fitting the Gauss–Hermite parametrization

(Gerhard 1993; van der Marel & Franx 1993) or a fully non-

parametric LOSVD and numerically integrate v2
los from that.

3.1.5 Line-of-sight integration of the velocity first moment

The projected first velocity moments vlos ≡ vz′ are given by


 vlos =
∫ ∞

−∞
νvφ cos φ sin i dz′. (31)

In this case, the two assumptions we made in Section 3.1.1 are not

sufficient any more to provide a unique prediction and therefore

additional assumptions are needed. The Jeans equations (8) and (9)

in fact only give a prediction for v2
φ and one has to decide how

the second moments separate into the contribution of ordered and

random motion, as defined by

v2
φ = vφ

2 + σ 2
φ . (32)

This need for extra assumptions on the tangential anisotropy is a

fundamental limitation of the first-moments equations, and it is the

reason why one should fit the more general equation (28) to Vrms,

and only subsequently fit any extra parameter of the first moment

solution to V, instead of simultaneously fitting the Jeans solutions

to both V and σ .

The first moment equations, however, are very useful to quantify

the amount of rotation in galaxies and for this reason have been used

in the past (Section 2.2.3). One can think of two natural options

to parametrize the separation of random and ordered streaming

rotation around the symmetry axis. The first option consists of

assuming a constant anisotropy, for each Gaussian component, in

the (vR , vφ) coordinates, analogously to equation (19)

[νσ 2
φ ]k = ck[νv2

R]k, (33)
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Anisotropic axisymmetric Jeans models 77

which would imply

[vφ]k =
(

[v2
φ]k − ck[v2

R]k

)1/2

. (34)

A practical limitation of this approach is that the mean velocity

would depend in a non-linear way on the ck parameter. For this

reason, nearly all previous authors adopted, in the semi-isotropic

case, a second approach, introduced by Satoh (1980). This consists

of defining a constant k which quantifies how much the model

velocity field is scaled with respect to that of the isotropic rotator

(|k| = 1). In this way, the first moment can be computed only once,

for the isotropic rotator, and is scaled linearly with k.

We adopt here the analogue, in our anisotropic case, of Satoh

(1980) approach. It has the added advantage of providing a direct

measure of the amount of rotation, which is a more meaningful

quantity than the tangential anisotropy. We define for each Gaussian

component

[vφ]k = κk

(

[v2
φ]k − [v2

R]k

)1/2

. (35)

Here, κk = 0 when the kth Gaussian component is not rotating and

|κk| = 1 when its velocity ellipsoid is a circle in the (vR, vφ) plane.

If bk = 1 then κk reduces to Satoh (1980) parameter and in this case

|κk| = 1 implies isotropy (the velocity ellipsoid is a sphere every-

where). An upper limit to |κk| is set by the physical requirement that

σ 2
φ > 0 (equation 32). When summed over all luminous Gaussian

components of the MGE model:7

νvφ
2 =

N
∑

k=1

[νvφ
2]k, (36)

so equation (35) implies8

νvφ =

[

ν

N
∑

k=1

κ2
k

(

[νv2
φ]k − [νv2

R]k

)

]1/2

. (37)

Substituting equation (37) into equation (31), and using equations

(19)–(21), we obtain the projected first velocity moment of the

whole MGE model


 vlos(x
′, y ′) = 2

√
πG x ′ sin i

×
∫ ∞

−∞

[

ν

∫ 1

0

N
∑

k=1

M
∑

j=1

κ2
k νkqjρ0jHj (u) u2D

1 − Cu2
du

]1/2

dz′.

(38)

When both bk = |κk| = 1 and Mj = ϒLk , this equation reduces to

a self-consistent isotropic rotator as in equation (59) of Emsellem

et al. (1994). A double quadrature seems unavoidable here, but

when κ is assumed to be constant for the whole MGE, this integral

has to be evaluated only once with κk = 1, at the best-fitting (i, βz,

ϒ) parameters previously determined from a fit to the more general

second moment equation (28), and then vlos can be linearly scaled

by κ to fit the data.

7 As vφ
2 is defined as a quadratic difference of second moments, it is not

correct to write νvφ =
∑N

k=1[νvφ ]k , as one would normally expect for a

first moment.
8 To allow for counter-rotating Gaussian components, namely to keep track

of the sign of κk in equations (37) and (38), one should multiply each term

of the k-summation by sgn (κk) ≡ κk/|κk | and then compute sgn (w) |w|1/2,

where w = [. . .] is the expression inside the big square brackets.

3.2 Spherical case

The cylindrically oriented assumption for the shape of the veloc-

ity ellipsoid discussed in Section 3.1 is likely to be unrealistic for

slow-rotator elliptical galaxies. As a class these objects are weakly

triaxial, and indeed some of them show clear twists in their kine-

matical axes (Kormendy & Bender 1996; Cappellari et al. 2007;

Emsellem et al. 2007; Krajnović et al. 2008). The most general

and realistic models for these objects are triaxial and orbit or par-

ticle based (de Lorenzi et al. 2007; van den Bosch et al. 2008).

However also in the triaxial approximation, a degeneracy in the

recovery of the galaxy shape is still generally present so that no

unique solution can be obtained. When one is only interested in

global galaxy quantities, or to test the results of more general mod-

els, it is still useful to construct simpler and approximate models.

The isophotes of the slow rotators are in projection close to circular,

especially in their central parts where the kinematics is generally

obtained, and this implies they must be intrinsically not far from

spherical. This suggests that one can use simple spherical models

as a first-order approximation to the dynamics of at least some of

these objects. The spherical solution of the anisotropic Jeans equa-

tions, in the MGE formalism, will be discussed in the following

sections.

