
L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 485–499, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Measuring the Quality of Service Oriented Design

Renuka Sindhgatta, Bikram Sengupta, and Karthikeyan Ponnalagu

IBM India Research Laboratory
Bangalore, India

{renuka.sr,bsengupt,pkarthik}@in.ibm.com

Abstract. Service Oriented Architecture (SOA) has gained popularity as a de-
sign paradigm for realizing enterprise software systems through abstract units
of functionality called services. While the key design principles of SOA have
been discussed at length in the literature, much of the work is prescriptive in na-
ture and do not explain how adherence to these principles can be quantitatively
measured in practice. In some cases, metrics for a limited subset of SOA quality
attributes have been proposed, but many of these measures have not been em-
pirically validated on real-life SOA designs. In this paper, we take a deeper look
at how the key SOA quality attributes of service cohesion, coupling, reusability,
composability and granularity may be evaluated, based only on service design
level information. We survey related work, adapt some of the well-known soft-
ware design metrics to the SOA context and propose new measures where
needed. These measures adhere to mathematical properties that characterize the
quality attributes. We study their applicability on two real-life SOA design
models from the insurance industry using a metrics computation tool integrated
with an Eclipse-based service design environment. We believe that availability
of these measures during SOA design will aid early detection of design flaws,
allow different design options and trade-offs to be considered and support plan-
ning for development, testing and governance of the services.

Keywords: Service Design, Business Process Model, Service Design
Principles, Metrics.

1 Introduction

Service Oriented Architecture (SOA) represents the natural continuum of increasing
levels of abstraction in software engineering that has previously seen the emergence
of object-oriented programming and component based development. SOA is charac-
terized by a greater focus on identifying business-relevant functionality that may be
exposed as services to consumers (end-user applications or other services), a higher-
level of decoupling of interfaces and implementation, and a thrust on open standards-
based protocols (e.g. Web Services) for realizing this vision.

The design of a service is guided by a set of principles that help in achieving the
goals of SOA. These principles have been well-documented in the literature [6, 7, 19]
and include notions of cohesion, coupling, reusability, composability, granularity,
statelessness, autonomy, abstraction and so on. However, the principles are largely

486 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

prescriptive in nature and there has been little work in defining how adherence to
these principles may be quantitatively measured in practice. In some cases, metrics
for a limited subset of SOA quality attributes have been proposed (e.g. [4, 5]), but
most of these measures have not been empirically validated on real-life SOA designs.
As a result, service design may proceed based on an informal or incomplete under-
standing of the principles, and without a sound measurement basis, could result in a
flawed design. The generated services can provide all the functionality required by
them and yet may not ultimately satisfy the design goals of SOA.

In this paper, we take a deeper look at how the key SOA quality attributes of ser-
vice cohesion, coupling, reusability, composability and granularity may be evaluated,
based only on service design level information. We review related work, adapt some
of the well-known software design metrics to the SOA context and propose new
measures where needed. We study their applicability on two real-life SOA design
models from the insurance industry using a metrics computation tool integrated with
an Eclipse-based service design environment. We also state the mathematical proper-
ties that the metrics adhere to (for lack of space, we do not include the proofs, which
are straightforward). We believe that availability of these measures during SOA de-
sign will aid early detection of design flaws, allow different design options and trade-
offs to be considered and support planning for development, testing and governance
of services. The service consumer will also be capable of analyzing the quality of a
service without having to analyze the details of the implementation (to which the
consumer may not have access).

The rest of the paper is structured as follows. Section 2 sets the context by intro-
ducing the abstract service design model, case studies and tooling framework used in
this paper. In Section 3, we define and evaluate a set of metrics for the SOA quality
attributes of cohesion, coupling, reusability, composability, and granularity. Related
work for each of the metrics is also discussed in detail and leveraged whenever possi-
ble. Section 4 presents directions for future research.

2 Setting the Context

We first describe the formal model and notation for service design that we use in this
paper. Next, we introduce two large service designs in the Insurance Industry that we
will use as running examples to compute and evaluate the metrics we propose. Fi-
nally, we briefly describe the service modeling environment on top of which our met-
rics computation tool has been built and our empirical studies conducted.

2.1 Model and Notations – Process, Service, Operations, Messages

To ensure common understanding of the metrics, we introduce the underlying service
model and associated notations used in this paper. An enterprise adopting Service
Oriented Architecture identifies a domain that needs to undergo SOA transformation.

• The business domain is supported by a set of business processes P = {p1, p2…pP}.
• A set of services S= {s1, s2…sS} are identified and designed for automating the

business process of the domain.

 Measuring the Quality of Service Oriented Design 487

• A service s∈ S provides a set O(s) of operations = {o1, o2,….oO} and |O(s)| = O

• An operation o ∈ O(s) has a set of input and output messages that are used as
data containers between the service consumers and the service. A message and
its constituent data types are derived from an information model of the domain.
M(o) is set of messages and data types for the operation o, The set of messages
and constituent data types of all operations of a service s is represented as M(s)

= U
)(

)(
sOo

oM
∈

.

