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Measuring the Noise of Digital Imaging Sensors by Stacking Raw Images

Affected by Vibrations and Illumination Flickering∗

Frédéric Sur† and Michel Grédiac‡

Abstract. This paper discusses camera noise estimation from a series of raw images of an arbitrary natural
static scene, acquired with the same camera settings. Although it seems natural to characterize
noise from the random time fluctuation of pixel intensity, it turns out that these fluctuations may
also be caused by illumination flickering and mechanical microvibrations affecting the camera. In
this context, the contributions are twofold. First, a theoretical model of image formation in the
presence of illumination flickering and of vibrations is discussed. This parametric model is based on
a Cox process. It is shown that illumination flickering changes the standard affine relation between
noise variance and average intensity to a quadratic relation. Second, under these conditions an
algorithm is proposed to estimate the main parameters governing sensor noise, namely the gain,
the offset, and the readout noise. The rolling shutter effect, which potentially affects the output of
any focal-plane shutter camera, is also considered. Experiments show that this simple method gives
results consistent with the photon transfer method, which needs a special experimental setting and
several data acquisitions, and with an algorithm based on a single image. The main practical result
is to show that flickering, which is generally considered as an artifact, here plays a positive role since
it finally enables us to estimate any of the sensor parameters.

Key words. sensor noise measurement, Poisson–Gaussian noise model, illumination flickering, Cox process,
rolling shutter effect

AMS subject classifications. 68U10, 94A08, 62M40, 62H35
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1. Introduction. Noise is an undesired yet unavoidable feature of digital imaging sensors.
Since consumer cameras are expected to offer the most pleasing-to-the-eye images, denoising
algorithms have become crucial parts of the image processing chain. Recent papers such as [31]
and [38] argue that an accurate modeling of the noise is important for these algorithms. Not
only is it needed in denoising applications, but it is also of utmost importance for assessing the
metrological performance of contactless measurement systems which spread quickly in various
fields of engineering. For example, in experimental mechanics, assessing the noise level in dis-
placement and strain maps obtained with such measurement systems and establishing its link
with camera sensor noise is a key issue, as illustrated by recent papers (see, e.g., [22, 24, 39]).
Although the Gaussian white noise assumption is widespread, this rough model is inadequate
when considering metrological performance assessment or state-of-the-art denoising applica-
tions. In the case of raw data from a CCD or CMOS sensor, the authors of [23] identify four
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612 FRÉDÉRIC SUR AND MICHEL GRÉDIAC

major sources of noise, namely residual dark current (depending on the ambient temperature
and on the exposure time), shot noise (modeling the uncertainty in the electron count at a
photosite), readout noise (due to on-chip output amplifier), and quantization noise. The raw
output of a linear camera (i.e., the raw sensor output, without any image processing) is a
function of the quantity of light photons arriving at a CCD sensor cell, but is affected by shot
noise, a dark current, and readout noise. The following stochastic model (or slight variations)
is often used [2, 7, 18, 21, 23], yielding a heteroscedastic signal-dependent noise:

(1.1) u(x, y) = g ηp(x,y)+d(x,y)(x, y) + δ(x, y),

where
• u(x, y) is the intensity or gray level measured at the photosite corresponding to the

pixel (x, y) in the raw output image;
• g > 0 is the gain of the electronic system;
• the number of generated electrons ηp(x,y)+d(x,y) at (x, y) is a random variable following

a Poisson distribution of mean value p(x, y) + d(x, y), assumed to be spatially inde-
pendently distributed. Here p(x, y) is the number of electrons produced by a part of
the incident photons (the proportion depends on the quantum efficiency of the device
at a given wavelength) and d(x, y) is the number of “dark” electrons generated during
the exposure time;

• δ(x, y) is a Gaussian white noise of mean µ (fixed offset value imposed by the sensor
manufacturer) and variance σ2 (caused by readout and quantization noise);

• the random variables ηp(x,y)+d(x,y)(x, y) and δ(x, y) are independent.
In this formulation, the limited range (caused by the finite capacity of each photosite) and
the quantized nature of the gray-level u are ignored.

In the usual experimental setting (usual temperature and exposure time equal to a fraction
of a second) the dark current is negligible relative to the photo-electron count [2, 23]. In the
remainder of this paper, we set d = 0. In addition, most color camera sensors are actually
equipped with a Bayer filter mosaic. In this case, (1.1) holds for each of the color channels.

Within the model of (1.1), the expectation and the variance of any Poisson variable being
equal, it is possible to compute [7, 16, 18, 21, 43]

(1.2)

{
E(u(x, y)) = gp(x, y) + µ,
Var(u(x, y)) = g2p(x, y) + σ2,

where E and Var denote, respectively, the expectation and the variance. The following affine
relation consequently holds:

(1.3) Var(u(x, y)) = gE(u(x, y)) + σ2 − gµ.

Estimating the whole set of noise parameters can be achieved by the so-called “photon
transfer method” [47, 25] which needs a controlled experimental setting and several data ac-
quisitions. Estimating the slope g and the intercept σ2 − gµ in (1.3) is sufficient for many
applications. For instance, the first task of many image denoising algorithms is to stabilize
the variance using, e.g., the generalized Anscombe transform [36, 40] (after [3]) which onlyD
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MEASURING THE NOISE OF DIGITAL IMAGING SENSORS 613

needs these two parameters. Another application to camera model identification is presented
in [54]. In order to estimate the slope and the intercept in (1.3), a simpler method than the
photon transfer method is sought. This is the goal of several papers, where these parameters
are estimated by using a single image. The sample mean and variance can be evaluated on
homogeneous image regions [16, 21, 43], or a selection of small homogeneous patches [7, 33],
which is likely to fail with a cluttered scene giving highly textured images. In this case, the
authors of [55] model image textures as two-dimensional (2D) fractional Brownian motions
and propose an estimator of the signal-dependent noise affecting such textures. The approach
of [21] has also been made more robust to high-frequency textures in [4]. A joint estimation of
the noise parameters and of an implicit segmentation is proposed in [28]. The authors of [5]
eliminate the selection of homogeneous patches by modeling arbitrary patches as Gaussian
mixtures. While the above-mentioned papers are mainly based on parametric regressions of
variance against expectation plots, a recent approach consists of estimating sensor parameters
so that a variance stabilization function performs at its best, as in [29] under the Poisson
assumption or as in [37, 42] under the Poisson–Gaussian assumption. Nonparametric ap-
proaches based on the estimation of a noise level function of arbitrary shape are also available
(see, e.g., [32] and the more recent [11]). These latter approaches are not within the scope of
this paper, which is focused on parametric estimation.

