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Abstract. Service Oriented Architecture (SOA) has gained popularity as a de-
sign paradigm for realizing enterprise software systems through abstract units 
of functionality called services.  While the key design principles of SOA have 
been discussed at length in the literature, much of the work is prescriptive in na-
ture and do not explain how adherence to these principles can be quantitatively 
measured in practice. In some cases, metrics for a limited subset of SOA quality 
attributes have been proposed, but many of these measures have not been em-
pirically validated on real-life SOA designs. In this paper, we take a deeper look 
at how the key SOA quality attributes of service cohesion, coupling, reusability, 
composability and granularity may be evaluated, based only on service design 
level information. We survey related work, adapt some of the well-known soft-
ware design metrics to the SOA context and propose new measures where 
needed. These measures adhere to mathematical properties that characterize the 
quality attributes. We study their applicability on two real-life SOA design 
models from the insurance industry using a metrics computation tool integrated 
with an Eclipse-based service design environment. We believe that availability 
of these measures during SOA design will aid early detection of design flaws, 
allow different design options and trade-offs to be considered and support plan-
ning for development, testing and governance of the services.  

Keywords: Service Design, Business Process Model, Service Design  
Principles, Metrics. 

1   Introduction 

Service Oriented Architecture (SOA) represents the natural continuum of increasing 
levels of abstraction in software engineering that has previously seen the emergence 
of object-oriented programming and component based development. SOA is charac-
terized by a greater focus on identifying business-relevant functionality that may be 
exposed as services to consumers (end-user applications or other services), a higher-
level of decoupling of interfaces and implementation, and a thrust on open standards-
based protocols (e.g. Web Services) for realizing this vision. 

The design of a service is guided by a set of principles that help in achieving the 
goals of SOA. These principles have been well-documented in the literature [6, 7, 19] 
and include notions of cohesion, coupling, reusability, composability, granularity, 
statelessness, autonomy, abstraction and so on. However, the principles are largely 
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prescriptive in nature and there has been little work in defining how adherence to 
these principles may be quantitatively measured in practice. In some cases, metrics 
for a limited subset of SOA quality attributes have been proposed (e.g. [4, 5]), but 
most of these measures have not been empirically validated on real-life SOA designs. 
As a result, service design may proceed based on an informal or incomplete under-
standing of the principles, and without a sound measurement basis, could result in a 
flawed design. The generated services can provide all the functionality required by 
them and yet may not ultimately satisfy the design goals of SOA. 

In this paper, we take a deeper look at how the key SOA quality attributes of ser-
vice cohesion, coupling, reusability, composability and granularity may be evaluated, 
based only on service design level information. We review related work, adapt some 
of the well-known software design metrics to the SOA context and propose new 
measures where needed. We study their applicability on two real-life SOA design 
models from the insurance industry using a metrics computation tool integrated with 
an Eclipse-based service design environment. We also state the mathematical proper-
ties that the metrics adhere to (for lack of space, we do not include the proofs, which 
are straightforward). We believe that availability of these measures during SOA de-
sign will aid early detection of design flaws, allow different design options and trade-
offs to be considered and support planning for development, testing and governance 
of services. The service consumer will also be capable of analyzing the quality of a 
service without having to analyze the details of the implementation (to which the 
consumer may not have access). 

The rest of the paper is structured as follows.  Section 2 sets the context by intro-
ducing the abstract service design model, case studies and tooling framework used in 
this paper. In Section 3, we define and evaluate a set of metrics for the SOA quality 
attributes of cohesion, coupling, reusability, composability, and granularity. Related 
work for each of the metrics is also discussed in detail and leveraged whenever possi-
ble. Section 4 presents directions for future research. 

2   Setting the Context 

We first describe the formal model and notation for service design that we use in this 
paper. Next, we introduce two large service designs in the Insurance Industry that we 
will use as running examples to compute and evaluate the metrics we propose. Fi-
nally, we briefly describe the service modeling environment on top of which our met-
rics computation tool has been built and our empirical studies conducted. 

2.1   Model and Notations – Process, Service, Operations, Messages 

To ensure common understanding of the metrics, we introduce the underlying service 
model and associated notations used in this paper. An enterprise adopting Service 
Oriented Architecture identifies a domain that needs to undergo SOA transformation.  

