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Abstract. Today’s computer systems face sophisticated intrusions during which
multiple vulnerabilities can be combined for reaching an attack goal. The overall
security of a network system cannot simply be determined based on the num-
ber of vulnerabilities. To quantitatively assess the security of networked systems,
one must first understand which and how vulnerabilities can be combined for an
attack. Such an understanding becomes possible with recent advances in model-
ing the composition of vulnerabilities as attack graphs. Based on our experiences
with attack graph analysis, we explore different concepts and issues on a metric
to quantify potential attacks. To accomplish this, we present an attack resistance
metric for assessing and comparing the security of different network configura-
tions. This paper describes the metric at an abstract level as two composition
operators with features for expressing additional constraints. We consider two
concrete cases. The first case assumes the domain of attack resistance to be real
number and the second case represents resistances as a set of initial security con-
ditions. We show that the proposed metric satisfies desired properties and that it
adheres to common sense. At the same time, it generalizes a previously proposed
metric that is also based on attack graphs. It is our belief that the proposed met-
ric will lead to novel quantitative approaches to vulnerability analysis, network
hardening, and attack responses.

1 Introduction

Today’s networked computer systems constitute the core component of information
technology infrastructures in enterprises and in critical infrastructures, such as power
grids, financial data systems, and emergency communication systems. Protecting such
systems against malicious intrusions is crucial to the economy and to our national se-
curity. Having a standard way for measuring various aspects of network security will
bring together users, vendors, and labs in specifying, implementing, and evaluating the
requirements and features of network security products. However, in spite of various
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efforts in standardizing security metric, a widely-accepted metric for network security
is still largely unavailable. This is partly due to the fact that most researchers are still
adopting a qualitative and imprecise view toward the evaluation of network security.
For example, typical issues addressed in current research may ask following questions.
Are all critical resources in a network secure (topological vulnerability analysis)? Can
a network be hardened to secure the given resources (network hardening)? How to stop
an ongoing intrusion from compromising given resources (attack response)?

The qualitative nature of these questions reflect the current focus on the qualita-
tive, rather than quantitative, study of network security. This focus implies the inherent
impreciseness in many research results and also indicates the need for more research
efforts on security metrics. However, the lack of research on quantitative aspects of
network security is natural. Assessing the overall security of a network requires a thor-
ough understanding of the interplay between host vulnerabilities. That is, which and
how vulnerabilities can be combined for an attack. Such an understanding is difficult
to obtain with existing security tools, such as vulnerability scanners and intrusion de-
tection systems. These tools typically focus on identifying individual vulnerabilities or
attacks, and are usually unaware of the relationships among vulnerabilities or attacks.

Recent advances in modeling compositions of vulnerabilities using attack graphs
(a review of related work will be given in the next section) indicate that the research
has progressed to a point where the quantitative study of network security is critical
and, at the same time, possible. Attack graphs supplement vulnerability scanners with
the missing information about relationships among vulnerabilities. Analyzing the cor-
related vulnerabilities thus provides a clear picture about what attacks might happen in
a network and about their consequences. Attack graphs thus allow us to consider po-
tential attacks in a particular context relevant to the given network. The current work is
based on our past experiences with attack graph analysis [12,15,16,21,29,30,31,32] and
a practical tool, the Topological Vulnerability Analysis (TVA) system, with the capa-
bility of modeling more than 37,000 vulnerabilities taken from 24 information sources
including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [12]. The presence of such
a powerful tool demonstrates the practicality of using attack graphs as the basis for
measuring network security.

Instead of measuring individual vulnerabilities and then wondering about their com-
bined effect, this paper measures the overall security of a network using the context
provided by an attack graph. Such a capability will enable us to answer important ques-
tions like (but not limited to): How much effort and time will it take to compromise a
critical resource under each possible network configuration? Answers to such questions
will allow system administrators to choose the optimal configuration that is the most re-
sistant to potential attacks. More specifically, we propose an attack resistance metric for
assessing and comparing the security of different network configurations. The metric is
based on intuitive properties derived from common sense. For example, our metric will
indicate reduced security when more attack paths exist, whereas it indicates increased
security for longer and more difficult paths. To make the metric broadly applicable, we
first describe it at an abstract level as two composition operators with functions that
allow for expressing additional dependency relationship between resistances. We then
consider two concrete cases. The first assumes the domain of attack resistance to be
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real number and the second represents resistances as sets of initial security conditions.
For the first case, we propose to use operators that are analogous to the ones used in
computing the resistance of a series and parallel circuit. We study additional issues that
arise due to the unique properties of attack graphs. For the second case, we show that a
previously proposed metric [21] is equivalent to our metric under certain conditions.

