
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016

University of Wollongong Thesis Collections

2013

Measuring the reactivity of intelligent agent programs Measuring the reactivity of intelligent agent programs

Tiancheng Zhang
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation

Zhang, Tiancheng, Measuring the reactivity of intelligent agent programs, Master of Computer Science

thesis, School of Computer Science and Software Engineering, University of Wollongong, 2013.

https://ro.uow.edu.au/theses/4587

Research Online is the open access institutional repository for the University of Wollongong. For further information

contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F4587&utm_medium=PDF&utm_campaign=PDFCoverPages

Research Thesis

Measuring the reactivity of
intelligent agent programs

Tiancheng Zhang

School of Computer Science and Software Engineering

University of Wollongong

A thesis submitted for the degree of

Master of Computer Science

March 2013

mailto:tz746@uowmail.edu.au
http://www.uow.edu.au/informatics/scsse/index.html
http://www.uow.edu.au

Acknowledgements

I want to express my sincerest appreciation to my supervisor, Profes-

sor Aditya Ghose, who continually and constantly conveyed a spirit

of adventure in my research. When I felt frustrated, it is him that en-

couraged me and helped to overcome various barriers. In addition, he

spent a lot of time on me, even on weekend and public holidays. This

thesis might not have been completed without his persistent guidance

as well as assistance.

I would like to thank my co-supervisor, Doctor Hoa Khanh Dam,

who introduced agent technology to me and guided me in figuring out

measures for agent reactivity. Without him, I may not even know

what agent technology is.

In addition, I would also like to thank all authors of papers I referenced

or read. They helped me to gain a deep understanding of my research

area.

Abstract

The booming of intelligent agent technology over past few decades

brings a surging number of agent applications in various areas. There

also have a large number of designs as well as programming languages

been introduced in the literature in the agent oriented area. However,

very little work has been dedicated to define quality measures for the

development of an agent-based system. Previous efforts mostly focus

on adopting classical measures such as using coupling (degree of pro-

gram dependency) and cohesion (degree of function relationship in

single module) to measure the quality of agent programs. I maintain

that its time to work on a set of software quality measures that are

specific to the distinct characteristics of agent-based systems. In this

thesis, two methods are purposed to measure the reactivity of agent

systems, which provide indications on how agent systems respond to

changes in their environment in a timely fashion. A prototype tool

is developed integrated with Jason, a well-known agent-oriented pro-

gramming platform, to calculate reactivity of each agent in agent sys-

tem based on their plan libraries, and conducted several experiments

to demonstrate the reliability of reactivity measure. In addition, an

agent behavioural profile is introduced which is an overview of rela-

tionships of actions in agent plan library. Based on agent behavioural

profile, definitions of agent behavioral profile identity, entailment as

well as preservation were proposed, which ensure original agent’s be-

haviours could be preserved while performing reactivity enhancement.

Contents

Contents iii

List of Figures v

Nomenclature vi

1 Introduction 1

2 Background 4

2.1 Agent Technology . 4

2.2 BDI agents . 5

2.3 Jason . 8

2.4 Reactive Agent Programming . 9

2.5 Measuring Reactivity . 10

2.6 Other agent metrics . 12

2.7 Similar measures in other parts of software engineering 14

2.8 Behavioural Profile . 19

3 Research Approach 20

3.1 Factors contributing to reactivity 20

3.2 Reactive Measures . 22

3.2.1 Measure for Agents’ Reactivities 22

3.2.2 Reactivity Measure for Goal-oriented Behaviour 26

3.2.3 Domain Graph for Triggering Event 28

3.2.4 Example on reactivity calculation 34

3.2.5 The reactivity algorithm 37

iii

CONTENTS

3.3 Agent Behavioural Preservation 40

3.3.1 Behavioural Profile for Agent Plan Library 42

3.3.2 Examples for Creating Behavioural Profile 44

3.3.2.1 Example One . 44

3.3.2.2 Example Two . 44

3.3.2.3 Comparison . 45

3.3.2.4 Resolve Conflict 45

3.3.3 Behavioural Profile Identity 46

3.3.4 Behavioural Profile Entailment 49

3.3.5 Behavioural Preservation 51

3.3.6 Relationships between Behavioural Preservation, Identity

and Entailment . 54

3.4 Preserve Agent Behaviours while Increasing Agent Reactivity . . . 55

4 Evaluation 57

4.1 Implementation . 57

4.2 Preliminary empirical study . 58

4.3 Experiment on subgoals . 60

4.4 Experiment on external events . 62

4.5 Experiment on a paper submission multi-agent system 66

5 Conclusions and Future Work 85

References 89

iv

List of Figures

2.1 BDI execution cycle . 6

2.2 Interactions between agent and environment 11

3.1 Goal-oriented Behaviour Reactivity Measure Distribution 28

3.2 An example of a domain of triggering events and subgoals 29

3.3 Domain Graph for Design Option 1 31

3.4 Domain Graph for Design Option 2 32

3.5 Domain Graph for Design Option 3 34

3.6 Plan library of student going back for dinner(without subgoal) . . 35

3.7 Plan library of student going back for dinner(with one subgoal) . 35

3.8 Plan library of student going back for dinner(with four subgoals) . 36

3.9 Calculating the reactivity of an agent’s plan library 37

3.10 Performing a depth first search on the domain graph to compute

the reactivity . 39

3.11 Relationships between Behavioural Preservation, Identity and En-

tailment . 54

4.1 A snapshot for the reactivity plugin for the Eclipse-based Jason

editor . 58

4.2 The scores of three bidders in three types of environment 59

4.3 Plan Library for Agent 1 . 60

4.4 Plan Library for Agent 2 . 60

4.5 Agent system logging . 61

4.6 Gold miner multi-agent system reacitivity 63

4.7 Gold miners for picking gold only 64

v

LIST OF FIGURES

4.8 Gold miners for picking gold and diamond 65

5.1 State Transition System for the Environment 86

5.2 State Transition System for the Environment Example 87

vi

1. Introduction

literature review is conducted to give a background knowledge of BDI agent, Jason

