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Ordinal classi¯cation is a form of multiclass classi¯cation for which there is an inherent order

between the classes, but not a meaningful numeric di®erence between them. The performance of

such classi¯ers is usually assessed by measures appropriate for nominal classes or for regression.
Unfortunately, these do not account for the true dimension of the error.

The goal of this work is to show that existing measures for evaluating ordinal classi¯cation

models su®er from a number of important shortcomings. For this reason, we propose an

alternative measure de¯ned directly in the confusion matrix. An error coe±cient appropriate for
ordinal data should capture how much the result diverges from the ideal prediction and how

\ inconsistent" the classi¯er is in regard to the relative order of the classes. The proposed

coe±cient results from the observation that the performance yielded by the Misclassi¯cation

Error Rate coe±cient is the bene¯t of the path along the diagonal of the confusion matrix. We
carry out an experimental study which con¯rms the usefulness of the novel metric.

Keywords : Classi¯cation; ordinal data; evaluation measures; performance; classi¯cation

accuracy.

1. Introduction

In many real life problems humans are called to compare or rank items or objects in

order to make the most appropriate choice for a speci¯c goal. Think for example of

choosing a song to listen, buying clothes, ordering a dish in a restaurant, etc. Other

applications include stock trading support systems, where one wants to predict, for

instance, whether to buy, keep or sell a stock, and biomedical classi¯cation problems,

where frequently the classes are ordered. As a consequence, the demand for intelli-

gent systems capable of representing and processing this information also increases.

In research areas like decision making, preference modeling, fuzzy modeling, stat-

istics and machine learning, scientists have proposed various ways to characterize

this human behavior with mathematical models.
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Mainly two learning settings can be distinguished for modeling preference infor-

mation: ordinal classi¯cation models and pairwise preference models, both dependent

on the concept of an underlying ranking function.10,23 We concentrate only on the

ordinal classi¯cation setting, where categories typically correspond to quotations

or linguist terms — varying from \very bad" to \excellent," for example — that

express a di®erence in correctness, quality, beauty or any other characteristic of the

analyzed objects.23 A concrete example would be the grading of a customer credit

pro¯le in the scale Excellent �Good �Fair �Poor or grading a student in a similar

scale, where � is the order relation.

One of the ¯rst works on classi¯cation methods for ordinal data dates from

McCullagh14 where a regression model was developed incorporating ordinal infor-

mation on the data. An extension of this work is presented in Ref. 21 through the

generalization of the additive model8 by incorporating nonparametric terms. Frank

and Hall6 introduced a simple process to explore the ordinal class information by

using conventional binary classi¯ers. In Ref. 19 a generalised formulation for the

SVM was introduced for ordinal data. More recently, Ref. 12 proposed a cascade

classi¯cation technique encompassing a decision tree classi¯er and a model tree al-

gorithm. In Refs. 4 and 15 two new methods were present towards ordinal classi¯-

cation. In Ref. 4 a new reduction technique is used allowing to solve the problem of

ordinal classi¯cation using a single binary classi¯er. In Ref. 15 the class order relation

is taken into account by imposing an unimodal distribution to the class a posteriori

probabilities. An extension of this technique on All-at-Once SVM is performed

in Ref. 16.

In supervised classi¯cation problems with ordered classes, it is common to assess

the performance of the classi¯er using measures more appropriate for nominal clas-

ses, regression problems or preference learning.1,7 Baccianella1 addresses the adap-

tation of existing measures (Mean Absolute Error) to unbalanced data, while

Gaudette7 compares existing measures concluding that Mean Absolute Error and

Mean Square Error are the best performance metrics. Other strategies encompass the

use of rank order measures13,22 or the adaptation of the ROC curve.24 However, the

application of these measures faces di±culties in the context of ordinal classi¯cation,

as we will show next.

In this manuscript, our main goal is to propose a new metric speci¯cally adapted

to ordinal data classi¯cation problems, problems endowed with a natural order

among classes. We argue that standard metrics do not adequately take into

account all the information in the assessment process. We also claim that an error

coe±cient appropriate for ordinal data should capture how much the result

diverges from the ideal prediction and how \inconsistent" the classi¯er is in regard

to the relative order of the classes. This \inconsistency" results from discordant

results in the relative order given by the classi¯er and the true relative class order.

For this reason, in this work, we propose an alternative measure de¯ned directly in

the confusion matrix.
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1.1. Common evaluation measures for ordinal classi¯cation

Very often, every misclassi¯cation is considered equally costly and the Misclassi¯-

cation Error Rate (MER) is used. Two other measures also usually applied are the

Mean Absolute Error (MAE) and the Mean Square Error (MSE). Both MAE and

MSE address the problem as a regression task, i.e. the performance of a classi¯er is

assessed in a dataset O through

1

N

X
x2O

jgðCxÞ � gðĈxÞj

and

1

N

X
x2O

ðgðCxÞ � gðĈxÞÞ2

respectively, where gð:Þ corresponds to the number assigned to a class, N ¼ cardðOÞ,
and Cx and Ĉx are the true and estimated classes. However, this assignment is

arbitrary and the numbers chosen to represent the existing classes will evidently

in°uence the performance measurement given by MAE or MSE. A clear improve-

ment on these measures would be to de¯ne them directly from the confusion matrix

CM (a table with the true class in rows and the predicted class in columns, with each

entry nr;c representing the number of points from the rth class predicted as being

from cth class):