Instead of using spatial statistics of a single image, it is also possible to use temporal
statistics of a series of images. An image stacking approach would simply consist of taking
a series of images of a static scene at different times with the same camera settings, and
of computing afterward the sample mean and variance at a given pixel, as in [20]. It turns
out, however, that the random fluctuations of the stacked pixel intensities are not solely the
result of the digital noise modeled by (1.1), as illustrated in Figure 1. First, even if the
camera is fixed to a heavy tripod, mechanical microvibrations are likely to affect the sensor,
and hence the imaged scene. It is well known that concrete floor slabs on which cameras or
imaged objects rest are prone to vibrations [17]. This phenomenon is very difficult to avoid
without a costly dedicated setting such as a vibration insulated optical table or an optical
image stabilization system. For example, it has been demonstrated in [57] that the pixel
intensity fluctuations along edges of digitized aerial images are temporally correlated because
of vibrations during the scanning process. The movement of the mirror or of the shutter in
a single-lens reflex (SLR) camera, or the cooling device in a high-end camera may also cause
vibrations. Atmospheric turbulence is another potential source of instability of the imaged
scene. Even if these perturbations yield motions with a tiny amplitude, they are all the more
noticeable as the photosite density is high or the focal length is long. Another important
external source of pixel intensity fluctuations is the flickering of the illumination source. A
number of things may cause this phenomenon, among which is the domestic alternative current
supplying artificial lights [10]. Certain light sources are particularly affected, such as neon
tube lights [35], or poorly designed LEDs [1]. A slight variability of the exposure time caused
by mechanical or electronic imperfections of the shutter would cause an equivalent effect.
Interestingly, a similar deterministic phenomenon can be noticed in fluorescence imaging: an
exponential decay of the photon count caused by photobleaching is considered in [27], where
the model parameters are estimated using an iterative expectation-minimization approach. In
the context of denoising from a burst of images, the authors of [9] discovered that the burstsD
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Figure 1. An X-Rite Colorchecker, illuminated by a neon light, is imaged by a Canon EOS 350D camera
(ISO 100) equipped with a 50mm lens and fixed to a tripod. A burst of 100 images is taken. Top left: A
raw image (red channel) from the series. Top right: An average pixel intensity is computed over 100 pixels
belonging to the same color patch in order to remove the random digital noise. The graph depicts the evolution
of this average intensity at three distant locations belonging to different color patches. In-phase fluctuations can
be seen; they are due to light flickering. Bottom: the two images correspond to two examples of a difference
between two distant images of the burst (same gray value scale). In the ideal vibration-free case, the difference
image would only consist of a noise proportional to the pixel intensity. Here, edges can be seen and are more or
less pronounced according to the direction and the gray-level difference between a patch and the black background
color. They are caused by mechanical microvibrations.

suffer from changes in the illumination conditions, which makes it impossible to estimate the
noise level from intensity changes along time. They circumvent this problem by histogram
equalization [14]. Although this method proved to be effective for image denoising, such an
approach does not give any guarantee in the estimated noise parameters and thus cannot be
used in a metrological framework.

In the end, mechanical vibrations and illumination flickering prevent the sample mean
and the sample variance estimated by time-averaging from satisfying the affine relation given
by (1.3). The effect of the sole vibrations on noise measurement has been investigated in the
case of pseudoperiodic grid images [50, 53]. This was motivated by the characterization of
the metrological performances of the grid method [22, 51] in experimental solid mechanics. A
short discussion of the flickering effect on noise measurement is available in [49]. Additional
information and experiments are available in a separate research report [52].

Contribution and organization of the paper. The contribution of this paper is to
investigate the effect of mechanical vibrations and light flickering on the estimation of the
noise parameters using image stacking. A theoretical model is proposed in section 2, and a
practical algorithm is discussed in section 3. The model is based on quite general assumptions.
In particular, no periodicity or pseudoperiodicity assumption on the illumination variabilityD
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MEASURING THE NOISE OF DIGITAL IMAGING SENSORS 615

is needed. The vibrations are assumed to be of limited amplitude (typically smaller than
one pixel), and the algorithm does not need to estimate their amplitude from image to image.
Motion blur is not considered in this work. Contrary to [19, 21], intensity clipping is not taken
into account in the model, which also overlooks defective pixels and blooming effect. Clipped
data and defective pixels are simply eliminated in a preliminary step. Under a flickering
illumination, the variance of the pixel intensity fluctuation is proved to be a quadratic function
of the average intensity, instead of the usual affine dependence. Although the methods based
on a single image are not affected by these phenomena, the present algorithm, as any stacking
method, does not need any explicit segmentation step. We demonstrate that light flickering
makes it possible to estimate all the sensor parameters, namely the gain, offset, and readout
noise level. Although very accurate estimations of these parameters (apart from nonuniformity
problems) can only be achieved by the photon transfer method, we show that stacking 100
images affected by flickering is often sufficient to get a reasonable estimation. In addition, we
mention a workaround to deal with the rolling shutter effect, which especially affects cameras
with a focal-plane shutter, such as SLR cameras. The estimation process is evaluated on
synthetic and real data (raw images from two SLR cameras and a high-end CCD camera) in
section 4. As a sanity check, the process is also compared with the photon transfer method
and to the software implementing [21], which only needs a single image. We conclude with
section 5.

MATLAB code implementing the algorithm of section 3 is available online at http://www.
loria.fr/%7Esur/software/NESIF/.

2. Sensor noise modeling in the presence of a flickering illumination and vibrations.

The aim of this section is to model the measured intensity at a pixel along time, under a
flickering illumination and mechanical vibrations affecting the experimental setup, and to link
the time variance to the expected intensity.

2.1. Modeling raw data from a linear camera. A series of T images of a static scene is
assumed to be available. With the number of emitted photo-electrons at a given photosite
being proportional to the number of incoming photons (through the quantum efficiency),
the average number of photo-electrons at a photosite of the tth image can be expressed as
(1 + γt)p(x+ αt, y + βt), where

• (αt, βt) is the translation vector modeling the sensor in-plane displacement due to
vibrations between an unknown reference image and the tth image, and

• 1 + γt is the relative fluctuation of the illumination intensity.
It should be noted that motion blur, which would require an integration of p along time instead
of a pure translation, is not within the model.

Within the assumptions of section 1, the intensity u(x, y, t) at pixel (x, y) of the tth image
is modeled by

(2.1) u(x, y, t) = g η(1+γt)p(x+αt,y+βt)(x, y, t) + δ(x, y, t),

where the random variables η and δ are time-independent and spatially distributed as above.
Adding constant terms to x and y means that we only consider translations, which corresponds
to what is observed in practice in all the experiments described in section 4 below.D
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616 FRÉDÉRIC SUR AND MICHEL GRÉDIAC

Both processes γt and (αt, βt) are modeled as an independently and identically distributed
0-mean random process. The variance of γ is noted σ2

γ and the 2 × 2 covariance matrix
of (αt, βt) is Cov(α, β).

In this model, the intensity of the Poisson variable is also a random process. It is called a
mixed doubly stochastic Poisson process, or Cox process, after [12]. The intensity u(x, y, t) is
thus a realization of a Cox–Gaussian process. The goal of the following section is to calculate
a relation between the variance of u and its expectation.

2.2. Noise variance against intensity expectation. In the following calculations, we make
use of the law of the total expectation and of the law of the total variance: if X is an
integrable random variable and Y is another random variable, then E(X) = E(E(X |Y ))
and Var(X) = E(Var(X |Y )) + Var(E(X |Y )). We also recall that if X and Y are two
independent random variables, then E(XY ) = E(X)E(Y ). For conciseness, we skip the
mention of (x, y, t) after u and δ, and of (x, y) after p.

Let ηλ be a Cox process: this means that, conditional on λ = l, ηl is a Poisson process
of mean value l. With the law of the total expectation and the law of the total variance, we
obtain

(2.2)

{
E(ηλ) = E(E(ηλ|λ)) = E(λ),
Var(ηλ) = E(Var(ηλ |λ)) + Var(E(ηλ |λ)) = E(λ) + Var(λ).