• The business domain is supported by a set of business processes P = {p1, p2…pP}.  
• A set of services S= {s1, s2…sS} are identified and designed for automating the 

business process of the domain. 
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• A service s∈ S provides a set O(s) of operations = {o1, o2,….oO} and |O(s)| = O 

• An operation o ∈ O(s) has a set of input and output messages that are used as 
data containers between the service consumers and the service.  A message and 
its constituent data types are derived from an information model of the domain.  
M(o) is set of messages and data types for the operation o, The set of messages 
and constituent data types of all operations of a service s is represented as M(s) 

= U
)(

)(
sOo

oM
∈

. 

• Sconsumer(s) = {Sc1, Sc2….Scn}, represents a set of consumers of the service s. 

2.2   Case Studies  

Insurance Application Architecture (IAA): IAA [20] is a comprehensive set of 
insurance specific models that represent best practices in insurance. IAA describes the 
business of the insurer and includes process and information models of the domain. In 
recent years, a set of services have been designed to accelerate SOA adoption. In the 
rest of the paper, we refer to this design as ServiceDesignA.  

Insurance Property & Casualty Content Pack: IBM Websphere Industry content 
pack contains pre-built service-oriented architecture assets that are used to accelerate 
development of industry-specific business applications. The Insurance Property & 
Casualty Content Pack [21] for WebSphere Business Services Fabric focuses on 
property and casualty lines of business for insurance enterprises and provides a ser-
vice design for the same. We refer to this design as ServiceDesignB. 

Table 1 gives a high-level summary of the design of the two experimental systems.  

 
Table 1. Case Studies for Measuring Quality of Service Design 

 
Experimental System # of 

services 
# of 
operations 

# of messages 
and types 

# of Business 
Processes 

ServiceDesignA 110 622 3000 292 
ServiceDesignB 83 286 794 53 

2.3   Service Design and Metrics Computation Tool 

Rational Software Architect (RSA) [22] provides a mature environment for designing 
SOA solutions and is built over the Eclipse platform supporting plug-in development. 
Our tool for metrics computation on service design is an RSA plug-in. A UML model 
of the service design is taken as input. Eclipse EMF APIs are used to extract data on 
each service e.g. operations, messages, data types and business processes. This data is 
used to compute the metrics through a metrics calculator. The metrics is stored along 
with each service design element and can be analyzed. 

We now move on to the main part of the paper – the definition and evaluation of a 
metric suite for different quality aspects of service-oriented design. 
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3   Service Design Metrics 

SOA design principles emphasize the attributes of coupling, cohesion, reusability, 
composability and granularity. Below, we briefly introduce each attribute and survey 
related work on measuring them, for procedural and OO systems. We also review the 
(limited) research in quantifying these attributes for service-oriented systems. Finally, 
we propose a set of metrics for measuring each attribute and study their applicability 
and usefulness on our example service design models. 

3.1   Cohesion 

For any system, cohesion measures the degree to which the elements of the system 
belong together [1]. The notion is generic enough to be applied to different types or 
levels of encapsulation e.g. a module, class, component, service etc., although how it 
is measured would have to be adapted to the context. Highly cohesive designs are 
desirable since they are easier to analyze and test, and provide better stability and 
changeability, which make the eventual systems more maintainable [10]. 

For procedural systems, various categories of module cohesion were proposed in 
[1] such as Coincidental (weakest), Logical, Temporal, Procedural, Communicational, 
Sequential and Functional (strongest). For Object-Oriented (OO) systems, a different 
set of categories was defined in [11]: Separable (weakest), Multifaced, Non-
delegated, Concealed and Model (strongest). However, some of this categorization is 
subjective in nature. Bieman et. al [8] measure the functional cohesion of procedures 
by identifying common tokens that lie in the data slices of the procedure. Perhaps the 
most well-known effort at quantifying cohesion for OO systems is the LCOM (Lack 
of Cohesion in Methods) metric introduced by Chidamber and Kemerer that has mul-
tiple definitions and has undergone several refinements [3, 9].   