MAE ¼ 1

N

XK
r¼1

XK
c¼1

nr;cjr� cj

MSE ¼ 1

N

XK
r¼1

XK
c¼1

nr;cðr� cÞ2

where K is the number of classes. We will always assume that the ordering of the

columns and rows of the CM is the same as the ordering of the classes. This procedure

makes MAE and MSE independent of the numbers or labels chosen to represent the

classes. To a certain degree, these two measures are better than MER because they

take values which increase with the absolute di®erences between \true" and

\predicted" class numbers and so the misclassi¯cations are not taken as equally

costly. Still, these measures do present undesired behavior, as we will show later.

In order to avoid the in°uence of the numbers chosen to represent the classes on

the performance assessment, it has been argued that one should only look at the

order relation between \true" and \predicted" class numbers. The use of Spearman's

rank correlation coe±cient, Rs, and specially Kendall's tau-b, � b, is a step in that

direction.20,11 For instance, in order to compute Rs, we start by de¯ning two rank

vectors of length N which are associated with the variables gðCÞ and gðĈÞ. There will
be many examples in the dataset with common values for those variables; for these

cases average ranks are used. If p and q represent the two rank vectors, then
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Rs ¼
P

ðpi��pÞðqi��qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðpi��pÞ2

P
ðqi��qÞ2

p . As we can see, Spearman's coe±cient is still dependent on

the values chosen for the ranks representing the classes and so it is not completely

appropriate to measure the performance of ordinal data classi¯ers. More impor-

tantly, Rs loses information about the absolute value of the classes.

Kendall's coe±cient � b has been advocated as a better measure for ordinal vari-

ables because it is independent of the values used to represent classes.11 Its robust-

ness is achieved by working directly on the set of pairs corresponding to di®erent

observations. To de¯ne � b, start with the two N-point vectors, associated with the

true and predicted classes, Cx and Ĉx, and consider all 1
2 NðN � 1Þ pairs of data

points. Before proceeding, some de¯nitions are required.17

De¯nition 1 (Concordant Pair). We call a pair ði; jÞ concordant, c, if the

relative ordering of the true classes Cxi and Cxj is the same as the relative ordering of

the predicted classes Ĉxi and Ĉxj .

De¯nition 2 (Discordant Pair). We call a pair discordant, d, if the relative

ordering of the true classes is opposite from the relative ordering of the predicted classes.

De¯nition 3 (Pair Ties). If there is a tie in either the true or predicted classes,

then we do not call the pair either concordant or discordant. However, di®erent

concepts applies to di®erent types of ties.

extra true pair: If the tie is in the true classes, we will call the pair an extra

true pair, et.

extra predicted pair: If the tie is in the predicted class, we will call the pair an

extra predicted pair, ep.

ignore pair: If the tie is both on the true and the predicted classes, we

ignore the pair.

The � b coe±cient can be computed as

� b ¼
c� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ dþ et
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ dþ ep
p

where c refers to concordant pairs and d for discordant pairs. The � b coe±cient

attains its highest value, 1, when both sequences agree completely, and �1 when the

two sequences totally disagree. However, the source of robustness is probably the

source of its main limitation: by working only with the relative order of elements, it

loses information about the absolute prediction for a given observation, making the

coe±cient more suitable for assessing preference learning18 rather than ordinal data

classi¯cation.

In the same line, the coe±cient rint was recently introduced, taking into account

the expected high number of ties in the values to be compared.15 In fact, the variables

C and Ĉ are two special ordinal variables because, as there are usually very few

classes compared to the number of observations, these variables will take many tied
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values (most of them, in fact). Nevertheless, rint is su±ciently general and, if there

are no tied values, it can still be applied as it is. Like � b, rint assumes that the only

thing that matters is the order relation between such values, which is the same as the

order relation between the classes. This coe±cient takes values in ½�1; 1�.
Note that MER and MAE are indices of dissimilarity while Rs, � b and rint are

indices of similarity. It is important to remark right now a limitation of MAE (and

MSE). Start by noticing that the range of possible values for MAE is an upper-

unbounded interval. Nevertheless, it is fair to compare MAE results in two di®erent

applications with a di®erent number of observations, N , since MAE is properly

normalized by N. However, if the applications involve a di®erent number of classes,

K, it is not clear how to compare the performance obtained in the two settings.