The rest of the paper is organized as follows. Section 2 outlines a framework for
defining security metrics using attack graphs. Section 3 presents the attack resistance
metric. Section 4 reviews related work. Finally, Section 5 concludes the paper.

2 A Framework for Defining Security Metrics Using Attack
Graphs

This section first reviews the attack graph model and then discusses intuitions behind
the proposed metric.

2.1 Attack Graph Model

We adopt the attack graph model used in the Topological Vulnerability Analysis
tool [12], which is one of the most advanced utilities for generating and analyzing
attack graphs. This attack graph model is similar in nature to the earlier ones based
on modified model checking [26], but it avoids the potential combinatorial explosion
faced by the latter. More specifically, it makes a monotonicity assumption stating an
attacker never relinquishes an obtained capability [1]. An attack graph can thus record
the dependency relationship between exploits instead of recording all attack paths. The
resulting attack graph has no duplicate vertices and hence has a polynomial size in the
number of vulnerabilities multiplied by the number of connected pairs of hosts.

In our model, an Attack graph is a directed graph representing prior knowledge about
vulnerabilities, their dependencies, and network connectivity. The vertices of an attack
graph are divided into two categories, namely, exploits and security conditions (or sim-
ply conditions when no confusion is possible). First, exploits are actions taken by at-
tackers on one or more hosts in order to take advantage of existing vulnerabilities. We
denote an exploit as a predicate. For example, an exploit involving three hosts can be
denoted using v(hs, hm, hd), which indicates an exploitation of the vulnerability v on
the destination host hd, initiated from the source host hs, through an intermediate host
hm. Similarly, we write v(hs, hd) or v(h), respectively, for exploits involving two hosts
(no intermediate host) or one (local) host.

Second, a security condition is a property of the system or network that is relevant to
some exploits. A condition is relevant to an exploit if it is either required for executing
the exploit or satisfied by executing the exploit. We also use a predicate to represent
a condition involving one or more hosts. For example, c(hs, hd) indicates a security-
related condition c involving the source host hs and the destination host hd. Similarly,
a condition that only involves a single host can be written as c(h). Examples of security
conditions include the existence of a vulnerability, the existence of network connec-
tivity or trust relationship between two hosts. It is worth noting that an attack graph
usually includes exploits and conditions corresponding to normal services or function-
ality. Such services are included because they may help attackers in escalating their
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privileges when combined with other exploits, although they are not intended for that
purpose. On the other hand, this fact also implies that not all exploits can be removed
in hardening a network, so measuring the relative security of different configurations
becomes important.

Directed edges in an attack graph inter-connect exploits with conditions. No edge
directly goes between two exploits or between two conditions. First, an edge from a
condition to an exploit denotes the require relation, which means the exploit cannot be
executed unless the condition is satisfied. Second, an edge pointing from an exploit to a
condition denotes the imply relation, which means executing the exploit will satisfy the
condition. For example, an exploit typically requires at least two conditions, that is the
existence of the vulnerability (which could be a normal service) on the destination host
and the network connectivity between the two hosts. We formally characterize attack
graphs in Definition 1.

Definition 1. Given a set of exploits E , a set of conditions C, and two relations
require ⊆ C × E and imply ⊆ E × C, an attack graph G is the directed graph
G(E ∪ C, require ∪ imply) (E ∪ C is the vertex set and require ∪ imply the edge set).

One important semantics of attack graphs is that the require relation is conjunctive,
whereas the imply relation is disjunctive. More precisely, an exploit cannot be realized
until all of its required conditions have been satisfied, whereas a condition is satisfied if
any of the realized exploits implies that condition. Sometimes only exploits in an attack
graph are of interest, we thus remove conditions to obtain an exploit dependency graph.
However, in such a graph, edges between exploits may represent both the conjunctive
and disjunctive relationship. For example, in an attack graph, if two exploits e1 and e2
both imply the same condition c1, which is required by another exploit e3, then e3 can
be executed after executing either e1 or e2 (since c1 will be satisfied by any of them).
On the other hand, if e1 implies c1, e2 implies a different condition c2, and both c1 and
c2 are required by e3, then e3 cannot be executed before both e1 and e2 are. We shall
need this observation later in the paper.

