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1. Introduction

The term “online” is used to describe algorithms that operate without the full
knowledge of the input: a typical scenario would be a server that must continually
process a sequence of requests in the order they arrive. More formally, an online
algorithm processing an input sequence of requests x = 〈x1, x2, . . . , xn〉 produces
an output sequence y = 〈y1, y2, . . . , yn〉 in such a way that each yi is computed as a
function of the prefix 〈x1, x2, . . . , xi〉. On the other hand, an algorithm computing
the whole output sequence y from the entire input sequence x is termed “offline”.
The systematic study of online problems began in the late sixties [16], and has
received much attention over the years (see e.g. [3,6]). The standard measure used
for evaluating online algorithms is the competitive ratio [20,24], i.e. the worst case
ratio between the solution quality of the given online algorithm and that of the
optimal offline algorithm. The competitive complexity of an online problem is
the best competitive ratio attainable by an online algorithm solving the problem.
Intuitively, this measure describes the price, in terms of solution quality, that has
to be paid for not knowing the whole input from the beginning.

Consider, for example, the well known SkiRental problem [21]: a skier can
rent a set of skis for one day for a unit price, or buy them for a fixed price c.
However it is only the morning of each day when it becomes clear if the skier
wants to continue skiing or not. A classical result of the competitive analysis [21]
shows that the optimal worst case performance is achieved by first renting the skis
for c − 1 days, and then buying them, which gives a competitive ratio of 2 − 1/c.
The interpretation of this result is that the input carries a global information
relevant to the problem; ignoring this information leads to a degradation of the
best possible solution quality by a factor of 2 − 1/c.

In this paper we propose a new way of characterizing the complexity of on-
line problems. The hardness incurred by the online setting comes from the fact
that there is some information about the future input that is not available to the
algorithm. In our approach we measure the amount of this hidden information.
However, the input contains also information that is irrelevant to the problem at
hand, and we have to find a way of distilling the problem-relevant information
from the input.

Our approach to measure the relevant information is inspired by the commu-
nication complexity research. We consider, in addition to the algorithm itself, an
oracle that sees the whole input and knows the algorithm. When computing the
ith output yi, the algorithm not only sees the sequence 〈x1, x2, . . . , xi〉, but can
also communicate with the oracle. We require that the algorithm always computes
an optimal solution. The advice complexity of the algorithm is the number of bits
communicated by the algorithm to the oracle, normalized per request. The ad-
vice complexity of an online problem is the minimum advice complexity over all
oracle-algorithm pairs that together solve the problem.

Apart from its theoretical significance, this measure can be of use in some semi-
online scenarios where the input is available, but has to be accessed sequentially
by the algorithm. As a motivation example, consider the scenario where a simple
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device (e.g. a remote robot) is supposed to process a large amount of data (e.g. a
series of orders) in an online fashion. The data are stored and sequentially fed to
the device from a powerful entity (base station) over a (wireless) communication
link. In order to guide the robot in the processing, the base station may pre-process
the data and send some additional information together with each data item.
However, since communication rapidly depletes the robots battery, the amount of
this additional communication should be kept as small as possible.

To return to the original example, the structure of the SkiRental problem is
very simple from the advice complexity point of view: the optimal offline solution
is either to buy the skis on the first day or rent them during all days. Hence,
although the competitive ratio of the SkiRental problem is asymptotically 2, a
single bit of information about the whole input is sufficient for the online algorithm
to achieve optimal performance. As we show later, there are other problems, for
which this amount of required information is much higher.

We are primarily interested in the relationship between the competitive ratio
and the advice complexity. If the competitive ratio measures the price paid for the
lack of information about future, the advice complexity quantifies for how much
information this price is paid.

Note that there are two ways to achieve trivial upper bounds on advice com-
plexity: (1) the oracle can send, in some compressed way, the whole input to the
algorithm, which then can proceed as an optimal offline algorithm; and (2) the
oracle can tell the algorithm exactly what to do in each step. However, both these
approaches can be far from optimum. In the first case all information about the
future input is communicated, although it may not be relevant1. In the second
case, the power of the online algorithm is completely ignored. Indeed, an online
algorithm may be able to process large parts of the input optimally without any
advice, requiring only occasional help from the oracle.

In this paper, we define two modes of interaction with the oracle. In the an-
swerer mode the algorithm may, in any step, ask for an advice, and it receives
a non-empty string from the oracle. The overall number of bits obtained by the
algorithm is a measure of the complexity of the input with respect to the problem.
In the helper mode the measuring of the amount of problem-specific information
contained in the input comes from the following intuition: consider an online
problem, and suppose there is a small family of algorithms such that each of them
solves the problem optimally for some class of instances. In order to obtain an
optimal algorithm, it is sufficient to be able to predict which algorithm to use for
the upcoming requests. If the number of algorithms is small and so is the num-
ber of times they have to be switched on any particular input, the problem can
intuitively be considered as having a simple structure. In order to model this in-
tuition, in the helper mode the algorithm does not activate the oracle; instead, the
oracle oversees the progress of the algorithm, and occasionally sends some pieces
of advice.

1Consider, e.g. the Paging problem. There may be a long incompressible sequence of requests
that do not result in a page fault; the information about the actual requests in this sequence is
useless for the algorithm.
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competitive ratio helper answerer

Paging K [29] (0.1775, 0.2056) (0.4591, 0.5 + ε)

DiffServ ≈1.281[11] 1
K

(

log2 K

2K
,

log2 K

K

)

Table 1. Advice complexities of Paging and DiffServ prob-
lems compared with the competitive ratio. Parameter K in the
Paging and DiffServ problems is the number of pages that fit
into physical memory, and the size of the input buffer, respec-
tively. The intervals represent lower and upper bounds. The
results are asymptotics taken for large K.

To model the impact of the timing of the communication, let the algorithm
work in a synchronous setting: in the ith step, it receives the ith input request xi,
and possibly some advice ai, based on which it produces the output yi. In a man-
ner usual in the synchronous distributed algorithms (see e.g. [26] and references
therein) we count the number of bits communicated between the oracle and the
algorithm, relying upon the timing mechanism for delimiting both input and ad-
vice sequences2. We show that these two modes are different, but are related by
BH(P) ≤ BA(P) ≤ 0.86 + BH(P) where BH(P) is the advice complexity of a
problem P in the helper mode, BA(P) is the complexity in the answerer mode.
Moreover, we analyze two well-studied online problems from the point of view of
advice complexity, obtaining the results shown in Table 1. To conclude this section
we note that there has been a significant amount of research devoted to developing
alternative complexity measures for online problems. The competitive ratio has
been criticized for not being able to distinguish algorithms with quite different
behavior on practical instances, and giving too pessimistic bounds [17]. Hence,
several modifications of competitive ratio have been proposed, either tailored to
some particular problems (e.g. loose competitiveness [32]), or usable in a more
general setting. Among the more general models, many forms of resource augmen-
tation have been studied (e.g. [9,19,25]). The common idea of these approaches
is to counterbalance the lack of information about the input by granting more
resources to the online algorithm (e.g. by comparing the optimal offline algorithm
to an online algorithm that works k-times faster). Another approach was to use
a look-ahead where the online algorithm is allowed to see some limited number of
future requests [2,5,19,30]. The main problem with the look-ahead approach is
that a look-ahead of constant size generally does not improve the worst case per-
formance measured by the competitive ratio. Yet another approach is based on
not comparing the online algorithms to offline ones, but to other online algorithms
instead (e.g. Max/Max ratio [5], relative worst-order ratio [10]; see also [8,12]).
Still another approach is to limit the power of the adversary as e.g. in the access

2Alternatively, we might require that both the input requests, and the oracle advices come in
a self-delimited form as discussed later.
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graph model [7,18], statistical adversary model [27], diffuse adversary model [22],
etc.