platform, agent reactivity and behavioural profile. In chapter 3, a discussion is

made on different factors that contribute to the reactivity of an agent program. In

addition, two reactivity measures and the algorithm to calculate them are given.

In order to prevent agent from losing its original behaviour, several definitions

for agent behavioural preservation are introduced. In chapter 4, a tool which

supports agent developers to measure the reactivity of their agent programs is

demonstrated and results from several experiments are analysed. In chapter 5, a

conclusion is made and some future work is outlined.

3

Chapter 2

Background

2.1 Agent Technology

According to Wooldridge [52], agents have two significant properties. First, agents

can perform some automatic actions to some extends. That means they can

have their own decision on what to perform for the purpose of achieving a goal,

instead of receiving command and controlled by other entities. The second is

they are able to interact and communicate with other agents. The interaction

mentioned above is not simply sending and receiving messages. In addition, they

can participate in similar kind of social activity that human beings engage in daily

life. For instance, they can work together, get themself organised, argue as well

as compromise between each of them. Agent system is a computer system can

perform independent action as role of its user or owner. The difference between

an object and an agent is that the object performs tasks which are invoked by

other objects. This may cause deadlock. Whereas the agents, can react according

to the environment. Therefore, agents have little or no connection between them

and less deadlock issue needs to be considered. There is a slogan: objects perform

actions for free; agents perform actions because they want to.

4

2. Background

2.2 BDI agents

There are many different types of studies, which have been conducted as founda-

tion for programming agent-oriented system, such as plans and resouce-bounded

reasoning [12], rationality reasoning [20]. In addition, a number of intelligent

agent architectures such as logic-based architecuture, reactive architecture and

layered architecture were created [53]. Belief-Desire-Intention (BDI) is a model

that is one of the most mature and commonly used. The BDI agent model is de-

veloped for intelligent agent to solve particular problem in agent programming.

It separates the process of choosing plans and executing plans in order to balance

time spent on both processes [45].

• Belief is the knowledge of an agent to the world including the knowledge of

itself and other agents. It is the information state of an agent.

• Desire is goals or objectives that an agent plans to complete. It is the

motivation state of an agent.

• Intention is a committed option of an agent. It is the deliberative state of

an agent which is stronger than desire.

Regarding to plan library for BDI agent, it consists of original goal, condition

gateway as well as several plan bodies. Each plan is made up of an event that

can start the plan, a decision gateway and several steps of the plan in the format

of E : C ← B. A triggering event E can be a goal, a task, an internal or external

event. The context condition C plays a role of a gate. Therefore, only when the

decision gateway returns true, can process goes to plan steps. Plan steps B can

have a set of simple actions as well as subgoals. A subgoal can invoke another

plan in the plan library.

Based on the BDI execution cycle algorithm [10], a figure 2.1 can be used to

illustrate the lifecyle of BDI agent. The BDI execution cycle can be summarised

in following steps:

5

2. Background

Figure 2.1: BDI execution cycle
6

2. Background

1. Agent initializes its pre-defined belief and intentions. Pre-defined beliefs

and intentions are usually placed at the top of the plan library.

2. Agent gets next perception from the environment through its sensors. It is

a preparation for updating agent’s belief.

3. Agent updates its beliefs, desires and intentions in sequence. At this stage,

agent can make a decision and commit the decision based on latest knowl-

edge of the environment.

4. Base on current status, agent generates an available plan to achieve the

goal.

5. When the plan is not finished or not empty, agent executes the action which

is placed at the top of the plan and removes the processed action in the plan.

6. Agent then tries to get next percept and update its belief.

7. Based on current status, agent makes a decision on whether it is necessary

to reconsider intention and generate a new plan.

8. Agent then repeats steps 5-7 until the plan accomplishes, fails or is empty.

When a plan failed in step 5 or 8, agent tries another plan in the plan library

until there is no candidate plan exists. What worth mentioning is any failures

in plan can cascade to upper nodes in events planning tree. That is, a child

plan failure can trigger a parent plan reconsideration. If a plan is successfully

executed, agent stops current plan. However, agent still keep alive and wait for

other goals, tasks or events.

P1 te : true← a1; !g; a2

P2 g : c1← a3

When an event te is generated and the agent decides to handle this event, it

commits to execute a plan (P1 in this example) by pursuing a set of actions as

defined in the body of plan P1. It means that the agent firstly executes action a1

and then generates an internal event !g (representing the need to achieve goal g).

7

2. Background

The agent then suspends its current course of action (i.e. intention) and tries to

achieve g. In this case, let assume that c1 holds agent’s current beliefs. The agent

then commits to execute plan P2 and consequently performs action a3. After the

agent finishes executing action a4, i.e. successfully achieves goal g, it will resume

to pursuing the course of action in P1, i.e. performing action a2.