For service-oriented systems, Perepletchikov et. al [5] categorizes cohesion on the 
basis of data, usage, sequence and implementation, defines measures for these and 
aggregates based on their average. Of the proposed measures, Service Interface Data 
Cohesion (SIDC), that identifies cohesion based on commonality of messages of the 
operations in terms of contained data types, will be reviewed in more detail below. 
None of the metrics have been empirically validated. 

In the following, we first adapt two variants of the LCOM metric in the services 
context (LCOS1, LCOS2). The metrics are applied on our case studies and their draw-
backs are analyzed. We propose a new metric for measuring service cohesion (SFCI) 
and evaluate its performance.  Finally, the properties of SFCI are discussed. 

Lack of Cohesion of Service Operations (LCOS) 
LCOM has been widely used as a measure of cohesiveness in OO systems. For each 
class, the methods that operate on the same attributes are considered cohesive. In the 
context of services, there are no service attributes but messages become relevant as 
operations use these to execute the business functionality. Service operations that use 
common messages or their constituent data types can be considered cohesive. Service 
messages typically represent business entities or artifacts and hence operations on  
the same business entity or artifact are functionally related. We evaluate LCOM  
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definitions and redefine them for services. The definition is based on two widely used 
LCOM metrics [3, 9 ]. 

LCOS1 is based on the [3] where pairs of operations on the same set of messages 
are identified and considered cohesive; similarly, pairs of operations that do not con-
tain similar messages are considered non-cohesive.  

For a service s with operations O(s), let M(oi) be the set of messages (and data 

types) used by operation )(sOoi ∈ .  Let,  

P(s) ={ ( M(oi),M(oj) ) | M(oi) 3 M(oj) = π , )(, sOoo ji ∈  } and  

Q(s) = { ( M(oi), M(oj) ) } | M(oi) 3 M(oj) ! π, )(, sOoo ji ∈ }, then 
 

LCOS1 (s) = |P(s)| - |Q(s)| if |P(s)| > |Q(s)|  
  = 0 if |P(s)| < |Q(s)| 

As the above definition indicates, LCOS1 is not normalized, similar to the original 
LCOM metric [6]. LCOS1 is 0 (strong cohesion) when the number of operation pairs 
that share messages (Q(s)), is more than the number of pairs that do not (P(s)). Oth-
erwise, the difference between the numbers is taken as the lack of cohesion measure. 
LCOS2 is based on the [9]. The number of operations using a message m can be de-

fined as μ (m) where m∈ M(s).  
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LCOS2 is bound between 0 and 1. If each operation uses all the messages 3(m) = 
|O(s)| and hence LCOS2 = 0. If each operation uses a distinct message, then the nu-
merator reduces to 1-|O(s)| and so LCOS2 = 1.  
 
In practice, we have found both LCOS1 and LCOS2 to suffer from some drawbacks 
when applied to service oriented systems. Apart from its lack of normalization, the 
discriminating power of LCOS1 is low, and most services tend to be classified as 
highly cohesive. On the other hand, LCOS2 tends to increase sharply with increase in 
the number of operations, and most services appear as lacking cohesion. This is be-
cause, with an increasing number of operations, it becomes very unlikely that each 
operation will require the same set of (all) messages, although they may still contain 
some core data types that are relevant to the service functionality and may thus be 
argued to be functionally cohesive. These observations motivated us to define the 
Service Functional Cohesion Index (SFCI) defined below. 

Service Functional Cohesion Index (SFCI) 
This metric defines the functional cohesion of the operations of the service based on 
the commonality of the key message(s) the operations use to perform the required 
functionality. As above, if the number of operations using a message m is μ(m) where 