Finally, a somewhat similar approach of measuring the complexity of a problem
by the amount of additional information needed to solve it has been recently
pursued in a different setting by Fraigniaud et al. [13–15].

2. Definitions and preliminaries

Unless stated otherwise all logarithms in the paper are considered in base 2.
For the technical parts we shall use the following inequality which comes from the
Stirling formula:

Claim 2.1. For each n ≥ 4 it holds

√
2πn

(n

e

)n

< n! < 1.05 ·
√

2πn
(n

e

)n

·

Proof. The well known Stirling formula leads in a straightforward way to this
double inequality [28]:

√
2πnn+ 1

2 e−n+ 1
12n+1 < n! <

√
2πnn+ 1

2 e−n+ 1
12n

which in turn gives the statement of the claim, since for n = 4, e
1

12n ≈ 1.021051862,
and it decreases with increasing n. �

An online algorithm receives the input incrementally, one piece at a time. In
response to each input portion, the algorithm has to produce output, not knowing
the future input. Formally, an online algorithm is modeled by a request-answer
game [6]:

Definition 2.1. Consider an input sequence x = 〈x1, x2, . . . , xn〉. An online
algorithm A computes the output sequence y = A(x) = 〈y1, y2, . . . , yn〉, where
yi = f(x1, . . . , xi) for some function f . The cost of the solution is given by a
function CA(x) = COST (y) where COST is a function measuring the cost of a
given output vector.

In the competitive analysis, the online algorithm A is compared with an optimal
offline algorithm OPT , which knows the whole input in advance (i.e. y = f(x))
and can process it optimally. The standard measure of the quality of an algorithm
A is the competitive ratio:

Definition 2.2. An online algorithm is c-competitive, if for each input sequence
x, CA(x) ≤ c · COPT (x).

Let us suppose that the algorithm A is equipped with an oracle O, which knows
A, can see the whole input, and can communicate with A. We shall study pairs
(A,O) such that the algorithm (with the help of the oracle) solves the problem
optimally. We are interested in the minimal amount of communication between A
and O, needed to achieve the optimality.
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We distinguish two modes of communication: the helper mode, and the answerer
mode. In the helper mode, the oracle (helper) sends in each step i a binary advice
string ai (possibly empty), thus incurring a communication cost of |ai|. A can
use this advice, together with the input x1, . . . , xi to produce the output yi.

Definition 2.3 (Online algorithm with a helper). Consider an online algorithm A,
an input sequence x = 〈x1, x2, . . . , xn〉, and a helper sequence O(x) = 〈a1, a2, . . . ,
an〉 of binary strings ai. The online algorithm with helper (A,O) computes the
output sequence y = 〈y1, y2, . . . , yn〉, where yi = f(x1, . . . , xi, a1, . . . , ai). The
cost of the solution is C(A,O)(x) = COST (y), and the advice (bit) complexity is

BH
(A,O)(x) =

n
∑

i=1

|ai|.

In the answerer mode, on the other hand, the oracle is allowed to send an advice
only when asked by the algorithm. However, this advice must be a non-empty
string. For the ease of presentation we define the answerer oracle as a sequence
of non-empty strings. However, only those strings requested by the algorithm are
ever considered.

Definition 2.4 (Online algorithm with an answerer). Consider an algorithm
A, an input sequence x = 〈x1, x2, . . . , xn〉, and an answerer sequence O(x) =
〈a1, a2, . . . ,an〉 of non-empty binary strings ai. The online algorithm with an-
swerer (A,O) computes the output sequence y = 〈y1, y2, . . . , yn〉 as follows:

(1) In each step i, a query ri ∈ {0, 1} is generated first as a function of previous
inputs and advices, i.e. ri = fr(x1, . . . , xi, r1 ⋆ a1, . . . , ri−1 ⋆ ai−1), where
the function “⋆” is defined

c ⋆ α =

{

empty string if c = 0,
α otherwise.

(2) Then, the output is computed as yi = f(x1, . . . , xi, r1 ⋆ a1, . . . , ri ⋆ ai).
The cost of the solution is C(A,O)(x) = COST (y), and the advice (bit)

complexity is

BA
(A,O)(x) =

n
∑

i=1

|ri ⋆ ai|.

In the sequel we shall denote the communication modes as H for helper, and A
for answerer. As already mentioned, we are interested in the minimal amount of
information the algorithm must get from the oracle, in order to be optimal. For
an algorithm A with an oracle (helper or answerer) O, the communication cost is
the worst case bit complexity, amortized per one step:

Definition 2.5. Consider an online algorithm A with an oracle O using commu-
nication mode M ∈ {H, A}. The bit complexity of the algorithm is

BM
(A,O) = lim sup

n�→∞
max
|x|=n

BM
(A,O)(x)

n
·
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The advice complexity of an online problem P is the minimum bit complexity
of an optimal pair (A,O):

Definition 2.6. Consider an online problem P . The advice complexity of P in
communication mode M ∈ {H, A} is

BM (P) = min
(A,O)

BM
(A,O),

where the minimum is taken over all (A,O) such that ∀x : C(A,O)(x) = COPT (x).

In the previous definitions we measure the amount of communication by simply
summing up the number of communicated bits, and rely upon the timing mecha-
nism to delimit particular (possibly empty) advice strings. In this way, which is
common in the area of synchronous distributed computing, the silence has also an
expressive power which can be exploited by the algorithm. In the helper model,
this power is essential: indeed, the helper model measures in some way the amount
of critical decisions made by the algorithm, i.e. the times where the information
about the future is essential for a correct decision. In the answerer model, on the
other hand, the silence itself cannot carry any information.

We start analyzing the advice complexity with an immediate observation that
the answerer model is more restrictive in the following sense:

Claim 2.2. For each problem P , BH(P) ≤ BA(P) ≤ 0.86 + BH(P).

Proof. The left-hand inequality is obvious. Consider an algorithm A with an
answerer. The same algorithm can be used with a helper with the same bit com-
plexity: the helper can simulate A and locally compute in each step, if the advice
is requested. If so, it sends the advice, otherwise it sends an empty string.