This expression of the variance means that a Cox process is overdispersed relative to the
Poisson process [13]. Under a flickering light and/or vibrations, the time-variance of the
intensity at a given pixel thus always overvalues the expected variance given by the standard
Poisson–Gaussian model. More precisely, we calculate the following from the properties of the
expectation and variance of a Cox process:

E(u) = E
(
gη(1+γt)p(·+αt,·+βt) + δ

)
(2.3)

= gE((1 + γt)p(·+ αt, ·+ βt)) + µ(2.4)

= gE(p(· + αt, ·+ βt)) + µ(2.5)

(where · denotes either x or y), since γt and p(·+ αt, ·+ βt) are independent, and E(γt) = 0.
Moreover,

Var (u) = Var
(
gη(1+γt)p(·+αt,·+βt) + δ

)
(2.6)

= g2E((1 + γt)p(·+ αt, ·+ βt))(2.7)

+ g2Var((1 + γt)p(·+ αt, ·+ βt)) + σ2

= g2E(p(·+ αt, ·+ βt)) + g2(1 + σ2
γ)E(p2(·+ αt, ·+ βt))(2.8)

− g2 (E(p(· + αt, ·+ βt)))
2 + σ2.D
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Indeed, with the law of the total variance, we have

Var((1 + γt)p(·+ αt, ·+ βt)) = E(Var((1 + γt)p(·+ αt, ·+ βt) |αt, βt))(2.9)

+Var(E((1 + γt)p(·+ αt, ·+ βt) |αt, βt))

= σ2
γE(p2(·+ αt, ·+ βt)) + Var(p(·+ αt, ·+ βt))(2.10)

= (1 + σ2
γ)E(p2(·+ αt, ·+ βt))(2.11)

− (E(p(·+ αt, ·+ βt)))
2

since Var(p(· + αt, · + βt)) = E(p2(· + αt, · + βt)) − (E(p(·+ αt, ·+ βt)))
2, and hence we

have (2.8).
As we can see from (2.5) and (2.8), the term E(p2(x + αt, y + βt)) prevents us from

writing Var(u) as a simple function of E(u). Nevertheless, inspired by the Delta-method [41]
we can use a second-order Taylor series expansion,

p(x+ αt, y + βt) = p(x, y) + (αt, βt)∇p(x, y)(2.12)

+
1

2
(αt, βt)Hp(x, y)(αt, βt)

T +Rp(x, y, αt, βt)

with ∇ the gradient, Hp(x, y) the Hessian matrix of p at (x, y), and the remainder Rp being
a multivariate polynomial in (αt, βt) with monomials of total degree larger than 3.

On the one hand, taking first the square of (2.12), then the expectation, we get

E
(
p2(·+ αt, ·+ βt)

)
= p2 +∇pTCov(α, β)∇p(2.13)

+ pE
(
(αt, βt)Hp(αt, βt)

T
)
+M1

p (·, ·, αt, βt),

where M1
p is a linear combination of mixed moments of (αt, βt) of order larger than 3. To

establish (2.13), we have used

E(((αt, βt)∇p)2) = E(α2
t )(∂p/∂x)

2 + E(β2
t )(∂p/∂y)

2(2.14)

+ 2E(αtβt)(∂p/∂x)(∂p/∂y)

= ∇pTCov(α, β)∇p.(2.15)

On the other hand, taking first the expectation of (2.12), then its square

(E(p(·+ αt, ·+ βt)))
2 =

(
p+ E

(
1

2
(αt, βt)Hp(αt, βt)

T

)
(2.16)

+E (Rp(·, ·, αt, βt))
)2

= p2 + pE
(
(αt, βt)Hp(αt, βt)

T
)
+M2

p (·, ·, αt, βt),(2.17)

where

M2
p (·, ·, αt, βt) =

(
E

(
1

2
(αt, βt)Hp(αt, βt)

T

)
+E (Rp(·, ·, αt, βt))

)2

+ 2pE (Rp(·, ·, αt, βt)) ,

(2.18)

D
o
w

n
lo

ad
ed

 0
3
/1

9
/1

5
 t

o
 1

5
2
.8

1
.7

.2
3
7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h

t;
 s

ee
 h

tt
p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

618 FRÉDÉRIC SUR AND MICHEL GRÉDIAC

is a combination of mixed moments of (αt, βt) of order larger than 3, of squares of moments
of order 2, and of products of moments of order 2 and larger.

With (2.13) and (2.17), we obtain

E
(
p2(x+ αt, y + βt)

)
= (E(p(x+ αt, y + βt)))

2 +∇pTCov(α, β)∇p

+Mp(x, y, αt, βt)
(2.19)

with Mp = M1
p −M2

p .
By substituting in (2.8) gE(p(·+αt, ·+βt)) by E(u)−µ (cf. (2.5)) and E

(
(p2(·+ αt, ·+ βt)

)

by the expression given by (2.19), we eventually obtain

(2.20) Var (u) = σ2
γE(u)2 + (g − 2µσ2

γ)E(u) + σ2 − gµ+ σ2
γµ

2

+ (1 + σ2
γ)∇E(u)TCov(α, β)∇E(u) +Mp(x, y, αt, βt).

Under the mild assumption that the vibrations follow a Gaussian process, moments of order
larger than 3 are products of moments of order 2 [26], which justifies that, for small vibrations,
the term Mp is negligible compared to the term with Cov(α, β).

We have proved that, because of flickering, the affine relation of (1.3) between the variance
and the expected pixel intensity transforms into a quadratic relation, and that the vibrations
give an additional bias.

At a pixel where the gradient is negligible (or, more generally, where the neighboring pixels
have the same intensity), the relation is simply written as

(2.21) Var (u) = σ2
γE(u)2 + (g − 2µσ2

γ)E(u) + σ2 − gµ+ σ2
γµ

2.

Of course, σγ = 0 simplifies the quadratic expression (2.21) into the affine one given in (1.3).
Moreover, even in the flicker-free case, (2.20) shows that the variance estimation is always an
overestimation of the expected variance because of the vibrations.

2.3. Discussion. Several properties of the model are now discussed.

2.3.1. Sample mean and sample variance. In the remainder of this paper, the sample
mean 1/T

∑T
t=1 X(t) of any random process (X(t))1≤t≤T is noted X . The sample mean

u(x, y) is an unbiased estimator of gE(p(x + αt, y + βt)) + µ. Since its variance is equal to∑
tVar(u(x, y, t))/T

2 = O(1/T ), this estimator is also consistent. (O denotes Landau’s “big-
O”.) The unbiased time sample variance σ2

u(x, y) has an expectation equal to Var(u(x, y, t)),
and it is well known that its variance decreases as 1/T as soon as the distribution kurtosis is
finite. The empirical variance is thus also a consistent estimator of the variance.

Disregarding the vibrations, it should be noted that flickering makes it impossible to
estimate the noise parameters g and σ2 − gµ with a quadratic regression (because of the σ2

γ

term), contrary to the existing parametric methods based on a single image cited in the
introduction, where linear regression is sufficient.

2.3.2. Nonstatic scenes. The preceding calculation assumes that the scene is static and
that the vibrations equally affect all the sensor pixels. Nevertheless, it is common for an
outdoor scene to have at least some slightly moving parts. For example, the scene may showD
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trees swinging because of the wind, or passersby, which would affect the series of images. It
should be noted that (2.20) holds locally, that is, the 2D random process (αt, βt) may depend
on (x, y). However, in the case of large movements, the Taylor expansion no longer holds
in (2.12). If the nonstatic part of the scene is limited, the experimental results presented here
are likely to hold, but, in general, nonstatic scenes are clearly beyond the scope of this paper.

2.3.3. Link with ICCD. It has been shown in [6] (cited by [44, 45]) that a quadratic
relation with different parameters also holds when considering an intensified charged couple
device (ICCD). The difference with the standard CCD model described in (1.1) is that the
gain g is modeled in an ICCD as a random variable. In the present model, the gain is fixed,
but the intensity of the Poisson process is a random variable.

2.3.4. Spatial nonuniformity. The standard model of (1.3) assumes that the gain, the
quantum efficiency, and the dark noise are uniform. However, manufacturing variability and
component tolerances make these quantities vary from pixel to pixel, yielding the so-called dark
signal nonuniformity (DSNU) and photo response nonuniformity (PRNU) [47, 23, 25]. These
departures from ideality amount in (1.3) (and in the following calculations) to considering γt,
g, and δ as functions of (x, y), in order to take into account the nonuniformity of, respectively,
quantum efficiency, gain, and dark signal.