2. A Preliminary Comparison of the Merits of Existing Metrics

A major di±culty in the design of a new classi¯cation performance coe±cient lies in

the di±culty in demonstrating that the coe±cient captures adequately the per-

formance of the classi¯cation algorithms. In a ¯rst test to check the adequacy of the

coe±cients discussed in the previous section, we created synthetic classi¯cation

results and compared the values given by the coe±cients with the expected measured

performance. The performance of any classi¯cation algorithm is conveniently

summarized in the CM and any of the coe±cients presented in the previous section

can be computed directly from it. Suppose that four classi¯ers A, B, C and D

produce the following the CMs (K ¼ 4, N ¼ 13) in a certain task:

CMðAÞ ¼
4 0 0 0

0 6 0 0

0 0 0 0

0 0 0 3

2
664

3
775 CMðBÞ ¼

0 4 0 0

0 0 6 0

0 0 0 0

0 0 0 3

2
664

3
775

CMðCÞ ¼
0 0 4 0

0 0 6 0

0 0 0 0

0 0 0 3

2
664

3
775 CMðDÞ ¼

0 4 0 0

6 0 0 0

0 0 0 0

0 0 0 3

2
664

3
775

One would expect that a valid measure of performance would output for classi¯er A a

perfect performance, for classi¯er B an inferior performance and for classi¯er C a

performance below B's performance. Table 1 presents the results for the di®erent

coe±cients.

Note that Rs, � b and rint were unable to detect any performance di®erence

between classi¯ers A andB; that results from the fact that they only measure relative

values. We can also conclude that, in this context, 1� Rs, 1� � b and 1� rint do not

constitute metrics since they do not satisfy the identity of indiscernible property

(dðx; yÞ ¼ 0 if and only if x ¼ y). The MER coe±cient was unable to di®erentiate

classi¯ers B and C; note that, since classes are ordered, it is worse to predict points
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from class C1 to belong to class C3 rather than to predict them to be from class C2.

The MAE coe±cient (MSE would present the same behavior) was unable to di®er-

entiate classi¯ers B and D; note that classi¯er B was more consistent than classi¯er

D in the sense that the relative order of the predicted classes coincides with the true

order of the classes.

Finally, one can discuss the relative merit of C and D classi¯ers. If the ranking-

based error is more relevant than the instance-based error then C should be preferred

over D since the relative evaluation of C is consistent with the correct classi¯cation.

When the instance-based error is prominent over the ranking error then one should

prefer classi¯er D. We will return to this point later.

3. The Ordinal Classi¯cation Index

Nominal data classi¯cation analyzes each item in isolation and the closeness of the

predicted assignment with respect to the exact one is the most relevant criterion.

Ranking, which is an aggregate evaluation task, is instead totally focused on

respecting the ordering of items, not considering the actual values assigned to them.

When applied to ordinal classi¯cation, a drawback of any pairwise criteria, such as

Kendall's coe±cient, is that it does not allow example dependent evaluation.

At the heart of the proposed measure is the incorporation of a ranking-based

component to an instance-based evaluation of ordinal classi¯cation. Nevertheless,

the new metric is still applicable to the evaluation of single points.

An appropriate error coe±cient for ordinal data should capture how much the

result diverges from the ideal prediction and how much \inconsistent" the classi¯er is

in regard to the relative order of the instances. We propose to de¯ne a metric directly

in the CM, capturing these two sources of errors.

For this we adopt the following de¯nition of nondiscordant pair of points:

De¯nition 4 (Non-Discordant Pairs). A pair of points xi and xj is called

nondiscordant if the relative order of the true classes Cxi and Cxj is not opposite to

the relative order of the predicted classes Ĉxi and Ĉxj (if there is a tie in either the

true or predicted classes, or both, the pair is still nondiscordant).

In the CM, De¯nition 4 is translated into

signððrxi � rxjÞ � ðcxi � cxjÞÞ � 0 ð5Þ

Table 1. Results for the preliminary comparison, with �1 ¼ 0:25
NðK�1Þ and

�2 ¼ 0:75
NðK�1Þ. Coe±cients OC1

�1
andOC1

�2
will be introduced later in the text.

Classi¯er MER MAE Rs � b rint OC1
�1

OC1
�2

A 0.0 0.0 1.0 1.0 1.0 0.0 0.0

B 0.77 0.77 1.0 1.0 1.0 0.50 0.63

C 0.77 1.08 0.79 0.75 0.80 0.61 0.78
D 0.77 0.77 0.24 0.11 0.53 0.65 0.72
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where rxi and cxi are the row and column in the CM corresponding to example xi,

respectively. Finally, de¯ne a path in the CM as a sequence of entries where two

consecutive entries in the path are 8-adjacent neighbors. The bene¯t corresponding

to a path is the sum of the values of the entries in the path. In fact, it is useful to

consider a graph associated with the CM, where each entry of the matrix corresponds

to a vertex and there is an edge connecting vertices corresponding to adjacent

entries.

The coe±cient to be proposed results from the observation that the performance

yielded by the MER coe±cient is the bene¯t of the path along the diagonal of

the CM. The MER coe±cient only counts the pairs in the main diagonal of the CM

to measure the performance; any deviation from the main diagonal is strictly

forbidden — see Fig. 1(a).

A more relaxed coe±cient can be de¯ned by allowing the pairs to deviate from the

diagonal, while staying nondiscordant. Therefore, we allow all pairs forming a con-

sistent path from (1,1) to (K;K) — see Fig. 1(b). A path is said to be consistent if

every pair of nodes in the path is nondiscordant. It is trivial to verify that any

monotonous path (a path where the row and column indices do not decrease when

walking from (1,1) to (K;K)) is consistent. The consistency of the classi¯er is

therefore taken into account by valuing only the nondiscordant subsets of entries.

Still, it is not enough to select the consistent path with the maximum bene¯t.