• Sconsumer(s) = {Sc1, Sc2….Scn}, represents a set of consumers of the service s.

2.2 Case Studies

Insurance Application Architecture (IAA): IAA [20] is a comprehensive set of
insurance specific models that represent best practices in insurance. IAA describes the
business of the insurer and includes process and information models of the domain. In
recent years, a set of services have been designed to accelerate SOA adoption. In the
rest of the paper, we refer to this design as ServiceDesignA.

Insurance Property & Casualty Content Pack: IBM Websphere Industry content
pack contains pre-built service-oriented architecture assets that are used to accelerate
development of industry-specific business applications. The Insurance Property &
Casualty Content Pack [21] for WebSphere Business Services Fabric focuses on
property and casualty lines of business for insurance enterprises and provides a ser-
vice design for the same. We refer to this design as ServiceDesignB.

Table 1 gives a high-level summary of the design of the two experimental systems.

Table 1. Case Studies for Measuring Quality of Service Design

Experimental System # of

services
of
operations

of messages
and types

of Business
Processes

ServiceDesignA 110 622 3000 292
ServiceDesignB 83 286 794 53

2.3 Service Design and Metrics Computation Tool

Rational Software Architect (RSA) [22] provides a mature environment for designing
SOA solutions and is built over the Eclipse platform supporting plug-in development.
Our tool for metrics computation on service design is an RSA plug-in. A UML model
of the service design is taken as input. Eclipse EMF APIs are used to extract data on
each service e.g. operations, messages, data types and business processes. This data is
used to compute the metrics through a metrics calculator. The metrics is stored along
with each service design element and can be analyzed.

We now move on to the main part of the paper – the definition and evaluation of a
metric suite for different quality aspects of service-oriented design.

488 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

3 Service Design Metrics

SOA design principles emphasize the attributes of coupling, cohesion, reusability,
composability and granularity. Below, we briefly introduce each attribute and survey
related work on measuring them, for procedural and OO systems. We also review the
(limited) research in quantifying these attributes for service-oriented systems. Finally,
we propose a set of metrics for measuring each attribute and study their applicability
and usefulness on our example service design models.

3.1 Cohesion

For any system, cohesion measures the degree to which the elements of the system
belong together [1]. The notion is generic enough to be applied to different types or
levels of encapsulation e.g. a module, class, component, service etc., although how it
is measured would have to be adapted to the context. Highly cohesive designs are
desirable since they are easier to analyze and test, and provide better stability and
changeability, which make the eventual systems more maintainable [10].

For procedural systems, various categories of module cohesion were proposed in
[1] such as Coincidental (weakest), Logical, Temporal, Procedural, Communicational,
Sequential and Functional (strongest). For Object-Oriented (OO) systems, a different
set of categories was defined in [11]: Separable (weakest), Multifaced, Non-
delegated, Concealed and Model (strongest). However, some of this categorization is
subjective in nature. Bieman et. al [8] measure the functional cohesion of procedures
by identifying common tokens that lie in the data slices of the procedure. Perhaps the
most well-known effort at quantifying cohesion for OO systems is the LCOM (Lack
of Cohesion in Methods) metric introduced by Chidamber and Kemerer that has mul-
tiple definitions and has undergone several refinements [3, 9].

For service-oriented systems, Perepletchikov et. al [5] categorizes cohesion on the
basis of data, usage, sequence and implementation, defines measures for these and
aggregates based on their average. Of the proposed measures, Service Interface Data
Cohesion (SIDC), that identifies cohesion based on commonality of messages of the
operations in terms of contained data types, will be reviewed in more detail below.
None of the metrics have been empirically validated.

In the following, we first adapt two variants of the LCOM metric in the services
context (LCOS1, LCOS2). The metrics are applied on our case studies and their draw-
backs are analyzed. We propose a new metric for measuring service cohesion (SFCI)
and evaluate its performance. Finally, the properties of SFCI are discussed.

Lack of Cohesion of Service Operations (LCOS)
LCOM has been widely used as a measure of cohesiveness in OO systems. For each
class, the methods that operate on the same attributes are considered cohesive. In the
context of services, there are no service attributes but messages become relevant as
operations use these to execute the business functionality. Service operations that use
common messages or their constituent data types can be considered cohesive. Service
messages typically represent business entities or artifacts and hence operations on
the same business entity or artifact are functionally related. We evaluate LCOM

 Measuring the Quality of Service Oriented Design 489

definitions and redefine them for services. The definition is based on two widely used
LCOM metrics [3, 9].

LCOS1 is based on the [3] where pairs of operations on the same set of messages
are identified and considered cohesive; similarly, pairs of operations that do not con-
tain similar messages are considered non-cohesive.