This means that the scatter plots of time sample variance against time sample mean shall
show a variability caused not only by the usual variability of any sample estimator but also
by DSNU and PRNU. The authors of [44] observe gradual spatial nonuniformity in the case
of ICCD and design a parametric model to deal with it. In CCD or CMOS, it is known that
PRNU gives an additional intensity variability up to some percent [46, 47]. The effect on
the quadratic relation caused by flickering is all the more important because of the quadratic
term.

In the remainder of this article, we do not take PRNU and DSNU into account, as do
the papers cited in the introduction. Nevertheless, these phenomena explain a part of the
variability in the expected relations.

3. Estimating noise parameters. It is in fact possible to remove the effect of light flicker-
ing in the variance estimation. The scene is indeed static and shows no moving object (apart
from the microvibrations), and the flickering is assumed to be (until section 3.5) uniform over
each image, contrary to the more complicated classic flicker removal problem in movies; see,
e.g., [15]. The proposed algorithm to estimate noise parameters consists of the following steps:

1. Use a statistical test to eliminate the pixels where the gradient is too large to be
caused by random noise, and keep only those pixels such that (2.21) is satisfied. This
preprocessing step permits us to eliminate the bias caused by the vibrations. Clipped
or defective pixels are also eliminated. See section 3.1.

2. Identify the flicker parameter γt for each image of the stack and remove the effect of
flicker in the sample variance estimated from the image stack. See section 3.2.

3. Estimate the noise parameters using linear regression on flicker-reduced intensity vari-
ation. See section 3.3.

As we shall see, the output of the proposed algorithm is an estimation of all parameters
of the linear camera model, namely g, µ, and σ, and not only of the parameters g and σ2− gµD
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620 FRÉDÉRIC SUR AND MICHEL GRÉDIAC

of the affine relation (1.3).

3.1. Removing pixels affected by physical vibrations or clipping. The relationship given
by (2.20) shows that physical vibrations bias the estimation of the pixel intensity variance
as a function of the gradient of the expected intensity. In order to remove the effects of the
vibrations, we keep only pixels where the local gradient is likely to be due to random noise
instead of an actual edge. As the gradient is being evaluated here with a centered difference
scheme, its squared Euclidean norm is

||∇u(x, y)||2 = (u(x+ 1, y) − u(x− 1, y))2/4(3.1)

+(u(x, y + 1)− u(x, y − 1))2/4.

Under the hypothesis that E(u) is constant in the 4-neighborhood of (x, y) and that
pixel intensities are independently distributed, (u(x + 1, y) − u(x − 1, y))/2 has 0-mean
and variance Var(u(x, y, t))/(2T ). Therefore, under a Gaussian distribution assumption,
2T ||∇u||2/Var(u(x, y, t)) follows a χ2 law with two degrees of freedom.

We consequently eliminate pixels such that the p-value of 2T ||∇u||2/σ2
u under this proba-

bility distribution is below 1%; that is, the former quantity must be smaller than 9.21 to keep
the pixels.

We eventually discard pixels of coordinates (x, y) as soon as one of the intensity values
in the time series u(x, y, t) equals the lowest or highest possible gray-level output (the range
being 2b, where b is the bit-depth). This procedure removes clipped pixels and defective pixels
(hot or dead photosites).

3.2. Flicker reduction. The proposed flicker reduction procedure consists first in esti-
mating γt for any t. The intuition is that gp(x, y) + µ is much larger than µ and δ for large
intensity values, enabling further simplification. Indeed, let v(x, y, t) be the ratio between the
intensity and the average intensity of a given pixel:

(3.2) v(x, y, t) =
u(x, y, t)

u(x, y)
.

This simplifies into

(3.3) v(x, y, t) ≃
gη(1+γt)p(x,y) + δ(x, y)

gp(x, y) + µ
≃

η(1+γt)p(x,y)

p(x, y)
,

which is a random variable of mean 1 + γt and variance (1 + γt)/p(x, y) ≃ 1/p(x, y). Conse-
quently, this quantity should give an estimation of 1 + γt.

A more accurate estimation is actually available. If X and Y are random variables, a
Taylor expansion of X/Y around (E(X), E(Y )) gives the following approximations:

(3.4)

{
E
(
X
Y

)
≃ E(X)

E(Y ) −
Cov(X,Y )
E(Y )2 + E(X)Var(Y )

E(Y )3 ,

Var
(
X
Y

)
≃ Var(X)

E(Y )2
− 2E(X)Cov(X,Y )

E(Y )3
+ E(X)2Var(Y )

E(Y )4
.D
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Here, with the time-independence assumption,

(3.5)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E(u | γt) = g(1 + γt)p + µ,
Var(u | γt) = g2(1 + γt)p+ σ2,

E(u | γt) = 1
T

∑T
t=1, (g(1 + γt)p+ µ) = g(1 + γ)p+ µ,

Var(u | γt) = 1
T

(
g2(1 + γ)p+ σ2

)
= O(1/T ),

Cov(u, u | γt) = 1
TVar(u | γt) = O(1/T ).

Since E(γt) = 0, we can further simplify with γ = O(1/T ). Substituting the expressions (3.5)
in (3.4) and keeping only the most influencing terms lead to

(3.6)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(v | γt) = g(1+γt)p+µ
g(1+O(1/T ))p+µ +O(1/T )

= 1+γt+µ/(gp)
1+µ/(gp) +O(1/T ),

Var(v | γt) = g2(1+γt)p+σ2

(g(1+γ)p+µ)2
+O(1/T )

= g(1+γt)E(u)+σ2−g(1+γt)µ
E(u)2

+O(1/T ).

We can see from (3.6) that, for large values of the average gray level, E(u) = gp + µ,
E(v | γt) is an approximation of 1+γt/(1+µ/(gp)) with a minimum variance. Moreover, an es-
timation of E(v(x, y, t) | γt) is given by averaging v(x, y, t) over a set of pixels for which u(x, y)
is constant. This motivates the definition of the set

(3.7) S∗ = {(x, y), u∗ − 3σu∗ ≤ u(x, y) ≤ u∗ + 3σu∗} ,

where u∗ is the 99% quantile in the empirical intensity distribution of the averaged image u =
gp + µ + O(1/T ), and σu∗ is the associated standard deviation. We assume that u(x, y, t) is
constant over S∗, equal to u∗. An estimation of E(v(x, y, t) | γt) is then computed as a sample
mean over the set S∗.

Indeed, for any t,

(3.8) v∗(t) =
1

#S∗

⎛
⎝ ∑

(x,y)∈S∗

v(x, y, t)

⎞
⎠

is a random variable of expectation and variance

(3.9)

{
E(v∗(t)) = 1+γt+µ/(u∗−µ)

1+µ/(u∗−µ) +O(1/T ),

Var(v∗(t)) = O(1/#S∗ + 1/T#S∗),

where #S∗ denotes the cardinality of S∗.
For the sake of simplicity, we skip the mention of O(1/T ) and O(1/#S∗) in the remainder

of this section. It amounts to assuming that the number of stacked images and the size of S∗

are large enough.D
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622 FRÉDÉRIC SUR AND MICHEL GRÉDIAC

Once v∗(t) has been calculated, the quantity defined for any (x, y, t) by ũ(x, y, t) =
u(x, y, t)− v∗(t)u(x, y) is such that

(3.10)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E(ũ(x, y, t) | γt) = g(1 + γt)p(x, y) + µ

−
(
1+γt+µ/(u∗−µ)
1+µ/(u∗−µ)

)
(gp(x, y) + µ)

= gγtp(x, y)− γt
u∗−µ
u∗ (gp(x, y) + µ)

= −γt
µ
u∗ (u

∗ − µ− gp(x, y)) ,
Var(ũ(x, y, t) | γt) = g2(1 + γt)p(x, y) + σ2.