m∈ M(s), and |O(s)| >0, then 
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We define SFCI(s) to be 0 when s contains no operations. In SFCI(s), we focus on the 
contained data types that defines the message that is most widely used across all the 
operations – the fraction of operations using this common message and  types returns 
SFCI. The value of this metric is always between 0 (non-cohesive) and 1 (highly 
cohesive). The service is perfectly cohesive if all the operations use one common 
message – the intuition here is that a cohesive service typically operates on a small set 
of key business objects (messages) relevant to that service, so these objects should 
appear in most of its operations. But the operations may also need other messages as 
inputs to operate on the key objects, and these types can very well differ based on the 
nature of the operation.  As our empirical studies will show, this metric is better in-
dicative of the cohesion of service operations when compared to LCOS1 and LCOS2 
and remains stable with increase in number of operations. To compute the above 
metric in practice, we recommend filtering out utility data types that are also part of 
the messages since otherwise, unrelated operations may appear cohesive. The classifi-
cation of data types into utility and business-relevant types may be done by a domain 
expert. Utility data types (including those representing primitive types) usually appear 
in many/most operations, often across unrelated services, hence we may automatically 
identify potential utility data types based on their usage count, for validation and 
filtering by domain experts. 

The Service Interface Data Coupling (SIDC) metric defined in [5] also considers 
common data types of messages across operations to measure service cohesion. How-
ever, like LCOS2, cohesion is high in SIDC only when all operations have the mes-
sages with same data types. Also, the metric, which is defined as the ratio of two 
unrelated terms (the number of operations having the similar messages and the total 
number of messages) has not been normalized to range between 0 and 1. Finally, the 
metric has not been empirically evaluated. 

Measuring and Evaluating Cohesion Metrics 
We have evaluated LCOS1, LCOS2 and SFCI metrics on ServiceDesignA and Ser-
viceDesignB, and the results are shown in Figure 1.Since LCOS1 and LCOS2 indicate 
lack of cohesion while SFCI measures cohesion; we plot LCOS1, LCOS2 and (1- 
SFCI). Along the X-axis, we have ordered the services in terms of their increasing 
number of operations.  

In ServiceDesignA LCOS1 indicates a value of 0 for all but 2 services, while in 
ServiceDesignB, it is 0 for all the services. Thus all services are deemed highly cohe-
sive and are indistinguishable in this respect. Conversely, LCOS2 displays a strong 
correlation with the number of operations, and cohesion is very low for all services 
with more than 5 operations. On the other hand, the plot of SFCI shows better dis-
criminating power compared to LCOS1 and it remains stable as the number of 
operations increases, unlike LCOS2.  To validate that SFCI is more meaningful as a 
cohesion metric than LCOS2, we investigated a service PolicyAdministration having 9 
operations, with LCOS2 indicating lack of cohesion of 0.85 and SFCI indicating cohe-
sion of 0.89, which are very conflicting values. We found that all the 9 operations in 
PolicyAdministration are related to aspects of policy, and 8 of the 9 operations  
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Fig. 1. Cohesion Metrics for ServiceDesignA and ServiceDesignB 

 
 

process a business object called InsurancePolicy, hence from the design perspective, 
the service appears highly cohesive, as determined by SFCI, and the value of LCOS2 
appears misleading. We also reviewed a service with the lowest SFCI metric in Ser-
viceDesignA. The service, LifePolicyManager has 19 operations dealing with differ-
ent aspects such as terminating agreement, surrendering policy or requesting a loan, 
which could be refactored as multiple services.  Note that there are several utility 
types that are defined to invoke an operation – e.g. RequestHeader, ResponseHeader 
and BusinessObject in ServicceDesignA. We filtered these types while computing the 
SFCI. It is seen that about 70% of the services in ServiceDesignA have an SFCI > 0.8. 
ServiceDesignB has 80% of the services with cohesion > 0.8. Thus both designs are 
very cohesive. 

Validation of Cohesion Metrics 
We verify the properties satisfied by the cohesion metric SFCI using the Properties 
based software engineering measurement framework [2]. SFCI is not negative and is 
normalized between 0 and 1 (Non-negativity, Normalization). SFCI is null when there 
are no messages or operations of a service (Null Value). SFCI is monotonic and does 
not reduce when more number of operations use some common messages. By adding 
more relationships between the messages and operations, μ(m) increases and hence 
the cohesion of the service cannot decrease (Monotonicity). SFCI of a service ob-
tained by putting together two unrelated services (having disjoint message sets) can-
not be more than the SFCI of either service (Cohesive Service). 