One should also penalize the deviation of the path from the main diagonal. We

propose then to ¯nd the consistent path from (1,1) to (K;K) that maximizes the sum

of the entries in the path and minimizes a measure of the deviation from the main

diagonal. We propose the ordinal classi¯cation index OC� to take the shape

OC� ¼ min 1� 1

N
benefitðpathÞÞ þ �ðpenaltyðpathÞ

� �� �

where the minimization is performed over the set of all consistent paths from (1,1) to

(K;K) and � � 0. Tentative solutions for the penalty of the path include the excess

(a) (b)

Fig. 1. Consistent paths over the CM. (a) An illustration of the bene¯t of the MER coe±cient as the sum
of the entries in the main diagonal of the CM. The MER coe±cient results as N�benefit

N . (b) Some examples

of consistent paths; any pairs of observation contributing to the entries in a consistent path are

nondiscordant. The bene¯t of a path is the sum of the entries in the path.
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on the length of the path over the minimum possible length (penaltyðpathÞ ¼
lengthðpathÞ �K), the maximum distance of the path to the main diagonal or the

area between the path and the main diagonal. However, it is intuitive that these

terms do not meet the required properties. In Figs. 2(a) and 2(b) we present two

paths that would experience the same penalization under a measure based on the

length of the path, the maximum distance to the main diagonal or the area of the

path; however, it should be consensual that the CM in Fig. 2(a) represents a better

performance than the CM in Fig. 2(b).

A penalization term suggested by the expressions of MAE and MSE is based on

penalizing each vertex of the path by its \distance" to the main diagonal, obtaining

OC 0�
� ¼ min 1� 1

N

X
ðr;cÞ2path

nr;c

0
@

1
Aþ �

X
ðr;cÞ2path

nr;cjr� cj�
8<
:

9=
; ð6Þ

where � > 1. It is clear that OC
0�
� is always non-negative, as the two terms in Eq. (6)

are both non-negative; OC
0�
� is also not superior to 1 as OC

0�
� is always not superior

to the cost over the main diagonal, where the path penalty is zero. It is also easy to

conclude that if � � 1 then OC
0�
� will equal the misclassi¯cation error (MER): since

any deviation from the main diagonal will incur in a cost not inferior to 1, the optimal

path is always over the main diagonal.

Nevertheless, this setting is still unsatisfactory; incorporating in the objective

function only terms measuring the quality of the path does not capture di®erences in

performance due to the leftover entries — see Figs. 3(a) and 3(b). One needs to also

penalize the \dispersion" of the values from the main diagonal.

A ¯rst tentative solution is to add an additional term �2ð
P

8ðr;cÞ nr;cjr� cj�Þ1=� to
the objective function penalizing such dispersion of the data. This approach su®ers

from the disadvantages of adding a further parameter whose value needs to be

selected and of changing the range of possible values for OC�
� from ½0; 1� to an upper-

unbounded interval.

Therefore, we propose to change the de¯nition (6) by normalizing the bene¯t of

the path not by N but by N þM , whereM ¼ ðP8ðr;cÞ nr;cjr� cj�Þ1=� is a measure of

(a) (b)

Fig. 2. The two paths (a) and (b) would have the same penalization using the length, the maximum

distance to the main diagonal or the area to select the cost; however, path (a) should be preferred over

path (b).

1180 J. S. Cardoso & R. Sousa



the dispersion of the data in the CM:

OC�
� ¼ min 1�

P
ðr;cÞ2path nr;c

N þ P
8ðr;cÞ nr;cjr� cj�� �

1=�
þ �

X
ðr;cÞ2path

nr;cjr� cj�
8<
:

9=
;

ð7Þ
Note that M can be interpreted as the Minkowski distance between the two vectors

used to build the CM. The parameter � controls the tradeo® between the relevance of

the ranking-based component and the instance based evaluation. Small values for �

will favor ranking over \absolute" classi¯cation; high values for � will do the

opposite. In Table 1 we present the results for two di®erent values of �. The only

di®erence is the relative merit of classi¯ers C and D, in accordance with the preceding

discussion.

3.1. The ordinal classi¯cation index — general formulation

Thus far, the consistency was valued by working only with nondiscordant pairs

of points. The feasible paths were constrained under the set of consistent paths.

A standard procedure in optimization is to replace a constraint by a penalty term in

the goal function. Assume now we extend the set of feasible paths to the set of paths

starting in (1,1) and ending in (K, K). Note also that there is always one of such

paths going through all the entries in the CM. One can generalize the framework over

this set of paths, penalizing now not only the deviation of the path from the main

diagonal, but also the inconsistency of the path. One can therefore add an additional

penalizing term to the de¯nition of the index, capturing this undesirable attribute.

An intuitive penalization term is the number of discordant pairs of vertices in the

path, Ndisc pos (see (5)):

OC�
�1;�2

¼ min 1�
P

ðr;cÞ2path nr;c

N þ P
8ðr;cÞ nr;cjr� cj�� �

1=�

(

þ �1

X
ðr;cÞ2path

nr;cjr� cj� þ �2Ndisc pos

9=
; ð8Þ

(a) (b)

Fig. 3. The performance represented by CM in (a) should be better than the performance represented by

CM in (b).
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Now the minimization is performed over all possible paths from (1,1) to (K;K). Since

Ndisc pos is a non-negative integer, setting �2 � 1 will revert to the initial OC�
�. Note

that OC 1
0;0 ¼ MAE

1þMAE is just a normalized version of MAE.