Let K = E(ũ(x, y, t) | γt)/(E(v∗(t))− 1). One has

K = − µ

u∗
(u∗ − µ− gp(x, y))

u∗

u∗ − µ
(3.11)

= −µ

(
1− gp(x, y)

u∗ − µ

)
.(3.12)

We can see that K does not depend on t. For a fixed p(x, y), there is thus a proportionality
relation between E(ũ(x, y, t) | γt) and E(v∗(t)− 1) for every t. This proportionality coefficient
can be estimated by linear regression. As explained earlier, E(v∗(t)) is obtained by nonlocal
estimation over the set S∗. Similarly, we choose an iso-value set to estimate, for every t,
E(ũ(x, y, t) | γt). We can see in (3.10) that the smallest value of Var(ũ(x, y, t) | γt) is attained
for small p(x, y). We thus define the set

(3.13) S∗ = {(x, y), u∗ − 3σu∗ ≤ u(x, y) ≤ u∗ + 3σu∗} ,

where u∗ is the 1% quantile in the intensity distribution of the averaged image u(x, y), and σu∗

is the associated standard deviation. In the same way as v∗, an estimation of E(ũ(x, y, t) | γt)
for (x, y) such that gp(x, y) = u∗ − µ is given by

(3.14) v∗(t) =
1

#S∗

⎛
⎝ ∑

(x,y)∈S∗

ũ(x, y, t)

⎞
⎠ .

Finally, a linear regression on the scatter plot (v∗(t) − 1, v∗(t)) gives an estimation of K.
This permits us to obtain estimations of µ and γt. Indeed, from (3.12),

(3.15) K = −µ

(
1− u∗ − µ

u∗ − µ

)
,

hence K(u∗ − µ) = −µ(u∗ − u∗), and

(3.16) µ =
Ku∗

K − u∗ + u∗
.

With this estimation of µ, we deduce by identifying v∗ and its expectation given by (3.9)
that

(3.17) γ̃(t) = (v∗(t)− 1)

(
1 +

µ

u∗ − µ

)
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is an estimator of γt for every t.
With these estimations of γt and µ, identified in the remainder of the section with their

actual values, we can define

(3.18) û(x, y, t) = u(x, y, t)− (1 + γt)(u(x, y)− µ).

This quantity is such that

(3.19) E(û) = E(E(û | γt)) = E(µ) = µ

and

Var(û) = E(Var(û | γt)) + Var(E(û | γt))(3.20)

= E
(
g2(1 + γt)p+ σ2 + (1 + γt)

2Var(u)
)

(3.21)

+ Var(µ)

= g2p+ σ2 + (1 + σ2
γ)Var(u)(3.22)

= gE(u) + σ2 − gµ+ (1 + σ2
γ)Var(u(x, y)).(3.23)

Since Var(u(x, y)) = O(1/T ), we can write the following affine relation between the vari-
ance of the flicker-removed stack û(x, y, t) and the expected value of u(x, y, t) (which is not
affected by the light flickering):

(3.24) Var(û(x, y, t)) = gE(u(x, y, t)) + σ2 − gµ,

which is the same relation as that in the standard model (1.3).
Remark 1. In practice, each term of the sum in the definition (3.8) of v∗ is weighted

by e−(u(x,y)−u∗)2/(2σ2

u∗
) and is weighted similarly for v∗ in the definition (3.14). This acts as a

soft threshold in the definition of S∗ or S∗ as noted in another context in [15]. By construction,
v∗(t) and v∗(t) are nonlocal estimators [8].

Remark 2. Since very small values for γt yield E(v∗(t)) − 1 ≃ E(v∗(t)) ≃ 0 (cf. (3.9)–
(3.10) with γt ≃ 0), the accuracy of the estimated µ obtained through linear regression should
increase with the standard deviation σγ .

Remark 3. The choice of the 99% and 1% quantiles gives satisfactory results in all exper-
iments of section 4. However, these values can be slightly altered if, in particular images, the
cardinality of the set S∗ or S∗ is not large enough.

3.3. Linear regression. From (3.24), a simple linear regression over the scatter plot of
the time sample variance of the û(x, y, t) against the time sample mean of the u(x, y, t) gives
us estimations of the slope g and intercept σ2 − gµ, and hence an estimation of σ since µ is
known at this stage by (3.16).

Once γt and µ have been estimated, another possibility could have been to plug these
values into the coefficients of (2.21) estimated through quadratic regression in order to get
estimations of g and σ. We have noted that the obtained estimations were not as good as
those obtained by linear regression with (3.24), probably because of the more pronounced
effect of PRNU due to the quadratic term and of the correlation between the linear and the
quadratic term. We therefore do not use this quadratic regression to estimate the camera
parameters. The result of this regression is, however, used to obtain an estimation of the
covariance matrix Cov(α, β).D

o
w

n
lo

ad
ed

 0
3
/1

9
/1

5
 t

o
 1

5
2
.8

1
.7

.2
3
7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h

t;
 s

ee
 h

tt
p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Input: A series of T raw images u(x, y, t) of a static scene affected by a
flickering light and possibly by vibrations.
1. Compute sample expectation u(x, y) and sample variance σ2

u at every
pixel. (section 2.3).
2. Remove clipped pixels and pixels such that 2T ||∇u||2/σ2

u > 9.21 (sec-
tion 3.1).
3. For every t, compute v∗(t) (eq. (3.8)) and v∗(t) (eq. (3.14)). A linear
regression on the scatter plot (v∗(t), v

∗(t)−1) gives the slope K (eq. (3.12)),
and subsequently estimations of µ (eq. (3.16)) and of γt for every 1 ≤ t ≤ T
(eq. (3.17)), and hence σ2

γ .
4. A linear regression between the sample variance of û(x, y, t) (eq. (3.18))
and the sample expectation of u(x, y, t) gives a slope of g and an intercept
of σ2−gµ (eq. (3.24)), and hence an estimation of the camera parameters g,
σ2 − gµ, σ.

Independently, an estimation of the covariance matrix of the vibration pro-
cess (αt, βt) is obtained from (2.20) by a multiple linear regression between
σ2

u and u2, u, (∂u/∂x)2, (∂u/∂y)2, and ∂u/∂x · ∂u/∂y (performed on the
whole data set, including pixels affected by vibrations).

Output: An estimation of g, µ, σ, σ2 − gµ, γt,Cov(α, β), and σγ .

Figure 2. Estimation of the camera parameters and of the external parameters by stacking images affected
by illumination flickering and vibrations.

3.4. Summary: Algorithm. While simple linear regression permits us to estimate the
camera parameters g, µ, σ, and σ2

γ as described above, multiple linear regression with (2.20)
(not restricted to pixels unaffected by vibrations) additionally gives an estimation of the
covariance matrix of the joint process (αt, βt). The whole procedure is summarized in the
algorithm of Figure 2.

3.5. Balancing the rolling shutter effect. In any digital single-lens reflex (DSLR) camera
with a focal-plane shutter, pixels are not illuminated simultaneously. Such a shutter is indeed
made of two curtains running one after the other across the sensor plane. This is all the
more noticeable when fast shutter speeds are used, especially with speeds faster than X-sync,
defined as the fastest shutter speed at which the whole sensor is completely exposed. This
feature, illustrated in Figure 3, gives so-called rolling shutter effects. CMOS cameras with an
electronic shutter are also affected since the image is not captured instantaneously but instead
row by row. The rolling shutter effect does not change the quadratic relation of (2.21), which
only involves the variance σ2

γ and is based on a local argument, but this renders ineffective
the image-wide estimation of each γt in section 3.2.