In step 7, agent can only reconsider the current plan and generate new plan

in goal-oriented behaviour when there is a context condition before next action.

In the example above, plan reconsideration can only be performed in context

condition c1. Therefore, action a3 can only be executed when context condition

c1 is true. However, action a2 is performed regardless of the context condition

c1.

2.3 Jason

A lot of platforms can be used to implement agent systems based on BDI model

such as Jason [10], JACK [14], Jadex [42], PRS [31], dMARS [19], or 3APL [26]

(refer to [7, 8] for more agent platforms). Jason is an agent programming envi-

ronment that supports extended AgentSpeak. The essential part of AgentSpeak

programming is to define plan libraries for agents. Therefore, agents can possess

knowledge of how to handle events from environment. Jason makes it possible for

agents to communicate and cooperate with one another in a high-level way due

to its rich environment. It’s communication concentrates on knowledge level. In

other words, communication among agent is based on belief, goal and intention.

In Jason, an interpreter executes multi-agent systems based on reasoning cycles

which can be divided into 10 key steps [10]:

1. Perceiving changes from environment that agent resides

2. Updating the belief of agent

3. Receiving messages or commands from other agents

4. Selecting messages that can be accepted by agent

5. Selecting an event from events pool

8

2. Background

6. Fetching all relevant plans for the selected event

7. Making decision on the applicable plans

8. Filtering one applicable plan from all candidate plans

9. Selecting an intention from intention queue for performing that intention

10. Performing one action of the selected intention

As an implementation of BDI architecture, Jason can handle failures such as test

goal failure, action failure and no applicable plans for triggering events. Currently,

three distinct execution modes are provided by Jason:

• Asynchronous Mode: By default, all agents in a multi-agent system run

asynchronously. They do not wait for each other when they finish their

own execution cycle.

• Synchronous Mode: All agents perform reasoning cycle together. If one

agent finishes it’s execution cycle first, it will wait until all agents in the

system finish their reasoning cycle execution.

• Debugging Mode: The debugging mode is similar to synchronous mode.

However, instead of starting next reasoning cycle automatically, user has to

click ”next” to perform the next reasoning cycle.

2.4 Reactive Agent Programming

For agents that make decisions instantly rather than based on experience, those

agents are pure reactive agents. Once pure reactive agents receive changes from

the environment, they will make corresponding reaction based on the predefined

plan libraries [54]. Plans in pure reactive agent are in the format of perception

→ actions.

A programming system based on Open Constraint Programming(OCP) frame-

work was designed to implement web application reared by reactive agent. The

system is implemented in Constraint Logic Programming Language. Reactive

9

2. Background

behaviours can be triggered if some agents change their stored constraints that

other agents react against. OCP reactive system architecture contains four layers,

namely constraint store, registry, web server and user interface [56].

A constraint and objective based reactive BDI agent language CASO (Con-

straint AgentSpeak(L) with Objective) was introduced by Dasgupta and Ghose.

CASO has many advantages over AgentSpeak(L). It allows people to quantita-

tively express goals of agents. In addition, expressive abilities can be enhanced

by integrated constraints. The introduction of constraints helps agent seeking op-

timized solution at any time. CASO enables agent to select plans in an efficient

way with parameter foresee techniques [18].

2.5 Measuring Reactivity

Due to the fact that an agent is inhabited in the environment, it can react to

updates happen in the enviroment. In figure 2.2, sensors installed on agent can

constantly monitor changes from the environment. Sensors then convert signals

from the environment to agent understandable digital message. There are many

different kinds of physical sensors such as sound sensor, light sensor, shock sensor,

etc. Apart from physical sensors, software sensors are used in agents as well.

Upon receiving messages from sensors, agent can make decisions and perform

corresponding actions which may in turn, affecting the environment. When agent

makes a correct response, this agent is reactive to this particular environment

status. Otherwise, the agent fails to reactive to the environment. Due to the

uncertainty and variation of environment, research have been conducted on agent

reactivity.

10

2. Background

Figure 2.2: Interactions between agent and environment

According to Cernuzzi and Rossi, whether agents can make response to up-

dates that happen in an environment instantly can be used to check reactivity of

an agent design model. Based on their case study, BDI and MAS-CommonKADS

architectures are reactive [15].

So and Sonenberg introduced definition of proactive agent behaviour. They

briefly mentioned that reactive agent behaviour are associated with final conclu-

sion of inference network. When all beliefs in subset have been asserted and those

beliefs are true, actions are reactive behaviours [47].

Methodology for building an environment based reactive multi-agent system is

given in four main steps by Simonin and Gechter [46]. Firstly, it defines the envi-

ronment structure and dynamic rules. Secondly, it defines agent perception which

allows agents to percept changes in the environment. Thirdly, it defines agents’

interaction mechanisms in both local and cooperative level. The last step is to

measure results as an emergent structure. For measure the static problem with-

out constraints change, equilibrium of the system is achieved when all agents stop

interacting with the environment. Whereas for the dynamic problem with con-

stantly changed constraints, a measure for organization has to be designed. Two

methods of other researchers are introduced to measure organization. However,

both methods cannot handle the nature of the native mechanisms architecture.