2.2 Motivating Example

To build intuitions about properties that a security metric should satisfy, we consider the
well-known attack scenario as shown on the left hand side of Figure 1 (notice that this
is an overly simplified example for illustration purposes, and our metric and techniques
are intended for more complicated cases where results cannot be obtained through ob-
servations). In this attack graph, exploits are depicted in ovals and conditions in clear
text. The critical condition that needs to be guarded is shown in a shaded oval. The
attack graph basically indicates that an attacker on host 0 can obtain user privilege on
host 1, either using an SSH buffer overflow attack or through the trust relationship es-
tablished by uploading the .rhost file through FTP. The attacker can use the latter trick
to obtain user privilege on host 2, either directly from host 0 or using host 1 as an inter-
mediate stepping stone. The attacking goal, that is the root privilege on host 2, can then
be obtained using a local buffer overflow attack.

The right hand side of Figure 1 shows the exploit dependency graph. It is worth not-
ing that in this specific case only disjunctive dependency relationship exists between



102 L. Wang, A. Singhal, and S. Jajodia

ftp(0,2)

ftp_rhosts(0,2)

ftp(0,1)

ftp_rhosts(0,1)

sshd(0,1)

sshd_bof(0,1)

trust(1,0)

rsh(0,1)

trust(2,0)

rsh(0,2)

user(1)

ftp_rhosts(1,2)

rsh(1,2)

ftp(1,2)

trust(2,1)

ftp(2,1)

ftp_rhosts(2,1)

user(2)

local_bof(2,2) sshd_bof(2,1)

rsh(2,1)

sshd(2,1)

trust(1,2)root(2) root(2)

ftp_rhosts(0,2)

rsh(0,2)

ftp_rhosts(0,1)

rsh(0,1)

local_bof(2,2)

ftp_rhosts(1,2)

sshd_bof(0,1)

rsh(1,2)

Fig. 1. An Example of Attack Graph and Exploit Dependency Graph

exploits. For example, there are two alternative ways to reach the exploit ftp rhosts
(1, 2) and similarly two ways to reach the exploit local bof(2, 2). In general, the de-
pendency relationship between exploits can be both disjunctive and conjunctive, and
the graph notation is thus not sufficient to distinguish between the two. Later we shall
introduce a special notation for this purpose.

We make several observations in Figure 1. First, the two loops via exploit ftp rhosts
(2, 1) and sshd bof(2, 1) are both removed. These loops both allow the attacker to
obtain user privilege on host 1 for the second time, after the privilege has already been
obtained (otherwise the two exploits cannot be executed). An attacker can certainly
make such redundant attacking effort at will, but a security metric should assume the
most efficient attackers and indicate the security of a network in the worst-case scenario.
That is, a metric should never yield a value that is greater than the smallest attacking
effort required for reaching the attack goal.
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Second, the exploits in Figure 1 clearly have different difficulty in terms of the time
and effort required for their execution. For example, the ftp rhosts and rsh exploits
both take advantage of normal services in a clever way, and they usually do not require
much time or effort if the attacker has the basic knowledge about the attack (between
the two type of exploits, rsh may be slightly easier than ftp rhosts in the sense that
the latter requires crafting the .rhost file). On the other hand, both the sshd bof and the
local bof are buffer overflow attacks, which require significantly more knowledge and
time than the previous two because a buffer overflow attack usually requires brute force
effort to determine proper parameters. This example thus shows different exploits have
different difficulties in terms of effort and time required for their execution.

Third, there are three possible attack paths (that is, sequences of attacks) reaching the
attack goal, as shown on the right hand side of Figure 1, the left path (that is, the one
through ftp rhosts(0, 2) and rsh(0, 2)) requires the smallest amount of effort. The
middle path requires slightly more effort since it involves both host 1 and host 2. The
right path demands the most effort because it requires an additional buffer overflow
attack sshd bof(0, 1). Recall the above argument that security should be measured
as the smallest effort required to reach the goal. It seems that the left path is a good
candidate to be used as the measure of overall security. However, it is important to
notice that when multiple paths coexist in an attack graph, reaching the attack goal
is actually easier than if only one of these paths exists (even if the path requires the
smallest amount of effort). Intuitively, more attack opportunities mean less security,
because attackers will have a better chance to reach the attack goal. In this specific
case, even though the middle and the right paths are more difficult than the left one,
they nevertheless represent possibilities for attacks and thus they do reduce the overall
security of the network. That is, multiple attack paths together are less secure than any
of the paths alone.