3.2.1 General solution

When the Boltzmann equation (1) is written in spherical coordinates

(r, θ , φ), by analogy with our derivation of the axisymmetric Jeans

equations, one can obtain the Jeans equations in spherical symmetry

(Binney & Mamon 1982; equation 4–54 of BT):

d(νv2
r )

dr
+

2β νv2
r

r
= −ν

d�

dr
, (39)

where v2
θ = v2

φ for symmetry and we defined β = 1 − v2
θ/v

2
r . The

solution of this linear first-order differential equation with constant

anisotropy β and the boundary condition νv2
r = 0 as r → ∞ is

given by (e.g. van der Marel 1994)

νv2
r (r) = r−2β

∫ ∞

r

ν(u)
d�(u)

du
u2βdu

= G r−2β

∫ ∞

r

ν(u)M(u)

u2−2β
du,

(40)

considering that d�/dr = GM/r2. After projection along the LOS

z′, we obtain the observed second velocity moment (see equation 4–

60 of BT)


v2
los(R) = 2

∫ ∞

R

(

1 − β
R2

r2

)

νv2
r (r)r

√
r2 − R2

dr

= 2G

∫ ∞

R

[

r−1−2β
(

r2 − R2β
)

√
r2 − R2

∫ ∞

r

ν(u)M(u)

u2−2β
du

]

dr,

(41)

where R is the projected radius, measured from the galaxy centre.

Integrating by parts, the double integral can be reduced to a single

quadrature, involving special functions:


v2
los(R) = 2G

∫ ∞

R

F (r)ν(r)M(r)

r2−2β
dr, (42)
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78 M. Cappellari

where

F (r) =
R1−2β

2

[

β Bw

(

β +
1

2
,

1

2

)

− Bw

(

β −
1

2
,

1

2

)

+
√

π (3 − 2β) Ŵ
(

β − 1

2

)

2 Ŵ(β)

]

, (43)

with w = (R/r)2, Ŵ is the Gamma function and Bw is the incomplete

Beta function (equation 6.6.1 of Abramowitz & Stegun 1965). In

the isotropic limit,

lim
β→0

F (r) =
√

r2 − R2, (44)

and equation (42) reduces to the spherical isotropic form of equa-

tion (29) of Tremaine et al. (1994). Some numerical implementa-

tions provide the incomplete Beta function only for positive argu-

ments (e.g. Press et al. 1992), for negative values (β < 1/2) one can

use its analytic continuation via Gauss’s Hypergeometric function

2F1 (equation 6.6.8 of Abramowitz & Stegun 1965)

Bw(a, b) =
wa

a
2F1(a, 1 − b; a + 1; w), (45)

for which efficient routines9 exist (Shanjie & Jianming 1996). For

β = ±1/2, the Bw function is divergent, but for all practical purposes

we found it is sufficient to perturb the β value by a negligible amount

to avoid the singularity.

3.2.2 MGE spherical Jeans solution

We proceed as in Section 3.1.3 to derive an explicit solution for the

spherical Jeans equation using the MGE parametrization for both

the luminosity density and the total density. The expressions for the

surface brightness, luminosity density and total density are as in

equations (12), (13) and (15), with qj = qk = 1 (Bendinelli 1991).

For a single Gaussian component, they read


k(R) =
Lk

2πσ 2
k

exp

(

−
R2

2σ 2
k

)

, (46)

νk(r) =
Lk

(
√

2π σk)3
exp

(

−
r2

2σ 2
k

)

, (47)

ρj (r) =
Mj

(
√

2π σj )3
exp

(

−
r2

2σ 2
j

)

. (48)

The mass of a Gaussian contained within the spherical radius r

is

Mj (r) = Mj

⎡

⎣erf

(

r
√

2 σj

)

−

√

2

π
r

σj

exp

(

−
r2

2σ 2
j

)

⎤

⎦ , (49)

with erf (x) the error function (equation 7.1.1 of Abramowitz &

Stegun 1965). Using equation (42) and summing over all Gaussian

components with equation (27), we obtain the projected second

velocity moment for the whole MGE model


v2
los(R) = 2G

∫ ∞

R

N
∑

k=1

Fk(r) νk(r)

r2−2βk

[

M• +
M
∑

j=1

Mj (r)

]

dr, (50)

where νk(r) and Mj (r) are given by equations (47) and (49), re-

spectively, and Fk(r) is obtained by replacing the β parameter in

9 Available from http://jin.ece.uiuc.edu/routines/routines.html.

equation (43) with the anisotropy βk of each luminous Gaussian

component. We explicitly included the mass M• of a central su-

permassive black hole. As in the axisymmetric case, this formula

involves a single numerical quadrature. It can be used to model

nearly spherical objects with a variable anisotropy profile, variable

stellar M/L, a supermassive black hole and dark matter.

An approximate way to construct a model with a certain smooth

radial profile of anisotropy β(r), consists of defining βk = β(σk)

for each MGE Gaussian with dispersion σk . This simple method

works because in a spherical MGE each kth Gaussian produces a

significant contribution to the total luminosity density only near its

σk (Cappellari 2002; see also equation 24).

3.3 Availability

The Jeans Anisotropic MGE (JAM) package of IDL
10 procedures,

providing a reference implementation for the equations described

in this section, together with other routines to evaluate auxiliary

quantities, like the circular velocity, from MGE models, is available

online from http://www-astro.physics.ox.ac.uk/∼mxc/idl/.