For a service s with operations O(s), let M(oi) be the set of messages (and data

types) used by operation)(sOoi ∈ . Let,

P(s) ={ (M(oi),M(oj)) | M(oi) 3 M(oj) = π ,)(, sOoo ji ∈ } and

Q(s) = { (M(oi), M(oj)) } | M(oi) 3 M(oj) ! π,)(, sOoo ji ∈ }, then

LCOS1 (s) = |P(s)| - |Q(s)| if |P(s)| > |Q(s)|
 = 0 if |P(s)| < |Q(s)|

As the above definition indicates, LCOS1 is not normalized, similar to the original
LCOM metric [6]. LCOS1 is 0 (strong cohesion) when the number of operation pairs
that share messages (Q(s)), is more than the number of pairs that do not (P(s)). Oth-
erwise, the difference between the numbers is taken as the lack of cohesion measure.
LCOS2 is based on the [9]. The number of operations using a message m can be de-

fined as μ (m) where m∈ M(s).

|)(|1

|)(|)(
|)(|

1

)(
)(

2 sO

sOm
sM

sLCOS
sMm

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∑
∈

μ

LCOS2 is bound between 0 and 1. If each operation uses all the messages 3(m) =
|O(s)| and hence LCOS2 = 0. If each operation uses a distinct message, then the nu-
merator reduces to 1-|O(s)| and so LCOS2 = 1.

In practice, we have found both LCOS1 and LCOS2 to suffer from some drawbacks
when applied to service oriented systems. Apart from its lack of normalization, the
discriminating power of LCOS1 is low, and most services tend to be classified as
highly cohesive. On the other hand, LCOS2 tends to increase sharply with increase in
the number of operations, and most services appear as lacking cohesion. This is be-
cause, with an increasing number of operations, it becomes very unlikely that each
operation will require the same set of (all) messages, although they may still contain
some core data types that are relevant to the service functionality and may thus be
argued to be functionally cohesive. These observations motivated us to define the
Service Functional Cohesion Index (SFCI) defined below.

Service Functional Cohesion Index (SFCI)
This metric defines the functional cohesion of the operations of the service based on
the commonality of the key message(s) the operations use to perform the required
functionality. As above, if the number of operations using a message m is μ(m) where

m∈ M(s), and |O(s)| >0, then

490 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

|)(|

))(max(
)(

sO

m
sSFCI

μ=

We define SFCI(s) to be 0 when s contains no operations. In SFCI(s), we focus on the
contained data types that defines the message that is most widely used across all the
operations – the fraction of operations using this common message and types returns
SFCI. The value of this metric is always between 0 (non-cohesive) and 1 (highly
cohesive). The service is perfectly cohesive if all the operations use one common
message – the intuition here is that a cohesive service typically operates on a small set
of key business objects (messages) relevant to that service, so these objects should
appear in most of its operations. But the operations may also need other messages as
inputs to operate on the key objects, and these types can very well differ based on the
nature of the operation. As our empirical studies will show, this metric is better in-
dicative of the cohesion of service operations when compared to LCOS1 and LCOS2
and remains stable with increase in number of operations. To compute the above
metric in practice, we recommend filtering out utility data types that are also part of
the messages since otherwise, unrelated operations may appear cohesive. The classifi-
cation of data types into utility and business-relevant types may be done by a domain
expert. Utility data types (including those representing primitive types) usually appear
in many/most operations, often across unrelated services, hence we may automatically
identify potential utility data types based on their usage count, for validation and
filtering by domain experts.

The Service Interface Data Coupling (SIDC) metric defined in [5] also considers
common data types of messages across operations to measure service cohesion. How-
ever, like LCOS2, cohesion is high in SIDC only when all operations have the mes-
sages with same data types. Also, the metric, which is defined as the ratio of two
unrelated terms (the number of operations having the similar messages and the total
number of messages) has not been normalized to range between 0 and 1. Finally, the
metric has not been empirically evaluated.

Measuring and Evaluating Cohesion Metrics
We have evaluated LCOS1, LCOS2 and SFCI metrics on ServiceDesignA and Ser-
viceDesignB, and the results are shown in Figure 1.Since LCOS1 and LCOS2 indicate
lack of cohesion while SFCI measures cohesion; we plot LCOS1, LCOS2 and (1-
SFCI). Along the X-axis, we have ordered the services in terms of their increasing
number of operations.