Finally, assuming the middle attack path is followed by an attacker, it can be argued
that the exploit ftp rhosts(1, 2) may be slightly easier than its predecessor ftp rhosts
(0, 1). To launch the same type of attack for the second time, the attacker will benefit
from his/her experiences and tools that have been accumulated while launching the at-
tack for the first time. It is, however, not possible to add an edge between these two
exploits in attack graph, because the exploit ftp rhosts(1, 2) does not directly depend
on ftp rhosts(0, 1) (with rsh(0, 1) in the middle). This implies that an additional re-
lation is needed to encode such dependency relationship between exploits, which is
different from the imply or require relations already encoded in attack graphs. In an-
other word, executing an exploit may change the difficulty of executing another exploit,
even if the two do not directly depend on each other in the attack graph.

The above requirements are largely common sense that should be satisfied by a se-
curity metric. The rest of the paper proposes a security metric based on the attack graph
model by taking these requirements into consideration.

3 An Attack Resistance Metric

This section proposes an attack resistance metric based on the attack graph model. We
first discuss the metric in a generic form. We then discuss two concrete cases to illustrate
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the metric in more details. We address various issues encountered while computing the
metric from a given attack graph.

3.1 A Generic Framework

We propose to measure the attack resistance of a network configuration as the compo-
sition of measures of individual exploits. Ideally, the resistance of each type of exploits
in terms of effort and time should be represented as a total order, such as using real
numbers (the next section considers how individual resistances can be combined when
attack resistance is represented as a real number). Unfortunately, although clearly de-
sired, the information and resources required by this ideal situation are limited [17]. It
is, however, usually possible to estimate an approximate ordering or a partial ordering
on the domain of attack resistance. We shall also consider another case where the resis-
tance of individual exploit is simply the set of initial conditions (that is, conditions not
implied by other exploits).

Different applications may define the attack resistance of individual exploits in sig-
nificantly different ways. To make our metric broadly applicable, we describe the met-
ric in a generic form while leaving the individual measures uninterpreted. Central to
the model are two types of composition operators, denoted as ⊕ and ⊗. The two op-
erators correspond to the disjunctive and conjunctive dependency relationship between
exploits in an attack graph, respectively. Based on the intuitive properties mentioned in
Section 2.2, the two operators should satisfy that r1 ⊕ r2 is no greater than r1 or r2,
whereas r1⊗r2 is no less than r1 and r2, with respect to a given ordering on the domain
of attack resistance.

In addition to the two composition operators, we introduce a function R() that maps
a set of exploits to another exploit and its resistance value. The function is intended to
capture a special kind of dependency relationship between exploits. That is, executing
some exploits may affect the resistance value of another exploit, even though the latter
cannot be executed yet. In most cases, this effect will be to assign a lower resistance
value to the affected exploit. For example, exploits involving the same vulnerability
should be related together using this function such that successfully exploiting one in-
stance of the vulnerability reduces the resistance of others due to the attacker’s accumu-
lated experiences and tools. We shall also show that this function is useful in handling
the non-tree structure of attack graphs. We summarize the model in Definition 2.

Definition 2. Given an attack graph G(E ∪ C, require ∪ imply) with attack goals
g ⊆ C, the attack resistance metric is composed of

– A total function r() : E → D,
– a total function R() : E → D,
– an operator ⊕ : D × D → D,
– an operator ⊗ : D × D → D, and
– a function R() : E → E × D.

We call the set D the domain of resistance, r(e) the individual resistance (or simply
resistance) of an exploit e, R(e) the cumulative resistance of e.
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The main tasks in implementing this metric for a specific application is to populate the
individual resistance by defining the function r(), to determine suitable operators ⊕ and
⊗, to capture additional dependency relationships between exploits using the function
R, and finally to decide how the cumulative resistance function R() should be computed
based on these information. The cumulative resistance of each attack goal then provides
a quantitative measure as how likely that attack goal can be achieved, or equivalently,
how vulnerable the corresponding resource is under a given network configuration.