4 A PPLI CATI ONS AND TESTS

The formalism derived in Sections 3.1.4 and 3.1.5 generalizes to

anisotropy the widely used semi-isotropic formalism for the solu-

tion of the Jeans equations while maintaining its simplicity. It was

motivated by our modelling results on the orbital distribution of

a sample of real galaxies (Cappellari et al. 2007). However, the

method would be of limited usefulness if it did not describe the dy-

namics of fast-rotator early-type galaxies well. In this section, we

show that the simple assumptions we made provide a remarkable

good description of the main features of the kinematics11 (Emsellem

et al. 2004) of the fast-rotator early-type galaxies, as observed with

the SAURON integral-field spectrograph (Bacon et al. 2001) as part

of the SAURON survey (de Zeeuw et al. 2002).

4.1 Comparison with more general models

4.1.1 Anisotropy comparison

In this section, we compare the anisotropy derived from the Jeans

models, with the results for the global anisotropy obtained with

the more general Schwarzschild (1979) method on the same galax-

ies and from the same data in Cappellari et al. (2007). We use

equation (28), with constant anisotropy bk = b and constant

M/L (Mj = ϒLk) for the whole MGE model, to predict the veloc-

ity second moments. Following standard practice, we parametrize

the anisotropy with the variable βz ≡ 1 − v2
z/v

2
R = 1 − 1/b. The

problem becomes a function of two non-linear variables (i, βz) and

of the scaling factor ϒ . To further limit the number of free variables

in the model, and to eliminate the degeneracy in the deprojection of

the surface brightness, we select for the comparison the galaxies for

which the photometry already constrains the inclination to be close

to edge-on (i = 90◦). For this we select from the MGE models in

tables B1 and B2 of Cappellari et al. (2006), the fast-rotator galax-

ies for which the flattest Gaussian has q′ < 0.35, which forces a

10 http://www.ittvis.com/idl/
11 Available from http://www.strw.leidenuniv.nl/sauron/.

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 390, 71–86

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
9
0
/1

/7
1
/9

7
3
2
5
0
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Anisotropic axisymmetric Jeans models 79

Figure 2. Data-model comparison for the second velocity moments of edge-on galaxies. From left to right-hand panel, the columns show the galaxies NGC

821, NGC 3377, NGC 4621 and NGC 5845. The top row visualizes the bisymmetrized SAURON observations for Vrms =
√

V 2 + σ 2. The subsequent rows

show the model predictions for (v2
los)

1/2 as given by equation (28) for βz = 0 (semi-isotropic model; second row) and anisotropic models with βz = 0.1, 0.2

and 0.3, respectively. The colour levels are the same for the five panels in each column. NGC 4621 appears well reproduced by a weakly anisotropic model

βz ≈ 0.1. NGC 812 and NGC 5845 are well described by a model with βz ≈ 0.2, while only the strongest anisotropy βz ≈ 0.3 can qualitatively describe the

observed shallow gradient of Vrms along the projected minor axis of NGC 3377. These estimates are more accurately quantified in Fig. 3.

strict limit on the inclination i > 70◦. We further exclude the galaxy

NGC 4550, due to the presence of two counter-rotating stellar discs,

which complicate the interpretation of the models, and NGC 4526,

which has a strong dust disc affecting the observed stellar kinemat-

ics. This selection leads to the four galaxies NGC 821, NGC 3377,

NGC 4621 and NGC 5845.

We evaluated the MGE model predictions given by equation (28),

adopting i = 90 as in Cappellari et al. (2007), for a direct compar-

ison with the anisotropy determinations. The model predictions

were convolved with the PSF and integrated over the pixels, be-

fore comparison with the observables, as described in Appendix A.

For each galaxy, we computed the model predictions for (v2
los)

1/2

inside each Voronoi bin on the sky, at different anisotropy values

βz. At every anisotropy, the best-fitting M/L ratio ϒ is obtained

from the simple scaling relation ϒ ∝ v2
los as a linear least-squares

fit. The best-fitting scaling factor for the model velocities is s =
cos α |d|/|m|, where α is the angle between the data d and model

m vectors, which implies:12

ϒ =
(

d · m

m · m

)2

, (51)

where the vectors d and m have elements dn = [V rms/�V rms]n and

mn = [(v2
los)

1/2/�Vrms]n, with [Vrms]n ≡
√

V 2
n + σ 2

n the measured

values for the P Voronoi bins from Emsellem et al. (2004) and

[�V rms]n the corresponding errors, while [(v2
los)

1/2]n are the model

12 We corrected a typo in the corresponding equation (2) of Cappellari et al.

(2006).

predictions for ϒ = 1. A qualitative comparison between the ob-

served velocity second moments and the model ones, for different

values of the anisotropy parameter βz, is shown in Fig. 2.

To ease the visual comparison, given that the models are bisym-

metric by construction, the observations have been bisymmetrized

with respect to the kinematical major axis PAkin given in Cappellari

et al. (2007). The actual fits and χ 2 calculations are always per-

formed using the original data and errors. It is clear that the

isotropic models (βz = 0) do not provide a good description for

the observed second velocity moments of any of the four galax-

ies,13 the disagreement being strongest for NGC 3377 and weakest

for NGC 4621. Using the models presented in this paper, we can

now move away from the isotropic assumption and quantify that

the model of NGC 4621 requires a small amount of anisotropy

to appear qualitatively like the data: any βz � 0.1 produces in

fact two vertical ‘lobes’ along the minor axis, which are not ob-

served. Both NGC 821 and NGC 5845 require a more significant

anisotropy βz ≈ 0.2 to reduce the amount of rotation [high (v2
los)

1/2]

along the major axis to the level of the observations. A larger

βz ≈ 0.3 is strongly excluded by the data, as the model immediately

produces a significant elongation along the minor axis, which is not

observed. Finally, in the case of NGC 3377, only the most extreme

anisotropy shown (βz ≈ 0.3) is able to reduce the gradient of (v2
los)

1/2

along the minor axis to the shallow level of the observations.