For the right-hand part, the inequality BA(P) ≤ 1 + BH(P) is easy to see: an
algorithm with an answerer can ask a question in every step. The first bit of the
answer indicates, if a helper would send a non-empty advice, and the rest is the
actual advice as would be given by the helper.

Now we show how to reduce the constant to 0.86. Consider a fixed constant
γ such that 0 < γ < 1/2. In the first step, the algorithm asks a question and
receives, together with the “usual” advice also some initialization information of
o(n) bits. First of all, this information allows the algorithm to distinguish two
cases:

Case 1: the number of empty strings sent by the helper is less than γn or more
than (1 − γ)n.
The answerer can, in the initial information, encode the positions of the non-empty
strings. Then, the algorithm can ask only in those steps, in which the helper would
sent a non-empty advice. To encode the positions of non-empty strings means to
encode a binary string of length n with at most γn ones or zeroes. There are

2

γn
∑

i=0

(

n

i

)

≤ n ·
(

n

γn

)

≈ n ·
(

1

γγ(1 − γ)(1−γ)

)n

· O(1)
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such strings so that asymptotically

n log

(

1

γγ(1 − γ)(1−γ)

)

+ O(log n)

bits are sufficient to encode the string.

Case 2: the number of empty strings sent by the helper is between γn and (1−γ)n.
For a given i, let µi be a binary string of length i, such that it is the least frequently
occurring string among the advices of length i given by the helper3. The initial
information includes the sequence µ1, µ2, . . . , µlog n, which is log2 n bits overall.
The algorithm asks a question in every step, and receives the same answer as the
helper would give with the exception that instead of an empty string, the string
µ1 is sent, and instead of µi, µi+1 is sent. Obviously, since the string µlog n is the
least frequent of all n strings of length log n, it is never used by the helper, and so
does not need to be re-mapped.

To bound the communication overhead, let there be x empty strings sent by the
helper. These incur x additional bits in the answerer model. From the remaining
n−x strings, there may be at most (n−x)/2i occurrences of µi, thus incurring at
most (n − x)/2i additional bits. Obviously, the worst case is when all non-empty
strings are of length 1, in which case we get the overhead x+(n−x)/2 = (x+n)/2.
Since x ≤ (1 − γ)n the communication overhead is at most n

(

1 − γ
2

)

.
To minimize the maximum of the two cases, we solve numerically for

log

(

1

γγ(1 − γ)(1−γ)

)

=
(

1 − γ

2

)

obtaining a value γ ≈ 0.28245. Choosing this value gives the statement of the
theorem. �

In the lower bound arguments, we shall use the notion of a communication
pattern. Informally, a communication pattern is the entire information that the
algorithm receives from the oracle. Since the algorithms are deterministic, the
number of different communication patterns bounds the number of different be-
haviors of the algorithm on a given input. The structure of a typical lower bound
is then as follows: consider an arbitrary algorithm and construct a family of inputs
such that, in order to be optimal, the algorithm needs a distinct communication
pattern for each input from the family. Then compare the number of the con-
structed inputs with the number of communication patterns with at most s bits,
and argue that at least some s0 bits are needed by the algorithm. In the rest of this
section we present the definitions of communication patterns, and some technical
lemmata that will be used in the next sections.

Definition 2.7 (Communication pattern – helper). Consider an algorithm with
helper. The communication pattern of an input sequence x = 〈x1, x2, . . . , xn〉 is

3If there is more than one such string, the choice is arbitrary but fixed.
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defined as the sequence of advices given at each particular step, i.e. 〈a1, . . . ,an〉,
where ai is a (possibly empty) binary string.

Obviously, the input and communication pattern completely determine the be-
havior of the algorithm.

Lemma 2.1. Consider an algorithm with helper, and let the input sequence be of
length n + 1. For a fixed s, consider only communication patterns in which the
helper sends in total at most s bits over all n + 1 advices. For the number X of
distinct communication patterns with this property it holds

log X ≤ s

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log s

]

+ c

where α = n
s
, and c is some constant.

Proof. For a particular a, a communication pattern is a string of a bits, distributed
among n + 1 time slots. Hence there are

X =

s
∑

a=0

2a

(

a + n

a

)

≤ s2s

(

s + n

s

)

different communication patterns that use at most s bits. Using Claim 2.1 we get

log X ≤ log s + s + log
(

s+n
s

)

≤ · · ·
≤ s + (s + n) log(s + n)−s log s − n log n+ 1

2 [log(s + n)+log s−logn] + c
(2.1)

where c = log
(

1.05√
2π

)

≈ −1.255358737. Let, for x > 0, f(x) = x log x, and the

derivatives f ′(x) = 1
ln 2 + log x, f ′′(x) = 1

x ln 2 . Since f(x) is convex, it holds

(s+n) log(s+n)−n logn = f(s+n)−f(n) ≤ s ·f ′(s+n) = s

(

log(s + n) +
1

ln 2

)

·
(2.2)

Combining (2.1) and (2.2), we get

log X ≤ s

(

1 + log(s + n) +
1

ln 2
− log s

)

+
1

2
[log(s + n) + log s − log n] + c.

Denote α = n
s
, then the previous equation becomes

log X ≤ s

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log s

]

+ c. �

The situation in the answerer mode is slightly more complicated due to the fact
that answers are delivered only when requested.
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input

answers

n

q

Figure 1. (Color online) Communication pattern mapped to input.

Definition 2.8 (Communication pattern – answerer). For each execution of an al-
gorithm with q queries to the answerer, the communication pattern is the sequence
〈a1, . . . ,aq〉 of non-empty answers.

The behavior of the algorithm is clearly completely determined by the input,
the communication pattern and a mapping that assigns to each ai the step ji in
which the answer was delivered (see Fig. 1).

However, this mapping bears no relevant information: for a given input and
communication pattern, the algorithm always receives identical answers, and hence
it also asks identical questions. We have the following:

Claim 2.3. The behavior of an algorithm with answerer is completely determined
by its input and communication pattern.

Lemma 2.2. Consider an algorithm with answerer. For a given s consider only
communication patterns, in which the algorithm asks q ≤ s questions, and s is the
total number of bits in all answers. Then there are

X =
1

3

(

22s+1 + 1
)

different communication patterns with this property.

Proof. Since each answer is non-empty, there are

2a ·
(

a − 1

q − 1

)

possible communication patterns with q questions and exactly a bits4. So there
are

X =1+

s
∑

q=1

s
∑

a=q

2a ·
(

a − 1

q − 1

)

=1+

s
∑

a=1

2a ·
a−1
∑

q=0

(

a − 1

q

)

=1+

s
∑

a=1

22a−1 =
1

3

(

22s+1 + 1
)

possible communication patterns. �

4In order to cut a string of a bits into q non-empty parts q − 1 cuts must be made in some of
the a − 1 positions.
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In the rest of the paper we assume that the algorithm knows the length of the
input. Indeed, it is always possible to alter the oracle in such a way that it sends the
length of the input5 in the first step. Since there are O(log n) additional bits sent,
the normalized contribution to one request is O(log n/n) which is asymptotically
zero.