This paper introduces a method to architect agents system that can react to the

environment for purposes of attacking problems. However, well studied method

of measuring dynamic problem is not given and measure of evaluating reactivity

of agents is not introduced.

Same as previous paper, a formal method is introduced by Bounabat et. al [11]

11

2. Background

to describe and validate a reactive system. In system description, statechat in the

format of ”?event[condition]/!action” is used to describe the system and can be

automatically transformed into a synchronous language ESTEREL. ESTEREL

can then be compiled to check temporal properties formally and perform auto-

matic verification. Despite the fact that the method can validate synchronization

of multi-agent system, no formula has been given to measure agent reactivity.

2.6 Other agent metrics

A discrete evaluation method is proposed by Cernuzzi and Rossi to evaluate pro-

activeness for both BDI agent modelling technique [33] and MAS-CommonKADS

modelling method [30]. They argued that in BDI, pro-activeness is partially

covered in plan model. However, it is impossible to specify how to assume different

objectives dynamically.

Agent proactiveness and reactiveness are analysed by Lin and Carley. They

argued that agent style only influences performance of organization which is under

moderate time pressure. In addition, training type and internal condition can

influence the effect of agent style [35].

So and Sonenberg put forward a definition of proactive agent behaviour. They

argued that proactive agent behaviours are actions related to intermediate con-

clusion from any given inference network. Level of pro-activeness depends on the

number of prerequisite beliefs [47].

Alonso et. al. [3] purposed a measure to evaluate proactiveness of agent.

Based on research and experience, they identified that properties of initiative,

interaction and reaction were relevant to agents proactivity. Three measures on

roles count, goals count and events to complete goals are designed. Measures for

calcuating methods number in class and category of messages are figured out for

interaction. Handled requests count and agent procedure complexity measures

are developed to evaluate reaction. Based on all single values of each attribute

and their weights from experience, a single value for proactivity from 0 to 1 can

be calculated.

Cernuzzi and Rossi argued that social ability of agent models can be evaluated

by following properties. They are organizational relationships, interaction with

12

2. Background

agent, types of interaction, commitments, conversations with agents as well as

interfaces with other entities [15].

Alonso et. al. [1] purposed a measure to evaluate social ability of agent.

They concluded that communication, opperation as well as negotiation can affect

agents social ability. For each of these attributes, measures based on different

elements are created. For communication, measures of event response time, events

size average, received events and sent events are developed. For cooperation,

measures of rejected request from other agents and published agent functions are

designed. When it comes to negotiation, measures such as achieved goals for

agents, number of events sent by called services and events triggered to ask for a

service are introduced. By applying weighting technique, weighted average from

0 to 1 on social ability can be gained for each agent as well as for the whole

system.

In order to evaluate agent design models, Cernuzzi and Rossi purposed that

agent autonomy can be evaluated by whether agents have control on both in-

ternal state and their own behaviour. They concluded that BDI and MAS-

CommonKADS agent models are autonomous [15].

A goal-focused autonomy assessment is introduced by Barber and Martin [36].

They argued that autonomy can be described in Sensible Agent-based system

using the tuple (G, D, C), where G is the goals that agents are making decisions

on, D represents what measures agent will take to pursue goals defined in G,

C is authority constraint which will guarantee agents can make decisions of the

decision-making group. The autonomy value comes from the measure is from 0

and 1. As increasement of autonomy value, agent has more control on decision

making by itself.

Autonomy measure based on agents social integrity and social dependence

was introduced by Huber [28]. Measure for social integrity is a function that

calculates a minimum value from structure measure. The structure measure

calculates a minimum value from all possible influences paths for that internal

structure. When it comes to the social dependence, it can be calculated by

totalling tasks imposed on agent from higher level agents, acceptable tasks from

peer agents, contracted tasks with peers and tasks imposed upon lower level

agents. By applying a weighting coefficient for both social integrity and social

13

2. Background

dependence, an average value of agent autonomy can be calculated.

In 2009, Alonso et. al. [2] put forward a measure to evaluate autonomy of

agents. From their experience and literature survey, they made a conclusion that

agent autonomy is affected by self-motivation, independ working as well as self-

learning. For each of these attributes, measures based on different elements were

designed. For self-control, measures of complication of structure, status queue

size in side agent, complication of agent behaviour are designed. For functional

independence, a single measure on rate of executable messages is used. For evo-

lution capability, measures on ability to refresh status, rate of state refresh speed

are worked out. By applying arithmetic mean of all values, autonomy of the

system can be calculated.

Apart from measuring main agent properties, plan coverage and overlap are

also important for agents. Plan coverage illustrates how a goal is covered by

plans. Thangarajah et. al. argued that coverage measure of a plan decreases as

the increases of sub-goals. Therefore, a plan without sub-goals has a coverage

of 1. Plan overlap indicates whether there are multiple applicable plans for a

goal. When a goal is not full coverage, overlap measure can be influenced by the

structure of goal-plan hierarchy tree as well as the distribution of the overlap in

the tree. Minimum value of measure on plan overlap is 0 [49].

2.7 Similar measures in other parts of software

engineering

In real-time reactive system, Zheng and Ormandjieva purposed a discrete time

Markov chains based measure to estimate the reliability of the system. Initially,

each reactive unit gets a Markov model. Then probability of states transition

can be calculated using P = 1− (1− P{l1})× ...(1− P{ln}) where {l1, ...ln} are

multiple transitions from one state to another. The reliability of each subsystem

is the sum of differences between the level of uncertainty in its Markov Model and

the level of uncertainty of each reactive object. Reliablility of the whole system

is the minimum value among subsystems due to the safety-critical character of

most real-time system [55].

