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Abstract

Recent success in Artificial Intelligence (AI) and Machine Learning (ML) allow problem solving automatically without 

any human intervention. Autonomous approaches can be very convenient. However, in certain domains, e.g., in the medical 

domain, it is necessary to enable a domain expert to understand, why an algorithm came up with a certain result. Conse-

quently, the field of Explainable AI (xAI) rapidly gained interest worldwide in various domains, particularly in medicine. 

Explainable AI studies transparency and traceability of opaque AI/ML and there are already a huge variety of methods. For 

example with layer-wise relevance propagation relevant parts of inputs to, and representations in, a neural network which 

caused a result, can be highlighted. This is a first important step to ensure that end users, e.g., medical professionals, assume 

responsibility for decision making with AI/ML and of interest to professionals and regulators. Interactive ML adds the 

component of human expertise to AI/ML processes by enabling them to re-enact and retrace AI/ML results, e.g. let them 

check it for plausibility. This requires new human–AI interfaces for explainable AI. In order to build effective and efficient 

interactive human–AI interfaces we have to deal with the question of how to evaluate the quality of explanations given by an 

explainable AI system. In this paper we introduce our System Causability Scale to measure the quality of explanations. It is 

based on our notion of Causability (Holzinger et al. in Wiley Interdiscip Rev Data Min Knowl Discov 9(4), 2019) combined 

with concepts adapted from a widely-accepted usability scale.
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Abbreviations

AI  Artificial intelligence

aML  Automatic (or autonomous) machine learning

DL  Deep learning

FRT  Framingham Risk Tool

iML  Interactive machine learning

ML  Machine learning

SCS  System Causability Scale

SUS  System Usability Scale

1 Introduction

Artificial intelligence (AI) is an umbrella term for algorithms 

aiming at delivering task solving capabilities comparable to 

humans. A dominant sub-field is automatic (or autonomous) 

machine learning (aML) with the aim to develop software 

that can learn fully automatically from previous experience 
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to make predictions based on new data. One currently very 

successful family of aML methods includes deep learning 

(DL), which is based on the concepts of neural networks, 

and the insight that the depth of such networks yields sur-

prising capabilities.

Automatic approaches are present in daily practice of 

human society, supporting and enhancing our quality of life. 

A good example is the breakthrough achieved with DL [2] 

on the task of phonetic classification for automatic speech 

recognition. Actually, speech recognition was the first com-

mercially successful application of DL [3]. Autonomous 

software is able today to conduct conversations with clients 

in call centers; Siri, Alexa and Cortana make suggestions 

to smartphone users. A further example is automatic game 

playing without human intervention [4]. Mastering the game 

of Go has a long tradition and is a good benchmark for pro-

gress in automatic approaches, because Go is hard for com-

puters [5] because it is strategic, although games are a closed 

environment with clear rules and a large number of games 

can be simulated for big data.

Even in the medical domain, automatic approaches 

recently demonstrated impressive results: automatic image 

classification algorithms are on par with human experts or 

even outperforms them [6]; automatic detection of pulmo-

nary nodules in tomography scans detected the tumoral for-

mations missed by the same human experts who provided 

the test data [7]; neural networks outperformed a traditional 

segmentation methods [8], consequently, automatic deep 

learning approaches became quickly a method of choice for 

medical image analysis [9]

Undoubtedly, automatic approaches are well motivated 

for theoretical, practical and commercial reasons. Unfor-

tunately, such approaches have also several disadvantages. 

They are resource consuming, require much engineering 

effort, need large amounts of training data (“big data”), 

but most of all they are often considered as black-box 

approaches which do not foster trust and acceptance and 

most of all responsibility. International concerns are raised 

on ethical, legal and moral aspects of developments of AI 

in the last years, particularly in the medical domain [10]. 

One example of such international effort is the Declaration 

of Montreal.1

Lacking transparency means that such approaches do not 

expose explicitly the decision process [11]. This is due to the 

fact that such models have no explicit declarative knowledge 

representation, hence they have difficulty in generating the 

required explanatory structures which considerably limits 

the achievement of their full potential [12].

Consequently, in the medical domain a human expert 

involved in the decision process can be beneficial yet 

mandatory [13]. However, the problem is that many algo-

rithms, e.g. deep learning, are inherently opaque, which 

causes difficulties both for the developers of the algorithms, 

as well as for the human-in-the-loop.

Understanding the reasons behind predictions, queries 

and recommendations [14] is important for many reasons. 

Among the most important reasons is trust in the results 

which is improved by an explanatory interactive learning 

framework, where the algorithm is able to explain each step 

to the user and the user can interactively correct the explana-

tion [15]. The advantage of this approach, called interactive 

machine learning (iML) [16], is to include the strengths of 

humans, in learning and explaining abstract concepts [17].