3.2 Attack Resistance as Real Numbers

We now consider a concrete case where the domain of resistance D is the non-negative
real number. Analogous to the resistance of a series and parallel circuit, we define ⊕
as the reciprocal of the sum of the reciprocal of individual resistance values. That is,

1
r1⊕r2

= 1
r1

+ 1
r2

. The operator ⊗ is simply addition. Recall our discussions about
the relative difficulty of different type of exploits in Section 2.2. Suppose we assign
the value 10 to be the resistance of each sshd bof and local bof , the value 2 and 1
to each ftp rhosts and rsh exploit, respectively, as depicted on the left hand side of
Figure 2. The cumulative resistances can then be computed as follows, where r() stands
for the individual resistance and R() the cumulative resistance (we shall not consider
the function R for the time being). The final results are shown in the right hand side of
Figure 2.

– R(rsh(0, 1)) = r(ftp rhosts(0, 1)) + r(rsh(0, 1)) = 2 + 1 = 3
– R(ftp rhosts(1, 2)) = 1/(1/R(rsh(0, 1)) + 1/r(sshd bof(0, 1)))+

r(ftp rhosts(1, 2)) = 1/(1/3 + 1/10) + 2 ≈ 4.3
– R(rsh(1, 2)) = R(ftp rhosts(1, 2)) + r(rsh(1, 2)) ≈ 4.3 + 1 = 5.3
– R(rsh(0, 2)) = r(ftp rhosts(0, 2)) + r(rsh(0, 2)) = 2 + 1 = 3
– R(local bof(2, 2)) = 1/(1/R(rsh(0, 2)) + 1/R(rsh(1, 2)))+

r(local bof(2, 2)) = 1/(1/3 + 1/5.3) + 10 ≈ 11.9

According to our discussions in Section 2.2, the cumulative resistance of the whole
network should be smaller than the cumulative resistance of each possible attack path.
The cumulative resistance for each attack path reaching the goal can be computed by
simply adding (that is, the ⊗ operator) individual resistance values along the path. The
results for the three attack paths in Figure 2 are 13, 16, and 23, from left to right. Clearly,
the accumulative resistance of the whole network, 11.9, is indeed smaller than any of
the three values, satisfying the intuitive requirements given in Section 2.2. We may also
notice that the composition (using the operator ⊕) of these three resistance values is
about 5.5, which is less than the computed resistance 11.9. This reflects the fact that the
three paths are not disjoint. The value 5.4 is computed under the implicit assumption
that the three paths are disjoint, which is not the case here. Intuitively, having common
exploits among different paths may increase the overall attack resistance, because the
attacker must execute these exploits no matter what path they follow. Our metric nat-
urally takes into consideration the overlapping portion of the paths. Above discussions
also indicate that cumulative resistances can be computed in a breadth-first manner,
which takes time O(| E |2).
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Fig. 2. An Example of Attack Resistance in Real Number

The function R Next we consider the function R, that is the effect of executed exploits
on the individual resistance of other exploits. The previous example is not sufficient for
this purpose. Instead, we consider the abstract example given in the left hand side of
Figure 3, where the dotted lines represent the following facts. Between exploit 1 and
exploit 2, executing one will change the other’s individual resistance from the original
value x to a new value y. Similar relationships exist between exploit 2 and exploit 3, and
between exploit 1 and exploit 6. Notice the special notation between exploits 2, 5, and
7, which denotes the conjunctive relationship between exploits 2 and 5. That is, exploit
7 cannot be executed unless both exploit 2 and 5 are already executed (this may happen
when exploit 2 and exploit 5 both imply different conditions, and both conditions are
required by the exploit 7).

The left hand side of Figure 3 shows three possibilities in dealing with the function
R. First, the effect of R(6) = (1, y) (that is, executing exploit 6 will change the indi-
vidual resistance of exploit 1 as r(1) = y) can be safely ignored, because exploit 6 can
never be executed before executing exploit 1. On the other hand, the individual resis-
tance r(6) can now simply be changed from x to y, because any execution of exploit
6 implies that exploit 1 has already been executed (which in turn implies a change in
r(6)). Second, there is no naturally induced order between the execution of the exploit
1 and that of exploit 2, so they can be executed in any order. Intuitively, these two ex-
ploits meet at exploit 6 in the sense that we combine these two resistance values in the
same formula when we compute R(6) = 1/(1/(r(1)+ r(4)) +1/r(2)) + r(6). At that
point, the last composition operator used is ⊕ (that is, the exploit 4 and exploit 2 are
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Dependency Between Individual Resistances Dealing With the Non-Tree Structure
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Fig. 3. Examples of the Function R

disjunctive). We can then conclude that any minimal attack path (that is, an attack path
with no proper subsets being a valid attack path) including exploit 6 will include either
exploit 1 or exploit 2, but not both. The effect of R(1) = (2, y) and R(2) = (1, y) can
thus be ignored.