In ServiceDesignA LCOS1 indicates a value of 0 for all but 2 services, while in
ServiceDesignB, it is 0 for all the services. Thus all services are deemed highly cohe-
sive and are indistinguishable in this respect. Conversely, LCOS2 displays a strong
correlation with the number of operations, and cohesion is very low for all services
with more than 5 operations. On the other hand, the plot of SFCI shows better dis-
criminating power compared to LCOS1 and it remains stable as the number of
operations increases, unlike LCOS2. To validate that SFCI is more meaningful as a
cohesion metric than LCOS2, we investigated a service PolicyAdministration having 9
operations, with LCOS2 indicating lack of cohesion of 0.85 and SFCI indicating cohe-
sion of 0.89, which are very conflicting values. We found that all the 9 operations in
PolicyAdministration are related to aspects of policy, and 8 of the 9 operations

 Measuring the Quality of Service Oriented Design 491

Fig. 1. Cohesion Metrics for ServiceDesignA and ServiceDesignB

process a business object called InsurancePolicy, hence from the design perspective,
the service appears highly cohesive, as determined by SFCI, and the value of LCOS2
appears misleading. We also reviewed a service with the lowest SFCI metric in Ser-
viceDesignA. The service, LifePolicyManager has 19 operations dealing with differ-
ent aspects such as terminating agreement, surrendering policy or requesting a loan,
which could be refactored as multiple services. Note that there are several utility
types that are defined to invoke an operation – e.g. RequestHeader, ResponseHeader
and BusinessObject in ServicceDesignA. We filtered these types while computing the
SFCI. It is seen that about 70% of the services in ServiceDesignA have an SFCI > 0.8.
ServiceDesignB has 80% of the services with cohesion > 0.8. Thus both designs are
very cohesive.

Validation of Cohesion Metrics
We verify the properties satisfied by the cohesion metric SFCI using the Properties
based software engineering measurement framework [2]. SFCI is not negative and is
normalized between 0 and 1 (Non-negativity, Normalization). SFCI is null when there
are no messages or operations of a service (Null Value). SFCI is monotonic and does
not reduce when more number of operations use some common messages. By adding
more relationships between the messages and operations, μ(m) increases and hence
the cohesion of the service cannot decrease (Monotonicity). SFCI of a service ob-
tained by putting together two unrelated services (having disjoint message sets) can-
not be more than the SFCI of either service (Cohesive Service).

3.2 Coupling

Coupling measures the strength of association or dependence between systems.
Loosely coupled systems are easier to maintain [10], since a change in one system
entity will have less impact on other entities. They are also easier to comprehend,
reuse and test. Low coupling and high cohesion are thus fundamental to the design of
any software system, including those that are service-oriented.

The concept of coupling was originally studied for procedural systems and classi-
fied into different types of coupling such as Content(highest),Data, Control, Mes-
sages(lowest) coupling [1]. For OO systems, additional complexities in coupling
introduced by inheritance, polymorphism etc. have been studied and a number
of coupling frameworks have been proposed [11, 12]. Two well-known metrics for

Cohesion Metrics for ServiceDesignA

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Services

M
et

ri
c

V
al

u
e

LCOS1 LOCS2 1-SFCI

Cohesion Metrics for ServiceDesignB

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Services

M
et

ri
c

V
al

u
e

LCOS1 LCOS2 1-SFCI

492 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

OO coupling are Coupling Between Objects (CBO) and Response for a Class (RFC)
[3]. CBO for a class is the count of the number of classes to which it is coupled – i.e.
methods of one class use methods or instance variables of another. RFC for a class is
the set of all methods that may be invoked in response to the invocation of a method
in the class. In the context of service-oriented systems, [4] defines 8 types of coupling
metrics. These metrics mostly relate to service implementation elements, assumes
different weight factors for the relationships between elements, and makes many fine-
grained distinctions between the types of dependencies. The aggregate forms of these
metrics are used to define coupling at the service level. While the work is very de-
tailed, the measures have not been empirically evaluated. Unlike [4], we define cou-
pling measures assuming the availability of only service design level information. The
focus is on defining a small set of metrics that are easy for the service designer to act
on and the service consumer to comprehend. Our approach has been motivated by the
fact that coupling as a property, has a tendency to generate a multitude of measures
often without offering newer insight, as a study by Briand et al have shown for OO
systems [13].

In a service-oriented design, we believe that there is a need to distinguish between
2 categories of coupling: the dependence of a service on other services, and its de-
pendence on messages. The dependence of one service on another has parallels with
inter-class coupling, and the OO metrics of CBO and RFC may be suitably adapted,
as we show below. However, the dependence of a service on messages is a character-
istic of the services domain. Unlike in OO where a class encapsulates data (class at-
tributes) and also operations on that data, messages are not bound to a service; rather,
they are treated as first-class entities in a service-oriented design approach, and are
defined by data architects based on the information model containing all the business
entities of the domain. Services encapsulate operations that refer to and update the
state of the business messages, and thus become coupled to them – business object
models may get independently updated, thereby necessitating changes to the service
operations that process them. Accordingly, we define metrics for both service cou-
pling (SOCI, ISCI) and message coupling (SMCI), below.

Service Operational Coupling Index (SOCI)
We analyze the dependence of a service on the operations of other services it uses for
its functionality. Service Operational Coupling Index; SOCI can be represented as the
number of operations of other services invoked by service s.