3. Paging

Paging and its many variants belong to the classical online problems. The
virtual memory of a computer is divided into logical pages. At any time K logical
pages can reside in the physical memory. A paging algorithm is the part of the
operating system responsible for maintaining the physical memory. If a program
requests access to a logical page that is not currently in the physical memory, a
page fault interrupt occurs and the paging algorithm has to transfer the requested
page into physical memory, possibly replacing another one. Formally, we define
the paging problem as follows:

Definition 3.1 (paging problem). The input is a sequence of integers (logical
pages) x = 〈x1, x2, . . . , xn〉, xi > 0. The algorithm maintains a buffer (physical
memory) B = {b1, . . . , bK} of K integers. Upon receiving an input xi, if xi ∈ B,
yi = 0. If xi 
∈ B a page fault is generated, and the algorithm has to find some
victim bj , i.e. B := B \ {bj} ∪ {xi}, and yi = bj . The cost of the solution is the
number of faults, i.e. COST (y) = |{i : yi > 0}|.

It is a well known fact [29] that there is a K-competitive paging algorithm,
and that K is the best attainable competitive ratio by any deterministic online
algorithm. The optimal offline algorithm is due to [4]. Let us consider the advice
complexity of this problem for both helper and answerer modes. We prove that
for the helper mode the complexity is between 0.1775 and 0.2056, and for the
answerer mode the complexity is between 0.4591 and 0.5+ ε bits per request. Let
us first analyze the helper mode. We start with a simple algorithm that uses one
bit per request:

Lemma 3.1. Consider the Paging problem. There is an algorithm A with a
helper O, such that O sends an advice of exactly one bit each step.

Proof. Consider an input sequence x, and an optimal offline algorithm OPT pro-
cessing it. In each step of OPT , call a page currently in the buffer active, if it
will be requested again, before OPT replaces it by some other page. We design A
such that in each step i, the set of OPT ’s active pages will be in B, and A will
maintain with each page an active flag identifying this subset. If A gets an input
xi that causes a page fault, some passive page is replaced by xi. Moreover, A gets
with each input also one bit from the helper telling whether xi is active for OPT .
Since the set of active pages is the same for OPT and A, it is immediate that A
generates the same sequence of page faults. �

5In self-delimited form to distinguish it from the possible advice.
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Figure 2. Illustration of function f(x) = (1 + x) log(1 + x) −
x log x − x + 1.

Now we are going to further reduce the advice complexity. The algorithm shall
receive basically the same advice as in Lemma 3.1; the reduction of the advice
complexity is possible due to a more sophisticated encoding.

Lemma 3.2. For r large enough, the helper can communicate a binary string of
length αr using r bits over a period of αr steps, where α ≈ 4.863876183.

Proof. Let f(x) = (1+x) log(1+x)−x logx−x+1. f(x) has exactly one positive
root x0 ≈ 4.863876183. For any ε > 0, let α = x0 − ε and consider, for the sake of
clarity, that αr is integer.

There are

X = 2r

(

αr + r − 1

r

)

= 2r α

α + 1

(

r(α + 1)

r

)

possible tuples 〈a1, . . . ,aαr〉 of advices containing r bits in total. Using Claim 2.1,
we get

X ≥ 2r (1 + α)r(1+α)

αrα

1

1.052

α

α + 1

√

1 + α

2πrα
·

We show that for large enough r it holds log X > αr which means that X > 2αr.
After some calculations we get

log X−αr ≥ r ((1 + α) log(1 + α) − α log α − α + 1)−1

2
log r+c = rf(α)−1

2
log r+c

for some constant c. Since f(α) is a positive constant it holds limr �→∞ log X−αr =
∞, and for large enough r the inequality log X > αr follows. �
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Figure 3. (Color online) An example of first two frames for
K = 3, i.e. with buffer of size 6. The arrows indicate which pages
are replaced during faults.

Theorem 3.1. BH(Paging(K)) ≤ 1
α
, where α ≈ 4.863876183.

Proof. Divide the input into frames of length α log n. The helper sends the first
α log n bits at the beginning. During ith frame, log n bits are used to communicate
the string of α log n for the next frame using Lemma 3.2. Overall, there are
α log n + n

α
bits. �

On the lower bound side, we can prove the following:

Theorem 3.2. For every fixed K, there is a constant αK < 20.742 such that
BH(Paging(2K))≥ 1

αK
. Moreover, αK is a decreasing function in K and limK �→∞

αK ≈ 5.632423693.

Proof. We shall consider a particular subset of input sequences x = {xk}K(2+3i)
k=1 for

some i. Each input sequence consists of the sequence S0 = 〈1, 2, . . . , 2K〉 followed
by i frames, each of length 3K, where the jth frame has the form Dj · 〈dj〉 · Sj .
The first part of each frame, Dj is of length K −1 and contains unused pages that
generate page faults: Dj = 〈(j + 1)K + 1, . . . , (j + 2)K − 1〉. The next request
dj = (j + 2)K is again an unused page. The last part, Sj is a sequence of length
2K consisting of any subsequence6 of Sj−1 · Dj of length 2K − 1, followed by dj .

Clearly, since Dj and dj contain values that have never been used before, any
algorithm must generate at least K page faults in each frame. Moreover, there
is an algorithm that generates exactly K page faults in each frame as follows.
Suppose that after 3Kj steps the buffer contains exactly the elements from Sj .
The following 2K steps do not generate any page faults. The next K steps generate
a page fault every request, and because from among the 3K−1 elements of Sj ·Dj+1

only 2K − 1 are used in Sj+1, the buffer always contains at least one element not
in Sj+1. Hence, after 3K(j + 1) steps the buffer contains elements from Sj+1.

From the above reasoning it follows that no algorithm computing an optimal
solution can generate a page fault in Sj , which means that at the beginning of Sj ,
the content of the buffer of any such algorithm is uniquely determined.

Now we show that in order to obtain an optimal solution it must hold for any
two different inputs that the communication patterns of the algorithm must be
different. Consider two executions of the algorithm with the same communication
patterns. We claim that the inputs must have been the same, too. By contradic-
tion, let j be the first frame in which the inputs differ. By the construction of

6 Note that Sj is always an increasing sequence.
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the input sequence, the first two components (Dj , dj) of the frame are identical.
Hence, after 3Kj steps (i.e. at the beginning of Sj) the executions are in the same
state. However, since the algorithm computes an optimal solution, the buffer of
both executions contains exactly Sj . Hence the jth frame is identical in both
inputs – a contradiction.

For each Sj, there are
(

3K−1
2K−1

)

different possible Sj+1, hence there are

Y =

(

3K − 1

2K − 1

)i

=

[

2

3

(

3K

K

)]i

different inputs of length 2K + 3Ki, and using Claim 2.1 we get

log Y ≥ i

[

K(3 log 3 − 2) − log K

2
− c1

]

where c1 = log(1.052 ·
√

3π) ≈ 1.759.