3.2   Coupling 

Coupling measures the strength of association or dependence between systems. 
Loosely coupled systems are easier to maintain [10], since a change in one system 
entity will have less impact on other entities. They are also easier to comprehend, 
reuse and test. Low coupling and high cohesion are thus fundamental to the design of 
any software system, including those that are service-oriented.  

The concept of coupling was originally studied for procedural systems and classi-
fied into different types of coupling such as Content(highest),Data, Control, Mes-
sages(lowest) coupling [1]. For OO systems, additional complexities in coupling 
introduced by inheritance, polymorphism etc. have been studied and a number  
of coupling frameworks have been proposed [11, 12]. Two well-known metrics for 
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OO coupling are Coupling Between Objects (CBO) and Response for a Class (RFC) 
[3]. CBO for a class is the count of the number of classes to which it is coupled – i.e. 
methods of one class use methods or instance variables of another.  RFC for a class is 
the set of all methods that may be invoked in response to the invocation of a method 
in the class. In the context of service-oriented systems, [4] defines 8 types of coupling 
metrics. These metrics mostly relate to service implementation elements, assumes 
different weight factors for the relationships between elements, and makes many fine-
grained distinctions between the types of dependencies. The aggregate forms of these 
metrics are used to define coupling at the service level. While the work is very de-
tailed, the measures have not been empirically evaluated. Unlike [4], we define cou-
pling measures assuming the availability of only service design level information. The 
focus is on defining a small set of metrics that are easy for the service designer to act 
on and the service consumer to comprehend. Our approach has been motivated by the 
fact that coupling as a property, has a tendency to generate a multitude of measures 
often without offering newer insight, as a study by Briand et al have shown for OO 
systems [13]. 

In a service-oriented design, we believe that there is a need to distinguish between 
2 categories of coupling: the dependence of a service on other services, and its de-
pendence on messages. The dependence of one service on another has parallels with 
inter-class coupling, and the OO metrics of CBO and RFC may be suitably adapted, 
as we show below. However, the dependence of a service on messages is a character-
istic of the services domain. Unlike in OO where a class encapsulates data (class at-
tributes) and also operations on that data, messages are not bound to a service; rather, 
they are treated as first-class entities in a service-oriented design approach, and are 
defined by data architects based on the information model containing all the business 
entities of the domain. Services encapsulate operations that refer to and update the 
state of the business messages, and thus become coupled to them – business object 
models may get independently updated, thereby necessitating changes to the service 
operations that process them. Accordingly, we define metrics for both service cou-
pling (SOCI, ISCI) and message coupling (SMCI), below. 

Service Operational Coupling Index (SOCI) 
We analyze the dependence of a service on the operations of other services it uses for 
its functionality. Service Operational Coupling Index; SOCI can be represented as the 
number of operations of other services invoked by service s. 

{ }')',(|'')( ssoocallssosSOCI so ≠∧∃∈= ∈  

calls (o, o’) denotes a call made by operation o of s to operation o’ of s’. This measure 
considers direct coupling only. We can further use a transitive closure of the calls 
relation to get a measure of indirect service operational coupling, which is denoted as 
SOCIindirect(s). SOCI is an adaptation of the OO metric Response for a Class (RFC) 
[3], in the services domain.    

Inter-Service Coupling Index (ISCI) 
Inter-Service Coupling Index (ISCI) is defined as the number of services invoked by a 
given service s. 



 Measuring the Quality of Service Oriented Design 493 

{ }')',(.,|')( '' ssoocallsssISCI soso ≠∧∃∃= ∈∈  

We can further use a transitive closure of the calls relation to get a measure of indirect 
inter-service coupling which is denoted as ISCIindirect(s). ISCI is similar in spirit to the 
OO metric of Coupling Between Objects (CBO) [3]. However CBO also includes 
dependencies on class attributes (in addition to methods), which is not relevant in the 
services context. 
 
 Service Message Coupling Index (SMCI) 
SMCI measures the dependence of a service on the messages derived from the infor-
mation model of the domain. These messages are those its operations receive as inputs, 
interpret and process, and those they need to produce as output, as declared in the inter-
face. They also include messages the service needs to create in order to invoke opera-
tions in other services it is functionally dependent on. We represent SMCI as 

|)')',(()'(|)'(|)( '' ssoocallssooMsSMCI soso ≠∧∃∃∨∈= ∈∈U   

A low SMCI indicates less complexity for the service in interpreting and creating 
messages and less dependence on the domain information model. Note that M(o) 
includes all the constituent data types. 

