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S U M M A R Y

Full waveform inversion using the conventional L2 distance to measure the misfit between

seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in

this study, based on a measure of the misfit computed with an optimal transport distance. This

measure allows to account for the lateral coherency of events within the seismograms, instead

of considering each seismic trace independently, as is done generally in full waveform inver-

sion. The computation of this optimal transport distance relies on a particular mathematical

formulation allowing for the non-conservation of the total energy between seismograms. The

numerical solution of the optimal transport problem is performed using proximal splitting

techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2

model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize

interesting properties of the optimal transport distance. The associated misfit function is less

prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures

in the BP 2004 model, starting from an initial model containing no information about these

structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 bench-

mark data, following a frequency continuation strategy. This estimation explains accurately

the data. Using the same workflow, full waveform inversion based on the L2 distance converges

towards a local minimum. These results yield encouraging perspectives regarding the use of

the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of

the initial model is reduced, the reconstruction of complex salt structure is made possible, the

method is robust to noise, and the interpretation of seismic data dominated by reflections is

enhanced.

Key words: Inverse theory; Numerical approximation and analysis; Controlled source seis-

mology; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Full waveform inversion (FWI) is a data fitting procedure aiming

at computing high-resolution estimations of subsurface parameters.

The formalism of this method, based on the minimization of the

misfit between observed and synthetic data, yields the possibility

for estimating any parameter influencing the propagation of seismic

waves: P- and S-wave velocities, density, attenuation, anisotropy

parameters. In current applications, at the regional or global scale

in seismology, and at the exploration scale in seismic imaging,

FWI is mainly used as a high-resolution velocity model building

method (Fichtner et al. 2010; Plessix & Perkins 2010; Sirgue et al.

2010; Tape et al. 2010; Peter et al. 2011; Zhu et al. 2012; Warner

et al. 2013; Vigh et al. 2014; Borisov & Singh 2015; Operto et al.

2015). As opposed to conventional tomography methods based on

the matching of traveltimes only, FWI aims at taking into account

the whole recorded signal: all the seismic events (diving waves, pre-

and post-critical reflections, and converted waves) are considered, as

well as their amplitude, in the process of estimating the velocity. As a

consequence, higher resolution estimates are expected compared to

tomography methods, up to the theoretical limit of half the shortest

wavelength of the recorded signal (Devaney 1984).

The mismatch between observed and synthetic seismograms is

usually computed as the L2 norm of their difference. This is referred

to as the L2 distance in the following (the use of the L1 norm and

the hybrid L1/L2 Huber norm has also been promoted for interpret-

ing noisy data in Brossier et al. 2010). The minimization of this

distance is performed through quasi-Newton methods (Nocedal &

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 345
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Wright 2006), involving the computation of the gradient and an

approximation of the inverse Hessian operator (Pratt et al. 1998;

Métivier et al. 2013, 2014a).

The time-domain formalism of FWI has been introduced by

Lailly (1983) and Tarantola (1984). The limitations of FWI as a

high-resolution velocity model building tool from reflection seismic

data have been identified few years after. In Jannane et al. (1989),

the sensitivity of the seismic signal with respect to low wavenumber

and high wavenumber perturbations of the velocity model is studied.

While high wavenumber perturbations have mainly an effect on the

amplitude of the signal, low wavenumber variations of the velocity

are responsible for shifting in time the seismic traces, mainly influ-

encing the traveltime of the seismic events. Hence, from an inverse

problem point of view, reconstructing the large-scale, smooth com-

ponents of the velocity model, requires to match these traveltime

shifts. In addition, this reconstruction should be achieved before

injecting high wavenumber in the reconstruction.

Unfortunately, the L2 distance, based on a sample by sample

comparison, is not adapted to capture the time shifts between two

oscillatory signals. The two signals should have approximately the

same shape (prediction of the same events) and the time shift should

be no larger than half the period of the signal. These requirements

lead conventional FWI to focus (at least in the first stage of the in-

version) on low frequency transmitted waves such as diving waves.

These waves sample the subsurface without being reflected, there-

fore the difference between predicted and observed diving waves

should be mainly due to shifts in time of the seismic events. How-

ever, if these time shifts are too large, reducing the L2 distance

between the signals through a local optimization technique will

generate a wrong velocity model which matches the data with one

to several phase shifts. This phenomenon is commonly known as

cycle skipping. This is the reason why the accuracy of the initial

model is of primary importance in conventional FWI: it should be

kinematically compatible with the data, i.e. the phase of the main

seismic events should be predicted within half a period.

Mitigating this strong dependence on the accuracy of the start-

ing model is a long term issue in FWI. A first strategy, proposed

by Pratt (1999) in the frequency-domain, consists in matching the

lowest frequency components of the data as a preliminary step. This

increases the attraction valley of the misfit function as, in this case,

the initial velocity model should only explain the data up to half the

period corresponding to the low frequency components that have

been extracted. Following a hierarchical approach, the result of this

first inversion serves as an initial model for an inversion of data

containing higher frequencies. This procedure can be iterated until

the whole seismic data has been interpreted. This is the strategy

followed for instance in Bunks et al. (1995), Sirgue & Pratt (2004)

and Operto et al. (2004).

This hierarchical approach can be complemented with offset and

time-windowing strategies. Time-windowing is used to select the

diving waves and remove the reflected energy from the observed

seismograms. The offset is increased progressively, as large offsets

correspond to diving waves travelling across a long distance between

the subsurface, therefore containing a large number of oscillations,

and more subject to cycle skipping. Time-windowing and offset se-

lection is also known as layer stripping technique: the shallow part

of the subsurface is first reconstructed, the depth of investigation

being progressively increased by this data selection strategy. Ex-

amples of applications can be found for instance in Shipp & Singh

(2002); Wang & Rao (2009) in the 2-D acoustic approximation, or

in Brossier et al. (2009) for the interpretation of onshore data in the

2-D elastic approximation.

Despite these successful applications, the hierarchical approach

does not really overcome the cycle skipping limitation. Instead, the

data interpretation is re-organized in such a way that this limitation

does not preclude the estimation of the velocity through FWI. Com-

monly encountered difficulties for real data application preventing

this strategy to produce reliable velocity estimations encompass:

the impossibility of building an accurate enough and kinematically

compatible initial velocity model, the presence of strong noise cor-

rupting the low frequency part of the data, or offset limitations in

the acquisition design.

In the last decades, several attempts have been made to modify the

FWI misfit function itself, to avoid comparing the seismic signal

using the L2 distance, and to yield a more robust, convex misfit

function, less prone to cycle skipping. Two classes of strategies

designed to achieve this objective can be identified, referred to as

data-domain and image-domain techniques in the following.

The underlying concept of data-domain technique relies so far on

a hybridization between tomography methods and FWI. These hy-

brid methods try to emphasize the matching of traveltimes instead

of the full signal, to recover the properties of tomography methods,

while still benefiting from the expected high-resolution power of

FWI. One of the first attempt in this direction is the design of the

wave-equation tomography (WETT) proposed by Luo & Schuster

(1991). This is a tomography method, aiming at matching travel-

times. However, while classical tomography methods rely on travel-

time picking in the observed data (a possibly heavy pre-processing

step) and the computation of traveltimes through asymptotic ap-

proaches for instance, the traveltimes misfit is directly estimated

from the cross-correlation of the observed and synthetic traces.

This method is interesting as it bridges the gap between tomogra-

phy and FWI from a formal point of view: a full wave modelling

engine is used to compute the synthetic data, and the method can

be interpreted as a modification of the FWI misfit function, making

possible to use the adjoint formalism to compute the associated gra-

dient, as is commonly done in FWI. Originating from exploration

geophysics, this strategy has been adopted by the seismology com-

munity as the finite-frequency tomography method (Dahlen et al.

2000; Montelli et al. 2004; Tromp et al. 2005; Nolet 2008).

However, exploiting WETT results as an initial model for FWI

is not straightforward. It is well known that the resolution of the

tomography method may be too low for producing an accurate

enough starting model for FWI (Claerbout 1985). A sufficient ac-

curacy of the initial model is not guaranteed and cycle skipping

could still prevent FWI to converge to a reliable estimation. Second,

in the presence of non-predicted events (i.e. reflections), the estima-

tion of the time-shifts through cross-correlation collapses. Indeed,

evaluating time-shifts between two traces through cross-correlation

requires that the signal have approximately the same shape.

While the first difficulty is intrinsic to tomography method, an

attempt to enhance the robustness of the automatic traveltime misfit

computation through warping has been recently proposed by Ma

& Hale (2013). Dynamic image warping is a technology originally

designed for pattern recognition in signal processing. In a recent

study, Hale (2013) has demonstrated that this method could be

applied to determine time shifts between seismograms.

More recently, the design of a misfit function based on decon-

volution has been proposed by Luo & Sava (2011). The method

has been initially designed to overcome another limitation of cross-

correlation based tomography. Luo & Sava (2011) recognize that

standard implementations of this method using a penalization of

the nonzero time lags, as proposed for instance by van Leeuwen

& Mulder (2010), make the implicit assumption that the seismic
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data has been acquired with an impulsive source with an infinite

spectrum. When applied to real data acquired with band-limited

sources, this could result in non-negligible artefacts in the gradi-

ent. To this purpose, Luo & Sava (2011) propose to compute the

traveltime misfit between the synthetic and observed data through a

deconvolution of the synthetic data by the observed data, instead of

using a cross-correlation of the two signals. This method has started

to be applied to realistic scale case-studies in seismic exploration

and seems to provide a more robust misfit function, less prone to

cycle skipping (Warner & Guasch 2014).

In seismology, other data-domain modifications of the misfit

function have been proposed. Fichtner et al. (2008) propose to

use a time-frequency analysis of the data through a Gabor trans-

form in order to extract both the traveltimes and the amplitude

envelope information from the seismic signal. This allows to de-

fine a misfit function as a sum of two terms measuring the misfit

between traveltimes and amplitude envelope separately. Compared

to cross-correlation (Luo & Schuster 1991) or dynamic warping

(Ma & Hale 2013), the extraction of the traveltimes is performed

following a more robust technique based on a multi-scale analysis

in the time-frequency space. Besides, the information on the am-

plitude of the signal is not completely discarded as the amplitude

envelope is also matched in the inversion process. A similar strategy

has been proposed by Bŏzdag et al. (2011) where the amplitude and

traveltime information are computed following a Hilbert transform.

Compared to the Gabor transform, the Hilbert transform is a purely

time-domain related technique, and should thus require less data

processing than the Gabor transform. Both strategies can be used in

combination with different time-windowing strategies (Maggi et al.

2009). Envelope inversion has also been investigated in the context

of exploration seismology (Luo & Wu 2015).

Parallel to the development of these data-domain techniques, the

development of image-domain techniques started with the design

of Differential Semblance Optimization (Symes & Kern 1994) and

later on wave equation migration velocity analysis (Sava & Biondi

2004a,b; Symes 2008). These methods rely on the separability of

scales assumption: the velocity model is decomposed as the sum

of a smooth background model and a high wavenumber reflectivity

model. The reflectivity is related to the smooth background model

through an imaging condition: it is the sum for each source of the

cross-correlation between the incident wavefield and the backpropa-

gated residuals computed in the smooth background velocity model.