(3.1)
Since any algorithm computing an optimal solution needs a different communica-
tion pattern for each input, it needs at least Y different communication patterns
on inputs with i frames. However, using Lemma 2.1, we get that there are at most
X different communication patterns of length n + 1 using at most s bits, where

log X ≤ s

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log s

]

+ c

and α = n/s. Since we may restrict our attention only to values α ≥ 1 the previous
inequality becomes

log X ≤ s

(

log
(

1 +
n

s

)

+ 1 +
1

ln 2

)

+
1

2
log s + O(1). (3.2)

Using (3.1), and the fact that

i =
n + 1 − 2K

3K

we get

log Y ≥
(

n

3K
− 2K − 1

3K

) [

K(3 log 3 − 2) − log K

2
− c1

]

. (3.3)

Combining (3.2) and (3.3), we get that for inputs of length n + 1 the (worst case)
number of advice bits that an optimal algorithm receives is s such that

0 ≤ log X − log Y ≤ s
[

log
(

1 +
n

s

)

+ C − n

s
κ
]

+
1

2
log s + O(K) (3.4)

where

C = 1 +
1

ln 2
≈ 2.443
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Figure 4. (Color online) Functions FK(α) for K =
1, . . . , 8, 10100. The x axis represents the value of α. The roots
αK are smaller than α1 ≈ 20.741 and converge to α∞ ≈ 5.632.

κ =
3 log 3 − 2

3
− log K

6K
− c1

3K
≈ 0.918− log K

6K
− 0.586

K
·

κ as a function of K is increasing and it holds 0.332 ≤ κ ≤ 0.918. For a fixed
K one can regard the right-hand side of inequality (3.4) as a function of n where
s = s(n) > 1 is a function of n. If s(n) is bounded it holds

lim sup
n�→∞

log
(

1 +
n

s

)

+ C − n

s
κ = −∞

contradicting the inequality (3.4). Hence s(n) is unbounded, and in order to satisfy
the inequality it must hold7

lim inf
n�→∞

log
(

1 +
n

s

)

+ C − n

s
κ ≥ 0.

Again, denote α = n/s and consider a function

FK(α) := log(1 + α) + C − ακ. (3.5)

It holds FK(0) = C > 0, and the derivative is F ′
K(α) = 1

ln 2(1+α) − κ. Hence,

FK(α) is increasing up to some point αmax and then decreasing, and because
0.332 ≤ κ ≤ 0.918 there is a single positive root αK . Moreover, since log(1+α)+C
is increasing, αK is a decreasing function in κ. Because κ as a function of K
is increasing, αK is decreasing in K, and by numerically solving for α1 we get
αK ≤ 20.741.

7If lim infn�→∞ log
(

1 + n
s

)

+ C − n
s
κ = z < 0 then, since s(n) is unbounded, one can find n0

such that for n > n0 it holds s(n)z/2 + log s(n)/2 + O(K) < 0, and one can find n > n0 such
that log

(

1 + n
s

)

+ C − n
s
κ < z/2.
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Since limK �→∞ κ = 3 log 3−2
3 , we have limK �→∞ αK = α∞, where α∞ is the

positive root of

log(1 + α) + 1 +
1

ln 2
− α

3 log 3 − 2

3
= 0.

Numerically solving, we get

α∞ ≈ 5.632423693.

Since for any K

lim inf
n�→∞

log
(

1 +
n

s

)

+ C − n

s
κ ≥ 0

it must hold

lim sup
n�→∞

n

s
≤ αK

from which it follows for the bit complexity that

BA,O = lim sup
n�→∞

max
|x|=n

BA(x,O(x))

n
≥ lim sup

n�→∞

s

n + 1
≥ 1

αK

. �

There is one issue connected with the previous proof, namely that the number of
logical pages in the constructed sequence was unbounded (since every frame used
new values, the number of values depended on n). We argue that this feature can
be avoided by reusing the values after a constant number of frames, since every
optimal algorithm has to replace all pages from a given frame within the next
three frames. Assume the contrary, and consider an optimal algorithm that leaves
a page p from a frame i in the buffer during frames i + 1 and i + 2. Obviously,
there must be at least K + 1 faults in both of them. However, having p in the
buffer for frame i + 3 can save at most one page fault.

Let us proceed now with the analysis of the answerer mode. First, we give an
upper bound by refining Lemma 3.1:

Theorem 3.3. For each ε > 0, BA(Paging(K)) ≤ 1
2 + ε.

Proof. Let k = 2
2ε+1 . Without loss of generality, let n = 2ks. Following Lemma 3.1,

there is an optimal helper algorithm which receives 1 bit of advice each request.
Obviously, the same algorithm (with a question posed in every step) works also in
the answerer mode. We show how to supply this information using 2s bits.

In the first step, the algorithm asks, and receives O(log n) bits of information

containing s and n. Amortized, these O(log n) bits will contribute O( log n
n

) bits
per request, and thus can be neglected.

During each of the first s steps, the algorithm asks, and receives a non-empty
string of advice. Let 〈a1, . . . ,as〉 be the s-tuple of advices, such that

∑s
i=1 |ai| =

2s. Because each ai is non-empty, the concatenation of ai’s provides one bit every
step for the first 2s steps. The remaining n− 2s bits are encoded in the lengths of
ai’s as follows: consider all s-tuples of integers 〈i1, . . . , is〉 such that

∑s
j=1 ij = s,

ordered lexicographically. Let z be the number of the tuple 〈|a1| − 1, . . . , |as| − 1〉
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in this ordering, then the representation of z as a (n − 2s)-bit-long binary string
gives the remaining n − 2s bits.

What remains to be shown is that there are enough possible combinations of
lengths to encode all 2n−2s possible binary strings for the last n − 2s = 2s(k − 1)
steps. There are

X =

(

2s − 1

s

)

=
1

2

(

2s

s

)

possible s-tuples 〈i1, . . . , is〉 such that
∑s

j=1 ij = s. Using Claim 2.1 it follows

X ≥ 22s 1

2 × 1.052 · √πs

for s large enough, it holds

X ≥ 22s 1

2s 8ε

2ε+1

= 22s(1− 4ε

2ε+1 ) = 22s(k−1).

The bit complexity of the algorithm is

BA,O = lim sup
n�→∞

max
|x|=n

BA(x,O(x))

n
= lim

s�→∞
2s

2ks
=

1

2
+ε. �

To conclude this section, the same technique as used in Theorem 3.2 can be
employed to deliver the corresponding lower bound:

Theorem 3.4. BA(Paging(2K)) ≥ 0.4591− O
(

log K
K

)

.