13 The difference between the isotropic models of NGC 821 and NGC 3377,

and the observations, has already been shown in fig. A1 of Cappellari et al.

(2007).
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80 M. Cappellari

Figure 3. Best-fitting Jeans anisotropy. �χ2 = χ2 − χ2
min, describing the

agreement between the data and the models, is plotted against the anisotropy

parameter βz. The four panels show the galaxies NGC 821, NGC 3377, NGC

4621 and NGC 5845. The solid line with open circles represents the �χ2

of the Jeans models. The dashed horizontal line indicates the level �χ2 =
9, which corresponds to the 3σ confidence level for 1 degree of freedom.

The filled square with errorbars shows the value of the global anisotropy

measured using Schwarzschild models in Cappellari et al. (2007).

To quantify more precisely the findings of the previous para-

graph, in Fig. 3 we show the plots of �χ 2 = χ 2 − χ 2
min, describing

the agreement between the data and the models, as a function of

βz. We also show, as a filled square with errorbars, the value of the

global anisotropy we measured using more general axisymmetric

Schwarzschild’s models in Cappellari et al. (2007). The �χ 2 plots

confirm the visual impression from the maps of Fig. 2 and the fact

that the Jeans models give a tight constrain to the anisotropy. The

small size of the Jeans formal errors is, of course, illusory, as it is

due to the restrictive model assumptions. However, the compari-

son with the more general results shows that the simple anisotropic

Jeans models are able to recover the anisotropy within the errors.

There seems to be a systematic difference of �βz ≈ 0.05 between

the anisotropic Jeans and the Schwarzschild determinations, with

the Jeans results being lower. This difference is at the level of the er-

rors in the Schwarzschild models (see section 4.3 in Cappellari et al.

2007), and not particularly surprising given the radically different

modelling approaches adopted. If real, it may be due to the fact

that the Jeans models force a constant anisotropy everywhere in the

galaxy model, while the Schwarzschild ones allow for a more real-

istic and more spherical velocity ellipsoid at intermediate latitudes

(θ ≈ 45; see Fig. 1). The Jeans models may need a lower anisotropy

to compensate the mismatch with the data at these intermediate

latitudes.

4.1.2 M/L comparison

When studying the stellar population or the dark matter content of

galaxies, one is interested more in the M/L determination than in the

anisotropy. It is important to test whether an error in the anisotropy

can lead to a significant error in M/L. For this in Fig. 4, we show

the variation in the dynamical M/L (I band) for each of the models

shown in Fig. 2. Also shown for reference is the (M/L)Schw deter-

mined from the same SAURON data in Cappellari et al. (2006),

Figure 4. M/L versus anisotropy. The different symbols, connected by lines,

show the variation with anisotropy βz in the dynamical M/L (I band) for each

of the Jeans models shown in Fig. 2. Also shown for reference, with horizon-

tal lines using the same style and colour, is the (M/L)Schw, determined from

the same data in Cappellari et al. (2006), using three-integral Schwarzschild

models. The symbols represent NGC 821 (green circles), NGC 3377 (blue

upward triangles), NGC 4621 (black downward triangles) and NGC 5845

(red squares). The filled symbols correspond to the best-fitting βz from

Fig. 3. The large cross shows the characteristic error in βz and (M/L)Schw.

using three-integral Schwarzschild models. The comparison shows

that the M/L varies very little for the ranges of anisotropy observed

in fast-rotators early-type galaxies. In all the cases, the Jeans M/L

at the best-fitting βz represents an improvement over the M/L de-

termined from semi-isotropic models (already given in table 1 of

Cappellari et al. 2006). With the exception of NGC 5845, the im-

provement is generally at the level of the measurement errors. The

latter galaxy is an interesting case on its own: it has a small size with

Re ≈ 4.′′6 (Cappellari et al. 2006) and constitutes a unique example

of an elliptical galaxy with integral-field stellar kinematics out to

≈3Re. Our standard self-consistent model still well reproduces the

SAURON kinematics without the need to invoke a dark matter halo.

The small dependence of M/L on the anisotropy explains the fact

that, in a comparison between the semi-isotropic (M/L)Jeans and

the three-integral (M/L)Schw for a sample of 25 early-type galaxies

(including the ones in Fig. 4), we found an excellent agreement

between the two determinations. We did not detect any significant

bias in the Jeans values and the differences could be explained by

random errors at the 6 per cent rms level (Cappellari et al. 2006, their

fig. 7).

4.2 First and second velocity moments model examples

In the previous section, we showed that the anisotropic Jeans for-

malism introduced in this paper provides a good qualitative de-

scription of the integral-field second velocity moments observed

with SAURON. We also showed that for edge-on galaxies, the re-

covered anisotropy agrees well with the one derived from more

general models. Here, we present additional examples of model fits

to the second moments and we show that, using the simple Satoh

(1980) assumption for the splitting of the random and ordered ro-

tation (Section 3.1.5), a remarkably good prediction of the galaxies

mean velocity can be obtained as well, in many cases.