This imaging condition can be extended using either an offset selec-

tion (Symes & Kern 1994) or an illumination angle selection (Biondi

& Symes 2004) in the residuals (the angles are easily accessible

when the reflectivity is computed through asymptotic techniques),

or a time lag in the cross-correlation (Faye & Jeannot 1986; Sava &

Fomel 2006; Biondi & Almomin 2013). Within this framework, an

extended image thus consists in a collection of reflectivity models

depending on one of these additional parameters (offset, angle, time

lag). This extended image is used to probe the consistency of the

smooth background velocity model: the uniqueness of the subsur-

face implies that for the correct background, the energy should be

focused in the image domain, either along the offset/angle dimen-

sion, or at zero lag. A new optimization problem is thus defined,

either as the penalization of the defocusing of the energy, or as the

maximization of the coherency of the energy in the image domain.

The corresponding misfit function is minimized iteratively, follow-

ing standard numerical optimization schemes. The main drawback

of these approaches is related to their computational cost. A large

number of migration operations have to be performed to build the

extended image, and this has to be performed at each iteration of the

reconstruction of the smooth background velocity model. This high

computational cost seems to have precluded the use of these tech-

niques for 3-D waveform inversion up to now. It should also be noted

that these methods are based on the assumption that only primary

reflections will be used to generate the extended image through mi-

gration, which requires non negligible data pre-processing. Locally

coherent events in the image-domain associated with, for instance,

multiple reflections, would yield inconsistent smooth background

velocity models (Lambaré 2002).

Recently, new data-domain modifications of the misfit function

based on concepts developed in image processing have emerged.

While Baek et al. (2014) promote the use of warping strategies,

Engquist & Froese (2014) propose to replace the L2 distance by the

Wasserstein distance to compare seismic signals. The Wasserstein

distance is a mathematical tool derived from the optimal transport

theory, which has already numerous application in computational

geometry and image processing (Villani 2003). The underlying idea

is to see the comparison of two distributions as an optimal map-

ping problem. An optimization problem is thus solved to compute

the distance between two distributions, also known as the Monge–

Kantorovich problem. A cost is associated with all the mappings,

accounting for instance for the sum of all the displacements re-

quired to map one distribution onto the other. The Wasserstein

distance is computed as the minimal cost over the space of all the

mappings. These mathematical concepts originate from the work of

the French engineer Gaspard Monge at the end of the 18th century,

in an attempt to conceive the optimal way of transporting sand to

a building site. The Wasserstein distance is then used to define a

misfit function measuring the discrepancy between predicted and

observed data, which is minimized over the subsurface parameters

to be reconstructed. The resulting strategy can thus be seen as a

two-level optimization strategy with an outer level for the update of

the subsurface parameters and an inner level for the computation of

the misfit function using the Wasserstein distance.

In the study proposed by Engquist & Froese (2014), the proper-

ties of the Wasserstein distance for the comparison of 1-D seismic

signals are investigated. In particular, the convexity of the corre-

sponding misfit function with respect to time-shifts of the signal is

emphasized. This can be well understood, as within this context, the

measure of the distance is not based on the pure difference of the

oscillatory signals, but on all the mappings that can shift and distort

the original signal to map the targeted one. Therefore, an informa-

tion on the traveltime shifts as well as on the amplitude variations

of the signal is captured by this distance.

In this study, we are interested in an extension of this method to the

comparison of entire seismograms, more precisely common shot-

gathers, which are collections of traces corresponding to one seismic

experiment. Compared to individual seismic traces, the shot-gathers

(which can be seen as 2-D images), contain important additional

information as lateral coherency corresponds to identifiable seismic

events, such as reflections, refraction, or diving waves. Hence, the

aim of this study is twofold. The first objective is to present how shot-

gathers can be compared using an optimal transport based distance.

The second objective consists in demonstrating the interest of using

such a distance in the context of FWI through different case studies.

The proposition from Engquist & Froese (2014) is to use the

Monge-Ampère formulation of the optimal transport problem for

comparing the Wasserstein distance between 1-D traces, follow-

ing earlier studies from Knott & Smith (1984) and Brenier (1991).

The computation of the Wasserstein distance is brought back to

the solution of the Monge–Ampère problem, a nonlinear system of

partial-differential equations, which can be solved efficiently using
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finite-difference based method (Benamou et al. 2014) or semi-

discrete strategies (Mérigot 2011). These are supposed to be

amenable strategies for large scale optimal transport problems, how-

ever, they may still lack robustness to be extensively used within

FWI. A more fundamental difficulty is related to the positivity of the

signals and the energy conservation. Two underlying assumptions

of the Wasserstein distance is that the compared signals should be

positive, and that no energy is lost in the process of mapping one

signal to the other. These two assumptions are not verified when

comparing seismic signals. First, these are oscillatory signals, and

the positivity cannot be satisfied. Second, regarding the energy con-

servation, aside the difficulty of predicting accurately the signal

amplitude which requires an accurate information on the attenu-

ation and the density of the subsurface together with the use of

sophisticated forward modelling engines based on the visco-elasto-

dynamic equations, there is no fundamental reason that the predicted

data contains the same energy as the observed data. Generally, in the

simple case of missing reflectors in the models, predicted seismo-

grams will contain less energy than the observed ones. In addition,

noise corrupts the data, which is in essence a non-predictable quan-

tity. A strict conservation of the total energy is thus inappropriate

for waveform inversion.

A new strategy is introduced in this study to overcome these

difficulties. Instead of using the Wasserstein distance, a variant of

this distance is used. This variant relies on the dual formulation of

the Monge–Kantorovich problem, and is defined as a maximiza-

tion problem over the space of bounded functions with variations

bounded by the unity (bounded 1-Lipschitz functions). This allows

to overcome the restriction associated with the positivity and the

strict conservation of the energy between the signals which are

compared. An efficient numerical method is designed to compute

this distance, making possible the comparison of realistic size seis-

mograms, involving several thousands of time steps and receivers.

This method uses an algorithm recently developed in the context of

image processing, the Simultaneous Descent Method of Multipliers

(SDMM), an instance of the Rockafellar proximal point algorithm

(Rockafellar 1976) which is based on proximal splitting techniques

(Combettes & Pesquet 2011).

The first synthetic case study on the Marmousi 2 benchmark

model (Martin et al. 2006) emphasizes the properties of the misfit

function based on the optimal transport distance compared to the

misfit function based on the L2 distance. The sensitivity of both

strategies to the choice of the starting model is investigated. Bet-

ter P-wave velocity estimations are systematically recovered when

the optimal transport distance is used. The second synthetic case

study is based on the BP 2004 model (Billette & Brandsberg-Dahl

2004). The presence of complex salt structures makes this bench-

mark model challenging for seismic imaging. Most of the energy

of the seismic signal is reflected at the interface between the water

and these structures, and few percent of the energy travels from

the inside of the structures back to the receivers. Starting from a

background model containing no information on the presence of

the salt structures, a workflow is designed using the optimal trans-

port distance misfit function allowing for a correct reconstruction

of the salt bodies. This was not possible using a L2 distance based

misfit function. Finally, the third synthetic case study is presented

on the benchmark data set issued by Chevron in 2014. This 2-D

streamer elastic data set is challenging for FWI as the maximum

offset of 8 km limits the depth of penetration of the diving waves to

the first 3 km. The quality control on the data, the migrated images

and the CIG show that the P-wave velocity estimation obtained

with the optimal transport distance is reliable. The Chevron data

set also illustrates that the optimal transport distance is robust to

noise, a nice property having its roots in the regularizing properties

of the numerical solution of the optimal transport problem which is

defined.

In the remainder of the study, the mathematical formalism for

the computation of the Wasserstein distance is first introduced.

Its definition is given, and a general presentation of the numeri-

cal method implemented for its numerical approximation is pre-

sented. For the sake of clarity, the technical details regarding the

solution of the discrete optimal transport problem are presented

in the Appendices A, B and C. On this basis, a strategy for com-

puting the gradient of the optimal transport distance misfit function

using the adjoint-state method is presented, and a numerical illus-

tration on a schematic example using a borehole-to-borehole trans-

mission acquisition is introduced. The three synthetic cases studies

mentioned previously are then presented to outline characteristic

properties and performances of FWI based on the optimal transport

distance. A discussion and a conclusion are given in the two last

sections.

2 T H E O RY

2.1 Definition of the Wasserstein distance

Consider two functions f(x) and g(x) defined on a domain X subset

of R
d , such that

f, g : X −→ R, X ⊂ R
d , (1)

and M a function from X to X

M : X −→ X. (2)

The Lp Wasserstein distance between f and g, denoted by Wp(f, g),

is defined by a norm on R
d , denoted by ‖.‖, an exponent p ≥ 1, and

the constrained minimization problem
⎧
⎨
⎩

W p( f, g) = min
M

∫
x∈X

‖x − M(x)‖p f (x) dx, (3a)

where ∀A ⊂ X,
∫

x∈A
g(x) dx =

∫
M(x)∈A

f (x) dx . (3b)

The eq. (3b) is a constraint which specifies that M belongs to the

ensemble of all the mappings from f to g. In this study, we consider

the Wasserstein distance defined by the exponent p = 1 and the ℓ1

distance ‖.‖1 on R
d such that

∀x = (x1, . . . , xd ) ∈ R
d , ‖x‖1 =

d∑

i=1

|xi |. (4)

We denote this distance by W1(f, g). Instead of using the previ-

ous (primal) formulation given by eqs (3a) and (3b), which in-

volves a nonlinear constraint associated with energy conservation,

the Wasserstein distance W1(f, g) has the interesting property that it

can be computed through the solution of the (dual) linear problem

W 1 ( f, g) = max
ϕ∈Lip1

∫

x∈X

ϕ(x) ( f (x) − g(x)) dx, (5)

where Lip1 is the space of 1-Lipschitz functions, such that

∀(x, y) ∈ X, |ϕ(x) − ϕ(y)| ≤ ‖x − y‖1. (6)

From this definition, one can see that the 1-Lipschitz property (6)

ensures bounded variations of the function and precludes fast vari-

ations and discontinuities of the function ϕ.

The dual definition of the Wasserstein distance W1(f, g) given in

eq. (5) can be found in classical optimal transport textbooks such
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Optimal transport distance for FWI 349

as Evans (1997) or Villani (2008). The maximization problem (5)

is well defined if and only if the energy between f(x) and g(x) is

conserved in the sense that

E f,g ≡

∫

x∈X

( f (x) − g(x)) dx = 0. (7)

Indeed, let ϕ(x) = α ∈ R be a constant function. This function is

1-Lipschitz, and satisfies

∫

x∈X

ϕ(x) ( f (x) − g(x)) dx = αE f,g. (8)

Therefore, if eq. (7) is not satisfied, the solution of (5) is the constant

function equal to ∞ or −∞ depending on the sign of Ef, g.

As the conservation of the energy cannot be guaranteed in seismic

imaging (Ef, g �= 0 in practice), a generalization of the Wasserstein

distance W1(f, g) for the non-conservative case is considered in

this study. This generalization relies on an additional constraint: the

function ϕ(x) ∈ Lip1 should be also bounded, such that

∃c > 0, ∀x ∈ X, |ϕ(x)| ≤ c. (9)

This condition can be seen as a threshold: instead of increasing

towards the infinity, the function is limited to reach a fixed, constant

value c. The space of bounded 1-Lipschitz functions is denoted by

BLip1 in the following. The distance defined between two functions

f and g should thus be computed as the solution of the maximization

problem

W̃ 1 ( f, g) = max
ϕ∈BLip1

∫

x∈X

ϕ(x) ( f (x) − g(x)) dx . (10)

Note that some theoretical links exist between the Wasserstein W1

and the distance W̃ 1: see for instance the work of Hanin (1992). A

mathematical analysis of this link is, however, beyond the scope of

this study.