Current ML algorithms work asynchronously in connec-

tion with a human expert who is expected to help in data 

pre-processing (refer to [18] for a recent example of the 

importance of data quality). Also the human is expected to 

help in data interpretation - either before or after the learn-

ing algorithm. The human expert is supposed to be aware 

of the problem’s context and to correctly evaluate specific 

data sets.

The iML-approaches can therefore be effective on prob-

lems with scarce and/or complex data sets, when aML meth-

ods become inefficient. Moreover, iML enables important 

mechanisms, including re-traceability, transparency and 

explainability, which are important characteristics for any 

future information system [19].

The efficiency and the effectiveness of explanations 

provided by ML and iML require further study [20]. One 

approach to the problem examines how people understand 

explanations from ML by qualitatively rating the effective-

ness of three explanatory models [21, 22]. Another approach 

measures a proxy for utility such as simplicity [11, 23] or 

response time in an application [24]. Our contribution is to 

directly measure the user’s perception of an explanation’s 

utility, including cause aspects, by adapting a well-accepted 

approach in usability [25].

2  Causability and Explainability

2.1  Definitions

A statement s (see Fig. 1) is either be made by a human s
h
 or 

a machine s
m
 . s = f (r, k, c) is a function with the following 

parameters: 

r  representations of an unknown (or unobserved) fact u
e
 

related to an entity,

k  pre-existing knowledge, which is for a machine embed-

ded in an algorithm, or made up for human by explicit, 

implicit and tacit knowledge,
1 https ://www.montr ealde clara tion-respo nsibl eai.com.

https://www.montrealdeclaration-responsibleai.com
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c  context, for a machine the technical runtime environ-

ment, and for humans the physical environment the deci-

sion was made (pragmatic dimension).

An unknown (or unobserved) fact u
e
 represents a ground 

truth gt that we try to model with machines m
m
 or as humans 

m
h
 . Unobserved, hidden or latent variables are found in the 

literature for Bayesian models [26], hidden Markov models 

[27] and methods like probabilistic latent component analy-

sis [28].

The overall goal is, that a statement is congruent with the 

ground truth and the explanation of a statement highlights 

applied parts of the model.

3  Process of Explanation 
and the Importance of a Ground Truth

In an ideal world the human and machine statement are iden-

tical, s
h
= s

m
 , and congruent with the ground truth, which is 

defined for machines and humans within the same, m
h
= m

m
 

(a connection between them, see Fig. 1).

However, in the real world we face two problems: 

 (i) ground truth is not always well defined, especially 

when making a medical diagnosis; and

 (ii) although human (scientific) models are often based 

on understanding causal mechanisms, today’s suc-

cessful machine models or algorithms are typically 

based on correlation or related concepts of similarity 

and distance.

The latter approach in ML is probabilistic in nature and 

is viewed as an intermediate step which can only pro-

vide a basis for further establishing causal models. When 

discussing the explainability of a machine statement we 

therefore propose to distinguish between

– Explainability, which in a technical sense highlights 

decision relevant parts of machine representations r
m
 

and machine models m
m

—i.e., parts which contributed 

to model accuracy in training, or to a specific prediction. 

It does not refer to a human model m
h
.

– Causability [1] as the extent to which an explanation of 

a statement to a user achieves a specified level of causal 

understanding with effectiveness, efficiency and satisfac-

tion in a specified context of use.

As causability is measured in terms of effectiveness, effi-

ciency, satisfaction related to causal understanding and its 

transparency for a user, it refers to a human understandable 

model m
h
 . This is always possible for an explanation of a 

human statement, as the explanation is per se defined related 

to m
h
 . To measure the causability of an explanation e

m
 of a 

machine statement s
m
 either m

h
 has to be based on a causal 

model (which is not the case for most ML algorithms) or a 

mapping between m
m
 and m

h
 has to be defined.

4  Background

The System Usability Scale (SUS) has been in use for three 

decades and proved to be very efficient and necessary to 

rapidly determine the usability of a newly designed user 

interface. The SUS measures how usable a system’s user-

interface is, while our proposed System Causability Scale 

measures how useful explanations are and how usable the 

explanation interface is.

The SUS was created by John Brooke already in 1986 

when working at the Digital Equipment Corporation 

Fig. 1  The Process of Explanation. Explanations (e) by humans and machines (subscripts h and m) must be congruent with statements (s) and 

models (m) which in turn are based on the ground truth (gt). Statements are a function of representations (r), knowledge (k) and context (c)
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(DEC). 10 years later he published it as a book chapter 

[25] which received (as of 01.10.2019) 7949 citations on 

Google Scholar with an amazing trend upwards.