The proposed workaround consists of considering that γt depends on the row y (since the
DSLR of section 4, as most DSLRs, has vertical-travel shutters). The expectation of v∗(t)
defined in (3.8) is now

(3.25) E(v∗(t)) =
1 + 1

#S∗

∑
(x,y)∈S∗ γt(y) + µ/(u∗ − µ)

1 + µ/(u∗ − µ)
,
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Sensor

Curtain 2

Curtain 1

Illumination intensity

ti
m
e

x

y

Figure 3. Illustration of the rolling shutter effect. Left: the two curtains go from the top to the bottom,
uncovering a part of the sensor. If the scene is illuminated by a flickering source, the illumination intensity
varies during the travel of the curtains. Right: four photographs of a blank sheet of paper uniformly illuminated
by a neon tube light, under an exposure time of 1/1000 sec. The horizontal dark strips are caused by the rolling
shutter effect (corners are darker because of vignetting). The position of the strips varies from image to image.

and the expectation of v∗(t) defined in (3.14) is

(3.26) E(v∗(t)) = −

⎛
⎝ 1

#S∗

∑

(x,y)∈S∗

γt(y)

⎞
⎠ µ

u∗
(u∗ − u∗ ).

The ratio between v∗(t) and v∗(t)− 1 is now

(3.27) −#S∗

#S∗

∑
(x,y)∈S∗

γt(y)∑
(x,y)∈S∗ γt(y)

µ

(
1− u∗ − µ

u∗ − µ

)

instead of K given by (3.15). Generally speaking, since the sets S∗ and S∗ differ, this quantity
is likely to be a biased estimation of K, giving a biased estimation of µ. However, if the

distribution along y of both sets is alike, then the ratio #S∗

#S∗

∑
S∗

γt(y)∑
S∗ γt(y)

is close to 1. Even

in the limit case, where S∗ and S∗ form two clusters with a large illumination difference,
the distribution along time t of the introduced bias is likely to be symmetrically distributed
around 1, and consequently should be smoothed out by the linear regression over (v∗(t) −
1, v∗(t)) used to estimate first K, then µ. Consequently, even for fast shutter speed, we keep
using the image-wide procedure of section 3.2 to estimate µ, which gives good experimental
results.

However, we adapt the estimation of γt from section 3.2 and use, instead of (3.8), the
modified nonlocal estimator v∗(y, t),

(3.28) v∗(y, t) =
1

Ny#S∗

⎛
⎝ ∑

(x′,y′)∈S∗

e−(y′−y)2/(2σ2
y)v(x′, y′, t)

⎞
⎠ ,

with a normalization term Ny =
∑

(x′,y′)∈S∗ e−(y′−y)2/(2σ2
y). This amounts to estimating γt(y)

on horizontal strips of a fixed width centered at row y. We take σy = 50 pixels. Of course,
a rigorous setting of the width should involve the flickering frequency, the shutter speed, and
the sensor y-size (or the y-size of a cropped image). We leave this for a future work.D
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We obtain an estimation of γt(y) from (3.17), which is then plugged into (3.18), and the
same computation as in (3.19)–(3.23) still gives the affine relation (3.24).

4. Experimental results. The aim of this section is to assess the proposed estimation
method from a series of images under the same lens aperture, shutter speed, and ISO setting
(gain parameter). The algorithm of Figure 2 gives an estimation of the covariance matrix
of the vibration process (αt, βt), the relative fluctuation of the light intensity γt, and the
parameters governing the noise model, namely the gain g, the offset µ, and the readout noise σ.
This section proves that satisfactory estimations can be obtained, thanks to illumination
flickering. As a sanity check, we make a comparison with the software provided by Foi et
al.1 (implementing [21] and based on the analysis of a single image, consequently not affected
by flickering and vibrations) which gives estimations of g and σ2 − gµ. In order to compare
estimations on the same amount of data, this software is run on a composite image where
all T images from the stack have been placed in a

√
T ×

√
T mosaic. Its default parameters

are used.
The reader should note that the aim of the following experimental benchmark is to compare

the values output by the algorithm described in Figure 2 with the values obtained by well
established methods, namely [21] or the photon transfer method (for real data). A comparison
with multi-image estimation techniques such as [20] or [27] would require a separate study.

Section 4.1 details a running example. Section 4.2 presents results for a synthetic data
set. Section 4.3 gives results for actual raw data from a PCO Sensicam QE camera and two
Canon EOS DSLR cameras, namely the old EOS 350D and the recent EOS 6D. A comparison
with the results of the photon transfer method is also given. For visualization purposes, the
contrast of the linear raw images has been modified in the figures. The camera parameters
are given in “gray-level” units as in [47].

4.1. Running example. Figure 4 shows an illustrative example. T = 100 images of an
X-Rite Colorchecker illuminated by a neon tube light are taken with a Canon EOS 6D camera
(row “ISO 6400” in Table 5, hence a fast shutter speed of 1/320 sec, prone to the rolling
shutter effect). The scatter plot of v∗(t) against v

∗(t)−1 shows the proportionality relation of
slope K < 0. In this case, the assumptions of section 3.5 are satisfied, and the proportionality
relation is nearly perfect in spite of the rolling shutter effect. The light flickering 1 + γt(y) is
estimated with the method of section 3.5 and σγ = 0.24 is found. The dependence of γt(y) on y
is noticeable. The graph of the sample variance of u(x, y, t) against the sample expectation
has a quadratic trend as predicted by (2.21). The plot for û(x, y, t) is not linear when γt is
assumed constant over the image: pixels belonging to some color patches are not adequately
corrected, which explains the clusters out of the linear trend shown on the upper part of the
bottom left graph. In this case, the regression line does not give a slope and an intercept
consistent with the expected gain, offset, and readout noise. With an estimation performed
as in section 3.5, the trend becomes linear and a correct estimation of the camera parameters
is possible (see section 4.3). The green points are outliers removed by the first step of the
algorithm (pixels affected by vibrations; see section 3.1), and the estimations of the camera
parameters are based on the blue points.

1Version 2.31, available at http://www.cs.tut.fi/∼foi/sensornoise.html.D
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Figure 4. Running example. Top: an image from the series, and the graph of v∗(t) against v∗(t) − 1).
Middle: estimation of the relative fluctuation of the light 1+γt(y) for several values of y, and graph of the sample
variance of u(x, y, t) against the sample mean of u(x, y, t). Bottom: graph of the sample variance of û(x, y, t)
against the sample mean of u(x, y, t) (image-wide estimation of γt), and the same statistics when taking into
account the rolling shutter effect.

4.2. Synthetic data. In this experiment, stacks of images are generated from reference
images using the model of (2.1). More precisely, p(x, y) is the intensity value of a 512 × 512
reference image scaled to [0, A], where A > 0 is the maximum number of generated electrons
at a given photosite. For every t, αt, βt, and γt are independent random numbers simulated
following a Gaussian distribution of standard deviation equal to, respectively, σα, σβ, and
σγ . The value of p(x + αt, y + βt) is obtained by linear interpolation of the scaled referenceD
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image p (a Gaussian blur of a standard deviation of 0.5 pixels is first applied to the reference
images to simulate optical blur). A stack u(x, y, t) of T images is randomly generated from the
Poisson–Gaussian model of (2.1) and quantized over 12 bits afterward. Note that quantization
irremediably leads to loss of information. It should also be noted that the intensity p(x, y)
may come from a noisy reference image. This feature does not play any role in our estimation
process, since this noisy component is static and does not change along the stack. This may,
however, give an additional bias in the estimation by the software implementation of [21].

Since the results vary between realizations of the stochastic processes, 50 such simulations
are run, which permits us to estimate mean values together with their standard deviations.
In the remainder of this section we give the mean ± twice the standard deviation obtained in
this Monte Carlo approach.