Common shot-gathers are collections of seismic traces recorded

after the explosion of one source, in the time-receiver domain. As

such, they can be considered as real functions defined in a 2-D space.

The observed and calculated shot-gathers are denoted respectively

by

ds
obs(xr , t) and ds

cal[m](xr , t). (11)

The variable xr is associated with the receiver position and the

variable t corresponds to time. The superscript s corresponds to the

shot-gather number in a seismic survey containing S shot-gathers.

The dependence of the calculated data on to the model parameter m

is denoted by [m]. The following misfit function is thus introduced

fW̃ 1 (m) =

S∑

s=1

W̃ 1
(
ds

cal[m], ds
obs

)
, (12)

where

W̃ 1
(
ds

cal[m], ds
obs

)
= max

ϕ∈BLip1

∫

t

∫

xr

ϕ(xr , t)(ds
cal[m](xr , t)

− ds
obs(xr , t)) dxr dt. (13)

For comparison, the conventional L2 misfit function is

fL2 (m) =

S∑

s=1

∫

t

∫

xr

∣∣ds
cal[m](xr , t) − ds

obs(xr , t)
∣∣2

dxr dt. (14)

2.2 Numerical computation of W̃
1(dcal, dobs)

The numerical computation of the solution to the problem (13) is

presented here. The discrete analogous of the distance W̃ 1 is defined

as
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W̃ 1 (dcal[m], dobs) = maxϕ

Nr∑
i=1

Nt∑
j=1

ϕi j

(
(dcal[m])i j

− (dobs)i j

)
�t�xr (15a)

∀(i, j), |ϕi j | < c, (15b)

∀(i, j), (k, l) |ϕi j − ϕkl | < |(xr )i − (xr )k | +
∣∣t j − tl

∣∣ . (15c)

In (15), Nr and Nt are the number of receivers and discrete time

steps respectively, and the standard discrete notations are used

(xr )i = (i − 1) × �xr , t j = ( j − 1) × �t, ϕi j = ϕ((xr )i , t j ),

(16)

where �xr and �t are the discretization steps in the receiver coor-

dinate and time dimensions respectively.

With these notations, the total number of discrete points for the

representation of one shot-gather is N = Nt × Nr. The system (15)

defines a linear programming problem involving 2N2 + 2N linear

constraints. From a computational point of view, the algorithmic

complexity involved for the solution of such a problem would not

be affordable for realistic size seismograms, which can involve

thousands of receivers positions and discrete time steps, yielding a

complexity N = O(106). However, an equivalent discrete problem

involving only 6N linear constraints can be derived by imposing

only local constraints on ϕ to enforce the 1-Lipschitz property. This

yields the linear programming problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̃ 1 (dcal[m], dobs) = max
ϕ

Nr∑
i=1

Nt∑
j=1

ϕi j

(
(dcal[m])i j

− (dobs)i j

)
�t�xr (17a)

∀(i, j), |ϕi j | < c, (17b)

∀(i, j), |ϕi+1 j − ϕi j | < |(xr )i+1 − (xr )i | = �xr (17c)

∀(i, j), |ϕi j+1 − ϕi j | < |t j+1 − t j | = �t. (17d)

The two linear programming problems (15) and (17) are equiva-

lent. This results from a particular property of the ℓ1 distance. The

proof of this equivalence is given in Appendix A.

The function hdcal[m],dobs
(ϕ) is now introduced, such that

hdcal[m],dobs
(ϕ) =

Nr∑

i=1

Nt∑

j=1

ϕi j

(
(dcal[m])i j − (dobs)i j

)
�t�xr . (18)

Let K be the unit hypercube of R
3N

K =
{

x ∈ R
3N , |xi | ≤ 1, i = 1, . . . 3N

}
. (19)

The indicator function of K, denoted by iK is defined as

iK (x) =

∣∣∣∣∣
0 if x ∈ K

+∞ if x /∈ K .
(20)

With these notations, the linear programming problem (17) can be

rewritten as

W 1 (dcal[m], dobs) = max
ϕ

hdcal[m],dobs
(ϕ) − iK (Aϕ), (21)

where the matrix A is a 3N × N, sparse, rectangular matrix represent-

ing the constraints on ϕ following the eqs (17b)–(17d). Assuming

an ordering of the discrete vectors ϕij

ϕ =
[
ϕ11, ϕ21, . . . ϕNr 1, ϕ12, . . . , ϕNr Nt ,

]
(22)
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350 L. Métivier et al.

the matrix A is such that

(Aϕ)k =

∣∣∣∣∣∣∣∣∣∣∣

ϕk

c
for k = 1, . . . , N

ϕk+1 − ϕk

�xr

for k = N + 1, . . . , 2 × N

ϕk+Nr − ϕk

�t

for k = 2 × N + 1, . . . , 3 × N .

(23)

The matrix A is thus a column block matrix with one diagonal

block and two bi-diagonal blocks. This pattern is due to the local-

ity of the discrete constraints which are imposed. In the formula-

tion (21), the constraints are encoded in the term −iK(Aϕ). Indeed,

the linear programming problem amounts to the maximization

of the function expressed in (21). According to the definition of

iK, the corresponding misfit function equals −∞ as soon as one of

the linear constraints is not respected, therefore any solution of the

maximization problem has to satisfy these constraints.

Rewriting the problem (17) as the problem (21) recasts a lin-

ear programming problem into a convex non-smooth optimization

problem. The advantage of such a transformation is that there exist

efficient techniques to solve such convex non-smooth optimization

problems, based on proximal splitting techniques. These techniques

use the concept of proximity operator. For the sake of compactness,

the definition of proximity operators is given in Appendix B, as

well as the proximity operator of the functions hdcal[m],dobs
and iK,

denoted by proxhdcal[m],dobs
and proxiK

. These operators have a closed-

form and can be calculated with a linear complexity, making them

inexpensive to compute.

y0
1 = 0, y0

2 = 0, z0
1 = 0, z0

2 = 0;

for n = 0, 1, . . . do

ϕn =
(
IN + AT A

)−1 [(
yn

1 − zn
1

)
+ AT

(
yn

2 − zn
2

)]
;

yn+1
1 = proxhdcal[m],dobs

(
ϕn + zn

1

)
;

zn+1
1 = zn

1 + ϕn − yn+1
1 ;

yn+1
2 = proxiK

(
Aϕn + zn

2

)
;

zn+1
2 = zn

2 + Aϕn − yn+1
2 ;

end

Algorithm 1: SDMM method for the solution of the problem (21).

In this study, the problem (21) is solved using the simultane-

ous direction method of multipliers (SDMM) described in Com-

bettes & Pesquet (2011), which is an instance of the proximal

point algorithm (Rockafellar 1976). Following this method, the so-

lution of (21) is obtained through the iterative scheme described in

Algorithm 1. At each iteration of this algorithm, the proximity op-

erators proxhdcal[m],dobs
and proxiK

are invoked, as well as the solution

of a linear system involving the square matrix of size N

Q = IN + AT A, (24)

where IN is the identity matrix of size N. The solution of these linear

systems is the more intensive computational task in the SDMM al-

gorithm, as the application of the proximity operators proxhdcal[m],dobs

and proxiK
has a linear complexity in number of operations and a

negligible cost in terms of memory requirement.

The matrix Q is a sparse square matrix of size N, symmetric pos-

itive definite by construction, related only to the definition of the

eqs (17b)–(17d). As a consequence, the matrix Q remains constant

throughout the whole FWI process. In a first attempt to design an

efficient algorithm for the solution of (21), it can be interesting, in a

pre-processing step, to factorize this matrix as a product LLT, where

L is a lower triangular matrix, using a Cholesky decomposition. Un-

der the assumption Nt ≃ Nr, this allows to benefit from a complexity

in O(N3/2) for the solution of these linear systems through forward

and backward substitutions. However, the memory requirement as-

sociated with the storage of the factor L is also in O(N3/2), which is

non negligible for realistic size problems for which the size N can

reach O(106).

For this reason, an alternative method to solve the linear systems

related to Q is designed in this study, which takes advantage of the

particular structure of Q. This method is adapted from the work of

Buzbee et al. (1970). A reduction of the memory requirement from

O(N3/2) to O(N) is achieved, while maintaining the same computa-

tional complexity as forward and backward substitution in O(N3/2).

In addition, while these operations are intrinsically sequential, the

algorithm proposed in this study is based on matrix-vector products

which can be easily parallelized. For the sake of compactness, the

full description of this strategy is given in Appendix C.

2.3 Minimization of the optimal transport distance based

misfit function and gradient computation

The minimization of the misfit function (12) is based on conven-

tional quasi-Newton techniques. From an initial estimation m0, these

methods construct the sequence

mk+1 = mk + αk�mk, (25)

where αk is a positive scalar parameter computed through a line

search strategy (Bonnans et al. 2006; Nocedal & Wright 2006), and

�mk is a model update satisfying

�mk = −Hk∇ fW̃1
(mk). (26)

In eq. (26), ∇ fW̃1
(mk) is the gradient of the misfit function (12), and

Hk is an estimation of the inverse of its Hessian. In this study, this es-

timation is computed through the l-BFGS approximation (Nocedal

1980). This approximation is based on the values of the gradient at

iteration k and the l previous iterations k − 1, . . . k − l + 1.

Therefore, the practical implementation of the proposed strat-

egy in the FWI context only requires the capability of computing

the misfit function fW̃1
(m) and its gradient ∇ fW̃1

(m). To this pur-

pose, the adjoint-state technique is used (Lions 1968; Chavent 1974;

Plessix 2006). For the sake of notation simplification, the case of one

single shot-gather is considered here (S = 1), as the generalization

to several shot-gathers is straightforward by summation.

The following Lagrangian function is introduced

L(m, u, dcal, λ, μ) = W̃ 1 (dcal, dobs) + (F(m, u), λ)
W

+ (Ru − dcal, μ)D, (27)

where the standard Euclidean scalar product in the wavefield space

and the data space is denoted by (., .)W and (., .)D respectively.

The state variables are the incident wavefield, denoted by u, and the

calculated data, denoted by dcal. The adjoint variables are denoted by

λ and μ. The extraction operator which maps the incident wavefield

to the receiver locations is denoted by R. The two state equations

relating the state variables and the model m are

F(m, u) = 0, dcal = Ru. (28)

Using the adjoint-state approach, the gradient ∇ fW̃1
(m) is given

by

∇ fW̃1
(m) =

(
∂ F(m, u(m))

∂m
, λ

)
, (29)

where u(m) and λ(m) are respectively the incident and the adjoint

wavefields satisfying the state equation and the adjoint state equation

[see Plessix (2006) for the derivation of (29)].
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Optimal transport distance for FWI 351

The adjoint-state equations are obtained by cancelling the deriva-

tives of the Lagrangian function with respect to the state variables.

This gives

⎧
⎪⎪⎨
⎪⎪⎩

∂ F(m, u(m))T

∂u
λ = −RT μ

μ =
∂W̃ 1 (dcal, dobs)

∂dcal

.

(30)

The first of these two equations involves the adjoint of the wave

operator. The wavefield λ thus corresponds to the backpropagation

of the source term −RTμ. The second equation relates μ to the

derivatives of the misfit function with respect to the calculated data.