In Fig. 5, the data-model comparison is presented for both the

first and second velocity moments. The model fits were determined

with the following procedure.
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Anisotropic axisymmetric Jeans models 81

Figure 5. Data-model comparison for three E and three S0 fast-rotator galaxies. From left- to right-hand panel, the columns show the fast-rotators NGC 821

(E; i = 82◦, βz = 0.20, κ = 0.75), NGC 2549 (S0; i = 90◦, βz = 0.17, κ = 0.99), NGC 4546 (S0; i = 71◦, βz = 0.05, κ = 1.00), NGC 4660 (E; i = 67◦, βz =
0.23, κ = 0.93), NGC 5308 (S0; i = 87◦, βz = 0.28, κ = 1.02) and NGC 5845 (E; i = 75◦, βz = 0.18, κ = 0.95). The top row visualizes the bisymmetrized

SAURON observations for Vrms =
√

V 2 + σ 2. The second row shows the best-fitting model predictions for (v2
los)

1/2 as given by equation (28). The third row

presents the observed SAURON mean velocity V. The bottom row shows the best-fitting model first velocity moment vlos as given by equation (38). The colour

levels are the same for data and model. These galaxies are all constrained by the photometry to be quite close to edge-on, so the models can vary essentially

only the single parameter βz to fit the shape of the observed first and second moments. The kinematics varies widely for different galaxies, yet this single

parameter is sufficient to correctly predict the main features of a pair of two-dimensional functions (Vrms and V), once the observed surface brightness is given.

(i) For each pair of the non-linear model parameters (i, βz),

we evaluated the predicted second moments (v2
los)

1/2 using equa-

tion (28), with bk = 1/(1 − βz) and Mj = Lk .

(ii) The model predictions were scaled by the best-fitting M/L

ratio ϒ via equation (51) and the χ 2, describing the agreement of

data and models was determined;

(iii) Step (i) and (ii) were repeated for a grid of (i, βz) parameters

and the best-fitting value was found. In the grid, the inclination was

sampled at equally spaced intervals in the intrinsic axial ratio of the

flattest MGE component, while βz was sampled linearly.

(iv) The Gaussians describing the mass of the MGE (equation 15)

were scaled by the best-fitting ϒ and a prediction for the first

velocity moment vlos was computed with equation (38), with κk = 1.

(v) The model velocity field vlos was scaled by the factor of

κ =
∑P

n=1 Fn|x ′
nVn|

∑P

n=1 Fn|x ′
n[vlos]n|

, (52)

where P is the number of Voronoi bins in the observed SAURON

data and Fn is the corresponding flux. Vn and [vlos]n are the observed

and model velocities, respectively, and x′
n are the bin coordinates

(the x′-axis being along the projected major axis).

The last step ensures that the model has the same projected an-

gular momentum as the observed galaxy, within the observed re-

gion. Doing a normal least-squares fit would heavily underestimate

the amount of rotation of the model with respect to the data, in

cases where the galaxy contains counter-rotating stellar compo-

nents, which are clearly excluded by the simple assumption of a

constant κ factor for the whole MGE model. The angular momen-

tum of the model could be computed by numerically integrating

Lz = νRvφ over the galaxy volume using equation (21). More use-

ful may be to use the fitted galaxy inclination to deprojected the ob-

served galaxy stellar angular momentum per unit mass (Emsellem

et al. 2007). To model kinematically distinct stellar components,

one could allow for different κk components in equation (38), and

perform a standard least-squares fit as in equation (51).

For the examples of Fig. 5, we selected three ellipticals and three

lenticulars fast-rotator showing a range of kinematical properties.

For all the galaxies, the MGE models14 were fitted to the observed

photometry using the public software4 of Cappellari (2002). Al-

though some differences between the data and models are visible,

the χ 2 per degree of freedom in the fit presented, computed from

original non-symmetrized data, is close to one for all the fits. This

indicates that the models are generally consistent with the data,

within the measurements errors, which is remarkable for what is

essentially a one parameter model! A more general statistical inves-

tigation of the kinematic parameters for a larger sample of galaxies

goes beyond the scope of this paper and will be presented else-

where. Here, we note that for the galaxies presented in Figs 5 and

6, the parameter κ ≈ 1 within a few per cent accuracy (except for

NGC 821). This appears a general characteristics also of the other

fast rotators we modelled. It implies σ 2
φ ≈ v2

R and confirms the

results of more general models. It indicates that the velocity ellip-

soid of fast-rotator early-type galaxies tends to be oblate (Cappellari

et al. 2007, their fig. 2).

Interestingly, Fig. 5 shows that even the complex double-hump

structure observed in the velocity fields of NGC 2549, NGC 4660 or

NGC 5845, which seems to imply a complex dynamical structure in

the galaxy, can be well reproduced by these one-parameter models,

14 The MGE parameters for NGC 2549, NGC 4546 and NGC 5308 are

taken from Scott et al. (in preparation), while the MGE models for the other

galaxies are given in Cappellari et al. (2006).
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82 M. Cappellari

Figure 6. Inclination and anisotropy variation for NGC 2974. Each of the five columns shows the model predictions for the second velocity moment (v2
los)

1/2

computed at different values of βz = −0.3, − 0.15, . . ., 0.3. Different rows correspond to different inclinations i, equally spaced in the axial ratio of the flattest

Gaussian in the MGE model of NGC 2974. The model M/L ratio ϒ was optimized for each fit using equation (51). The values for the input parameters (βz, i)

and for the best-fitting ϒ are printed on top of each panel. The bottom row shows (i) the bisymmetrized SAURON data Vrms =
√

V 2 + σ 2; (ii) the best-fitting

model for (v2
los)

1/2; (iii) the bisymmetrized SAURON data for V and (iv) the best-fitting model for vlos. The colourmap has the same scaling for all the panels.

once an accurate MGE parametrization for the surface brightness is

given. The structures are explained by the presence of thin stellar

discs, already visible in the photometry as strongly discy isophotes.