{ }')',(|'')(ssoocallssosSOCI so ≠∧∃∈= ∈

calls (o, o’) denotes a call made by operation o of s to operation o’ of s’. This measure
considers direct coupling only. We can further use a transitive closure of the calls
relation to get a measure of indirect service operational coupling, which is denoted as
SOCIindirect(s). SOCI is an adaptation of the OO metric Response for a Class (RFC)
[3], in the services domain.

Inter-Service Coupling Index (ISCI)
Inter-Service Coupling Index (ISCI) is defined as the number of services invoked by a
given service s.

 Measuring the Quality of Service Oriented Design 493

{ }')',(.,|')('' ssoocallsssISCI soso ≠∧∃∃= ∈∈

We can further use a transitive closure of the calls relation to get a measure of indirect
inter-service coupling which is denoted as ISCIindirect(s). ISCI is similar in spirit to the
OO metric of Coupling Between Objects (CBO) [3]. However CBO also includes
dependencies on class attributes (in addition to methods), which is not relevant in the
services context.

 Service Message Coupling Index (SMCI)
SMCI measures the dependence of a service on the messages derived from the infor-
mation model of the domain. These messages are those its operations receive as inputs,
interpret and process, and those they need to produce as output, as declared in the inter-
face. They also include messages the service needs to create in order to invoke opera-
tions in other services it is functionally dependent on. We represent SMCI as

|)')',(()'(|)'(|)('' ssoocallssooMsSMCI soso ≠∧∃∃∨∈= ∈∈U

A low SMCI indicates less complexity for the service in interpreting and creating
messages and less dependence on the domain information model. Note that M(o)
includes all the constituent data types.

Measuring and Evaluating Coupling Metrics
The ISCI and SOCI metrics, evaluated on ServiceDesingnA, are shown in Fig.2 (a)
Overall, the system has moderate levels of coupling and of the 110 services, 36 ser-
vices (~ 33%) are coupled to other services, while the rest are atomic services that do
not depend on other services for their functionality. For most services, the SOCI and
ISCI metric are the same. This indicates that a service is dependent on another service
for only one of its operations. Moreover, we have determined that the Indirect ver-
sions of these metrics do not bring in any additional coupling. The maximum value of
ISCI is 4. The service OperationalRiskAssessment is coupled to other services as it
analyzes risk by requesting information from 4 distinct services related to Customer,
Policy, Agreement and Payment. In the case of SystemDesignB, all 83 services were
atomic services. The design consists of utility services on which other services can be
defined. Figure 2 (b) shows the SMCI metric for the services in ServiceDesignA and
ServiceDesignB In general, ServiceDesingA has higher message coupling than Ser-
viceDesignB, as seen from the figure.

ISCI and SOCI for ServiceDesignA

0

5

10

15

20

25

1 2 3 4 5

Metric value

N
u

m
b

er
 o

f
S

er
vi

ce
s

ISCI SOCI

SMCI for ServiceDesign

0%

5%

10%

15%

20%

25%

30%

35%

<=4 >5 <=10 >10 <=15 >15 <=20 >20 <=30 >30 <=58

SMCI

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

Fig. 2(a). ISCI, SOCI for ServiceDesignA 2(b). SMCI for ServiceDesignA and Ser-
viceDesignB

494 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

Validation of Coupling Metrics
We now verify the properties of the coupling metrics [2]. The coupling metrics are
nonnegative (Nonnegativity). ISCI, SOCI and SMCI are null if there are no coupled
services or no messages for each of the service operations (Null Value). The metrics
are Monotonic and do not decrease by adding more dependencies. SMCI may only
increase if the number of messages of the service (or, in operations invoked by the
service) increases (Monotonicity). The coupling of a service obtained by merging two
services is less than or equal the sum of coupling of the two original services (Merg-
ing of Services). This is true for all the metrics. The coupling obtained by merging two
disjoint services is equal to the sum of couplings of the two original services (Disjoint
Service Additivity). Disjoint services are not consumers of each other, are coupled to
different services and have disjoint message sets.

3.3 Reusability and Composability

We now discuss service reusability and composability, which are related concepts.
Reusability is one of the key principles of service design. A service should ideally be
designed for more that one service consumer. Service composability is a form of
reusability. A service becomes a composition participant and can be reused along with
other services to provide business functionality.

Reusability of an entity may be looked at from two perspectives: the characteristics
of the entity that are predictors of reusability, and potential for future reuse of the
entity based on usage that has already happened. The attributes of coupling and cohe-
sion are generally good predictors of reusability. A service whose operations are
cohesive and have less external dependencies will be more easily reusable. [14] com-
putes customizability, understandability and portability metrics and uses them as
predictors of reusability. Portability is measured in terms of the number of methods
without parameters or return values. In [16], the average number of arguments per
procedure is proposed as a measure of the understandability of the interface. For pre-
dicting reusability based on actual usage, contributions in terms of lines of code
(LOC) [15] have been proposed for code assets. For OO systems, Depth of Inheri-
tance (DIT) metric is used as a measure of reusability of a class [3]. However, neither
of these metrics is relevant to services-oriented design, and we instead suggest meas-
uring reusability based on use of the service by service consumers.