Therefore, as already noticed in Brossier et al. (2010) and Luo &

Sava (2011) for instance, the modification of the misfit function

only impacts the source term of the adjoint wavefield λ. Remarking

that

∂W̃ 1 (dcal, dobs)

∂dcal

=
∂

∂dcal

(
max

ϕ∈BLip1

∫
ϕ(xr , t)(dcal(xr , t)

− dobs(xr , t))dxr dt

)
, (31)

the secondary adjoint wavefield μ is simply given by

μ = arg max
ϕ∈BLip1

∫
ϕ(xr , t) (dcal(xr , t) − dobs(xr , t)) dxr dt. (32)

The difference between eqs (32) and (13) should be emphasized

here. The eq. (13) defines W̃ 1 as the maximal value of the crite-

rion over the space of bounded 1-Lipschitz functions. The eq. (32)

defines μ as the particular bounded 1-Lipschitz function for which

this maximal value is reached. This is the meaning to be given to the

notations max and argmax . Compared to a L2 norm-based misfit

function where μ would be the difference between the observed and

calculated seismograms, here μ is computed as the maximizer of

the optimal transport problem designed to compute the W̃ 1 distance

between these seismograms.

This has the following consequence regarding the implementa-

tion of the proposed strategy. The additional computational cost

related to the modification of the misfit function from the stan-

dard L2 norm to the W̃ 1 distance is related to the solution of the

maximization problem (21). This solution yields not only the misfit

function value, which is the value of the criterion to be maximized,

but also the adjoint variable μ, which corresponds to the function

ϕ ∈ BLip1 which achieves this maximization. Hence, one optimal

transport problem is solved per source, and its solution allows to

compute the misfit function as well as the adjoint variable μ, which

is backpropagated following the adjoint state-strategy for getting

the adjoint field λ. From λ and the incident wavefield u, the gradient

of the misfit function (12) is computed using the eq. (29).

2.4 Numerical illustration on a simple synthetic study

An illustration of the optimal transport based distance for FWI on

a schematic 2-D example is now presented. A borehole to borehole

transmission acquisition is considered, as presented in Fig. 1. The

two boreholes are 2500 m apart. A single source is used, located at

2500 m depth in the leftmost borehole. An array of 196 receivers

equally spaced each 25 m is located in the second borehole, from

50 m depth to 4900 m depth. A Ricker source centred on 5 Hz is used

to generate a single shot-gather. The modelling is performed in the

acoustic approximation and the pressure wavefield is recorded. The

density model is kept constant, equal to 1000 kg m−3. The velocity

Figure 1. Configuration of the borehole to borehole experiment.

of the true medium is homogeneous and set to v∗
P = 2000 m s−1.

One synthetic shot-gather is computed in a homogeneous medium

with a velocity set to vP = 1500 m s−1 and with the correct density.

The convergence of the SDMM algorithm is investigated along 50

iterations. The bound c corresponding to the constraint (17b) is set

to 1. This pragmatical choice is done in conjunction with a scaling

of the residuals prior to the solution of the optimal transport prob-

lem. The rationale behind this scaling is that the bound constraint

(17b) should be active at the convergence of the SDMM algorithm

as the solution of such convex constrained optimization problem

lies on the boundary of the convex set. The evolution of μ through-

out the SDMM iterations is presented in Fig. 2, and compared to

the standard L2 residuals.

The standard residuals (Fig. 2a) present two distinct arrivals: the

first one corresponds to the observed data, the second corresponds

to the synthetic data. The predicted data arrives later compared to

the observed one as the velocity is underestimated. The temporal

support of the two arrivals does not overlap, which is a situation

typical of cycle skipping: the data is predicted with more than

half a phase delay. The SDMM method starts from the initial resid-

ual, and converges to an estimation of ϕ where the two distinct

arrivals are progressively smoothed. The negative values of the two

arrivals are also progressively removed. These negative values cor-

respond to the white part in the initial residuals. In counterpart, the

area below the last arrival is set to an almost constant negative value

(white zone below the last arrival). To assess the convergence of this

maximization problem with linear constraints, the relative evolution

of the criterion depending on the number of iterations is considered.

When no progress is observed, the convergence is assumed to be

reached. Fig. 3 confirms the convergence towards a stationary point

after 50 iterations.
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352 L. Métivier et al.

Figure 2. L2 residuals (a) and optimal transport based residuals with 5(b),

10 (c), 25 (d) and 50 (e) SDMM iterations.

The shape of the optimal transport solution may not be intu-

itive. To better understand how this can be an approximate solution

of the problem (21), consider the situation where the constraints

on ϕ would be only to be bounded by c, relaxing the 1-Lipschitz

constraint. In this case, the solution of the discrete maximization

problem would be

ϕi =

∣∣∣∣∣
c if dcal,i [m] − dobs,i > 0

−c if dcal,i [m] − dobs,i < 0
(33)

which would correspond to a discontinuous solution. The effect of

the 1-Lipschitz constraint thus consists in smoothing the solution of

the maximization problem. This hard constraint forces the SDMM

algorithm to find a trade-off between this imposed regularity and

the maximization of the criterion. The selected solution thus starts

by giving more weight to the large positive values of the original

arrivals (black areas), while the smoothing constraint tends to re-

move the strong initial oscillations, therefore setting weak positive

weights in the position of the negative values of the original arrivals

(white areas). Because the zone below the last arrival in the original

residuals is slightly negative, the SDMM algorithm sets a negative

values in all this area to further maximize the criterion while pre-

serving the smooth property of the solution. Two transverse traces

are extracted from the L2 residuals and the solution found by SDMM

in Figs 4 and 5. The first is a vertical trace extracted for the receiver

located at 2.5 km in depth. The second is a horizontal trace extracted

at time t = 2 s. These traces emphasize the regularity of the optimal

transport solution compared to the L2 residuals. The shape of the

optimal transport traces resembles the envelope of the L2 traces.

For further analysis of this schematic example, the L2 and

W̃ 1 misfit function are evaluated for velocity values going from

vP = 1500 m s−1 to vP = 2500 m s−1 with 20 m s−1 sampling.

The results are presented in Fig. 6. The W̃ 1 misfit function is

evaluated for a number of SDMM iterations going from 5 to 50.

As expected, the misfit functions all reach the global minimum at

v = 2000 m s−1. The L2 misfit function presents two secondary min-

ima at vP = 1780 m s−1 and vP = 2300 m s−1. This is an illustration

of cycle skipping. For these two values of velocity, the seismogram

generated by the Ricker source in v∗
P is matched up to one phase

delay. Interestingly, the W̃ 1 misfit function profiles tends to become

more and more convex as the value of SDMM iterations increases.

The secondary minima still exist, however, they are progressively

lifted up, rendering the misfit function closer from a convex func-

tion. At the same time, the valley of attraction remains as sharp

as for the L2 misfit, which ensures that the ‘resolution power’ of

the method is unchanged. This behaviour is notably different from

the one observed for the cross-correlation based misfit function

which ensures more convex misfit function detrimental to the size

of the valley of attraction which is significantly broadened, leading

to lower resolution methods (van Leeuwen & Mulder 2010).

This schematic example provides a first insight on the behaviour

of the optimal transport distance for the comparison of seismo-

grams in application to FWI. Using this distance does not prevent

from cycle skipping issues, as secondary minima are still present.

However, the misfit function tends to be more convex as the nu-

merical approximation of the optimal transport distance converges

to a stationary point. In addition, the corresponding backpropa-

gated residuals can be seen as smooth version of the standard L2

residuals, the smoothing operator being related to the computation

of the optimal transport distance between the observed and pre-

dicted seismograms, and more specifically to the enforcement of the

1-Lipschitz constraint.

3 C A S E S T U D I E S

3.1 Settings

The numerical experiments which are presented in this section are

based on a 2-D acoustic time-domain FWI code. The wave mod-

elling is performed using a fourth-order (for the Marmousi and BP

2004 case studies) and an eighth-order (for the Chevron 2014 bench-

mark data set) finite-difference stencil for the spatial discretiza-

tion. A second-order leap-frog scheme is implemented for the time

discretization. The three case studies are performed in a marine

seismic environment. A free surface condition is implemented at
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Optimal transport distance for FWI 353

Figure 3. Evolution of the criterion maximized by the SDMM method along 50 iterations on the borehole to borehole schematic experiment. The criterion

tends asymptotically towards a maximum value of 4000, which suggests that the convergence is reached. This is supported by the evolution of the solution that

also seems to have reached a stationary point (Fig. 2).

Figure 4. Traces extracted at 2.5 km depth from the original residuals (black) and from the solution computed after 50 SDMM iterations for the borehole to

borehole schematic experiment.

Figure 5. Traces extracted at time t = 2 s from the original residuals (black) and from the solution computed after 50 SDMM iterations for the borehole to

borehole schematic experiment.

the water/air interface. A windowed sinc interpolation is used to

account for receivers not located on grid points in the Chevron case

study (Hicks 2002).

The minimization of the misfit function, either the standard L2

misfit function or the W̃ 1 misfit function, is performed using the

preconditioned l-BFGS method (Nocedal 1980). The SEISCOPE

optimization toolbox is used to implement this minimization scheme

(Métivier & Brossier 2016). This requires to compute the mis-

fit function and its gradient. The gradient is computed as the

cross-correlation in time of the incident wavefield and the ad-

joint wavefield (eq. 29) following the adjoint-state method. A ver-

tical scaling linear in depth is used as a pre-conditioner for the

Marmousi and Chevron case studies. This preconditioning com-

pensates for the loss of amplitude of the gradient in depth as-

sociated with geometrical spreading effects when using surface

acquisition.
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354 L. Métivier et al.

Figure 6. L2 misfit function (black) and Wasserstein misfit function obtained with 5 (red), 10 (blue), 25 (green) and 50 (purple) SDMM iterations. The misfit

functions are evaluated for a background velocity value ranging from 1500 to 2500 m s−1.

In terms of implementation, the computation of the cross-

correlation of the incident and adjoint wavefields requires the

capability of accessing to the two wavefields at a given time step.

This is a well-known difficulty in time-domain FWI or Reverse Time

Migration approaches, as the incident wavefield is propagated from

an initial condition while the adjoint wavefield is backpropagated

from a final condition (Clapp 2009). The strategy implemented in

our code consists of first computing the incident wavefield from

the initial condition, and storing it at each time steps only at the

boundaries of the domain. The incident wavefield is then backprop-

agated from its final state, reversing in time the boundary conditions

which have been stored. The adjoint is backpropagated conjointly

with the incident wavefield from its final condition. A more detailed

description of this strategy is given in Brossier et al. (2014). The

method is based on the assumption that no attenuation is taken into

account, otherwise the backpropagation of the incident wavefield is

numerically unstable.

Besides, a hybrid MPI/OpenMP implementation is used to exe-

cute the code in parallel. The MPI communicator is used to perform

the computations associated with each shot-gather in parallel. For

each shot-gather, the computation of the incident and adjoint wave-

fields is further accelerated using OpenMP parallelization of the

spatial finite-difference loops. The time cross-correlation loop for

the computation of the gradient is also accelerated with OpenMP

directives.

In the three following experiments, the computation of the opti-

mal transport distance and the corresponding adjoint source is per-

formed through 50 iterations of the SDMM method (Algorithm 1).

This is a rather pragmatical choice, as it guarantees a manage-

able additional computational cost (see for instance Table 3 for

the Chevron benchmark data set case studies), while the conver-

gence of the SDMM iterations appears to be reached: although

not shown here, the maximization of the criterion and the solution

of the optimal transport problem only marginally evolves after 50

SDMM iterations. As for the previous experiment, the bound c of

the constraint (17b) is also set to 1 and a scaling of the residuals is

employed.