There is no evidence for a significantly different anisotropy between

the bulge and the disc of these galaxies, as a constant anisotropy well

reproduces the observations (within 1Re). These examples show that

a great deal of information on the kinematical structure of the fast

rotators is contained in the photometry alone.

4.3 Recovery of the galaxy inclination

We have shown in the previous sections that the anisotropic Jeans

axisymmetric models presented in this paper, varying essentially

only one free parameter βz, provide a good qualitative description

of the observed shape of the first and second velocity moments of

fast-rotator early-type galaxies, when they are already constrained

by the photometry to be close to edge-on. We also confirmed that

the fast rotators are characterized by a velocity ellipsoid which is

flattened in the z-direction so that the anisotropy βz � 0 (Cappellari

et al. 2007). In this section, we study the variations of the models

when the inclination is allowed to vary.

4.3.1 The inclination degeneracy

In Krajnović et al. (2005) we showed, using real data and ana-

lytic tests, that there appears to be a degeneracy in the recovery of

the galaxy inclination (or its corresponding shape) using general

three-integral axisymmetric models. This is true even in the case of

state-of-the-art integral-field data, and assuming the galaxy poten-

tial is accurately known at every inclination and can be uniquely

recovered from the surface brightness. This result was confirmed

for a larger sample of galaxies in Cappellari et al. (2006), and in

the oblate limit, but using a triaxial modelling code, by van den

Bosch & van de Ven (in preparation). In a realistic situation, both

the galaxy potential and the stellar luminosity density are only ap-

proximately known, due to the important intrinsic degeneracy in the

deprojection of the surface brightness, due to the possible presence

of bars and due to the likely contribution of a (small) fraction of

dark matter. Moreover, the kinematical data are always affected by

low-level systematics, which are difficult to control and quantify.

The dynamical models are also affected by numerical approxima-

tions and discretization effects. All this makes it unlikely that any

inclination derived from dynamical models of the stellar kinemat-

ics can be trusted, unless further assumptions are made. In this
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Anisotropic axisymmetric Jeans models 83

section, we explore whether the anisotropic Jeans models, com-

bined with realistic assumptions on the galaxy anisotropy, can be

used to recover the galaxy inclination.

4.3.2 Inclination recovery with the Jeans models

For our experiments on the recovery of the inclination, we selected

the same four galaxies with SAURON integral-field kinematics that

we presented for the same reason in appendix A of Cappellari

et al. (2006). These galaxies have a photometry which, under the

axisymmetric assumption, can be deprojected for a wide range of

inclinations. Most importantly they possess discs of gas or dust,

which allow the inclination to be determined independently from

the stellar dynamics. In that paper we found that the inclination

derived using semi-isotropic models appeared in agreement with

the one from the dust discs. Here, we try to understand the reason

for the good agreement.

Our prototypical test case is the fast-rotator E4 galaxy NGC 2974.

The inclination of this galaxy was studied extensively by a number

of authors using the kinematics of the gas (e.g. Weijmans et al.

2008). From accurate models of the SAURON gas kinematics in

the regions where we have our stellar kinematics, Krajnović et al.

(2005) find a best-fitting inclination i = 60 ± 3. A sequence of

model predictions for the velocity second moments (v2
los)

1/2 as a

function of anisotropy βz and inclination i is shown in Fig. 6. A

strong similarity is evident between the effect on the models of

the anisotropy and inclination. Another general feature one can

see from the figure is that the second moments are more weakly

sensitive to an anisotropy variation when the galaxy is intrinsically

flat (i = 55◦, q ≈ 0.32) than when it is rounder (i = 90◦, q ≈ 0.63).

A thin disc can be more strongly anisotropic without producing the

vertical elongation of the second moments (see i = 90◦, βz = 0.3),

which is never observed in real galaxies.

The observed behaviour can be qualitatively understood as fol-

lows: A more face-on view makes the model intrinsically flatter

and disc like, causing the second moments to approach the | cos φ|
behaviour along the galaxy isophotes as one would expect for a thin

rotating disc, with a peak on the projected major axis and a strong

minimum on the minor axis. A similar increase in the second mo-

ments on the projected major axis, with respect to the minor axis,

can be produced by reducing the fraction of stars on radial orbits

(lowering βz), thus correspondingly increasing the stars on tangen-

tial orbits. Due to projection, these, in fact, produce zero motion

along the minor axis and show a peak on the major axis. For exam-

ple in Fig. 6, the model predictions with (i, βz) = (63.◦8, −0.3) are

very similar to the ones for (i, βz) = (57.◦5, 0.0). The contours of the

χ 2, describing the agreement between the Jeans models and the ob-

served SAURON Vrms are shown in Fig. 7. Within a 3σ confidence

level, any inclination between i = 56◦ and 61◦, and correspondingly

any anisotropy between βz = −0.2 and 0.1 is equally consistent

with the data.