14

2. Background

In 1974, Wolverton used line of codes(LOC) to measure software complexity

[27]. LOC metrics is calculated as the total number of source lines of code without

blank and comment lines [34]. In 1976, McCabe [38] introduced a widely accepted

measure for complexity v = e - n + 2p based on program control graph. In the

measure, e represents a sum of edges, n is a sum of nodes and p is a count of linked

elements in the graph. To simplify the complexity of calculation, the complexity

measure can be expressed as v = π + 1 when p = 1, where π is the number of

predicates in code.

In 1977, Halstead [23] developed several metrics stem from source code prop-

erties such as sum of different operators (η1) and operands (η2) as well as sum of

operators (N1) and operands (N2). With these properties, vocabulary size can be

defined as η = η1 + η2 and program length can be calculated by N = N1 +N2. It

is also possible to estimate length of program by N̂ = η1log2η1 + η2log2η2. Both

program volume (V) and difficulty (D) can increase the effort in doing software

development, thus E = D * V. Program volume and difficulty can be defined as

V = N ∗ log2η and D = η1
2
∗ N2

η2
respectively. The effort value is hard to under-

stand, so Halstead provided a metric, T = E
β
, to translate effort into the time

required for programming. β is usually set to 18 based on Halsteads experiment.

Program level can be defined as L = V ∗/V where V ∗ is the estimated volume

which can be calculated using metric V ∗ = (2 + η∗2)log2(2 + η∗2). η
2
2 in the metric

represents the required input and out parameters. Program level is from zero to

one. If the level is closer to one, it means that program is written in the highest

level with minimum size. If a program requires more effort, more bugs might

occur in delivered product. An estimation on number of delivered bug can be

done by B = E
2

3

3000
.

As both McCabe’s and Halstead’s metrics could not distinguish the additional

complexity of nesting code block. Harrison and Magel worked out an adjusted

complexity measure in 1981[24]. They introduced the concept of raw complexity

value which can be assigned to each node in control flow graph. Following steps

might be involved in calculating the total programs’ complexity:

1. Determine sub-graph of each selection node. A selection node in the control

flow graph has out-degree greater than one.

15

2. Background

2. Calculate the adjusted complexity for each selection node by summing up

raw complexity of all nodes in the sub-graph including the selection node.

For nodes other than the selection node, they have the adjusted complexity

equals to raw complexity.

3. Sum up adjusted complexity of all nodes in control flow diagram and get

the program complexity.

In 1982, Piwowarski argued that cyclomatic complexity as well as many other

refinements failed to distinguish complexity in structured and unstructured pro-

grams, nested and sequential control structure and program with case statements

[41]. According to his research, he found that unstructured program is more

complex than structured one, sequential control structure is easier to understand

than nested control and N-way case statement is more efficient than N-1 nested

IF statement. He then put forward a complexity measure N = V ∗(G)+
∑

i P (i),

where V*(G) is the adjusted cyclomatic complexity that treat case structure as

one predicate and P(i) is the nesting depth of the ith predicate based on Harrison

and Magels sub-graph concept [24] mentioned in previous paragraph.

In addition, Kim et. al. [32] designed three entropy concept based complexity

measures for object oriented design in 1995. Entropy theory can be used to

describe the degree of disorderliness. In measuring class complexity, they applied

reference probability of all nodes in Data and Function Relationship (DFR) graph

to entropy function. Despite the fact that same reference probability formula is

used in inter-object complexity calculation, Object Relationship (OR) graph was

used as a replacement of DFR graph. In order to know the complexity of the

object oriented program, total complexity was designed based on class and inter-

object complexity. Total complexity is the sum of all class complexity plus the

result of a constant multiplied by inter-object complexity of the program.

Three quality metrics on Object Orient Design were introduced by Martin

in 1994 [4]. Afferent couplings(Ca) can be measured by the number of exte-

rior classes that depend on interior classes of this category. While efferent cou-

plings(Ce) can be calculated by the sum of interior classes that depend on exte-

rior classes of this category. Afferent couplings and efferent couplings can then

be used to calculate Instability (Ce / (Ca + Ce)) which is from 0 to 1. 0 stands

16

2. Background

for maximum stability while 1 stands for maximum instability.

Husein and Oxley introduced a tool CCMETRICS to get software coupling

and cohesion based on redesigned metrics of other researchers [29]. For coupling

metrics, level of abstration of data dependency, events dependency, invokcation

among methods in class, global dependency as well as inheritance dependency are

used. Level of abstration of data dependency is defined as a sum of absolute values

of DAF(c) and DAA(c) . DAF(c) is a list of fields for class what are abstract while

DAA(c) is a list of attributes for method that are abstract. Events dependency is

defined as a sum of absoulte values of MIE(c) and MIP(c), where MIE(c) is a list

of remote methods called as expressions while MIP(c) is a list of remote methods

called as real parameters. Invokcation among methods in class is defined as sum of

absolute values of MP(c) and MR(c), where MP(c) is a list of formal parameters

in abstract method and MR(c) represents abstract callback types list. Global

dependency is defined the sum of absolute values of ARE(c) and ARP(c). In the

metric, ARE(c) is used as expression in the form of a list external properties and

ARP(c) is used as real parameters in the form of a list of external properties.