Three camera models and three external conditions are tested, which gives nine different
experimental settings for a given reference image. The corresponding parameter values are
listed in Table 1. Synthetic cameras A–C have typical noise levels for varying ISO values of
a 12-bit camera. Parameter A is set so that the quantized intensity values span the 12-bit
range. In Table 1, the ranges of vibration and the flickering amplitudes correspond to typical
observations. For example, the vibration amplitude in external conditions 3 corresponds to the
experimental measurements in [53]. External conditions 1 are very demanding, with vibrations
whose amplitudes are likely to be as large as one pixel, and with large illumination changes
between successive images.

Six reference images are tested; see Figure 5. The first is a synthetic calibration target with
large homogeneous areas (Synthetic). The others come from the USC-SIPI Image Database.2

As we shall see, the Synthetic image is well adapted to the software of Foi et al. Nevertheless,
our method also needs iso-value sets for the nonlocal estimation of section 3.2 (cf. the 99%
quantile level set in (3.8) and the 1% quantile level set in (3.14)), and the images should be
smooth enough so that pixels are not overly removed because of large gradients. The remaining
reference images are chosen to test the influence of irregular textures. Such textures not only
make it difficult to segment the image, but also give a larger proportion of pixels affected
by the vibrations (for instance, 59.1% for Boat against 8.8% for Synthetic, in the sense of
section 3.1).

A first experiment consists in assessing the influence of the number T of stacked images.
Figure 6 shows the typical evolution of the relative precision of the estimated parameters
together with their 95% confidence intervals (± twice the standard deviation of the estimation,
shown as colored plots in the figure). The reference image is the Synthetic target. Here
“relative precision” means that the values of interest are divided by the ground truth value.
The estimated confidence intervals show a 1/

√
T decrease as in every Monte Carlo approach.

This is, however, limited by the quantization of the data which imposes a lower bound on the
accuracy (see, e.g., [56]). From these results, the parameter T is set to 100 in the remainder
of the paper. As we can see, a smaller number of stacked images would also give acceptable
results.

Tables 2 and 3 give comprehensive results for the Synthetic reference image and for the
Boat image, respectively. The first row in each table gives the experiment number. Experi-

2available at http://sipi.usc.edu/database/.D
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1. Synthetic. 2. Man. 3. Boat.

4. Lena. 5. Mandrill. 6. Grass.

Figure 5. Reference images, with an increasing high-frequency texture content. These images have a size
of 512× 512 pixels, except for Man which has a size of 1024× 1024 pixels.

Table 1

Parameter values: camera settings on the left; experimental conditions on the right.

Camera A B C

A 600 3,000 10,000

g 5 1 0.3

µ 200 100 40

σ 15 8 3

Exp. 1 2 3

σγ 0.1 0.01 0.05

σα 0.3 0.1 0.01

σβ 0.2 0.05 0.02

ment “X n” deals with the camera “X” in the experimental conditions “n” in Table 1. For
each of the estimated parameters (in columns 3–9), the ground truth (GT) is given, as well as
the result of the proposed algorithm (estim.), and for g and σ2−gµ the output of the software
by Foi et al. is shown.

We can see that with the Synthetic reference image, all parameters are very accurately
estimated and the actual values are almost always in the confidence interval of the estima-
tion. Large vibrations (conditions 1) give less accurate estimations of the slope σ2 − gµ and
consequently of σ. The results of the software provided by Foi et al. are comparable, and,
of course, are not affected by flickering or vibrations. This experiment proves that, with a
simple synthetic image stack, the proposed approach allows us to accurately estimate not only
the camera parameters g, µ, σ but also the external parameters of the experimental setting,
namely σγ , σα, and σβ, benefitting from illumination flickering.

The textured Boat reference image is more challenging. On the one hand, we can see that,
in this case, the performance of the method by Foi et al. deteriorates. For some textured
reference image, its results are even totally wrong. It should be noted that a robust version
of their algorithm has been recently proposed [4]. On the other hand, the proposed algorithmD
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Figure 6. Evolution of the relative precision of the estimated parameters with respect to the number of
stacked images (left: intrinsic parameters g, µ, σ, σ2

− gµ; right: external parameters σγ , σα, σβ). Camera A is
used with conditions 3 and the Synthetic target as reference image.

gives quite reliable estimations of g (the actual value is within the estimated confidence in-
terval, which is quite small). The variability of the estimated µ is very large in experimental
conditions 2 (with σγ = 0.01), as expected from Remark 2 in section 3.2. Concerning the
estimation of σ2 − gµ (and consequently of σ) the vibrations strongly affect the accuracy and
the variability. However, a reliable estimation is still obtained in experimental conditions 3
(moderate vibrations). Note that in all of the experimental conditions, the estimation of the
light variability σγ is very good, and the estimations of the variabilities σα and σβ of the
vibrations are quite accurate, even with strong vibrations (experimental conditions 1 and 2).

Figures 7 and 8 show the error bars (95% confidence intervals) for the estimation of the
intrinsic parameters g, µ, σ2 − gµ, and σ, and of the extrinsic parameters σγ , σα, and σβ,
respectively. Concerning the intrinsic parameters in Figure 7, we can see that the estimation
of the gain deteriorates in the case of high-frequency textures (reference images 5 and 6),
especially for large vibrations (experimental conditions 1). In other cases, the relative error
is well below 10%. As predicted by the theory, the quality of the estimation of µ is poor
for low σγ (conditions 2), except for lightly textured images (reference images 1 and 2). The
relative error is larger when µ decreases. The estimation of the slope σ2− gµ also deteriorates
on textured images, and it is all the more noticeable as the vibration amplitude is large
(conditions 1). With tiny vibrations (conditions 3), corresponding to more realistic cases,
a reliable estimation is available in all cases, although the variability is large for textured
images. The estimation of σ directly follows the estimation of σ2 − gµ. Concerning the
extrinsic parameters in Figure 8, we can see that the estimation of the flicker amplitude σγ
is reliable in spite of a deterioration with textured images (reference image 6) in the case
of small σγ (conditions 2), and that the estimations of the vibration amplitudes σα and σβ
are slightly overvalued, with unreliable estimation of extreme amplitudes (σα in conditions 1)
with the high gain camera A in the untextured reference image 1).
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Figure 7. Estimation of the intrinsic camera parameters (g, µ, σ2
− gµ, and σ, from top to bottom) for

camera A (left), camera B (middle), camera C (right), for reference images 1–10. Information in the inset of
the top left plot holds for all images.
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Figure 8. Estimation of the extrinsic parameters (σγ , σα, σβ, from top to bottom) for conditions 1 (left),
conditions 2 (middle), conditions 3 (right) for reference images 1–10. Information in the inset of the top left
plot holds for all images.
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4.3. Real data. In this section, image series from a PCO Sensicam QE and two Canon
DSLR cameras are tested.

4.3.1. PCO Sensicam QE. Experiments are performed with a PCO Sensicam QE camera
which gives 1040×1376 12-bit images. The gain parameter is set to “high.” This camera is
cooled to −12◦C, and it has been shown that, for standard exposure times, the noise level is
nearly constant (see, e.g., [30, pp. 24–27], where it is shown that this is the case for exposures
below 100 ms). Values for g, µ, and σ are provided by the manufacturer [46], supposedly
following the EMVA procedure [47]. We have obtained close values with an independent
method on pseudoperiodic grid images [50]; see Table 4.

A series of 100 images of a composite specimen (elongated chips are pieces of sunflower
stem and light aggregates are pieces of pith [48], resulting in highly textured images) is taken
under a neon light. The exposure time of each image is 13 ms, and the image acquisition
is triggered electronically, which gives a constant frequency. The estimation of the noise
parameters is given in Table 4. The illumination flickering standard deviation is estimated
to σγ = 0.044. This experiment is an example of textured images, which cause the algorithm
of [21] to fail. The experiment is illustrated in Figure 9.