Third, when exploit 2 and exploit 3 meet at exploit 7 (when we compute R(7) =
r(2) + r(3) + r(5) + r(7)), the last composition operator we use is ⊗. This reflects the
fact that the exploits 2 and 3 must both be executed in order to reach exploit 7, although
the executions can be in any order. If exploit 2 is executed before exploit 3, then we have
r(2) = x and r(3) = y; if exploit 3 is first executed, we have r(3) = x and r(2) = y.
However, we can never have r(2) = r(3) = y because a change only happens after an
execution. In this case, we compute the cumulative resistance of exploit 7 for both cases:
r(2) = x, r(3) = y and r(3) = x, r(2) = y. We then choose the smaller result as the
cumulative resistance of exploit 7. This choice ensures that the computed cumulative
resistance will be no greater than the cumulative resistance computed by following any
attack path leading to exploit 7. The above discussion covers all possible cases, because
when two exploits eventually meet (that is, their resistances are combined), they must
meet either at one of themselves (the case of the exploit 1 and exploit 6), or at a different
exploit.

The Non-Tree Structure of Attack Graphs. Unlike the nice tree structure in the attack
graph in Figure 1, it can be noticed that on the left hand side of Figure 3 both exploit 6
and exploit 7 depend on exploit 2, and the graph is not a tree. This is relevant because the
cumulative resistance of this network should be different from another network where
exploit 6 and exploit 7 depend on two different exploits. This issue, however, can be
easily handled using the function R as follows. We split exploit 2 into two identical
copies, say, exploit 2a and exploit 2b, as shown on the right hand side of Figure 3. We
then need the constraint that the resistance of these two exploits will never be added
in computing a cumulative resistance, because they actually represent a single exploit.
This constraint can be easily modeled as R(2a) = (2b, 0) and R(2b) = (2a, 0). We
can now compute the metric as usual since the exploit dependency graph becomes a
tree.
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3.3 Attack Resistance as Sets of Initial Conditions

We consider another concrete case where each exploit’s individual attack resistance is
the set of initial conditions (that is, conditions not implied by any exploit) required by
that exploit. This measure can be easily obtained from the attack graph itself. The attack
resistance in terms of the set of initial conditions has a very different meaning from
the attack resistance discussed in the previous section. Here the resistance indicates
conditions that must be satisfied before an intrusion is possible, instead of the effort
and time spent during the actual intrusion. A weakest-adversary metric was recently
proposed based on the set of initial conditions [21]. Different network configurations
can be ordered based on their relative security, if a subset relationship exists between
the sets of initial conditions required for reaching attack goals in the two attack graphs.
We show that this metric is equivalent to a special case of our metric by using the set of
initial conditions as individual resistance.
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Fig. 4. Two Comparable Network Configurations

Figure 4 shows two network configurations that are comparable based on initial con-
ditions [21]. The left hand side depicts an attack scenario similar to the one in Figure 1
but only involves two hosts. The right hand side shows a different scenario where the
attacker is forced by a firewall to exploit the sendmail buffer overflow vulnerability on a
third host as an intermediate step. It can be observed that in both cases the goal requires
all the exploits to be executed, that is all the dependency relationship is conjunctive.
We use set union as the operator ⊗ (we do not need the ⊕ operator in this case). The
cumulative resistance of the exploit local bof(2) is thus simply the collection of all
initial conditions in both cases. Clearly, the resistance in the first case is a proper subset
of the resistance in the second case, and hence the second case has more resistance to
potential attacks. This result is the same as reported previously [21].