Service Reuse Index
The number of existing consumers of a service indicates the reusability of the service.
At the service design level, these consumers may be other services coupled to this
service or business processes where the service is used. We define Service Reuse
Index as

SRI(s) = |Sconsumer(s)| = P + Q, where

P = { }'),'(.,|' '' ssoocallss soso ≠∧∃∃ ∈∈

Q = { }psPp ∈∈ |

Similarly, we may define an Operation Reuse Index (ORI) for an operation as
the number of consumers of that operation across services and business processes.

 Measuring the Quality of Service Oriented Design 495

Sometimes the reuse of a service is due to the reuse of one or few of its operations –
ORI helps identify those important operations of the service.

While SRI predicts future reuse based on existing usage of a service, service reuse
potential based on interface understandability (along the lines of component under-
standability [16]) may be defined in terms of the complexity of the interface. The
interface of a service is complex when it contains a high number of operations and
messages, hence |O(s)| and |M(s)| may be used as indicators of understandability, with
lower values implying better understandability (thereby higher reuse potential). How-
ever, proving the value of such measures for reuse (i.e. being able to link actual usage
to better understandability) is difficult and higher interface complexity often means
more reuse opportunities, as our empirical studies reveal below.

Service Composability Index (SCOMP)
A composable service is designed to participate as an effective member of multiple
compositions. We define service composability considering the compositions in
which the service is a composition participant and the number of distinct composition
participants which succeed or precede the service. Neighbors(s, p) returns the set of
services which are neighbors (immediate predecessors and successors) of s in busi-
ness process p. We define:

SCOMP(s) = |),(| U
Pp

psNeighbors
∈

We may also extend this definition to include other services that may not be immedi-
ate successors or predecessors of s but are participants of the same composition and
would be present in the control flow of the composition. The composability of s with
these services may be weighed by the inverse of its distance from s in these composi-
tions (more distant is the neighbor, less is the composability).

Service Reusability

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

1 2 3 4 5 6 7 >8
<=20

>20
<=35

>50
<=77

SRI

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

Service Composability for ServiceDesignA

0

5

10

15

20

0 5 10 15 20 25 30 35

Number of Compositions/Consumers

S
C

O
M

P

Fig. 3(a). SRI for ServiceDesignA and Ser-
viceDesignB

3(b). SCOMP for ServiceDesignA

Measuring and Evaluating Reusability and Composability
Figure 3(a) shows the percentage of services having a certain number of consumers.
There are some instances of high reuse e.g. in ServiceDesignA, there is one service
‘PartyNotification’ having 77 consumers. Similarly, in ServiceDesignB, there are 4
services that have >30 service consumers, but there is also a significant percentage of
services with very few consumers. We evaluate the operation reuse index of the Par-
tyNotification service. There is one operation that is highly reused as compared to the

496 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

others – notifyParty with 36 consumers. A change to this operation would have a high
impact on the consumers of PartyNotification. SCOMP(s) for all the services of Ser-
viceDesignA is measured as shown in Figure 3(b). As the number of compositions in
which a service occurs increases, the number of distinct composition participants
generally increases as well, and hence SCOMP increases. This correlation can be seen
in the figure. This plot does not include the Party notification service that is used in 77
compositions and has SCOMP =32. We also found that for ServiceDesignA, service
interface complexity (|M(s)| and |O(s)|) has a positive correlation of > 0.5 with reus-
ability: it seems that higher the complexity (arguably, lower the understandability),
the larger is the scope of service functionality, and higher the number of consumers.
While interface complexity/understandability is an issue that may concern consumers
from outside the domain looking to use the service, it seems that within a domain it is
the value and scope of the business functionality offered by a service that determines
its reuse potential. We return to this issue when we discuss service granularity.

Properties of Reusability and Composability Metrics
Based on the inherent semantics of reusability and composability, we define a set of
properties that their metrics should adhere to. The metrics cannot be negative (Non-
negativity). They should be null where there are no consumers (Null Value). Reus-
ability of a service or an operation should not decrease by adding more service con-
sumers; similarly, composability of a service should not decrease with more composi-
tion participants (Monotonicity). The reusability of a service obtained by merging two
services is not greater than the sum of reusability of the two original services. This is
also true for the composability metric. (Merging of services). It may be shown that
SRI and SCOMP satisfy these properties.