Nevertheless, we will not explore further this generalized index and all the fol-

lowing discussion will be based on the formulation (7).

3.2. Single sample-size

A key distinction between measures such as MAE (or MER or MSE) and Kendall's � b
(or Spearman's rank correlation coe±cient Rs or rint) is that the latter cannot be

applied to assess the performance in a single object. By working with pairs of

observations, � b is not applicable to a single observation.

Although OC�
� integrates a ranking-based component, it is straightforwardly

applied to a single example evaluation. Assume that the true and predicted classes of

the observation correspond to the rth row and the cth column in the CM, respect-

ively. Setting in Eq. (7), N ¼ 1, nr;c ¼ 1, nr 0;c 0 ¼ 0 if r 0; c 0 6¼ r; c, then OC�
� equals

OC�
� ¼ min 1; 1� 1

1þ jr� cj þ �jr� cj
� �

which increases monotonously from 0 to 1 when the distance of the example to the

main diagonal increases from 0 to in¯nity. Figure 4 illustrates this evolution for

di®erent values of �. Note that, in this setting, for � ¼ 0:5, OC already equals the

MER.

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

=0.5

=0.125

=0.0313

=0

Fig. 4. Evolution of OC�
� for a single example evaluation.
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3.3. Properties of OC°
¯

Let a;b; c be vectors used to construct CMs. It is easily observed from the de¯nition

that for � > 0, � > 1 OC�
�ða;bÞ ¼ 0 if and only if a ¼ b.

Since the cost given by (7) of any consistent path is always non-negative, OC�
� is

always non-negative; since the cost of the path through the main diagonal is always

not superior to 1, OC�
� � 1.

It should be clear that the transposition of the CM does not change the value of

OC�
� and therefore OC�

� is symmetric with respect to the role of the vectors involved

in the construction of the CM: OC�
�ða;bÞ ¼ OC�

�ðb; aÞ.
These conditions express intuitive notions about the expected properties for a

classi¯cation performance index. It is also possible to establish that, for su±ciently

high values of �, the triangular inequality is also satis¯ed, meaning that for certain

values of � OC�
� is a metric. See Appendix A for further details.

3.4. Computational remarks

Noting from Eq. (7) that there is a cost wr;c corresponding to each vertex (entry in

the matrix) of the graph given by

wr;c ¼ � nr;c

N þ P
8ðr;cÞ nr;cjr� cj�� �

1=�
þ �nr;cjr� cj�

the optimal consistent path can be found using dynamic programming. The ¯rst step

is to traverse the matrix from the ¯rst entry to the last entry and compute the

cumulative minimum weight W for all possible connected consistent paths for each

entry ðr; cÞ:
Wr;c ¼ wr;c þminfWr�1;c�1;Wr�1;c;Wr;c�1g

with the adequate initialization (W1;1 ¼ 1þ w1;1) and the adequate attention for the

entries in the ¯rst row and column. At the end of this process, the value WK;K will

equal OC�
�. The computational complexity of this process is OðK 2Þ.

For typical values of N and K, the overall complexity will be dominated by the

cost of constructing the confusion matrix (N). This is also the complexity of MAE

and MSE. Note also that the complexity of � b and rint is not inferior to the com-

plexity of OC.

4. Experimental Study

In this section we evaluate the behavior of the di®erent coe±cients in some

additional cases, where it is possible to de¯ne a reasonable reference behavior.

Typically, in the Minkowski distance, � is rarely used for values other than 1, 2, and

in¯nity. Since the overall conclusions do not di®er for di®erent � values, we only

present the experimental study for � ¼ 1. Simultaneously, the � values tested in this

study are a percentage of the maximum possible value for the penalization term,
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NðK � 1Þ� . Since the choice for � is likely to be application dependent, balancing the

tradeo® between the ranking and absolute classi¯cation, we present the results for

two values of �, in the low and high range of the interval: �1 ¼ 0:25
NðK�1Þ � and

�1 ¼ 0:75
NðK�1Þ� .

4.1. Tridiagonal matrices

Consider CMs that are tridiagonal, taking the form

1 1 0 0 0 � � � 0

1 1 1 0 0 � � � 0

0 1 1 1 0 � � � 0

..

. . .
. ..

.

0 � � � 0 0 1 1 1

0 � � � 0 0 0 1 1

2
666666664

3
777777775

Figure 5 plots the values of the coe±cients for di®erent number of classes. As the ¯gure

suggests and is analytically possible to conclude, rint, Rs and � b all converge to 1

(perfect performance) asK ! 1. In opposition,MER,MAEconverge to 2=3 andOC 1
�

converges to 0.6. Our subjective evaluation of the performance of a classi¯cation result

corresponding to a tridiagonal matrix would hardly correspond to the perfect per-

formance. The rint, Rs and � b coe±cients seem therefore to present an unintuitive

behavior. It is also interesting to discuss if the performance should improve with the

increase of K. Subjectively, one may argue that with the increase of K, errors to the

0 5 10 15 20 25 30

K

0.0
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1.0
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ue

Results for triagonal CMs

MER, MAE

Fig. 5. Results for tridiagonal CMs, with �1 ¼ 0:25
NðK�1Þ and �2 ¼ 0:75

NðK�1Þ.
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sub- and super-diagonals of theCMbecome less signi¯cant and the performance should

improve. Under this assumption, OC 1
0:75

NðK�1Þ
presents the desired behavior.