Measuring and Evaluating Coupling Metrics 
The ISCI and SOCI metrics, evaluated on ServiceDesingnA, are shown in Fig.2 (a) 
Overall, the system has moderate levels of coupling and of the 110 services, 36 ser-
vices (~ 33%) are coupled to other services, while the rest are atomic services that do 
not depend on other services for their functionality. For most services, the SOCI and 
ISCI metric are the same. This indicates that a service is dependent on another service 
for only one of its operations. Moreover, we have determined that the Indirect ver-
sions of these metrics do not bring in any additional coupling. The maximum value of 
ISCI is 4. The service OperationalRiskAssessment is coupled to other services as it 
analyzes risk by requesting information from 4 distinct services related to Customer, 
Policy, Agreement and Payment. In the case of SystemDesignB, all 83 services were 
atomic services. The design consists of utility services on which other services can be 
defined. Figure 2 (b) shows the SMCI metric for the services in ServiceDesignA and 
ServiceDesignB In general, ServiceDesingA has higher message coupling than Ser-
viceDesignB, as seen from the figure. 
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Fig. 2(a). ISCI, SOCI for ServiceDesignA 2(b). SMCI for ServiceDesignA and Ser-
viceDesignB  
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Validation of Coupling Metrics 
We now verify the properties of the coupling metrics [2]. The coupling metrics are 
nonnegative (Nonnegativity). ISCI, SOCI and SMCI are null if there are no coupled 
services or no messages for each of the service operations (Null Value). The metrics 
are Monotonic and do not decrease by adding more dependencies. SMCI may only 
increase if the number of messages of the service (or, in operations invoked by the 
service) increases (Monotonicity). The coupling of a service obtained by merging two 
services is less than or equal the sum of coupling of the two original services (Merg-
ing of Services). This is true for all the metrics. The coupling obtained by merging two 
disjoint services is equal to the sum of couplings of the two original services (Disjoint 
Service Additivity). Disjoint services are not consumers of each other, are coupled to 
different services and have disjoint message sets. 

3.3   Reusability and Composability  

We now discuss service reusability and composability, which are related concepts. 
Reusability is one of the key principles of service design. A service should ideally be 
designed for more that one service consumer. Service composability is a form of 
reusability. A service becomes a composition participant and can be reused along with 
other services to provide business functionality.   

Reusability of an entity may be looked at from two perspectives: the characteristics 
of the entity that are predictors of reusability, and potential for future reuse of the 
entity based on usage that has already happened. The attributes of coupling and cohe-
sion are generally good predictors of reusability. A service whose operations are  
cohesive and have less external dependencies will be more easily reusable. [14] com-
putes customizability, understandability and portability metrics and uses them as 
predictors of reusability. Portability is measured in terms of the number of methods 
without parameters or return values. In [16], the average number of arguments per 
procedure is proposed as a measure of the understandability of the interface. For pre-
dicting reusability based on actual usage, contributions in terms of lines of code 
(LOC) [15] have been proposed for code assets. For OO systems, Depth of Inheri-
tance (DIT) metric is used as a measure of reusability of a class [3]. However, neither 
of these metrics is relevant to services-oriented design, and we instead suggest meas-
uring reusability based on use of the service by service consumers. 

 
Service Reuse Index 
The number of existing consumers of a service indicates the reusability of the service. 
At the service design level, these consumers may be other services coupled to this 
service or business processes where the service is used. We define Service Reuse 
Index as  

SRI(s) = |Sconsumer(s)| = P + Q, where 

P = { }'),'(.,|' '' ssoocallss soso ≠∧∃∃ ∈∈  

Q = { }psPp ∈∈ |  

Similarly, we may define an Operation Reuse Index (ORI) for an operation as  
the number of consumers of that operation across services and business processes. 
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Sometimes the reuse of a service is due to the reuse of one or few of its operations – 
ORI helps identify those important operations of the service. 