3.4 Service Granularity

Granularity refers to the quantity of functionality encapsulated in a service. A coarse
grained service would provide several distinct functions and would have a large num-
ber of consumers. As described in [6], granularity could be further classified as capa-
bility granularity and data granularity. Capability granularity refers to the functional
scope of the service and data granularity refers to the amount of data that is trans-
ferred to provide the functionality. One of the indicators of the quantity of functional-
ity in a service is its size. The number of operations of a service |O(s)| and the number
of messages used by the operations |M(s)| can be indicative of the Service Capability
Granularity (SCG) and Service Data Granularity (SDG) respectively, where higher
values may indicate coarser granularity e.g. larger functional scope. However, a high
|O(s)| can also result from decomposing coarser operations into multiple finer-grained
operations that consumers need to call, hence there is a need to reason about service
granularity also from the perspective of a business process where the service is used.
If a service encodes many small units of capability, each exchanging small amounts
of data, then complex business processes would need a large number of such services
to be composed to yield the desired functionality – thus for a business process

Pp ∈ , the number of services involved (Process Service Granularity or PSG(p))

and number of operations invoked (Process Operation Granularity or POG(p)), may
also indicate if the constituent services are of an acceptable granularity or not – too

 Measuring the Quality of Service Oriented Design 497

many (conversely, too few) services and operations constituting a business process
may imply that the services in the design model are too fine grained (or, too coarse
grained), and that there is a need to re-factor the services to get the granularity right.
This is also related to the service identification process of top-down decomposition
proposed by many methods (e.g. [18]), where a complex business process is succes-
sively decomposed into sub-processes, which ultimately map to services. The Depth
of Process Decomposition (DPD) – the number of levels to which the process was
decomposed before services were identified, can be an indicator of the granularity of
the derived services and operations, with services/operations identified at a greater
depth likely to be of finer granularity. Also, with each decomposition step, the poten-
tial number of services (and/or the number of operations in a service) may increase,
thereby showing up as higher values of PSG, POG, SCG etc. Thus, service and proc-
ess granularity metrics may need to be reviewed together, to obtain greater insight on
design granularity.

SDG - Service Data Granularity

0%

5%

10%

15%

20%

25%

30%

35%

>1 <=4 >5 <=10 >10 <=15 >15 <=20 >20 <=30 >30 <=59

Messages |M(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

SCG - Service Capability Granularity

0%

10%

20%

30%

40%

50%

1 2 3 4 5 >5 <=10 >11 <=19

Operations |O(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

PSG for ServiceDesignA

0
10

20
30
40

50
60

70
80

1 2 3 4 5 >=6 <= 10

PSG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

POG for ServiceDesignA

0

10

20

30

40

50

60

1 2 3 4 5 6 7 >=8
<=16

POG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

4(a) 4(b)

4(c) 4(d)

SDG - Service Data Granularity

0%

5%

10%

15%

20%

25%

30%

35%

>1 <=4 >5 <=10 >10 <=15 >15 <=20 >20 <=30 >30 <=59

Messages |M(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

SCG - Service Capability Granularity

0%

10%

20%

30%

40%

50%

1 2 3 4 5 >5 <=10 >11 <=19

Operations |O(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

PSG for ServiceDesignA

0
10

20
30
40

50
60

70
80

1 2 3 4 5 >=6 <= 10

PSG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

POG for ServiceDesignA

0

10

20

30

40

50

60

1 2 3 4 5 6 7 >=8
<=16

POG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

4(a) 4(b)

4(c) 4(d)

Fig. 4. Granularity Metrics for Service Design

Measuring Granularity Metrics
We measure the granularity metrics for both the designs. As shown in Fig. 4, a large
number of services in ServiceDesignB are fine grained with one operation and < 4
messages and types. In ServiceDesignA, there are many services with > 5 operations
and >20 messages and types, which is indicative of coarser granularity of the services.
PSG(p) of the processes of ServiceDesignA is shown in Figure 4(c). There are about
20 processes that have one single service and invoke one operation as POC(p) =1.
This indicates that the services used in the process are coarse grained. There are a few
processes that involve around 10 services, and these may be explored to check if their
granularity is too fine, but that is unlikely to be the case given that no process requires
more than 16 operations. The DPD of the processes that we considered for the design

498 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

is 1 or 2, which suggests that processes were not overly decomposed to obtain ser-
vices, and the rest of the metrics seem to confirm this.

Properties of Granularity Metrics
We validate the granularity metrics against the mathematical properties of size, as the
number of services, operations, and messages are size metrics. The granularity of a
service and a process is nonnegative (Nonnegativity). The granularity of a ser-
vice/process is null if it does not have any operations (Null Value). The granularity of
a service obtained by merging two disjoint services is equal to the sum of the granu-
larity of the original services having different messages and operations (Disjoint Ser-
vice Additivity).