4.2. Dispersed examples

To select the following examples, we randomly generated pairs of CMs and analyzed

those where the relative performance as measure by OC� did not agree with some of

the other coe±cients. Then, we tried to subjectively criticize the results.

A ¯rst pair of CMs is

CM1 ¼
2 0 1

1 1 0

2 1 2

2
4

3
5 CM2 ¼

1 0 0

0 4 0

2 2 1

2
4

3
5

The values for the coe±cients we have been considering are provided in Table 2. All

coe±cients, except Rs and � b, seem to be in agreement with the expected conclusion

that the performance corresponding to CM2 is better than the performance corre-

sponding to CM1.

Consider now the pair of CMs

CM3 ¼
1 0 1

0 0 0

3 2 0

2
4

3
5 CM4 ¼

1 0 1

0 2 1

1 1 0

2
4

3
5

The values for the coe±cients we have been considering are provided in Table 3. Now

all coe±cients, with the exception of rint, seem to be in agreement with the expected

conclusion that the performance corresponding to CM4 is better than the perform-

ance corresponding to CM3.

In a third example, consider the following CMs

CM5 ¼
1 1 0 0

0 1 0 1

0 0 0 3

0 0 0 0

2
664

3
775 CM6 ¼

0 0 1 0

1 1 1 0

1 1 1 0

0 0 0 0

2
664

3
775

Table 2. Results for CM1 and CM2, with �1 ¼ 0:25
NðK�1Þ and �2 ¼ 0:75

NðK�1Þ.

CM MER MAE Rs � b rint OC1
�1

OC1
�2

CM1 0.50 0.80 0.20 0.19 0.39 0.63 0.69

CM2 0.40 0.60 0.10 0.11 0.45 0.53 0.58

Table 3. Results for CM3 and CM4, with �1 ¼ 0:25
NðK�1Þ and �2 ¼ 0:75

NðK�1Þ.

CM MER MAE Rs � b rint OC1
�1

OC1
�2

CM3 0.86 1.43 �0.26 �0.254 0.34 0.79 0.93

CM4 0.57 0.85 �0.25 �0.250 0.08 0.71 0.75
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and the values in Table 4. This time MER and MAE were unable to capture the

degradation of performance from CM5 to CM6. Note that CM6 corresponds to an

almost random classi¯er.

4.3. Evaluation of real classi¯ers

Following Ref. 9, we generated a synthetic dataset composed by 400 example points

x ¼ ½x1 x2� t in the unit square ½0; 1� � ½0; 1� � R2 according to a uniform distri-

bution. Then, we assigned to each example x a class y 2 f1; . . . ; 5g corresponding to

ðb0; b1; b2; b3; b4; b5Þ ¼ ð�1;�2;�0:5; 0:25; 1;þ1Þ

y ¼ min
r2f1;2;3;4;5g

r : br�1 < 10
Y2
i¼1

xi � 0:5

 !
þ " < br

( )
" 	 Nð0; 0:1252Þ

and represented in Fig. 6.

We compared the performance of three classi¯ers: the recently proposed data

replication method,4 instantiated both in Support Vector Machines (oSVM) and

Neural Networks (oNN) and the method by Frank and Hall.6 For completeness, we

will brie°y describe these learning techniques.

Table 4. Results for CM5 and CM6, with �1 ¼ 0:25
NðK�1Þ and �2 ¼ 0:75

NðK�1Þ.

CM MER MAE Rs � b rint OC1
�1

OC1
�2

CM5 0.86 1.00 0.89 0.84 0.81 0.58 0.75

CM6 0.71 1.00 �0.29 �0.26 0.06 0.74 0.79

Fig. 6. Sample of 100 examples from synthetic dataset (K ¼ 5).
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The data replication method for ordinal data can be framed under the single

binary classi¯er reduction (SBC), an approach for solving multiclass problems via

binary classi¯cation relying on a single, standard binary classi¯er. SBC reductions

can be obtained by embedding the original problem in a higher-dimensional space

consisting of the original features, as well as one or more other features determined

by ¯xed vectors, designated here as extension features. This embedding is

implemented by replicating the training set points so that a copy of the original point

is concatenated with each of the extension features' vectors. The binary labels of the

replicated points are set to maintain a particular structure in the extended space.

This construction results in an instance of an arti¯cial binary problem, which is fed to

a binary learning algorithm that outputs a single binary classi¯er. To classify a new

point, the point is replicated and extended similarly and the resulting replicas are fed

to the binary classi¯er, which generates a number of signals, one for each replica.

This method can be instantiated in two important machine learning algorithms:

support vector machines and neural networks. For more details, the reader should

consult Ref. 4.