4 Related Work

An overview of various issues relevant to security metric is recently given in the pro-
ceedings of the 2001 Workshop on Information Security System Scoring and Ranking
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[2]. The efforts by NIST on standardizing security metric are reflected in the Technol-
ogy Assessment: Methods for Measuring the Level of Computer Security [18] and more
recently in the Security Metric Guide for Information Technology Systems [27], which
describes the current state of practice of security metrics, such as that required by the
Federal Information Security Management Act (FISMA). Another overview of many
aspects of network security metric is given in [10].

Closest to our work, Dacier et. al describe intuitive properties derived from common
sense, which should be satisfied by any security metric [7,8,19]. They suggest to assess
the difficulty of attacks in terms of time and effort spent by attackers. They assume an
exponential distribution for an attacker’s success rate over time. Based on this Markov
model, they propose to use the MTTF (Mean Time to Failure) to measure the security
of a network. They discuss simple cases of combining such measures but do not study
the general case. We borrow some of the intuitive properties stated by them, but we use
a different way for combining individual measures into the overall attack resistance and
we consider a more general case represented by attack graphs.

Our approach of using additional functions for modeling the effect of executed ex-
ploits on the resistance value of other exploits is inspired by the work by Balzarotti et.
al [3]. However, their work focuses on computing the minimum effort required for exe-
cuting each exploit, whereas our work computes the overall security of a network with
respect to given critical resources. Also, their work does not take into account the kind
of dependency that we model using additional functions. Such dependency reduces the
difficulty of executing an exploit while not directly enabling it to be exploitable. The
work by Pamula et. al introduces a metric based on attack graph [21], in this paper we
show that their metric is a special case of ours under certain conditions.

A qualitative measurement of the risk of a network is given based on various forms
of the exploitability (that is, whether it is possible to compromise the network) [4].
Another series of work compares software for their relative vulnerabilities to attacks
using a fixed set of dimensions, namely, attack surface [11,20,13]. The work by Mehta
et. al borrows Google’s PageRank methodology to rank exploits in an attack graph [14].
Their technique is especially suitable for threat models of worms or other malicious
software that spread in a random way in a large network. Our metric has a different
threat model, that is attackers have memory and are rational, so in most cases they will
not follow a random model.

Metrics for other perspectives of security, especially trust in distributed systems, are
relevant to our research. For example, Beth et. al proposed a metric for measuring the
trust in an identity established through overlapping chains of certificates [5]. The way
they combine values of trust in each certificate into an overall value of trust proves to be
useful in our study. Similarly, the design principles given by Reiter et. al are intended
for developing metric of trust, but we found these principles applicable to our study as
well [24]. The formal logic language introduced for measuring risks in trust delegation
in the RT framework inspires us to describe our metric using abstract operators [6].

To obtain attack graphs, topological vulnerability analysis evaluates potential multi-
step intrusions based on knowledge about vulnerabilities [7,9,19,22,33,28]. Such analy-
ses can be either forward starting from the initial state [22,28] or backward from the
goal state [25,26]. Model checking was first used to analyze whether a given goal state
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is reachable from the initial state [23,25] and later used to enumerate all possible se-
quences of attacks between the two states [26]. To avoid the exponential explosion in
the number of such explicit attack sequences, a more compact representation of attack
graphs was proposed based on the monotonicity assumption saying an attacker never
needs to relinquish any obtained capability [1]. On the attack response front, attack
graphs have been used for the correlation of attacks, the hypotheses of alerts missed by
IDSs, and the prediction of possible future attacks [29,30].

5 Conclusion

Presently, qualitative and imprecise arguments are usually the basis for making deci-
sions in securing a network. These arguments can mislead the decision making and as
a result cause the reconfigured network to be in fact less secure. This paper described a
novel attack graph-based attack resistance metric for measuring the relative security of
network configurations. The main components of our metric are two composition oper-
ators for computing the cumulative attack resistance from given individual resistances.
An additional function allowed the metric to take into consideration the dependency
between individual attack resistances. We demonstrated the metric through two con-
crete cases. First, attack resistance was modeled as a real number, and the case was
analogous to computing the resistance of a series-parallel circuit. We showed that the
proposed metric satisfied intuitive requirements mentioned in the literature. Second,
attack resistance was defined as the set of initial conditions required by each exploit.
We showed that our metric in this case resembled the weakest-adversary metric previ-
ously proposed. It is our belief that the proposed metric will lead to novel quantitative
approaches to vulnerability analysis, network hardening, and attack response.
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