The last metrics, inheritance dependency, is defined as the absolute value of

IH(c) where IH(c) represents a list of parent classes. When it comes to metrics for

cohesion, internal association ratio with extended methods to methods interaction

is used. RCI is the sum of real interactions in the biggest rate of interactions

inside class. Initially, the total number of actual interactions considered variable

interactions and method to variables interactions only. The redefinition took

methods to methods interactions into account. When it comes to the maximum

possible interactions, it is defined as MaxI(c) =k C2 +
a C2 + (a ∗ (b + c)) where

a represents the count of class field variables, b represents the count of method

attributes variables, c represents the count of method formal parameters variables

and k represents sum of functions in class c.

As the rapid development of Object Oriented technique, Chidamber and Ke-

merer designed six metrics to measure OOD from perspectives of class meth-

ods weighting, inheritance level in tree, total amount of children, dependency

among classes, return value from class and inadequate association among meth-

ods. Meanwhile, metrics are evaluated using Weyukers metrics measurement

principles. This metrics suite is desired to be used by professional software de-

17

2. Background

velopers working on commercial projects [16].

For the purpose of narrowing gaps between static and dynamic metrics, Gun-

nalan et. al. [22] purposed the concept of pseudo dynamic metrics to predict

dynamic actions in the early stage of software development lifecycle. There are

three steps involving in calculating pseudo dynamic metrics. Step 1 is to obtain

the static metrics for all the components by using automated tools. Step 2 is to

analyse the operation profile for all the components. It can be estimated based

on domain experts or programmers assessment. The last step is to multiply the

static metrics values with the operational profile values.

A relatively new semantic metrics based on automatic analysis of natural lan-

guage (NL) design specification for object-oriented system was presented by Gall

et. al. [21] in 2008. Unlike past design metrics calculated from diagram format

or during the implementation stage, it provides a preview of the software qual-

ity in the early stage of software development. A NL-based comprehension tool

semMet is expended to calculate semantic metrics from design specifications. 11

metrics are defined in the paper along with descriptions on how to calculate them.

Metrics covered in the paper are class domain complexity (CDC), relative class

domain complexity (RCDC), semantic class domain entropy (SCDE), relative

class domain entropy (RCDE), Logical relatedness of methods (LORM), Logical

Disparity of members (LDM), Percentage of Shared Ideas (PSI), Percentage of

Universal Ideas (PRI), Percentage of Universal Ideas(PUI), Percentage of Related

Ideas(PCRC), Average proportion of Ideas Shared with Other Classes(APISOC).

From the perspective of users, good software is trustworthy. Tao and Chen

introduced a metric model to measure system trustworthiness [48]. In their met-

ric, they separated attributes related to trustworthiness into two groups, critical

and non-critical attributes. Each group has different weight on influencing the

overall trustworthy value. Attributes such as reliability, correctness, availability,

controllability, security and so on are critical attributes. While attributes such as

maintainability, portability etc. are non-critical attributes. Each attribute is in

the interval of [1, 10] representing the degree of that attribute in a system. The

metric uses minimum value in critical attributes as system trustworthiness.

18

2. Background

2.8 Behavioural Profile

For the purpose of fetching key behavioural relationships in process models, Wei-

dlich et. al. introduced weak order relations, strict order relations, exclusiveness

relations as well as observation concurrency relations. Weak order relation re-

stricts the sequence of nodes in process model. In addition to the weak order

relation, if two notes are in a strict order relation, loop is not allowed. For an

exclusiveness relation, a pair of nodes defined in this relation should not appear

in the same trace. While for concurrency relation, nodes in a pair should ap-

pear concurrently. Strict order relations, exclusiveness relations and observation

concurrency relations form the behavioural profile of process model [51].

19

Chapter 3

Research Approach

3.1 Factors contributing to reactivity

Since agents are situated in dynamic environments, it is crucial that they are able

to respond to changes (that are relevant to the agents) in the environment in a

timely fashion. When developing an agent system, reactivity can be maximized

in several ways. The developer needs to make sure that the agent’s plan library

has plans to handle all external events from the environment(i.e. changes in the

agent’s beliefs due to perceived changes in the environment). Those plans have the

external event as the trigger event. For instance, an agent-based weather alerting

system (as in [37]) needs to deal with a range of events such as rain, wind, volcano

ash, earthquake and so on. Assuming a sensor installed on an agent receives

changes in the environment but the agent cannot make corresponding response

to that change, the agent is not reactive to the environment in this case. It is a

threat for an agent not being able to reactive to the environment. In some cases,

not being reactive to the environment might be catastrophic. Robots used in fire

rescue that do not have enough plans in a plan library may be destroyed by fire

or falling items. For agents which involving in jobs requiring cooperation such

as bomb detection, a failure in reactive to the environment of a single agent may

destroy all other agents. Due to the variation and uncertainty of the environment,

a designer or developer needs to ensure plans in plan library covers all states of

the environment where an agent is suited.