In Cappellari et al. (2007, their fig. 2), we found that all the

fast rotators have anisotropy βz � 0.05. For the nearly edge-on

galaxies, we confirmed this determination using Jeans models in

Sections 4.1.1 and 4.2. Forcing this observationally motivated con-

straint, the inclination of NGC 2974 becomes tightly constrained to

the range i = 56◦ to 58◦. The qualitative behaviour seen in NGC

2974 is representative of what we observed for the 48 galaxies we

modelled using this method from the SAURON sample (Scott et al.,

in preparation). In Fig. 7, we show the χ 2 contours for the three

additional galaxies. In the case of NGC 4150, the inclination is well

constrained by the data independently of anisotropy, while in the

Figure 7. The inclination-anisotropy degeneracy. Contours of �χ2 =
χ2 − χ2

min, describing the agreement between the data and the anisotropic

Jeans models, are plotted as a function of the anisotropy parameter βz and

the galaxy inclination i in degrees. The lowest levels correspond to the for-

mal 1, 2 and 3σ (thick red line with �χ2 = 11.8) confidence levels for

2 degrees of freedom. Additional contours are characterized by a factor

of 2 increase in �χ2. The two horizontal blue solid lines enclose the re-

gion of acceptable inclinations as determined from the gas kinematics or

dust geometry (appendix A of Cappellari et al. 2006). The vertical solid

green line indicates isotropy (βz = 0). The different panels correspond to

NGC 4150, NGC 2974, NGC 4459 and NGC 524, respectively. There is

a clear degeneracy between inclination and βz anisotropy. However, if one

enforces the observationally motivated constraint βz > 0.05, the recovered

inclination always lies within the errorbars of the gas/dust determinations.

case of NGC 4459 and NGC 524 the best-fitting location has βz < 0

and the inclination is heavily dependent on the assumed anisotropy.

For these two galaxies, the unphysical location of the χ 2 minimum

is likely due to the degeneracy in the deprojection of the surface

brightness (Section 3.1.2). These two galaxies have a quite low

inclination and the deprojected mass distribution is probably signif-

icantly in error even at the true inclination, which is then formally

excluded by the data. Like all the fast rotators, these galaxies likely

possess stellar discs, which cannot be detected at these low inclina-

tions (Rix & White 1990; Magorrian 1999). This would explain the

general fact that we tend to better reproduce the kinematics of

the fast rotators which are close to edge-on than the kinematics of

the more face-on ones. None the less, in all the four cases, if one en-

forces the constrain βz � 0.05, the recovered inclination lies within

the errorbars of the independent gas/dust determinations. This indi-

cates that one can use these anisotropic Jeans models to recover the

inclinations of the fast rotators by enforcing the requirement βz >

0.05, and this explains the good agreement with the determinations

from isotropic models we found in Cappellari et al. (2006).

4.4 Relation with the tensor virial theorem

The Jeans equations are useful when one needs a prediction for

the spatial variation of the kinematics in galaxies. However, the

stars in galaxies also satisfy more general global relations between
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84 M. Cappellari

kinematic observables, the most important of which are the virial

equations (BT, Section 4.3). These are a tensor generalization of

the well-known virial theorem 2K = −W, which relates the total

kinetic energy K and the potential energy W of an isolated stellar

system in equilibrium.

The small dependence of the measured M/L on the anisotropy

(Section 4.1.2) can be qualitatively understood as a consequence of

the tensor virial equations. For an axisymmetric galaxy in equilib-

rium, the total kinetic energy is proportional to the galaxy mass. The

ratio of the kinetic energy Kzz along the direction of the symmetry

z-axis and the kinetic energy Kxx along a direction orthogonal to

it, is only a function of the galaxy shape (equation 4–91 of BT).

The effect of increasing the anisotropy βz is simply that of redis-

tributing the same kinetic energy Kxx from the tangential to the

radial direction. This reduces the velocity second moments along

the galaxy-projected major axis, while correspondingly increasing

them along the minor axis. The projected luminosity-weighted sec-

ond moments, from which the M/L is measured, remain nearly

unchanged when averaged over the full galaxy image.

The virial equations also provide a qualitative understanding of

why the observations can constrain the inclination of an axisymmet-

ric galaxy (Section 4.3.2). In fact, they state that the ratio Kxx/Kzz

increases with galaxy flattening. In other words, for a given pro-

jected surface brightness, a flat system needs more kinetic energy

in a direction parallel to its the equatorial plane, to be in hydrostatic

equilibrium.

The fast rotator NGC 2974 of Fig. 6 shows high Vrms along the

projected major axis. Although the galaxy does not appear very flat

in projection, its kinematics is already an indication that the system

is likely to be intrinsically flat. A flat model has more kinetic energy

in the equatorial plane and will be able to easily reproduce the

high Vrms along the major axis, without invoking extreme tangential

anisotropy. A quantitative example, using both the first and second

velocity moments, of how the tensor virial equations can be used to

constrain the galaxy inclination is presented in fig. 11 of Cappellari

et al. (2007). There we showed that the (V/σ , ε) diagram of Binney

(2005) can be used to provide a qualitative estimate of the inclination

of fast-rotators galaxies, given some assumptions on the anisotropy.

Although the virial equations can be used to estimate the M/L

and the inclination of galaxies, they have some obvious limita-

tions: (i) they do not allow one to make full use of the spatial

information contained in the integral-field observations. The whole

two-dimensional kinematics is reduced to one number; (ii) they do

not allow the limited spatial extent of the kinematics to be properly

taken into account and (iii) they do not easily deal with non-similar

isophotes and multiple photometric components in galaxies.