While SRI predicts future reuse based on existing usage of a service, service reuse 
potential based on interface understandability (along the lines of component under-
standability [16]) may be defined in terms of the complexity of the interface. The 
interface of a service is complex when it contains a high number of operations and 
messages, hence |O(s)| and |M(s)| may be used as indicators of understandability, with 
lower values implying better understandability (thereby higher reuse potential). How-
ever, proving the value of such measures for reuse (i.e. being able to link actual usage 
to better understandability) is difficult and higher interface complexity often means 
more reuse opportunities, as our empirical studies reveal below. 

Service Composability Index (SCOMP) 
A composable service is designed to participate as an effective member of multiple 
compositions. We define service composability considering the compositions in 
which the service is a composition participant and the number of distinct composition 
participants which succeed or precede the service. Neighbors(s, p) returns the set of 
services which are neighbors (immediate predecessors and successors) of s in busi-
ness process p.  We define: 

SCOMP(s) =  |),(| U
Pp

psNeighbors
∈

 

We may also extend this definition to include other services that may not be immedi-
ate successors or predecessors of s but are participants of the same composition and 
would be present in the control flow of the composition. The composability of s with 
these services may be weighed by the inverse of its distance from s in these composi-
tions (more distant is the neighbor, less is the composability). 
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Fig. 3(a). SRI for ServiceDesignA and Ser-
viceDesignB 

3(b). SCOMP for ServiceDesignA 

 

Measuring and Evaluating Reusability and Composability 
Figure 3(a) shows the percentage of services having a certain number of consumers. 
There are some instances of high reuse e.g. in ServiceDesignA, there is one service 
‘PartyNotification’ having 77 consumers. Similarly, in ServiceDesignB, there are 4 
services that have >30 service consumers, but there is also a significant percentage of 
services with very few consumers. We evaluate the operation reuse index of the Par-
tyNotification service. There is one operation that is highly reused as compared to the 
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others – notifyParty with 36 consumers. A change to this operation would have a high 
impact on the consumers of PartyNotification. SCOMP(s) for all the services of Ser-
viceDesignA is measured as shown in Figure 3(b). As the number of compositions in 
which a service occurs increases, the number of distinct composition participants 
generally increases as well, and hence SCOMP increases. This correlation can be seen 
in the figure. This plot does not include the Party notification service that is used in 77 
compositions and has SCOMP =32. We also found that for ServiceDesignA, service 
interface complexity (|M(s)| and |O(s)|) has a positive correlation of > 0.5 with reus-
ability: it seems that higher the complexity (arguably, lower the understandability), 
the larger is the scope of service functionality, and higher the number of consumers. 
While interface complexity/understandability is an issue that may concern consumers 
from outside the domain looking to use the service, it seems that within a domain it is 
the value and scope of the business functionality offered by a service that determines 
its reuse potential. We return to this issue when we discuss service granularity. 

Properties of Reusability and Composability Metrics 
Based on the inherent semantics of reusability and composability, we define a set of 
properties that their metrics should adhere to. The metrics cannot be negative (Non-
negativity). They should be null where there are no consumers (Null Value).  Reus-
ability of a service or an operation should not decrease by adding more service con-
sumers; similarly, composability of a service should not decrease with more composi-
tion participants (Monotonicity). The reusability of a service obtained by merging two 
services is not greater than the sum of reusability of the two original services. This is 
also true for the composability metric. (Merging of services). It may be shown that 
SRI and SCOMP satisfy these properties. 

3.4   Service Granularity 

Granularity refers to the quantity of functionality encapsulated in a service. A coarse 
grained service would provide several distinct functions and would have a large num-
ber of consumers. As described in [6], granularity could be further classified as capa-
bility granularity and data granularity. Capability granularity refers to the functional 
scope of the service and data granularity refers to the amount of data that is trans-
ferred to provide the functionality. One of the indicators of the quantity of functional-
ity in a service is its size. The number of operations of a service |O(s)| and the number 
of messages used by the operations |M(s)| can be indicative of the Service Capability 
Granularity (SCG) and Service Data Granularity (SDG) respectively, where higher 
values may indicate coarser granularity e.g. larger functional scope.  However, a high 
|O(s)| can also result from decomposing coarser operations into multiple finer-grained 
operations that consumers need to call, hence there is a need to reason about service 
granularity also from the perspective of a business process where the service is used. 
If a service encodes many small units of capability, each exchanging small amounts 
of data, then complex business processes would need a large number of such services 
to be composed to yield the desired functionality – thus for a business process 