Proof. Consider the same input sequences as in the proof of Theorem 3.2. For
each Sj , there are

(

3K−1
2K−1

)

different possible Sj+1, hence there are

Y =

(

3K − 1

2K − 1

)i

=

[

2

3

(

3K

K

)]i

different inputs of length 2K + 3Ki.
Let the answerer use s bits overall. Using Lemma 2.2, there are

X =
1

3

(

22s+1 + 1
)

possible communication patterns, and obviously it must hold X ≥ Y . Using
Claim 2.1 we get that

log Y = i log

[

2

3

(

3K

K

)]

≥ i log

[

33K

22K
√

K

1

1.052 ·
√

3π

]

= i

[

K(3 log 3 − 2) − log K

2
− c1

]
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for some constant c1. Because

log X ≤ 2s + c2 for some constant c2

from the fact that log X ≥ log Y it follows that

s ≥ i

[

K
3 log 3 − 2

2
− log K

4
− c1

2

]

− c2

2
·

The bit complexity of any optimal algorithm is then

BA,O = lim sup
n�→∞

max
|x|=n

BA(x,O(x))

n
≥ lim

i�→∞

i
[

K 3 log 3−2
2 − log K

4 − c1

2

]

− c2

2

2K + 3Ki

=
3 log 3 − 2

6
− 1

12

log K

K
− c1

6K
�

4. DiffServ

DiffServ is another problem widely studied using competitive analysis (see
[11,23] and references therein). The setting involves a server processing an in-
coming stream of packets of various values. If the processing speed of the server
is slower than the arrival rate, some packets must be dropped, ideally those least
valuable. For our purposes, following [23], the packets arrive in discrete time steps.
In each step a number of packets can arrive, one packet can be processed, and at
most K packets can be stored in a buffer. Moreover, it is required that the packets
are processed in FIFO manner. The formal definition is as follows:

Definition 4.1 (DiffServ problem). Consider a sequence of items 〈p1, . . . , pm〉,
partitioned into a series of subsequences, called requests. The input is the sequence
of requests x = 〈x1, . . . ,xn〉, where each xi = 〈pji−1+1, . . . , pji

〉 is a (possibly
empty) request. Each item pi has a value v(pi). In each step i, the algorithm
maintains an ordered buffer Bi = 〈b1, . . . , bKi

〉 of Ki ≤ K items. Upon receiving
a request sequence xi, the algorithm discards some elements from the sequence
Bi · xi, keeping the remaining subsequence B′

i  Bi · xi of length at most K + 1.
The first item of B′

i (if B′
i is nonempty) is submitted, and the remainder of B′

i

forms the new buffer, i.e. B′
i = yi · Bi+1. When there are no more requests, the

contents of the buffer are submitted, and the process ends.
The cost of the solution is the sum of the values of all submitted elements, i.e.

COST (y) =
∑

i>0 v(yi).

For the remainder of this section we shall consider only the case of two distinct
item values; we shall refer to them as heavy and light items. Without loss of
generality we may assume that each request contains at most K + 1 heavy items.

It was shown by Lotker and Patt-Shamir [23] that Algorithm 1 is optimal for
the DiffServ problem. We first present another optimal offline algorithm, and
then show how to transform it to an online algorithm with a helper.
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Figure 5. A schematic representation of the request processing
in the DiffServ problem.

Algorithm 1 OPT

1: sort all items by decreasing value, within each value class by increasing time
2: S ← empty schedule
3: while the list is non empty do

4: p ← head of the sorted list
5: if S ∪ {p} is a feasible schedule then S ← S ∪ {p}

6: remove head of the list
7: output S

Let us start with a simple greedy algorithm that never discards more items than
necessary (Algorithm 2 without line 4). This algorithm is not optimal in situations
where it is favorable to discard leading light items even if the buffer would not be
filled: Consider e.g. a situation with a buffer of size 3 such that Bi · xi contains
one light item and two heavy items in some step i. If there are no more requests,
the best solution is to submit the three items in the steps i, i + 1, i + 2. However,
if there is another request xi+1, containing three heavy items, the best solution is
to discard the leading light item in step i and submit a heavy item instead (thus
leaving Bi+1 containing just one heavy item), and submit four heavy items in steps
i + 1, . . . , i + 4. The greedy algorithm behaves the same way in both situations,
i.e. submits the leading light item from Bi ·xi; in the second scenario is therefore
forced to discard a heavy item in the next step.

However, the situations in which greedy strategy fails can easily be recognized:

Definition 4.2. Consider a buffer B at time t0 and the remainder x = {xt0+i}n−t0
i=1

of the input sequence. Let a0 be the number of heavy elements in B (before xt0+1

has arrived), and ai ≤ K + 1 be the number of heavy elements in xt0+i. The
remainder of sequence x is called critical (w.r.t. B), if there exists t > 0 such that
∑t

i=0 ai ≥ K + t, and for each t′ such that 0 < t′ ≤ t it holds
∑t′

i=0 ai ≥ t′.

Informally, an input sequence is critical w.r.t. an initial buffer if the buffer
gradually fills with heavy items even if the algorithm submits a heavy item in each
step.

We use Algorithm 2 to process the requests.
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Algorithm 2 Processing of a request xi with a buffer B

1: B′ ← B · xi

2: starting from left, discard light items from B′ until |B′| = K +1 or there are no light
items left

3: if |B′| > K + 1 then discard last |B′| − K − 1 (heavy) items

4: if the remainder of the input sequence is critical and there are some heavy items in

B′
then discard leading light items from B′

5: submit the first item of B′ (if exists)
6: B ← remainder of B′

Lemma 4.1. Algorithm 2 computes an optimal solution to the DiffServ problem.

Proof. First, we prove that if Algorithm 2 does not submit any item in step i,
no optimal algorithm can submit anything in step i. Consider a step i such that
Algorithm 2 does not submit (i.e. has empty buffer). Let j be the last time before
i when the algorithm had full buffer (or, j = 0 if the buffer has never been full).
We argue that during the steps j, j + 1, . . . , i, no items have been discarded by
the algorithm. The algorithm only discards items in such a way that the length
of the resulting buffer is less than K only if the input is critical. Moreover, if the
buffer is shorter than K in the case of critical input, only light items are discarded.
However, starting from a critical input, the buffer eventually (after t steps) fills
with heavy items, and is never emptied in-between (if the buffer is shorter than K,
no heavy items are discarded). Since j was the last time before i when the buffer
was full, clearly there was no critical input between j and i, and hence no item
was discarded (since the length of the buffer has always been strictly less than K).

Now consider an arbitrary optimal algorithm A. It is easy to see that dur-
ing steps j, j + 1, . . . , i, the length of the buffer of A is not longer than that of
Algorithm 2. Hence, A has empty buffer in step i, too.

Second, we prove that the number of submitted heavy items is optimal. Con-
sider the ordering of the heavy items as they appear in the input sequence. Let
an item p be discarded. Let Sp be the set of submitted items ordered before p.
We show that it is not possible to submit all items from Sp ∪ {p}. Let i be the
arrival time of the item p. Because p was discarded, the buffer was full of heavy
items after step i, and the algorithm submitted a heavy item. Consider the longest
sequence of steps j, j + 1, . . . , i such that in each step a heavy item was submit-
ted. At the beginning of the sequence, the buffer contained no heavy elements:
the input was critical, so a heavy element would have been submitted. Because
in all consecutive steps, heavy items were submitted, it is not possible to submit
all Sp ∪ {p} items. Hence, Algorithm 2 maintains for the heavy items the same
optimality property as Algorithm 1, and the number of submitted heavy items is
optimal.