3.2 Marmousi 2 case study

For the Marmousi 2 case study, a fixed-spread surface acquisition is

used, involving 128 sources located every 125 m and 168 receivers

located every 100 m at 50 m depth. The density model is assumed to

be homogeneous, set to the value ρ0 = 1000 kg m−3. The topography

of the original Marmousi 2 model is also modified so that the water

layer has no horizontal variations (flat bathymetry). This layer is

kept fixed to the water P-wave velocity vP = 1500 m s−1 during the

inversion.

The observed data is generated using a filtered Ricker wavelet,

centred on a 5 Hz frequency. The low frequency content of this

wavelet, below 2.5 Hz, is removed using a minimum phase But-

terworth filter. For real seismic marine data, the noise level below

this frequency is too strong for the information to be relevant to

constrain the P-wave velocity model. The spectrum and the shape

of the resulting wavelet are presented in Fig. 7. The spatial dis-

cretization step is set to 25 m to guarantee at least 4 discretization

points by wavelength. The time discretization step is set to 0.0023 s

according to the Courant Friedriech Levy (CFL) condition. The

recording is performed over 2000 time steps, which corresponds

to a total recording time of 4.6 s. In this experiment, a Gaussian

filter smoothing with a short correlation length (between 60 m and

100 m depending on the local dominant wavelength) is applied to

the gradient, to remove fast oscillations which are due to a sparse

acquisition design (only one source every 125 m).

Two initial models are created by smoothing the exact model us-

ing a Gaussian filter, with vertical and horizontal correlation lengths

equal to 250 m and 2000 m respectively. The first model is very close

from the exact model, with only smoother interfaces. The second

model is more distant from the exact model, as it presents almost

only vertical variations, and underestimates the increase of the ve-

locity in depth.

Starting from these two initial models, FWI using the L2 misfit

function and the optimal transport distance based misfit function

is used to interpret the data. The results are presented in Fig. 8.

For the first initial model, the results obtained after 100 iterations

are presented (Figs 8c and d). For the second initial model, the best

results obtained using the two misfit functions are presented (Figs 8f

and g). The exact data as well as the corresponding residuals in the

initial and the calculated models are presented in Fig. 9.

Starting from the first initial model, both the L2 distance and

the optimal transport distance yield estimations very close from the

exact model (Figs 8c and d). However, a difference can be noted

regarding the reconstruction of the low-velocity zone near x = 11 km

and z = 2.5 km. A high-velocity artefact is present in this zone in

the estimation obtained with the L2 distance. This is not the case in

the estimation obtained with the optimal transport distance.
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Optimal transport distance for FWI 355

Figure 7. Source wavelet used to generate the synthetic data set on the Marmousi model (a). This source is obtained from a Ricker wavelet centred on 5 Hz

after applying a minimum phase Butterworth filter below 2.5 Hz. Corresponding spectrum (b).

Figure 8. Marmousi 2 exact P-wave velocity model (a). Initial P-wave velocity models, computed from the exact model using a Gaussian filter with correlation

lengths of 250 m (b) and 2000 m (e). Corresponding P-wave velocity estimations with FWI using the L2 misfit function (c,f). Corresponding P-wave velocity

estimations with FWI using the optimal transport distance based misfit function (d,g).

Starting from the second initial model, FWI based on the L2

distance is unable to provide a satisfactory P-wave velocity esti-

mation (Fig. 8f). This is emphasized by the residuals computed in

the corresponding final estimations (Fig. 9f). In comparison, the

P-wave velocity estimation obtained using FWI based on the opti-

mal transport distance is significantly closer from the exact model

(Fig. 8g). Low-velocity artefacts, typical of cycle skipping, can still

be seen in depth, below 3 km. Low wavenumber artefacts are also

visible on the left part of the model (x < 1 km). However, in the

central part, the P-wave velocity model is correctly recovered, even

starting from this crude approximation. The computed estimation

seems to explain correctly the data, as can be seen in Fig. 9(g).

Compared to the results obtained using the first initial model, there

are unexplained seismic events, especially for late arrivals around

T = 4 s. However, most of the data is explained by the computed

estimation.

To complete this analysis on the Marmousi case study, the L2

residuals in the two initial models are compared with their optimal

transport counterpart [the adjoint variable μ defined by eq. (32)] in

Fig. 10. The optimal transport residuals are smoother than the L2

residuals, with a lower frequency content. An emphasis of particular

seismic events in the optimal transport residuals is also noticeable,
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356 L. Métivier et al.

Figure 9. Marmousi 2 exact data for the shot-gather corresponding to the source position xS = 8 km (a). Associated residuals in the initial P-wave velocity

models (b,e). Associated residuals in the P-wave velocity models estimated with FWI using the L2 misfit function (c,f). Associated residuals in the P-wave

velocity models estimated with FWI using optimal transport distance based misfit function (d,g).

compared to the L2 residuals. This is mainly observable for the

reflections around 3 s and 8 km offset, and this does not depend

on the initial model. The optimal transport thus seems to weight

differently the uninterpreted part of the seismograms.

The effect of the modification of the residuals by the optimal

transport distance is also emphasized in Fig. 11, where two gradi-

ents, one associated with the L2 distance, the other with the optimal

transport distance, are compared. These gradient are computed in
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Optimal transport distance for FWI 357

Figure 10. L2 residuals in the initial model 1 (a) and 2 (c). Corresponding optimal transport residuals (b,d).

the second initial model, which generates a strong cycle skipping

effect with the L2 distance. In order to interpret these gradient as

velocity updates, they have been multiplied by −1: they represent

the first model perturbation used by a steepest descent method. Cy-

cle skipping can be detected in the L2 gradient through the strong

shallow low-velocity updates, in a zone where the velocity should

be increased. The optimal transport distance seems to be able to ef-

ficiently mitigate these strong artefacts. The energy in depth is also

better balanced. The main interfaces constituting the Marmousi

model also appear in this velocity update.

From this first experiment, the optimal transport distance based

misfit function appears more robust than the conventional L2 norm-

based misfit function. For each initial model, a better P-wave veloc-

ity estimation is computed using the optimal transport than using

the L2 distance. In particular, correct estimations are obtained in the

shallow part located above the depth z = 3 km, even starting from a
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358 L. Métivier et al.

Figure 11. Initial descent direction (opposite of the gradient) in the initial model 3 using the L2 distance (a) and the optimal transport distance (b).

very crude approximation of the exact model. This is a first indica-

tion that using the optimal transport distance may be an interesting

strategy to mitigate cycle skipping issues in the context of FWI.

3.3 BP 2004 case study

The BP 2004 benchmark model is representative of the geology of

the Gulf of Mexico (Billette & Brandsberg-Dahl 2004). This area

is characterized by a deep water environment and the presence of

complex salt structures. The large P-wave velocity value of the salt

structures is responsible for most of the energy of the seismic signal

to be reflected back to the receivers from the interface between the

water layer and the salt. Only a few percentage of energy of the

seismic signal travels within the structure and below before being

recorded. This particular configuration makes seismic imaging in

the presence of salt structures challenging. The first challenge is to

correctly identify and delineate the salt structures. The second chal-

lenge consists in correctly imaging zones below the salt structure

(sub-salt imaging).

A fixed-spread surface acquisition is used, with 128 sources and

161 receivers distant from 125 m and 100 m respectively. The depth

of the sources and receivers is set to z = 50 m. The density model

is assumed to be homogeneous such that ρ0 = 1000 kg m−3. The

wavelet used to generate the data is based on a Ricker wavelet cen-

tred on 5 Hz. A whitening of the frequency content is performed

before a minimum phase Butterworth low-pass and high-pass fil-

ters are applied. The spectrum of the resulting wavelet is within

an interval from 3 to 9 Hz (Fig. 12). The spatial discretization step

is set to 25 m and the time discretization step is set to 0.0023 s to

respect the CFL condition. The maximum recording time is per-

formed over 4500 time steps, which corresponds to a recording

time of 10.3 s.

The exact and initial models are presented in Figs 13(a) and (b).

The left part of the original BP 2004 model has been extracted

(Billette & Brandsberg-Dahl 2004). The initial model has been

designed such that the imprint of the salt structure has been to-

tally removed: it contains no information on the presence of salt.

From this starting model, FWI using a standard L2 distance fails

to produce meaningful results, as can be seen in Fig. 13(c). The

time-window is reduced to 4.6 s to focus the inversion on the shal-

lowest part of the model and reduce cycle skipping issues, however

this does not prevent the minimization from converging towards

a local minimum far from the exact model. The incorrect P-wave

velocity estimation of the starting model prevents the FWI algo-

rithm from locating the reflectors associated with the top of the

salt. Instead, diffracting points are created to match the most en-

ergetic events without lateral coherency. In comparison, the same

experiment is performed using the optimal transport distance. The

results are presented in Fig. 13(d). As can be seen, the top of the

salt structure is correctly delineated. Synthetic shot-gathers cor-

responding to the source located at x = 8 km, computed in the

exact model, initial model, L2 estimation, and optimal transport es-

timation, are presented in Fig. 14. This picture shows clearly that

the strong reflection coming from the top of salt is inaccurately
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Figure 12. Source wavelet used to generate the synthetic data set on the BP 2004 model (a). This source is obtained from a Ricker wavelet centred on 5 Hz. A

whitening of its frequency content is performed before a low-pass and a high-pass filter are applied, so that the corresponding spectrum spans an interval from

3 to 9 Hz (b).

Figure 13. BP 2004 exact model (a) and initial model (b). P-wave velocity estimation with a standard L2 norm on short-time window data (4.6 s) (c). The

same with the optimal transport distance (d).

predicted by the L2 estimation; in particular, the reflected energy

which is introduced is discontinuous (Fig. 14c). In comparison,

the optimal transport estimation yields a correct prediction of this

reflection (Fig. 14d). The L2 residuals and the optimal transport

residuals (the adjoint variable μ defined by the eq. 32) computed

in the initial model are presented in Fig. 15. The uninterpreted div-

ing waves appearing in the left bottom corner of the L2 residuals

(Fig. 15a) seem to be strongly damped in the corresponding optimal

transport residuals. The optimal transport distance seems to rather

enhance the reflected events, which is consistent with the previous

observations.

Building on this result, a layer stripping workflow is suggested.

Five increasing time-windows are defined, with recording time equal

to 4.6, 5.75, 6.9, 9.2 s, and finally 10.3 s. For each time-window, two

to three successive inversions are performed. A Gaussian smoothing

with a small correlation length is applied to the model computed

after each inversion, which serves as an initial model for the next

inversion. This Gaussian smoothing serves only to remove high-

frequency artefacts appearing in the late iterations of the inversion.

Alternative strategies such as Tikhonov regularization or gradient

smoothing could have been used instead. A total of 15 inversions

is performed following this process, with in average 221 iterations
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360 L. Métivier et al.

Figure 14. BP 2004 exact data (a) and initial data (b). Predicted data in the final model using a standard L2 norm (c). Predicted data in the final model using

the optimal transport distance using together with a layer stripping workflow (d). The red ellipses highlight the reflection on the salt roof. This reflection is not

present in the initial data (b). Its reconstruction using the L2 distance is discontinuous (c). The use of the optimal transport distance yields a better reconstruction

of this event (d).

of the l-BFGS algorithm for each inversion. The stopping criterion

is only based on a line search failure to give the possibility to

the optimizer to minimize as much as possible the misfit function

based on the optimal transport distance. The detailed workflow is

summarized in Table 1.

The results obtained after the 1st, 3rd, 6th, 9th, 12th and 15th

inversions are presented in Fig. 16. As can be seen, the salt structure

is practically entirely recovered at the end of the cycle of inversions

(Fig 16f). A continuous progression is achieved from the initial

delineation of the top of the salt structure to the full reconstruction of

its deeper parts. The subsalt zone, however, whose reconstruction is

critical, is not satisfactorily recovered. To this purpose, a possibility

would consist in building an initial model from this reconstruction

by freezing the salt, which is correctly delineated, and smoothing
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Figure 15. BP 2004 case study. L2 residuals in the initial model (a). Optimal transport residuals in the initial model (b).