The success factor is simplicity: SUS consists of a 10 

item questionnaire, each item having five response options 

for the end-users. Consequently, it provides a quick and 

dirty tool for measuring the usability, which proofed to be 

very reliable [29], and it is used for a wide variety of any 

products, not only user-interfaces [30].

When a SUS is used, participants are asked to score the 

following ten items with one of five responses that range 

from strongly agree to strongly disagree: 

 1. I think that I would like to use this system frequently.

 2. I found the system unnecessarily complex.

 3. I thought the system was easy to use.

 4. I think that I would need the support of a technical 

person to be able to use this system.

 5. I found the various functions in this system were well 

integrated.

 6. I thought there was too much inconsistency in this sys-

tem.

 7. I would imagine that most people would learn to use 

this system very quickly.

 8. I found the system very cumbersome to use.

 9. I felt very confident using the system.

 10. I needed to learn a lot of things before I could get going 

with this system

Interpreting SUS scores can be difficult and one big disad-

vantage is that the scores (since they are on a scale from 

0 to 100) are often wrongly interpreted as percentages. 

The best way to interpret results involves normalizing the 

scores to produce a percentile ranking. Consequently, the 

participants scores for each question are converted to a 

new number, added together and then multiplied by 2.5 to 

convert the original scores of 0–40 to 0–100. Though the 

scores are 0–100, these are not percentages and should be 

considered only in terms of their percentile ranking.

Based on a lot of research, a SUS score above 68 

would be considered above average and anything below 

68 is below average, however the best way to interpret 

the results involves normalizing the scores to produce a 

percentile ranking.

A further disadvantage is that SUS has been assumed 

to be unidimensional. However, factor analysis of two 

independent SUS data sets reveals that the SUS actu-

ally has two factors Usable (8 items) and Learnable (2 

items specifically, Items 4 and 10). These new scales 

have reasonable reliability (coefficient alpha of 0.91 and 

0.70, respectively). They correlate highly with the over-

all SUS (r = 0.985 and 0.784, respectively) and correlate 

significantly with one another (r = 0.664), but at a low 

enough level to use as separate scales [31].

5  The System Causability Scale

In the following we propose our System Causability Scale 

(SCS) using the Likert scale similar to SUS. The Likert 

method [32] is widely used as a standard psychometric scale 

to measure human responses (see about the limitations in the 

conclusions). The purpose of our SCS is to quickly deter-

mine whether and to what extent an explainable user inter-

face (human–AI interface), an explanation, or an explanation 

process itself is suitable for the intended purpose. 

 1. I found that the data included all relevant known causal 

factors with sufficient precision and granularity.

 2. I understood the explanations within the context of my 

work.

 3. I could change the level of detail on demand.

 4. I did not need support to understand the explanations.

 5. I found the explanations helped me to understand cau-

sality.

 6. I was able to use the explanations with my knowledge 

base.

 7. I did not find inconsistencies between explanations.

 8. I think that most people would learn to understand the 

explanations very quickly.

 9. I did not need more references in the explanations: e.g., 

medical guidelines, regulations.

 10. I received the explanations in a timely and efficient 

manner.

As an illustration, SCS was applied by a medical doctor from 

the Ottawa Hospital (see the acknowledgement section) to 

the Framingham Risk Tool (FRT) [33]. FRT was selected as 

a classic example of a prediction model that is in use today.

FRT estimates the risk of coronary artery disease in 

10 years for a patient without diabetes mellitus or clini-

cally evident cardiovascular disease, and uses data from the 

Framingham Heart Study [34]. FRT includes the follow-

ing input features: sex, age, total cholesterol smoking, HDL 

(high density lipoprotein) cholesterol, systolic blood pres-

sure and hypertension treatment. The ratings for the SCS 

score are reported in Table 1.

6  Conclusions

The purpose of the System Causability Scale is to provide 

a simple and rapid evaluation tool to measure the quality 

of an explanation interface (human–AI interface) or an 

explanation process itself. We were inspired by the System 
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Usability Scale and the Framingham model which is often in 

use in daily routine. The limitations of the SCS is that Likert 

scales fall within the ordinal level of measurement, meaning 

that the response categories have a rank order. However, 

the intervals between values cannot be presumed equal (it 

is illegitimate to infer that the intensity of feeling between 

strongly disagree and disagree is equivalent to the inten-

sity of feeling between other consecutive categories on the 

Likert scale). The legitimacy of assuming an interval scale 

for Likert-type categories is an important issue, because the 

appropriate descriptive and inferential statistics differ for 

ordinal and interval variables and if the wrong statistical 

technique is used, the researcher increases the chance of 

coming to the wrong conclusion [35]. We are convinced 

that our Systems Causability Scale is useful for the interna-

tional machine learning research community. Currently we 

are working on an evaluation study with the application in 

the medical domain.
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