We have proved that Algorithm 2 submits the maximal possible amount of
heavy items, and moreover, for an optimal algorithm A, if A submits in some
step, Algorithm 2 submits in this step, too. So it follows that Algorithm 2 gives
the optimal cost. �
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Now we turn this offline algorithm into an online algorithm with helper. We
are going to simulate Algorithm 2 with an algorithm and a helper. The only place
where the algorithm needs information about the future is on line 4, where the
algorithm tests the criticality of the input. Clearly, one bit per request (indicating
whether the input is critical or not) is sufficient to achieve optimality. However,
we show that the situation in which a bit must be sent can occur at most once in
every K + 1 steps.

Theorem 4.1. BH(DiffServ(K)) ≤ 1
K+1 .

Proof. The presented algorithm will operate in two modes: standard and critical.
It starts in standard mode and behaves the same way as Algorithm 2 (leaving out
line 4). If it receives a bit from the helper (indicating that the current input forms
a critical sequence), it switches into critical mode where it always discards leading
light items and submits only heavy items. Once the buffer is full of heavy items,
it switches back into standard mode. Obviously, this algorithm is optimal.

Moreover, the helper has to send a bit only when the algorithm is in standard
mode, the input is critical and there are leading light items. How often a bit
can be sent? Clearly, after the algorithm switches into critical mode, the buffer
eventually fills with heavy items. Then there are at least K requests where there
are no leading light items so no bit is sent. Hence, the bit is sent at most every
K + 1 steps. �

Using a technique similar to the proof of Theorem 3.2, we can show the following:

Theorem 4.2. For K ≥ 12 it holds BH(DiffServ(K)) ≥ 1
γK ·K , where γK ≤

4.851 and limK �→∞ γK = 1.

Before proceeding to the proof of Theorem 4.2 let us first present a technical
claim that will be used in the proof.

Claim 4.1. Consider the following function

Ψ(K) :=
lnK(K + 2)

(

1 + 1
ln K+2

2

)

K
[

ln(K + 2) − ln
(

2 ln K+2
2

)

+ 1
] ·

The function Ψ(K) converges to 1 and for K ≥ 12 is strictly decreasing. The value
Ψ(12) ≈ 1.92479457.

Proof of Theorem 4.2. Consider a sequence of frames of two types. Both types
start with a request with one light item followed by one heavy item. The frame of
type A continues with a request with K + 1 heavy items and K empty requests.
The type B frame continues with one empty request. The input consists of β
frames of type A and (c − 1)β frames of type B for some c > 1, so the length of
the input is β(K +2c). First note that for two different inputs the communication
patterns have to be different: if this is not the case consider two different inputs
with the same communication pattern, and focus on the first frame where the
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Figure 6. Numerical analysis of the function y = Ψ(x). The
maximum is attained at K ≈ 5.303720076 and has value
≈ 1.999174149.

inputs differ. Clearly, the algorithm is in the same state in both executions and
since it is deterministic, it must make the same decision. However, the optimal
decision in frame A is to discard the initial light item, and submit K + 2 heavy
items in the whole frame, whereas the only optimal decision in frame B is to
submit the light and heavy item.

Hence, we have

Y =
(cβ)!

β! ((c − 1)β)!

different inputs of length n + 1 = β(K + 2c), each of them requiring a different
communication pattern. Using Claim 2.1 we get

log Y ≥ β (c log c − (c − 1) log(c − 1)) +
1

2
(log c − log(c − 1)) − 1

2
log β + r

for some constant r. Let

ψc = c log c − (c − 1) log(c − 1). (4.1)

Since log c− log(c− 1) < 1 we get log Y ≥ βψc − 1
2 log β + r′ for some constant r′.

Expressing the parameter β in terms of the length of the input we get

log Y ≥ n + 1

K + 2c
ψc −

1

2
log

n + 1

K + 2c
+ r′. (4.2)
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However, following Lemma 2.1 there are at most

X =

s
∑

a=0

2a

(

a + n

a

)

≤ s2s

(

s + n

s

)

different communication patterns that use at most s bits and it holds

log X ≤ n

α

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log
n

α

]

+ r′′ (4.3)

where α = n
s

and r′′ is some constant.
Since X ≥ Y , by combining (4.2) and (4.3) we get

0 ≤ n

α

[

log(1 + α) + 1 +
1

ln 2
− αψc

K + 2c

]

+
1

2
[log n + log(n + 1) + log(α + 1) − 2 logα] + QK,c

where QK,c does not depend on n. Further, we can consider only values 1 < α < n
in which case it holds

log n + log(n + 1) + log(α + 1) − 2 logα < log n(n + 1)2.

So the previous inequality becomes

0 ≤ n

α

[

log(1 + α) + 1 +
1

ln 2
− αψc

K + 2c

]

+ O(log n). (4.4)

If α (as a function of n) is α = Ω(n) then, because α < n , there exists some
n0 for which the right-hand side of (4.4) is negative. Hence, the function n/α is
unbounded. Let us define the function

F (x) := log(1 + x) + 1 +
1

ln 2
− x

ψc

K + 2c
·

Then it holds
lim inf
n�→∞

F (α(n)) ≥ 0

because otherwise there would be some n0 violating (4.4). In the rest of the proof
we find an upper bound of the form t0K, for some t0, on the values of x for which
F (x) ≥ 0. From that we conclude that lim supn�→∞ n/s ≤ t0K, and that the bit
complexity is at least 1/(t0K).

First, we try to find a value of c such that the term ψc

K+2c
is maximized8. Let

h(c) :=
ψc

K + 2c
=

c log c − (c − 1) log(c − 1)

K + 2c
>

log(c − 1) + 1
ln 2

K + 2c
=: g(c).

8Note that c is an arbitrary parameter, hence we don’t need to find the exact maximum, only

a value where the term ψc

K+2c
is large enough.
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The last inequality is due to the fact that f(c) − f(c − 1) > f ′(c − 1) where
f(x) = x log x and f ′(x) = log x + 1

ln 2 . Since

g′(c) =
K + 2 − 2(c − 1) ln(c − 1)

ln 2(K + 2c)2(c − 1)

the maximum is attained for

c − 1 = exp

[

W
(

K + 2

2

)]

where W is the Lambert function9. Taking into account the first two terms in the
series expansion of W , we set

c :=
K + 2

2 ln K+2
2

+ 1.