4 Discussions and Future Work

In this paper, we have proposed and evaluated a metrics suite for measuring the qual-
ity of service design along well-known design principles. The strengths and limita-
tions of some of these metrics were discussed, and we have presented the results of
measuring these metrics on two large SOA solution designs in the Insurance domain.
Apart from conducting more empirical studies (with service designs from other do-
mains), there are two tracks along which we are extending this work:

Additional Service Design Qualities: Some of the key service principles of abstrac-
tion, autonomy and statelessness have not been covered in this paper. These aspects of
a service may require additional inputs that need to be defined during the design of
services. For example, we are exploring WSDL-S [17] to see how such specifications
may be analyzed to gain more quality insights.

Design Analysis: We have defined and analyzed the metrics independently. How-
ever, the principles are related, and often the same metric can be indicative of multi-
ple design aspects, as we have seen (e.g. |M(s)| can be used to study coupling as well
as granularity). In a large solution design, there are requirements to address multiple
quality aspects of a solution, and these often involve trade-offs. The design would
also need to account for the non-functional requirements such as governance and
performance. A more comprehensive analysis of the design, that would allow users to
prioritize design attributes and would propose design alternatives that best meet the
business needs, is an important direction that we intend to explore.

References

1. Stevens, W., Myers, G., Constantine, L.: Structured Design. IBM Systems J. 13, 115–139
(1974)

2. Briand, L.C., Morasca, S., Basili, V.R.: Property-Based Software Engineering Measure-
ment. IEEE Trans. Software Eng. 22(1), 68–85 (1996)

3. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.
Software Eng. 20(6), 476–493 (1994)

 Measuring the Quality of Service Oriented Design 499

4. Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling Metrics for Predicting
Maintainability in Service-Oriented Designs. In: Software Engineering Conference,
ASWEC 2007, pp. 329–340 (2007)

5. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion Metrics for Predicting Maintain-
ability of Service-Oriented Software. In: Seventh International Conference on Quality
Software, pp. 328–335 (2007)

6. Erl, T.: SOA, Principles of Service Design. Prentice Hall, Englewood Cliffs (2007)
7. Artus, D.J.N.: SOA realization: Service design principles,

http://www.ibm.com/developerworks/webservices/library/
ws-soa-design/

8. Bieman, J., Ott, L.M.: Measuring Functional Cohesion. IEEE Transactions on Software
Engineering 20(8), 644–657 (1994)

9. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice Hall,
Englewood Cliffs (1996)

10. ISO/IEC, ISO/IEC 9126-1:2001 Software Engineering Product Quality – Quality Model,
International Standards Organization, Geneva (2001)

11. Eder, J., Kappel, G., Schrefl, M.: Coupling and Cohesion in Object-Oriented Systems. In:
ACM Conference on Information and Knowledge Management, CIKM (1992)

12. Briand, L.C., Daly, J., et al.: A Unified Framework for Coupling Measurement in Object-
Oriented Systems. IEEE Transactions on Software Engineering 25(1), 91–121 (1999)

13. Briand, L.C., Daly, J., et al.: A Comprehensive Empirical Validation of Design Measures
for Object-Oriented Systems. In: 5th International Software Metrics Symposium (1998)

14. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A Metrics Suite for Measuring Reusability
of Software Components. IEEE Metrics (2003)

15. Poulin, J., Caruso, J.: A Reuse Metric and Return on Investment Model. In: Advances in
Software Reuse: Proceedings of Second International Workshop on Software Reusability,
pp. 152–166 (1993)

16. Boxall, M., Araban, S.: Interface Metrics for Reusability Analysis of Components. In:
Australian Software Engineering Conference, ASWEC (2004)

17. Web Service Semantics – WSDL-S, http://www.w3.org/Submission/WSDL-S/
18. Arsanjani, A.: Service-Oriented Modeling and Architecture,

http://www.ibm.com/developerworks/library/ws-soa-design1/
19. Reddy, V., Dubey, A., Lakshmanan, S., et al.: Evaluation of Legacy Assets in the Context

of Migration to SOA. Software Quality Journal 17(1), 51–63 (2009)
20. Huschens, J., Rumpold-Preining, M.: IBM Insurance Application Architecture (IAA) – An

Overview of the Insurance Business Architecture. In: Handbook on Architectures of In-
formation Systems, pp. 669–692. Springer, Heidelberg (1998)

21. IBM Insurance Property and Casualty Content Pack:
http://www-01.ibm.com/support/
docview.wss?rs=36&context=SSAK4R&dc=D400&uid=
swg24020937&loc=en_US&cs=UTF-8&lang=en&rss=ct36websphere

22. IBM RSA:
http://www-01.ibm.com/software/awdtools/architect/
swarchitect/

	Measuring the Quality of Service Oriented Design
	Introduction
	Setting the Context
	Model and Notations – Process, Service, Operations, Messages
	Case Studies
	Service Design and Metrics Computation Tool

	Service Design Metrics
	Cohesion
	Coupling
	Reusability and Composability
	Service Granularity

	Discussions and Future Work
	References