Table 1. Workflow followed for the BP 2004 case study.

Inversion step Recording time l-BFGS iterations Smoothing

1 4.6 s 218 rz = 125 m, rx = 125 m

2 4.6 s 251 rz = 125 m, rx = 125 m

3 4.6 s 150 rz = 125 m, rx = 125 m

4 5.75 s 279 rz = 75 m, rx = 75 m

5 5.75 s 199 rz = 75 m, rx = 75 m

6 6.9 s 130 rz = 75 m, rx = 75 m

7 6.9 s 230 rz = 75 m, rx = 75 m

8 8.05 s 177 rz = 75 m, rx = 75 m

9 8.05 s 269 rz = 75 m, rx = 75 m

10 8.05 s 283 rz = 75 m, rx = 75 m

11 9.2 s 152 rz = 75 m, rx = 75 m

12 9.2 s 366 rz = 75 m, rx = 75 m

13 10.35 s 192 rz = 75 m, rx = 75 m

14 10.35 s 287 rz = 75 m, rx = 75 m

15 10.35 s 144 rz = 75 m, rx = 75 m

below the salt. From such an initial model, our previous study

show that FWI based on the L2 distance with a truncated Newton

optimization strategy should be able to reconstruct accurately the

subsalt region (Métivier et al. 2014a).

A better insight of the reconstruction process is given by the

synthetic data computed in intermediate models throughout the dif-

ferent steps of the workflow presented in Fig. 17. The shot-gathers

are computed for a source located at x = 8 km. A particular at-

tention should be accorded to the left part of the seismogram (red

rectangles), as this part corresponds to the main salt structure in

the exact model. After interpreting correctly the reflections coming

from the salt roof (Fig. 17a), the transmitted wave traveling within

and below the salt is progressively adjusted while deeper reflections

are also progressively integrated (Figs 17b–f). This behaviour is in

contrast with standard multi-scale approaches for which the trans-

mitted energy is fitted prior to the reflected energy. However, this

may not be inputted to the use of the optimal transport distance.

Due to the high-velocity contrast, the reflected energy dominates

the transmitted energy in the data. This, in conjunction with the

layer stripping strategy which focuses the prior steps of the inver-

sion towards short offset data, favours the fit of the reflections prior

to the diving waves.

3.4 Chevron 2014 case study

In 2014, the Chevron oil company has issued a blind benchmark

synthetic data set for FWI. The aim of such blind benchmark is to

provide realistic exploration seismic data to practitioners with which

they can experiment various FWI workflow and test methodological

developments. As the exact model which has served to build the

data is not known, such a case study is closer from an application to

field data than synthetic experiments for which the exact model is

known.

The Chevron 2014 benchmark data set is built from a 2-D

isotropic elastic modelling engine. A frequency-dependent noise

has been added to the data to mimic a realistic data set. Especially,

the signal over noise ratio (SNR) for low frequencies (below 3 Hz)

is much less than for higher frequencies. Free surface multiples are

incorporated in the data. A streamer acquisition is used, with a max-

imum of 8 km offset, with 321 receivers by sources equally spaced

each 25 m. The depth of the sources and receivers is z = 15 m.

Among the 1600 available shots gathers, 256 have been used in this

study, with a distance of 150 m between each sources. A frequency

continuation strategy similar to the one proposed by Bunks et al.

(1995) is implemented: Butterworth low-pass and high-pass filters
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362 L. Métivier et al.

Figure 16. BP 2004 P-wave velocity estimation computed after the 1st (a), 3rd (b), 6th (c), 9th (d), 12th (e) and 15th (f) inversions using the optimal transport

distance.

are applied to the selected shot-gathers to generate an ensemble of

15 data sets with an increasing bandwidth from 2–4 Hz to 2–25 Hz.

The shot-gathers corresponding to the source located at

x = 150 m are presented for the 1st, 5th, 10th and 15th frequency

bands in Fig. 18. As mentioned previously, the noise imprint is

clearly stronger for the first frequency bands.

The initial model provided by Chevron is presented in Fig. 19(a).

This is a 1-D layered model with no horizontal variations except

for the water layer on top for which the correct bathymetry has

been incorporated. The P-wave velocity in the water layer is set to

1500 m s−1. The initial model incorporates an important feature:

a low-velocity layer is located between the depth z = 2.3 km and

z = 3 km. This velocity inversion and the relatively short available

offsets (only 8 km) prevent diving waves from sampling the deepest

part of the model. This makes the benchmark data challenging as

only reflection information is available for constraining the deep

part of the model.

The workflow which is applied to the Chevron benchmark data

set is the following. Prior to inversion, an estimation of the source

wavelet is performed in the initial model, for each frequency band,

following the frequency-domain strategy introduced by Pratt (1999).

For the first ten frequency bands, 20 iterations of a preconditioned

l-BFGS algorithm are performed. For the frequency bands 11 and

12, 50 iterations are performed. For the last three frequency bands,

40 iterations are performed with a restart of the l-BFGS algorithm

after the 20 first iterations. This restart is only due the configuration

of the queue of the Blue Gene/Q machine of the IDRIS centre,

which does not accept jobs running longer than 20 hours. The

restart could be avoided by storing the l-BFGS approximation on

disk, however this option is not yet implemented in the SEISCOPE

optimization toolbox. The spatial and time discretization steps are

set to 37.5 m and 0.004 s respectively for the 8 first frequency

bands. They are decreased to 25 m and 0.003 s respectively for the

frequency bands 9 to 12. For the last three frequency bands, the

discretization step is set to 12.5 m and the time step to 0.001 s. The

misfit function is based on the optimal transport distance. According

to the frequency continuation strategy, the P-wave velocity model

estimated for one frequency band serves as the initial model for the

next frequency band. No regularization is introduced throughout

the inversion. However, the model estimated at the end of each

inversion is smoothed using a Gaussian filter with a correlation

length adapted to the resolution expected after the inversion of each

frequency-band. The workflow is summarized in Table 2.

The 256 shot-gathers are inverted using 1024 core units of the

Blue Gene/Q machine of the IDRIS centre. This yields the possi-

bility to assign 16 threads (4 physical threads × 4 hyperthreads) for

each shot-gather. For such a configuration, the computational times

for one gradient depending on the discretization are summarized in
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Optimal transport distance for FWI 363

Figure 17. Synthetic data in the exact model (a) and in the intermediate models obtained with FWI using an optimal transport distance after the 1st (b), 3rd

(c), 6th (d), 9th (e), 12th (f) and 15th (g) inversions. The red rectangles highlight the shot-gather zone associated with the diving waves travelling within the

salt dome and the reflections generated by deeper interfaces.

Table 3. In particular, we are interested in the additional cost due to

the use of the optimal transport distance. The results presented in

Table 3 show that the proportion of computational time spent for the

solution of the optimal transport problem decreases from 75 per cent

to 20 per cent as the size of the discrete problem increases. This in-

teresting feature is due to the fact the computational complexity of

the SDMM algorithm is in O(N 2
r × Nt ) (see Appendix C), while the

computational complexity of the solution of one wave propagation
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364 L. Métivier et al.

Figure 18. Chevron 2014 data set. Common shot-gather for the source situated at x = 0 km for the frequency bands 1 (a), 5 (b), 10 (c) and 15 (d).

problem is in O(Nt × Nx × Nz), Nx and Nz being the number of grid

points in the horizontal and vertical dimensions respectively.

The results obtained after inverting the data up to 4 Hz (frequency

band 1), 10 Hz (frequency band 8), 16 Hz (frequency band 12)

and 25 Hz (frequency band 15) are presented in Figs 19(b)–(e),

respectively. Three shallow low-velocity anomalies are recovered at

approximately 500 m depth and at the lateral positions x = 12 km,

x = 18 km and x = 30 km. An additional small-scale low-velocity

anomaly appears at x = 14.75 km and z = 1 km in the highest

resolution estimation. The original layered structure of the initial

model is tilted in the final estimation. The upper (faster) layers

bend downwards (from left to right), while the low-velocity layer

at depth z = 2.5 km bends upwards. Three high-velocity anomalies

are also recovered on top of the layer above the low-velocity layer, at
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Optimal transport distance for FWI 365

Figure 19. Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4 Hz (b), 10 Hz (c), 16 Hz (d) and 25 Hz (e).

Table 2. Workflow followed for the Chevron 2014 benchmark case study.

Band Range Steps l-BFGS iterations Final smoothing

1 2–4 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m

2 2–4.5 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m

3 2–5 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m

4 2–5.5 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m

5 2–6 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m

6 2–7 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 112.5 m, rx = 750 m

7 2–8 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 37.5 m, rx = 375 m

8 2–10 Hz �x = 37.5 m, �t = 0.004 s 20 rz = 37.5 m, rx = 375 m

9 2–11 Hz �x = 25 m, �t = 0.003 s 20 rz = 25 m, rx = 250 m

10 2–12 Hz �x = 25 m, �t = 0.003 s 20 rz = 25 m, rx = 250 m

11 2–14 Hz �x = 25 m, �t = 0.003 s 50 rz = 25 m, rx = 250 m

12 2–16 Hz �x = 25 m, �t = 0.003 s 50 rz = 0 m, rx = 250 m

13 2–18 Hz �x = 12.5 m, �t = 0.001 s 40 rz = 0 m, rx = 250 m

14 2–20 Hz �x = 12.5 m, �t = 0.001 s 40 rz = 0 m, rx = 250 m

15 2–25 Hz �x = 12.5 m, �t = 0.001 s 40 rz = 0 m, rx = 125 m
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366 L. Métivier et al.

Table 3. Computational times for one gradient. This time is decomposed in the following steps: computation of the incident wavefield, backpropagation

of the adjoint and the incident wavefields, solution of the optimal transport problem.

Frequency bands Nx × Nz Nt Gradient Incident Adjoint + incident SDMM per cent of time for SDMM

1–8 20 960 2001 171 s 9 s 33 s 127 s 74 per cent

9–12 47 160 2667 332 s 39 s 121 s 171 s 51 per cent

13–15 1 886 400 8001 2455 s 479 s 1461 s 511 s 20 per cent

Figure 20. Exact common shot-gather for the left most source at 25 Hz, compared to the corresponding synthetic in the final model at 25 Hz (orange panels).

The synthetic data are mirrored and placed on both sides of the real data to better compare the match of the different phases.

depth 1.8 km and lateral positions x = 8 km, x = 19 km, x = 22 km.

The deeper part of the model, below 3 km depth, seems less well

reconstructed, as it could be expected from the lack of illumination

of this zone. However, a curved interface seems to be properly

recovered at a depth between 4.5 and 5 km. A flat reflector is also

clearly visible at the bottom of the model, at depth z = 5.8 km.

As the exact model is not known, it is important to perform quality

controls of the computed P-wave velocity estimation. A synthetic

shot-gather in the model estimated at 25 Hz is computed and com-

pared to the corresponding benchmark shot-gather in Fig. 20. The

similarity between the two gathers is important. The kinematic of

the diving waves is correctly predicted. Most of the reflected events

are in phase. Destructive interference due to free surface effects

is also correctly recovered. A slight time-shift can however be ob-

served for the long-offsets diving waves. This time-shift is not in

the cycle skipping regime. A similar phenomenon is observed in

Operto et al. (2015) where FWI is applied to invert the 3-D Val-

hall data. As mentioned in this study, this time-shift may be due to

the accumulation of error with propagating time or an increasing

kinematic inconsistency with large scattering angles. The residuals

between the two data sets are presented in Fig. 21. As both diving

and reflected waves are (almost) in phase, the differences are mainly

due to amplitude mismatch. This is not surprising as the inversion

is based on acoustic modelling. The amplitude mismatch should

therefore be the imprint of elastic effects not accounted for in the

inversion.