Frank and Hall in Ref. 6 proposed to use ðK � 1Þ standard binary classi¯ers to

address the K-class ordinal data problem. Towards that end, the training of the ith

classi¯er is performed by converting the ordinal dataset with classes C1; . . . ;CK into a

binary dataset, discriminating C1; . . . ;Ci against Ciþ1; . . . ;CK . The ith classi¯er

represents the test Cx > Ci. To predict the class value of an unseen instance, the

K � 1 binary outputs are combined to produce a single estimation.

Using the aforementioned techniques, the dataset was split in 40% for training

(D) and 60% for testing (D
). Algorithm 1 illustrates the experimental procedure.

The splitting of the data was repeated 50 times in order to obtain more stable results

for performance estimation. In lines 6 and 16 of Algorithm 1 one can use any of the

metrics discussed in this manuscript in order to obtain the best parameterization of

the model or estimate the ¯nal performance.

In the results of Table 5, CM10 represents the results for oSVM, CM11 the result

for oNN and CM12 the performance for Frank and Hall. The CMs are as follows:

CM10 ¼

0 0 0 0 0

0 50 7 0 0

0 2 94 2 0

0 0 11 39 0

0 0 0 5 30

2
666664

3
777775 CM11 ¼

0 0 0 0 0

0 0 45 12 0

0 0 2 87 9

0 0 0 6 44

0 0 0 0 35

2
666664

3
777775

CM12 ¼

0 0 0 0 0

0 50 7 0 0

0 2 94 2 0

0 0 21 29 0

0 0 0 29 6

2
666664

3
777775
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A subjective analysis of the CMs places CM10 as the best result and CM11 in the

bottom. Although all indices capture this relative performance, Rs, � b and rint almost

do not di®erentiate CM11 from CM12. The Ordinal Classi¯cation Index, on the other

hand, portrays a signi¯cant di®erence in performance, in spite of also incorporating a

ranking term.

4.4. Experiments with real datasets

To further evaluate the impact of using OCI, we performed the following exper-

iments with sets of real ordinal data, testing our method on the SWD, LEV, ESL,

Algorithm 1. Experimental procedure to design the models. This procedure was repeated 50 times in

order to obtain more stable results for performance estimation.

Table 5. Results for CM10, CM11 and CM12, with �1 ¼ 0:25
NðK�1Þ and �2 ¼ 0:75

NðK�1Þ.

CM MER MAE Rs � b rint OC1
�1

OC1
�2

CM10 0.11 0.11 0.93 0.91 0.91 0.12 0.13

CM11 0.82 0.91 0.89 0.85 0.84 0.55 0.66

CM12 0.25 0.25 0.90 0.86 0.86 0.23 0.26
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Balance and BCCT datasets. The ¯rst dataset, SWD, contains real-world assess-

ments of quali¯ed social workers regarding the risk facing children if they stayed with

their families at home and is composed by ten features and four classes. LEV dataset

contains examples of anonymous lecturer evaluations, taken at the end of MBA

courses and is composed by four features and ¯ve classes. These datasets contain

1000 examples each.

Another dataset which we worked on was the ESL dataset containing 488 pro¯les

of applicants for certain industrial jobs. Features are based on psychometric test

results and interviews with the candidates performed by expert psychologists. The

class assigned to each applicant was an overall score corresponding to the degree of

¯tness for the type of job.

Balance dataset available on UCI machine learning repository was also experi-

mented. Created to model psychological experimental results, each example is

labeled as having a balance scale tip to the right, left or balanced. Features

encompass on left and right weights, and distances.

The last dataset encompasses on 1144 observations taken from previous works3

and expresses the aesthetic evaluation of Breast Cancer Conservative Treatment

(BCCT). For each patient submitted to BCCT, 30 measurements were recorded,

capturing visible skin alterations or changes in breast volume or shape. The aesthetic

outcome of the treatment for each and every patient was classi¯ed in one of the four

categories: Excellent, Good, Fair and Poor. In Fig. 7 is depicted the class frequency

distribution for each dataset.

To assess the merit of OCI in an ordinal data classi¯cation setting, we trained

three di®erent classi¯ers on the ¯ve mentioned datasets:

. A conventional multiclass classi¯er, based on the one-against-one rationale. The

baseline binary classi¯er was the binary SVM, as deployed in libSVM.5

. The multiclass classi¯er adapted for ordinal data based on the proposal by Frank

and Hall, as described previously. The baseline binary classi¯er was again the

(a) Frequency for

LEV dataset

(b) Frequency for

SWD dataset

Fig. 7. Real datasets frequency values.
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binary SVM, as deployed in libSVM. Previous works have shown the advantage of

this method over conventional approaches.6,9

. The data replication method, instantiated in SVMs (oSVM), as also described

before. Previous works have shown the advantage of this method over both con-

ventional approaches and the Frank and Hall method.3,15,16

Once again the experimental study followed the setting illustrated in Algorithm 1.

The datasets were split in 40% for training and 60% for testing; the optimization of

the parameters using cross-validation over the training set was based on the OCI

metric; the ¯nal assessment of the performance of the models in the test set was done

again using OCI. A linear kernel was used in all learning schemes. The results are

presented in Table 6.