The series of Figure 10 highlights a phenomenon to which the proposed method is sensitive.
An explanation for the graph of the variance of û against the expectation of u seems to be that,
in this scene, a small area is illuminated by a neon light that is different than that illuminating
the rest of the scene. The two lights have the same fluctuation amplitude (hence it cannot be
noticed on the plot of the variance against the expected intensity), but they apparently show
out-of-phase fluctuations (hence the pixels from the small area are not adequately corrected,
giving the blue points out of the main linear trend). Here, there are a few such pixels, and
hence they do not prevent us from reliably estimating the slope and intercept with linear
regression. In this experiment we estimate σγ = 0.037.

Table 4

Noise parameter estimation for a Sensicam QE camera.

g σ µ σ2
− gµ

Manufacturer [46] 0.519 1.15 45.46 −22.26
[50] 0.528 −21.01

Figure 9 [21] 2.06 −307.2
Proposed method 0.569 2.65 63.91 −29.37

Figure 10 [21] 0.543 −22.80
Proposed method 0.559 3.14 65.3 −26.63

With the exposure time being equal to 13 ms, the flickering illumination is integrated
and gives a quite low σγ . Consequently, the accuracy of the estimation of µ, and hence σ,
is moderate (see Remark 2 in section 3.2). Additionally, a quite strong DSNU due to the
cooling device is noticed in [30]; this may explain a part of the variability of the measurements.
Since the acquisition frequency is constant, light flickering yields a periodic γ(t) due to the
neon light powered by the 50 Hz AC power. We can see that the v∗(t) against v∗(t) plot
is scattered. Before flickering compensation, the variance against intensity expectation plot
shows a quadratic trend, as predicted by (2.20)–(2.21). It changes to the affine relation with
the corrected variance shown in (3.24). Points whose variance can mainly be explained byD
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Figure 9. Sensicam QE. From top to bottom and left to right: an image from the series; estimation
of the relative fluctuation of the light 1 + γt; graph of v∗(t) against v∗(t) − 1; graph of the sample variance
of u(x, y, t) against the sample mean of u(x, y, t); graph of the sample variance of û(x, y, t) against the sample
mean of u(x, y, t).

vibrations (green points) are of course not adequately corrected, and hence move away from
the linear trend.

4.3.2. Canon EOS 350D and EOS 6D cameras. Two Canon DSLR cameras (the 12-bit
EOS 350D with an APS-C sensor and the 14-bit EOS 6D with a full-frame sensor) shoot
two different scenes illuminated by a neon light: an X-Rite Colorchecker and a cluttered scene
(textured objects lying on a desk) as illustrated in Figure 11. Several ISO values are tested and
the corresponding exposure times t (depending on the aperture) are given. A series of 100 rawD
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Figure 10. Sensicam QE. From top to bottom and left to right: an image from the series; estimation
of the relative fluctuation of the light 1 + γt; graph of v∗(t) against v∗(t) − 1; graph of the sample variance
of u(x, y, t) against the sample mean of u(x, y, t); graph of the sample variance of û(x, y, t) against the sample
mean of u(x, y, t).

images is linearly processed with dcraw,3 and the Bayer color channel corresponding to Red
is extracted. Other channels give similar results, see [52]. In Table 5, we give the following:

1. The values obtained by the photon transfer method4 (the offset µ is estimated inde-
pendently over a short exposure dark frame image);

2. the output g and σ2 − gµ of the software by Foi et al.;
3. the results of the proposed method;

3Available at http://www.cybercom.net/∼dcoffin/dcraw/. Options: dcraw -c -D -4 -r 1 1 1 1.
4EOS 350D: available at http://www.astrosurf.com/comolli/strum41.htm

EOS 6D: available at http://www.astrosurf.com/comolli/strum54.htmD
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4. the estimation of the slope g and the intercept σ2 − gµ of a regression line from
(E(u),Var(u)), disregarding the quadratic trend.

ISO settings marked with an asterisk are processed with the method of section 3.5 to deal
with the rolling shutter effect.

Some results of the method of [21] suggest that the default software parameters might not
be adequate in some situations. The overestimation of g by the fourth method (which does
not take the quadratic trend into account) shows that it is important to correct flickering,
especially for high ISO values giving fast shutter speeds. We can see that the proposed method
correctly estimates not only g, but also µ and, most of the time, σ.

Table 6 shows the estimations of the vibration parameters and of the standard deviation of
the flickering process for the Canon EOS350D with the cluttered scene (other cases are similar;
cf. [52]). Concerning the exposure time, since the neon light is powered by 50 Hz current, its
flickering should not be noticeable for low ISO values because of photon integration over an
exposure time lower than several tenths of a second. However, σγ is estimated at less than 0.01
for t ≃ 1/10s and σγ ≃ 0.15 for t ≃ 1/200s. This confirms that, here, the light flickering has
a noticeable effect, mainly for high ISO. In addition, it shows that a slight variability of the
actual exposure, possibly due to mechanical or electronic imperfections, can be measured.
This is confirmed by additional experiments under natural light (not shown here; see [52]). It
should be noted that, as we can expect, similar exposure times give similar flickering intensity.
Except for some situations, the flickering intensity seems to be smaller in the green channels
than in the red and blue channels. This might be explained by the sensitivity of these channels
to the neon light spectrum. Furthermore, the small values of σγ explain the poorer estimation
of µ for low ISO, and hence of σ. Moreover, the increasing σγ makes the bias in the affine
method increase with ISO.

The results in Table 6 also show that the proposed estimation of the vibration parameters
is quite reliable, since they are within the same order of magnitude for the four channels from
the same series. Comparing with Table 5, we can see that the effect of the vibrations tends
to vanish when the exposure time increases because of the longer integration time.

5. Conclusion. This paper discussed the effect of illumination flickering (or slightly vary-
ing exposure times) and of microvibrations on image noise measurements from a series of
images of a static scene, within a Cox–Gaussian model. Image stacking permitted us to eas-
ily obtain sample means and sample variances without any prior segmentation step. In the
presence of illumination flickering, a quadratic relation between the variance and the expected
intensity was established, instead of the standard affine relation. A practical algorithm was
proposed, robust to the rolling shutter effect and to the vibrations. Taking advantage of the
illumination flickering, it was possible to estimate the gain, the offset, and the readout noise.
A large flickering amplitude ensures a higher estimation accuracy, giving results within the
range of the photon transfer method. Such an approach may be useful for multi-image denois-
ing methods (as in [9, 34]) or for noise parameter estimation in fluorescence imaging affected
by photobleaching (as in [27]), where a nonconstant illumination has been noticed.
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Figure 11. Left: clutter scene for the Canon EOS 350D experiment. Right: clutter scene for the Canon
EOS 6D experiment.

Table 6

Estimating vibrations and illumination flickering.

ISO Channel σα σβ Covα,β σγ

100 R 0.047 0.19 −0.0086 0.0088
G1 0.039 0.16 −0.0065 0.0088
G2 0.039 0.16 −0.0064 0.0086
B 0.047 0.19 −0.0086 0.0099

200 R 0.043 0.059 −0.0016 0.012
G1 0.039 0.057 −0.0014 0.0092
G2 0.038 0.056 −0.0013 0.0099
B 0.037 0.059 −0.0014 0.012

400 R 0.037 0.049 −0.0014 0.057
G1 0.028 0.045 −0.0011 0.042
G2 0.025 0.045 −0.00099 0.042
B 0.031 0.044 −0.0012 0.059

800 R 0.042 0.078 −0.0015 0.058
G1 0.03 0.073 −0.001 0.042
G2 0.026 0.074 −0.00083 0.041
B 0.035 0.071 −0.0011 0.056

1600 R 0.066 0.043 −0.0021 0.17
G1 0.027 0.032 −0.00035 0.12
G2 0.027 0.03 −0.00013 0.12
B 0.037 0.058 −0.00032 0.17
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