As a second quality control, migrations of the data in the initial

model and the estimated models at 10 and 16 Hz are performed. The

migration results correspond to impedance gradients computed on

30 Hz low-pass filtered data, with a filter applied on the diving waves

to focus on reflection data only. The spatial and time discretization

steps are set to 12.5 m and 0.001 s, respectively. The number of

sources is doubled to 512 (one source each 75 m) to avoid spatial

aliasing. As a post-processing, a polynomial gain is used to balance

the energy in depth. The resulting images are presented in Fig. 22.

The migrated image obtained in the estimated model at 10 Hz is

significantly improved in the shallow part of the model (above 3 km

depth) (Fig. 22b). A significant uplift of this part of the model can

be observed. The continuity and the flatness of the reflectors are

globally improved. However, the reflectors in the deepest part of

the model (z > 2.5 km) remain unfocused. The migrated image in

the estimated model at 16 Hz yields a better delineation of these

deep reflectors, as indicated by the three red arrows at the bottom

(Fig. 22c). In particular, a continuous tilted reflector appears clearly

at 5 km depth in the left part of the model. This is an indication

of a progress in constraining the deep part of the P-wave velocity

model, even if this remains challenging as only reflections sample

this part of the model.
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Optimal transport distance for FWI 367

Figure 21. Residuals between the exact common shot-gather for the left

most source at 25 Hz and the corresponding synthetic common shot-gather.

Another conventional control for assessing the quality of veloc-

ity model consists in considering the flatness of CIG. The CIG

presented in Fig. 23 are obtained by computing migrated images

following the previous strategy for different offset ranges. A dip

filtering is used in addition, to remove events associated with low-

energy S-waves. Consistently with what is observed for the migrated

images, the curve and the offset extension of the shallowest reflec-

tors is improved by the P-wave velocity model obtained at 10 Hz

(Fig 23b). The P-wave velocity model obtained at 16 Hz further im-

proves this energy refocusing. Some of the deeper reflectors are also

better flatten, as indicated by the bottom arrows in Fig. 23(c), even

if the progress in depth are less significant than the improvement

observed in the shallow part.

Finally, a vertical well log of the exact P-wave velocity model

taken at x = 39375 m, at a depth between 1000 m and 2450 m is

provided in the benchmark data. The corresponding log is extracted

from the final estimation obtained at 25 Hz maximum frequency

and compared to this log in Fig. 24. This provides another criterion

to assess the quality of the estimation. As can be seen in Fig. 24,

the agreement between the exact and estimated logs is excellent.

However, only the shallowest part of the model is constrained here.

A deeper exact log would be interesting to have quality control on

the deeper part of the model, which is more challenging to recover

in this configuration.

To emphasize the benefits provided by using the optimal transport

distance, the same frequency continuation workflow is applied to

the Chevron 2014 benchmark data set, with a FWI algorithm based

on the conventional L2 distance. The results obtained after the first

frequency band and the eighth frequency band are compared to

the results obtained when the optimal transport distance is used in

Fig. 25. As can be seen, the L2 distance based FWI converges to a

local minimum. Already after the first frequency band, the shallow

part of the P-wave velocity estimation seems incorrect as a strong,

flat reflector is introduced at the depth z = 500 m. Note that for

this simple comparison, no data-windowing strategy is used. As

previous experiments in our group indicate, better results using the

L2 distance can be obtained for the reconstruction of the shallow

part of the model by designing a hierarchical workflow based on the

interpretation of transmitted energy first.

To complement this comparison, the residuals associated with

the L2 norm and the optimal transport distance in the initial model,

for the first frequency band, are presented in Fig. 26. This Figure

emphasizes the regularization role played by the optimal transport

distance. Besides the smoothing effect already detected in the first

numerical test, the SDMM algorithm seems to act as a coherency

filter, restoring the continuity of the main seismic events. This fea-

ture is particularly important for the interpretation of real data, as

the signal over noise ratio of seismic signal below 3 Hz is generally

poor.

4 D I S C U S S I O N

The method proposed in this study is designed to mitigate issues

related to the use of the L2 norm to compare seismic signals in the

framework of FWI. An optimal transport distance is used instead.

This change in the measure of the misfit between seismograms ap-

pears to bring a more robust strategy, capable of overcoming cycle

skipping issues, allowing to better interpret seismic data through

FWI. In addition, it seems to facilitate the interpretation of noisy

data as it acts as a coherency filter on the residuals which are back-

propagated to form the gradient through the adjoint-state method.

Distances based on Lp norms are built as a sum of mismatch over

each source and each receiver. As a consequence, these distances

consider each seismic traces individually, without accounting for

a potential correlation between these traces. However, it is well

known from seismic imaging practitioners that shot-gathers, pre-

sented in the 2-D receiver/time plane, carry much more information

than individual traces. Seismic events such as reflection, refraction,

conversion, are identifiable on 2-D shot-gathers from their lateral

coherency in the receiver dimension. In conventional FWI based

on Lp distance, this information is used for visualizing the data,

but is not accounted for in the inversion. This loss of information

is severe and penalizes the inversion. The main advantage of the

optimal transport distance presented in this study is its capability

of accounting for this lateral coherency in the gather panel. Indeed,

the traces of one common shot-gather are now interpreted jointly,

through a measure of the distance in the 2-D receiver/time plane.

To illustrate this property, a comparison with an alternative strat-

egy based on 1-D optimal transport is performed on the Marmousi

2 model. This strategy is closer from the approach promoted by

Engquist & Froese (2014): the seismic data is considered as a col-

lection of 1-D time signals which are compared independently using

a 1-D optimal transport distance. The resulting misfit function is a

summation over all the traces of this distance between observed

and calculated data. The lateral coherency of the seismic event in

the receiver dimension is thus not accounted for. This method can

be implemented easily using the SDMM method (Algorithm 1).

The block tridiagonal system reduces to a tridiagonal system which
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368 L. Métivier et al.

Figure 22. Migrated images in the initial model (a), in the model obtained at 10 Hz maximum frequency (b) and in the model obtained at 16 Hz maximum

frequency (c). Red arrows indicate identifiable improvements of the reconstruction of the reflectors and refocusing of the energy. Improvements in the shallow

part (above 3 km) are already obtained with the 10 Hz P-wave velocity estimation (b). Improvements in the deeper part (below 3 km) are yielded by the P-wave

estimation at 16 Hz.
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Optimal transport distance for FWI 369

Figure 23. CIG in the initial model (a), in the model obtained at 10 Hz maximum frequency (b), in the model obtained at 16 Hz maximum frequency (c). Red

arrows indicate identifiable improvement of the CIG continuity in the offset direction. As for the migrated images, improvements in the shallow part (above

3 km) are already obtained with the 10 Hz P-wave velocity estimation (b). Improvements in the deeper part (below 3 km) are yielded by the P-wave estimation

at 16 Hz.
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370 L. Métivier et al.

Figure 24. Vertical P-wave velocity log taken at x = 39, 375 km. Initial

model (blue); exact model (black); estimation at 25 Hz (red).

can be efficiently solved using the Thomas algorithm. The compu-

tational complexity of the solution of these 1-D optimal transport

problem reduces to O(Nt × Nr) = O(N) [compared to O(N3/2)

for the 2-D optimal transport distance]. However this reduction of

the complexity comes with a price, as is shown on Fig. 27. The

reconstruction (Fig. 27d), although more accurate than the recon-

struction obtained using the L2 distance (Fig. 27c), is far from being

as accurate as the one obtained with the 2-D optimal transport dis-

tance (Fig. 27e). A strong degradation of the results thus occurs

when neglecting the lateral coherency of the events in the receiver

dimension.

For further 2-D and 3-D large size application to real seismic

data, the question of the computational cost of the optimal trans-

port distance remains opened. In 3-D, as the acquisition comprises

inline and crossline receivers, common shot-gathers should be rep-

resented as data cubes, with a coherency of seismic events both

in inline and crossline directions. The previous experiment, based

on 1-D optimal transport, suggests that there is an interest in fully

exploiting the lateral coherency of the seismic signal. However, fur-

ther numerical improvements are required to design a method with a

manageable computational time in such a configuration. This could

be achieved through a better account of the structure of the matrix

Q, which is related to a second-order discretization of the Laplacian

operator with Neumann boundary conditions. The linear system to

be solved at each iteration of the SDMM algorithm could thus be

identified as a Poisson equation, for which fast solver exist, either

based on Fast Fourier Transform (Swarztrauber 1974), or multigrid

methods (Brandt 1977; Adams 1989). If this strategy reveals unfea-

sible, dimensionality reduction (such as the one presented here from

2-D to 1-D optimal transport) could still be worthy to investigate,

using appropriate regularization techniques. Another option may

also consist in changing the formulation of the optimal transport

problem to a primal formulation with entropic regularization, as

this strategy is indicated to benefit from a reduced computational

complexity (Benamou et al. 2015).

Regarding the application of the method, the results obtained on

the BP 2004 case study indicate that the measure of the distance

between synthetic and observed data through optimal transport dis-

tance yields the possibility to better recover salt structures. This

may be a first step towards more efficient sub-salt reconstructions.

This could be assessed on more realistic data sets than the synthetic

BP 2004 model. The Chevron 2012 Gulf Of Mexico data set could

be investigated to this purpose.

An enhancement of the results obtained on the Chevron 2014

benchmark, especially in the deep part of the model, could be pos-

sibly obtained by combining the use of optimal transport distance

with reflection-based waveform inversion strategies. These meth-

ods aim at enhancing the recovery of velocity parameters in zones

where the subsurface is mainly sampled by reflected waves rather

than transmitted waves. They are based on the scale separability

assumption and alternatively reconstruct the smooth velocity and

the reflectivity model. This generates transmission kernels between

the reflectors and the receivers which provide low wavenumber

update of the velocity. The method has been first introduced by

Chavent et al. (1994) and Plessix et al. (1999), then extended by Xu

et al. (2012), Brossier et al. (2015) and Zhou et al. (2015). In the

Chevron 2014 benchmark data set, relatively short offsets are used

(8 km streamer data), and the velocity inversion in the low-velocity

layer prevents diving waves to penetrate deeply the subsurface. A

combination of the optimal transport distance with reflection FWI

is thus a potentially interesting investigation.

Another important current issue in FWI is its ability to reconstruct

several classes of parameters simultaneously, in a multi-parameter

framework. An overview of the challenges associated with this issue

is given in Operto et al. (2013). In particular, the importance of an

accurate estimation of the inverse Hessian operator to mitigate as

much as possible trade-offs between parameters is emphasized. To

this purpose, recent results indicate the interest of using truncated

Newton techniques instead of more conventional quasi-Newton op-

timization strategies (Métivier et al. 2014b, 2015; Castellanos et al.

2015). These techniques rely on an efficient estimation of Hessian-

vector products through second-order adjoint state formulas. An

extension of this formalism to the case where the optimal trans-

port distance is used instead of the standard L2 should thus be

investigated.