Summarizing, we get

h(c) >
log(c − 1) + 1

ln 2

K + 2c
=

ln(K + 2) − ln
(

2 ln K+2
2

)

+ 1

ln 2(K + 2)
[

1 + 1
ln K+2

2

] ·

In the sequel, we would like to estimate the value h(c) > log K
εK

for some ε, so that
we can easily bound F (x) from above. By solving

ln(K + 2) − ln
(

2 ln K+2
2

)

+ 1

ln 2(K + 2)
[

1 + 1
ln K+2

2

] ≥ log K

εK

for ε we get that we need to choose ε such that

ε ≥
lnK(K + 2)

(

1 + 1
ln K+2

2

)

K
[

ln(K + 2) − ln
(

2 ln K+2
2

)

+ 1
] = Ψ(K).

Now, since h(c) > log K
εK

, we can write

0 ≤ F (α) < log(1 + α) + 1 +
1

ln 2
− α log K

εK
·

9 The Lambert function W is the inverse function of y �→ y · ey, i.e. W(x) · eW(x) = x. The
asymptotics is given by

W(x) = lnx − ln lnx +
ln ln x

lnx
−

ln ln x −
(ln ln x)2

2

(ln x)2
+ O

(

ln

(

1

x

)−3
)

.
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In the sequel we shall bound the value α from above. First let us substitute
α = t · K for some t > 1 and consider a function

G(t) := log(1 + tK) + 1 +
1

ln 2
− t

ε
log K.

Since the derivative is

G′(t) =
K

ln 2(tK + 1)
− log K

ε

and G(0) > 0, we have that G(t) is increasing up to some point and then mono-
tonically decreasing into −∞. Hence, if we find any t0 such that G(t0) < 0, if
must hold that α < t0K.

Using the fact that log(1 + x) ≤ log x + 1
x ln 2 we compute

G(t) ≤ log t + log K

(

1 − t

ε

)

+
1

ln 2

(

1

tK
+ 1

)

+ 1

and, in order to ensure G(t0) < 0, we want to find t0 such that

t0 ≥ ε

lnK
ln t0 + ε

[

1

lnK

(

1 +
1

t0K

)

+
1

log K
+ 1

]

.

Since t0 > 1, it is sufficient to find t0 such that

t0 ≥ P ln t0 + Q

where

P =
ε

lnK
and Q = ε

[

1

lnK

(

1 +
1

K

)

+
1

log K
+ 1

]

.

It holds

2P + Q = ε

[

1

lnK

(

3 +
1

K

)

+
1

log K
+ 1

]

.

Since K ≥ 12 and ε < 1.92479457 it holds

2P + Q < 4.851.

Let t0 = 2P + Q; we verify that

2P + Q ≥ P ln(2P + Q) + Q.

From this we know that α < (2P + Q)K < 4.851K, and that the bit complexity
is at least 1/α. Moreover the value of t0 is a decreasing function in K which
converges to 1. �

In a similar fashion, the following results can be shown for the answerer mode:
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Theorem 4.3. BA(DiffServ(K)) ≤ 1+log(K+1)
K+1 .

Proof. Consider the helper algorithm from Theorem 4.1, in which the helper sends
one bit at certain time intervals that are at least K + 1 steps apart. Modify the
algorithm in such a way that, initially, the algorithm asks in which step t1 the
helper would send a bit for the first time. In step t1 the algorithm asks for the
next step t2 in which the helper would send the next bit etc. Let t0 = 0 and
δi = ti − ti−1. Then clearly the number of communicated bits is

Bn ≤
r

∑

i=1

⌈log δi⌉ ≤ r +

r
∑

i=1

log δi

where r is the number of “critical decisions”10. Clearly, it holds

r
∑

i=1

δi = n

and

r ≤ n

K + 1
+ 1.

Given these constraints, the function
∑r

i=1 log δi is maximized when all δi are
equal, and r is biggest possible. The maximum value is

Bn ≤ r + r log
n

r
≤

(

1 +
n

K + 1

) (

1 + log
n(K + 1)

n + K + 1

)

where the last inequality comes from the fact that function f(r) = r + r log n
r

is

increasing for r ≤ 2n/e (the derivative is f ′(r) = 1
ln 2 (ln(2n/r) − 1)), and that

r ≤ n. Taking the limit limn�→∞ Bn/n, the proof is concluded. �

Theorem 4.4. For each fixed K ≥ 12 there exists a γK ≤ 3.5044 such that

BA(DiffServ(K)) ≥ log(K+2)
γK(K+2) . Moreover limK �→∞ γK = 2.

Proof. By copying the proof of Theorem 4.2, and using Lemma 2.2 we get

0 ≤ log X − log Y ≤ n

α

[

2 − αψc

K + 2c

]

+ O(log n) + QK,c.

So it must hold

α ≤ 2(K + 2c)

ψc

·

Minimizing the same way as in Theorem 4.2 we set

c :=
K + 2

2 ln K+2
2

+ 1

10In order to simplify things let us consider also the end of input as a critical decision point.
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from which follows

α ≤
2

(

K + K+2

ln(K+2

2 )
+ 2

)

log(K + 2) − log
(

ln
(

K+2
2

))

+ 1
ln 2 − 1

≤ γK(K + 2)

log(K + 2)

where

γK =
2

(

1 + 1
ln x+2

2

)

1 − ln(ln(x+2

2 ))
ln(x+2) +

1
ln 2

−1

log(x+2)

·

Since for K ≥ 12 the function γK is decreasing, it holds γK ≤ γ12 ≈ 3.504340818.
�

5. Conclusion

We have proposed a new way to evaluate online problems, based on the com-
munication complexity. While the competitive analysis is an algorithmic measure
evaluating the output quality degradation incurred by the requirements to pro-
duce the output online, our measure is a structural one quantifying the amount
of additional information about the input needed to produce optimal output in
an online fashion. The study of the relation between those two measures can lead
to a deeper understanding of the nature of online problems. We have shown that
there are problems like Paging and DiffServ where the advice complexity (in
the helper mode) is proportional to the competitive ratio. On the other hand,
there are problems with simple structure like SkiRental [21], which has compet-
itive ratio 2 − ε, but a single bit of information is sufficient to solve the problem
optimally (i.e. it has zero advice complexity).

Studying advice complexity of a problem can lead to exposure of the critical de-
cisions to be made (like in Algorithm 2 for DiffServ) and subsequently to better
understanding of the problem and possibly more efficient algorithms. Moreover, we
expect that in certain situations involving cooperating devices of uneven compu-
tational power communicating over a costly medium (as e.g. in sensor networks),
the advice complexity might be of practical interest.

The proposed topic presents a number of intriguing open questions. Is it, for
example, possible to characterize a class of problems where the competitive ratio
is proportional to the advice complexity? Another whole research area is to study
the tradeoff between the amount of communicated information and the achieved
competitive ratio.

There is also a number of variations of the model that could be investigated.
One potential modification would be to limit the size of advice given in one step.
In our model this size is unbounded, and this fact is heavily relied upon (sending
the length of the input in one step). However, for modelling potentially infinite
inputs it would be more appealing to limit the size of advice to be independent of
the input size.
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