20

3. Research Approach

For reactivity issue caused by lack of plans, it can be solved by increasing the

number of plans for external events from the environment. However, reactivity

during the goal-orientated behaviour is more complex as well as interesting. When

dealing with a certain event, the agent should be designed in such a way that it

commits to a certain courses of action as late as possible, i.e. to wait until the

agent gets the most updated knowledge about the environment. In this case, we

can ensure the agent performs most accurate actions. Let us demonstrate this

with the following example. Assume that for a given event trigger te, I have

designed two plans P1 and P2 which handle this event and are written as follows:

P1 te : c← a1; a2; a3 Design Option 1

P2 te : ¬c← a1; a
′
2; a

′
3

It is noted that in the first implementation option a1, a2, a3, a
′
2 and a′3 are

primitive actions.

This agent system can be developed in a different way to handle the same

events by having subgoals in the plan body. These plans are now re-written as

follows (the second design option):

P1 te← a1; !sg Design Option 2

P2 sg : c← a2; a3

P3 sg : ¬c← a′2; a
′
3

Both design options would lead to the same ways of handling event te, i.e. by

performing either 〈a1; a2; a3〉 or 〈a1; a
′
2; a

′
3〉. However, in the second design option

(i.e. plans P1, P2 and P3 with subgoals) the agent does not commit to do either

〈a2; a3〉 or 〈a
′
2; a

′
3〉 until a1 is completed. In contrast, with the first design option

the agent makes this commitment earlier. This means in the case if there are

any changes in the environment at the time after a1 is completed (e.g. condition

c no longer holds or vice versa), the agent fails to respond to this change (e.g.

continues either doing 〈a2; a3〉 or 〈a
′
2; a

′
3〉). Therefore, the second design option

makes the agent more reactive than the first one does. This example indicates

that the number of subgoals in an agent plan library has an impact on how

reactive the agent is at runtime.

21

3. Research Approach

The use of subgoals is also encouraged in agent design since it decouples a

goal from its plan and makes it easy to add other plan choices later. However,

just only turning primitive actions into subgoals does not merely improve the

reactivity of an agent. Let us consider the following design.

P1 te : c← a1; sg2; a3 Design Option 3

P2 te : ¬c← a1; sg
′
2; a

′
3

P3 sg2 ← a2

P4 sg′2 ← a′2

In this example, although there are two subgoals in the agent’s plans the

actual behaviour of the agent in this example is identical to the one in the initial

design. Therefore, a reactivity measure should only take subgoals with context

conditions into account. A context condition also plays a role in contributing to

the reactivity of an agent. For instance, if an agent has two plans te : c1 ← a1

and te : c2 ← a2, then its behaviour is still in some sense reactive, as which of a1

and a2 gets executed will depend on which of c1 and c2 are true in the current

state of the environment.

3.2 Reactive Measures

3.2.1 Measure for Agents’ Reactivities

We have previously discussed several factors that contribute to reactivities of an

agent. In this section, A measure that can be applied to an agent is proposed,

specifically an agent’s plan library, to evaluate agent’s reactivities. The proposed

measure can be regarded as a static measure since it involves analysing source

code, as opposed to dynamic measures which assess the characteristics of the

software during execution [5].

The reactivity measure reflects whether an agent has plans to handle different

events in the environment. Such events are considered as top triggering events

in the library of agent’s plans. Top triggering events are events which are not

generated by any plan’s body and they are often the external events that are

22

3. Research Approach

significant to the agent (i.e. rain, wind, etc.) or an initial goal (i.e. go to univer-

sity). As mentioned in section 3.1, plans for trigger events can increase reactivity

while primary actions inside plans for triggering event can bring negative effect

to reactivity. So we can have the reactivity measure on plans for the triggering

event as follows:

R(TP) =
TP (te)

ATP (te)
(3.1)

In the measure, TP (te) is the number of plans for triggering event. Only

plans containing actions or subgoals should be counted. ATP (te) is the number

of primary actions without context condition in front of them. As can be seen in

the measure, R(TP) is direct proportional to TP(te), R(TP) ∝ TP(te). Whereas

R(TP) is inverse proportional to ATP (te), R(TP) ∝ 1/ATP (te). If ATP (te) is 0,

the measure turns out to be invalid. Therefore, a positive integer is added to the

denominator to ensure that the denominator is not 0. This thesis picks 1 in this

measure. However, any positive integer can be added to the denominator.

R(TP)
′ =

TP (te)

ATP (te) + 1
(3.2)

In equation 3.1, if ATP (te)1 > 0, ATP (te)2 > 0 , TP (te)1 = TP (te)2 and

ATP (te)1 > ATP (te)2, then R(TP)1 < R(TP)2. In equation 3.2, if ATP (te)1 ≥ 0,

ATP (te)2 ≥ 0, TP (te)1 = TP (te)2 and ATP (te)1 > ATP (te)2, then R(TP)
′
1 <

R(TP)
′
2. Under the condition that there does not exist primary action, a library

which contains more plans for triggering events is more reactive. Therefore,

adding a positive integer on denominator in the reactive measure does not affect

the result when comparing two libraries.

If sub-goals or nested sub-goals exist in plans for triggering event, those sub-

goal plans with context condition can increase agent reactivity. Actions in sub-

goals without context condition in front of them can bring negative effect for

agents in responding to the environment. The following measure can be used to

calculate reactivity of sub-goals.

R(SGP) =
SGP (te)

ASGP (te)
(3.3)

23

3. Research Approach

In the measure, R(SGP) is the number of plans for sub-goals with context

conditions after these sub-goals. ASGP (te) is the number of primary actions

without context conditions in front of primary actions. As can be seen in the

measure above, R(SGP) is directly proportional to SGP (te), R(SGP) ∝ SGP (te).