(c) Frequency for

ESL dataset

(d) Frequency for

Balance dataset

(e) Frequency for
BCCT dataset

Fig. 7. (Continued )

Table 6. Performance average (std. dev.) results for the ¯ve datasets using

the OCI measure.

Dataset oSVM Frank and Hall Conventional

SWD 0.49 (0.02) 0.47 (0.01) 0.49 (0.02)
LEV 0.44 (0.02) 0.46 (0.02) 0.47 (0.02)

ESL 0.36 (0.00) 0.36 (0.01) 0.36 (0.01)

Balance 0.13 (0.01) 0.13 (0.01) 0.14 (0.02)
BCCT 0.39 (0.01) 0.39 (0.01) 0.40 (0.01)

1190 J. S. Cardoso & R. Sousa



A ¯rst main assertion is that OCI correctly captures the superiority of both

algorithms speci¯c to ordinal data over the conventional method. The learning and

the assessment with OCI are in accordance with the expected relative performance.

The relative merit of oSVM and Frank and Hall method is not that strong, with a

potentially slight advantage of oSVM, never losing for Frank and Hall method, both

in average and in variance. It is also important to notice that oSVM produces simpler

models than Frank and Hall method, since all boundaries share the same direction

(the boundaries) are parallel. Likewise, Frank and Hall method produces simpler and

more robust classi¯ers than the one-against-one generic model implemented in

libSVM.

5. Conclusion

We have proposed the use of a metric de¯ned directly on the CM to evaluate

the performance in ordinal data classi¯cation. The metric chooses the non-

discordant pairs of observations that minimize the cost of a global optimization

procedure on the CM, minimizing deviation of the pairs to the main diagonal

while maximizing the bene¯t. The adoption of this measure thus guarantees fair

comparison among competing systems, and more correct optimization procedures

for classi¯ers.

Arguing in favor of a new metric against current ones is a di±cult task, almost

requiring a meta-metric to assess the performance of metrics. To overcome this

di±culty we started by trying to motivate the interest of the proposed metric with

intuitive settings and completed with the application in real datasets.

A new metric can be used not only to compare classi¯ers but also to design

better classi¯ers. The usage in the design of classi¯ers can be in two di®erent

directions. A ¯rst use is \externally" to the classi¯er, using the metric to select

the best parameterization of the classi¯er; in this paper we have used the metric

for optimizing the parameters of the models using cross-validation. A second

possibility is to embed the new metric in the classi¯er design, adapting the

internal objective function of the classi¯er, replacing loss functions based on

standard measures by a loss function based on the proposed measure. For

instance, the standard loss function of a neural network based on the square of

the error or on cross-entropy could be replaced by an error evaluated by OCI.

This will be pursued in future research.
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Appendix A. Triangular Inequality

For su±ciently high values of �(� � 1
Nþ1) the optimal path is always over the main

diagonal and the ordinal classi¯cation index simpli¯es to 1�
P

ðr;cÞ2main diagonal
nr;c

Nþ
P

8ðr;cÞ nr;cjr�cj�
� 	

1=� ¼

MþH
MþN ¼ M

MþN þ H
MþN , where H and M are the Hamming and Minkowski distances,

respectively. This is easily seen to be a metric:

. The positive de¯niteness and symmetry have already been established in the main

body of the article;

. Knowing that if d1 and d2 are metrics and d1ða;bÞ � d2ða;bÞ; 8a;b, then
(1) d2

1þd2
is a metric;

(2) d1
1þd2

� d2
1þd2

is a metric;

(3) d1 þ d2 is a metric;

It just remains to prove that for � � 1=ðN þ 1Þ the optimal path is indeed the main

diagonal. Let p be a consistent path and b1 be the part of bene¯t of the path on the

main diagonal and b2 > 0 the part of bene¯t of the path not in the main diagonal.

If � � 1
Nþ1 then the following is true for the cost C of the path:

C ¼ 1� b1 þ b2
N þM

þ �
X

ðr;cÞ2path
nr;cjr � cj�

� 1 � b1
N þM

� b2
N þM

þ 1

N þ 1

X
ðr;cÞ2path

nr;cjr� cj�

� 1� b1
N þM

� b2
N þM

þ b2
N þ 1

� 1� b1
N þM

This last value is clearly not inferior to the cost of the path over the main

diagonal.

To ¯nalize, it is easy to conclude that for small values of �, OC�
� is not a metric.

Consider the vectors (K ¼ 2)

a ¼

1

..

.

1

1

2

2
6666664

3
7777775

b ¼

1

..

.

1

1

1

2
6666664

3
7777775

c ¼

1

..

.

1

2

1

2
6666664

3
7777775

The corresponding confusion matrices are

CMða;bÞ ¼ N � 1 0

1 0


 �
CMðb; cÞ ¼ N � 1 1

0 0


 �
CMða; cÞ ¼ N � 2 1

1 0


 �
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It is easy to con¯rm that for � < N�1
ðNþ1ÞðNþ2Þ we have OC�

�ða;bÞ þOC�
�ðb; cÞ <

OC�
�ða; cÞ and therefore OC�

� does not obey the triangular inequality.

Appendix B. Source Code Listing

For reference, Listing 1 is presented for a Matlab implementation of OC�
�.
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