Pp ∈ , the number of services involved (Process Service Granularity or PSG(p)) 

and number of operations invoked (Process Operation Granularity or POG(p)), may 
also indicate if the constituent services are of an acceptable granularity or not – too 
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many ( conversely, too few) services and operations constituting a business process 
may imply that the services in the design model are too fine grained ( or, too coarse 
grained), and that there is a need to re-factor the services to get the granularity right. 
This is also related to the service identification process of top-down decomposition 
proposed by many methods (e.g. [18]), where a complex business process is succes-
sively decomposed into sub-processes, which ultimately map to services. The Depth 
of Process Decomposition (DPD) – the number of levels to which the process was 
decomposed before services were identified, can be an indicator of the granularity of 
the derived services and operations, with services/operations identified at a greater 
depth likely to be of finer granularity. Also, with each decomposition step, the poten-
tial number of services (and/or the number of operations in a service) may increase, 
thereby showing up as higher values of PSG, POG, SCG etc. Thus, service and proc-
ess granularity metrics may need to be reviewed together, to obtain greater insight on 
design granularity. 
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Fig. 4. Granularity Metrics for Service Design 

Measuring Granularity Metrics 
We measure the granularity metrics for both the designs. As shown in Fig. 4, a large 
number of services in ServiceDesignB are fine grained with one operation and < 4 
messages and types. In ServiceDesignA, there are many services with > 5 operations 
and >20 messages and types, which is indicative of coarser granularity of the services. 
PSG(p) of the processes of ServiceDesignA is shown in Figure 4(c ).  There are about 
20 processes that have one single service and invoke one operation as POC(p) =1. 
This indicates that the services used in the process are coarse grained. There are a few 
processes that involve around 10 services, and these may be explored to check if their 
granularity is too fine, but that is unlikely to be the case given that no process requires 
more than 16 operations. The DPD of the processes that we considered for the design 
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is 1 or 2, which suggests that processes were not overly decomposed to obtain ser-
vices, and the rest of the metrics seem to confirm this. 

Properties of Granularity Metrics 
We validate the granularity metrics against the mathematical properties of size, as the 
number of services, operations, and messages are size metrics. The granularity of a 
service and a process is nonnegative (Nonnegativity). The granularity of a ser-
vice/process is null if it does not have any operations (Null Value). The granularity of 
a service obtained by merging two disjoint services is equal to the sum of the granu-
larity of the original services having different messages and operations (Disjoint Ser-
vice Additivity). 

4   Discussions and Future Work 

In this paper, we have proposed and evaluated a metrics suite for measuring the qual-
ity of service design along well-known design principles. The strengths and limita-
tions of some of these metrics were discussed, and we have presented the results of 
measuring these metrics on two large SOA solution designs in the Insurance domain. 
Apart from conducting more empirical studies (with service designs from other do-
mains), there are two tracks along which we are extending this work: 

Additional Service Design Qualities:  Some of the key service principles of abstrac-
tion, autonomy and statelessness have not been covered in this paper. These aspects of 
a service may require additional inputs that need to be defined during the design of 
services. For example, we are exploring WSDL-S [17] to see how such specifications 
may be analyzed to gain more quality insights.    

Design Analysis: We have defined and analyzed the metrics independently. How-
ever, the principles are related, and often the same metric can be indicative of multi-
ple design aspects, as we have seen (e.g. |M(s)| can be used to study coupling as well 
as granularity). In a large solution design, there are requirements to address multiple 
quality aspects of a solution, and these often involve trade-offs. The design would 
also need to account for the non-functional requirements such as governance and 
performance. A more comprehensive analysis of the design, that would allow users to 
prioritize design attributes and would propose design alternatives that best meet the 
business needs, is an important direction that we intend to explore.  
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