5 SU M M A RY

We present a generalization of the widely used semi-isotropic (two-

integral) axisymmetric Jeans modelling method to describe the stel-

lar dynamics of galaxies. Our method uses the powerful MGE

technique to accurately parametrize the galaxies photometry. It

represents an anisotropic extension of what was presented in the

semi-isotropic case by Emsellem et al. (1994), and it maintains its

simplicity and computational efficiency. We assume (i) a constant

M/L and (ii) a velocity ellipsoid which is aligned with the cylindri-

cal (R, z) coordinates and has a flattening quantified by the classical

z-anisotropy parameter βz = 1 − v2
z/v

2
R , where z is the galaxy

symmetry axis.

We test the technique using SAURON integral-field observations

of the stellar kinematics (Emsellem et al. 2004) for a small set of

fast-rotator galaxies with a variety of kinematical properties. For

galaxies that are constrained by the photometry to be close to edge-

on, we find that, although in the semi-isotropic limit (βz = 0) the

models do not provide a good description of the data, the variation of

the single global anisotropy βz is generally sufficient to accurately

predict the shape of both the first (V) and second (Vrms =
√

V 2 + σ 2)

velocity moments, once a detailed MGE parametrization of the

photometry is given. An accurate description of the photometry,

including ellipticity variations and discy isophotes, appears crucial

to reproduce in detail the features of the kinematics.

In all the cases, we find that βz � 0.05, while generally σ 2
φ ≈

v2
R with good accuracy. This confirms previous findings on the

dynamical structure of these galaxies, showing that their velocity

ellipsoid tends to be oblate (Cappellari et al. 2007). The anisotropy

derived with our anisotropic Jeans dynamical modelling method

agrees within the errors with the one previously measured using a

more general Schwarzschild approach.

For fast-rotator galaxies that are not constrained by the photome-

try to be close to edge-on, we find that in general the inclination i (or

the corresponding galaxy shape) and the anisotropy βz are highly

correlated and cannot be independently determined. However, if we

introduce the observationally motivated constraint βz � 0.05, the

inclination becomes constrained to a narrow range of values and it

agrees with independent determinations when those are available.

We are applying this method to determine the inclination, the

M/L and the amount of rotation of a large sample of galaxies

for which integral-field kinematics are available. For galaxies close

to edge-on, the global anisotropy or the dynamical structure of

different galaxy subcomponents (e.g. bulge and disc) can also be

investigated. We are using this method to test independent determi-

nations of the masses of supermassive black holes in the nuclei of

fast-rotator galaxies. This technique is ideal to study the dark matter

content and the anisotropy of discs of spiral galaxies.
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APPENDI X A : SEEI NG AND APERTURE
C O N VO L U T I O N

The first and second velocity moments have to be convolved with

the instrumental PSF and integrated over the aperture used in the

observations, before making comparisons with the observed quan-

tities. The PSF effects are particularly important when studying the

nuclear regions of galaxies (e.g. to estimate the mass of supermas-

sive black holes). The PSF-convolved velocity moments are given

by the general formulas (e.g. equations 51–53 of Emsellem et al.

1994):


obs = 
 ⊗ PSF (A1)

[vlos]obs =
(
vlos) ⊗ PSF


obs

(A2)

[v2
los]obs =

(
v2
los) ⊗ PSF


obs

, (A3)
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with ⊗ representing convolution and where the normalized PSF is

generally described as the sum of Q Gaussians

PSF(R) =
Q
∑

i=1

Gi

2πσ 2
i

exp

(

−
R2

2σ 2
i

)

, (A4)

with
∑Q

i=1 Gi = 1. To efficiently evaluate numerically the above

convolutions up to large radii, and even for very flat models, one

can evaluate the models predictions 
v2
los and 
vlos on a grid lin-

ear in the logarithm of the elliptical radius and in the eccentric

anomaly. This is done by defining a logarithmically spaced radial

grid Rj and then computing the moments at the coordinate positions

(x′, y′) = (Rj cos θk , q′ Rj sin θk), for linearly spaced θk values, with

q′ a characteristic (e.g. the median) observed axial ratio of the MGE

model. The model is then re-interpolated on to a fine Cartesian grid

before the convolution with the PSF using fast Fourier methods.

Finally, the model is rebinned into the observed apertures.

Alternatively, especially when the apertures sparsely sample the

plane of the sky, instead of performing the convolutions of equations

(A1)–(A3) on a regular grid, one can evaluate the same convolution

integrals only for the observed apertures, while also including the

integration on to the apertures (appendix D of Qian et al. 1995).

Given a rectangular aperture of sides Lx and Ly , aligned with the

coordinate axes at position (x′, y′) on the sky, and assuming a PSF

given by equation (A4), the PSF-convolved observable S(x′, y′)

inside the aperture is

Sobs(x
′, y ′) =

∫ ∞

−∞

∫ ∞

−∞
S(x ′, y ′) K(x − x ′, y − y ′) dxdy, (A5)

where S has to be replaced by 
, 
vlos, or 
v2
los respectively, and

correspondingly Sobs becomes 
obs, [
vlos]obs, or [
v2
los]obs, respec-

tively. The kernel is given by

K(x, y) =
Q
∑

i=1

Gi

4

{

erf

[

(Lx/2) − x
√

2σi

]

+ erf

[

(Lx/2) + x
√

2σi

]}

×
{

erf

[

(Ly/2) − y
√

2σi

]

+ erf

[

(Ly/2) + y
√

2σi

]}

. (A6)

In practice, the integral of equation (A5) can be limited to the region

where K(x, y) is significantly non-zero:

−(Lx/2) − 3 max{σi} �x � (Lx/2) + 3 max{σi}, (A7)

−(Ly/2) − 3 max{σi} �y � (Ly/2) + 3 max{σi}. (A8)
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