5 C O N C LU S I O N S

An FWI algorithm using a misfit function based on an optimal

transport distance is presented in this study. Instead of using the

Wasserstein distance, as proposed in Engquist & Froese (2014), a
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Optimal transport distance for FWI 371

Figure 25. Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4 Hz with the optimal transport distance (b), with the L2

distance (c). Estimated P-wave velocity model at 10 Hz with the optimal transport distance (d), with the L2 distance (e).

modified Monge–Kantorovich problem is solved to compute the

distance between seismograms, yielding the possibility to account

for non-conservation of the energy. The numerical computation of

this distance requires the solution of a linear programming prob-

lem, which is solved through the SDMM algorithm. This algorithm

is based on proximal splitting techniques (Combettes & Pesquet

2011). The main computationally intensive task to be performed

within this algorithm is related to the solution of linear systems

involving a matrix associated with the constraints of the linear pro-

gramming problem. An efficient algorithm, based on the work of

Buzbee et al. (1970), is set up to solve these linear systems with a

complexity in O(N) and O(N3/2) in terms of memory requirement

and number of operations respectively.

Synthetic experiments emphasize the properties of this distance

when applied to FWI. The resulting misfit function is more convex,

which helps to mitigate cycle skipping issues related to the use

of the more conventional L2 norm. This is illustrated on a simple

transmission from borehole to borehole experiment, as well as on the

Marmousi 2 case study. From crude initial models, more reliable

estimations of the P-wave velocity model are obtained using the

optimal transport distance.

The property of the optimal transport distance is also tested in

the context of salt imaging. The experiment on the BP 2004 case

study emphasizes the capability of the method to recover the salt

structures from an initial model containing no information about

their presence. This yields interesting perspectives in terms of sub-

salt imaging.

The experiment on the more realistic Chevron 2014 benchmark

data set emphasizes the satisfactory performances of the method,

particularly its robustness to noise. It seems also able to provide

a reliable estimation of the P-wave velocity in the zone which

are sampled by diving waves. In the deepest part where the seis-

mic information is dominated by reflection, the method faces the

same difficulties as conventional FWI. This could be overcome by
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372 L. Métivier et al.

Figure 26. Residuals in the initial model for the first frequency band, using the L2 norm misfit function (a), using the optimal transport distance (b).

Figure 27. Exact Marmousi 2 P-wave velocity model (a). Initial model corresponding to the third initial model of Fig. 8 (b). Reconstructed model using the

L2 distance (c), 1-D optimal transport distance (d) and 2-D optimal transport distance (e).

combining the use of the optimal transport distance with reflection

FWI strategies.

The proposed method thus seems promising and should be in-

vestigated in more realistic configurations, implying 3-D waveform

inversion. Measuring the misfit between data cubes using the op-

timal transport distance is a challenging issue, which could yield

interesting perspectives for 3-D FWI. The introduction of viscous,

elastic and anisotropic effects should also be investigated. As the

proposed strategy is data-domain oriented, such extension should be

straightforward. Finally, specific investigations have to be made to

extend the formalism of the method for the computation of second-

order derivatives information (Hessian-vector products) through the

adjoint-state method. These investigations should be carried on in

the perspective of applying this method to multi-parameter FWI.
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A P P E N D I X A : E Q U I VA L E N C E B E T W E E N L I N E A R P RO G R A M M I N G P RO B L E M S

In this appendix, the proof of equivalence between the linear programming problems (15) and (17) is given. The first of these two problems

is the discrete analogous of the problem (10), which uses global constraints to impose the Lipschitz property. The second only uses local

constraints to impose the Lipschitz property and is therefore less expensive to solve numerically.

It is straightforward to see that if the global constraints are imposed, the local constraints are satisfied. Interestingly, the reciprocal is also

true. To see this, consider a pair of points v = (xv , tv) and w = (xw , tw) in the 2-D grid. A sequence of N points zi = (xi, ti), i = 1, . . . , N, with

z1 = v and zN = w can be chosen to form a path from v to w, such that the points zi are all adjacent on the grid, with monotonically varying

coordinates: this means that each of the sequences xi and zi are either increasing or decreasing monotonically. The key is to see that, for such

a sequence of points, the ℓ1 distance (also known as Manhattan distance) ensures that

||w − v||1 =
∑

i

||zi+1 − zi ||1. (A1)

Now, consider a function ϕ satisfying only the local constraints. The triangle inequality yields

||ϕ(w) − ϕ(v)||1 ≤
∑

i

||ϕ(zi+1) − ϕ(zi )||1. (A2)

As the points zi are adjacent, the local inequality satisfied by ϕ can be used to obtained
∑

i

||ϕ(zi+1) − ϕ(zi )||1 ≤
∑

i

||zi+1 − zi ||1. (A3)

Putting together eqs (A2), (A3) and (A1) yields

||ϕ(w) − ϕ(v)||1 ≤ ||w − v||1. (A4)

This proves that satisfying the local constraints implies that the global constraints are verified. The linear programming problem (17) is thus

the one which is solved to approximate the solution of the continuous problem (10).

A P P E N D I X B : P ROX I M I T Y O P E R AT O R S

For a given convex function f(x), its proximity operator proxf is defined by

prox f (x) = arg min
y

f (y) +
1

2
‖x − y‖2

2, (B1)

where the standard Euclidean distance on R
d is denoted by ‖.‖2. Closed-form proximity operators exist for numerous convex functions, which

can make them inexpensive to compute. This is the case for the proximity operators of the indicator function iK and the linear function h(ϕ).

The proximity operator of the indicator function iK corresponds to the projection on the ensemble K (Combettes & Pesquet 2011):

∀i = 1, . . . , 3N ,
(
proxiK

(x)
)

i
=

∣∣∣∣∣∣∣

xi if −1 < xi < 1

1 if xi > 1

−1 if xi < −1.

(B2)

This can be seen as a thresholding operation: any value of x lower than −1 (respectively higher than 1) is set to the threshold value −1

(respectively 1). The values between −1 and 1 remain unchanged. Following the definition (B1), the proximity operator of the function

hdcal[m],dobs
(ϕ) is simply

proxhdcal[m],dobs
(ϕ) = ϕ − dcal[m] + dobs. (B3)

A P P E N D I X C : E F F I C I E N T S O LU T I O N O F T H E B L O C K T R I D I A G O NA L L I N E A R

S Y S T E M W I T H I N T H E S D M M A L G O R I T H M

The solution of the problem (21) with the SDMM algorithm involves solving at each iteration a linear system of type

Qx = b, (x, b) ∈ R
N × R

N , Q ∈ MN (R), (C1)

where Q is defined by the eq. (24) and MN (R) denotes the ensemble of square matrices of size N with real coefficients. The following ordering

is used for the vectors of R
N . Recall that the total size N is the product of the number of time steps Nt and the number of receivers Nr. The

vectors of R
N are decomposed in Nt blocks of size Nr, such that for all x ∈ R

N

x =
[
x1, . . . xNt

]
∈ R

N , (C2)

and

∀i = 1, . . . , Nt , xi =
[
xi1, . . . xi Nr

]
∈ R

Nr . (C3)
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The matrix Q is block tridiagonal such that

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F + B B

B F B

. . .
. . .

. . .

B F B

B F + B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

Introducing α = 1

�x2
r
, β = 1

�t2 , B is the diagonal matrix

B = diag(−β) ∈ MNr (R), (C5)

and F is the tridiagonal symmetric positive definite matrix

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + α + 2β −α

−α 1 + 2(α + β) −α

. . .
. . .

. . .

−α 1 + 2(α + β) −α

−α 1 + α + 2β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ MNr (R). (C6)

The matrix Q is thus decomposed in Nt blocks of size Nr. The method for block tridiagonal Toeplitz matrices proposed by Buzbee et al.

(1970) can be adapted to the solution of this system using the following strategy. First each row of Q is multiplied by B−1, which yields the

system

⎧
⎪⎨
⎪⎩

(E + I )x1 + x2 = b′
1

xi−1 + Exi + xi+1 = b′
i , i = 2, Nt − 1

xNt −1 + (E + I )xNt = b′
Nt

,

(C7)

where b′
i = B−1bi and E = B−1F. The matrix E is symmetric positive definite by construction, and can be factorized as

E = P D PT , D = diag(d j ), j = 1, . . . Nr , PT P = I. (C8)

Using this factorization in eq. (C7) yields

⎧
⎪⎨
⎪⎩

(D + I )y1 + y2 = c1

yi−1 + Dyi + yi+1 = ci , i = 2, Nt − 1

yNt −1 + (D + I )yNt = cNt ,

(C9)

where

yi = PT xi , ci = PT b′
i , i = 1, . . . Nt . (C10)

The system (C9) can now be expanded as

⎧
⎪⎨
⎪⎩

(d j + 1)y1 j + y2 j = c1 j , j = 1, Nr

yi−1 j + d j yi j + yi+1 j = ci j , i = 2, Nt − 1, j = 1, Nr

yNt −1 j + (d j + 1)yNt j = cNt j j = 1, Nr .

(C11)

The vectors y∗ j and c∗ j are such that

∀ j = 1, . . . , Nr , y∗ j =
[
y1 j , . . . , yNt j

]
∈ R

Nt , c∗ j =
[
c1 j , . . . , cNt j

]
∈ R

Nt (C12)

are introduced. These vectors satisfy the equation

K j y∗ j = c∗ j , (C13)

where Kj is the tridiagonal matrix

K j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d j + 1 1

1 d j 1

. . .
. . .

. . .

1 d j 1

1 d j + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C14)
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Pre-processing step: compute the eigenvectors of E and store them in P;

for i = 1, . . . , Nt do

b′
i = B−1bi ;

end

for i = 1, . . . , Nt do

ci = PT b′
i ;

end

for j = 1, . . . , Nr do

form c∗ j from c =
[
c1, . . . , cNt

]
;

solve K j y∗ j = c∗ j ;

end

for i = 1, . . . , Nt do

form ci from c∗ j from c =
[
c∗1, . . . , c∗Nr

]
;

xi = Pci ;

end

Algorithm 2: Efficient solution of the block tridiagonal linear system.

These transformations yield Algorithm 2 to solve the initial system (C1). As a pre-processing step, the matrix E is factorized as in eq. (C8),

and the eigenvectors are stored in the matrix P. The computation cost and the memory requirement of this operation is in O(N 2
r ) as E is

tridiagonal. The solution of the eq. (C1) is then obtained through the following operations. First, the vectors bi are multiplied by the diagonal

matrix B−1 which requires O(N) operations. Second, the vectors ci are formed following eq. (C10). As the matrix P is full, this requires

O(N 2
r × Nt ) operations. Third, the vectors y∗ j are computed through the solution of Nr tridiagonal systems of size Nt. Tridiagonal systems are

efficiently solved through the Thomas algorithm which has a linear complexity (Golub 1996). Therefore, the computation cost of computing

y∗ j is merely in O(Nr × Nt) = O(N). The final step consists in computing the vector x from the vectors y∗ j through the eq. (C10). This

requires to multiply each vector yi by P, which costs O(N 2
r × Nt ) operations. The overall complexity of the algorithm is thus O(N 2

r × Nt ),

and the memory requirement in O(N). In contrast, a Cholesky factorization has the same computational complexity, but requires to store

O(N3/2) elements. In addition, the forward backward substitution is an intrinsically sequential algorithm, while the most expensive part of

Algorithm 2 are the matrix-vector multiplications involving the eigenvectors of the matrix E, which can be efficiently parallelized. As a final

remark, in the case Nt < Nr, the matrices and vectors can be re-organized in Nr blocks of size Nt to yield a complexity in O(N 2
t × Nr ) instead

of O(N 2
r × Nt ).
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