Whereas R(SGP) is inverse proportional to ASGP (te), R(SGP) ∝ ASGP (te). If

ASGP (te) is 0, the measure turns out to be invalid. Therefore, a positive integer

is added to the denominator to ensure that the denominator is not 0. This

thesis picks 1 in this measure. However, any positive integer can be added to the

denominator.

R(SGP)
′ =

SGP (te)

ASGP (te) + 1
(3.4)

In equation 3.3, if ASGP (te)1 > 0, ASGP (te)2 > 0 , SGP (te)1 = SGP (te)2

and ASGP (te)1 > ASGP (te)2, then R(SGP)1 < R(SGP)2. In equation 3.4, if

ASGP (te)1 ≥ 0, ASGP (te)2 ≥ 0, SGP (te)1 = SGP (te)2 andASGP (te)1 > ASGP (te)2,

then R(SGP)
′
1 < R(SGP)

′
2. Under the condition that there does not exist actions

without context condition in front of them, a library which contains more plans

for subgoals is more reactive. Therefore, adding a positive integer on denominator

in the reactive measure does not affect the result when comparing two libraries.

In calculating reactivity level for plans for single external event, we can sum

up R(TP)
′ and R(SGP)

′. However, as plans for external event and sub-goals may

have different weight on affecting reactivity. A constant variable k from 0 to 1

is provided as the weight of plans for external events. Thus, we can have the

reactivity measure for triggering event as follows:

R(te) = k ×R(TP)
′ + (1− k)×R(SGP)

′ (3.5)

= k ×
TP (te)

ATP (te) + 1
+ (1− k)×

SGP (te)

ASGP (te) + 1

In practice, an agent may have different degrees of attention to different events

in the environment, depending on requirements. For instance, if an earthquake

event is crucial to an agent’s operation, it is very important for the agent to

have (many) plans to deal with such an event. On the other hand, the agent

may not need to react to an event of raining. In order to capture this, we need

24

3. Research Approach

to support differential weightings for different types of external events and allow

the developer to specify them based on the system requirements. If there are no

specific requirements regarding this aspect, all the external events can be assigned

the same weight.

Due to the above reasons, one component of the reactivity metric involves

counting the number of plans that handle the top triggering events. The other

component involves counting the proportion of the number of subgoals in a plan

against the number of primitive actions. This reflects the fact that an agent

can also be considered to be reactive in the sense that it delays committing to a

certain course of action as late as possible. A weight is bound to each component

which allows the developer to specify whether one reactive component is more

important than the other. The definition of reactivity measure for an agent is as

follows:

Definition 1:

R(ag) =
n∑

i=1

αi ×R(te)i (3.6)

=
n∑

i=1

αi × (k ×R(TPi
)′ + (1− k)×R(SGPi

)′)

=
n∑

i=1

αi × (k ×
TP (tei)

ATP (tei) + 1
+ (1− k)×

SGP (tei)

ASGP (tei) + 1
)

where:

1. R(ag): the reactivity measure of agent ag.

2. tei: the ith external event handled in the plan library of agent ag.

3. n: the total number of external events.

4. αi: the weight for triggering event ith, αi ∈ [0, 1].

5. k: the weight of reactivity to external events, k ∈ [0, 1].

6. TP (tei) number of alternative plans for triggering event.

25

3. Research Approach

7. ATP (tei): total number of primitive actions without context condition in

front of them in the triggering event plans to handle trigger event tei.

8. SGP (tei): total number of plans for subgoals in the domain of triggering

event tei (excluding plans without context conditions).

9. ASGP (tei): total number of actions without context condition in front of

them under the subgoal domain of triggering event tei.

As can be seen in the reactivity measure for agent, R(ag) is direct proportional

to TP(te) and SGP(te) which can be expressed as R(ag) ∝ TP(te) and R(ag) ∝

SGP(te). R(ag) is reverse proportional to denumerator, ATP (tei) and ASGP (tei),

which can be expressed as: R(ag) ∝ 1 / ATP (tei) and R(ag) ∝ 1 / ASGP (tei).

Due to the fact that reactivity can be increased constantly by adding plans for

new triggering event(increase n), the range of R(ag) is in the range of [0, +∞).

3.2.2 Reactivity Measure for Goal-oriented Behaviour

As mentioned above, if the number of triggering events is taken into consideration,

there does not exist a maximum value for agent reactivity. However, if we can

guarantee that all events happened in the environment can be handled by an

agent, it is possible to know how reactive the agent is by comparing its reactivity

with the maximum reactivity the agent can reach in the scope of goal-oriented

behaviour. The benefit of reactivity measure for goal-oriented behaviour is we

can know the reactivity of an agent without comparing it with other agents’ plan

library.

Upon receiving a triggering event, agent starts to perform goal-oriented be-

haviour. The goal of the agent is to make proper response to received event.

During goal-oriented behaviours, if all actions can be performed immediately af-

ter context condition checking, that means the agent gets the latest status of the

environment. In this case, the agent performs actions as supposed. As can be

26

3. Research Approach

seen in section 3.2.1, reactivity for an agent can be measured by :

R(ag) =
n∑

i=1

αi ×R(te)i (3.7)

=
n∑

i=1

αi × (k ×R(TPi
)′ + (1− k)×R(SGPi

)′)

=
n∑

i=1

αi × (k ×
TP (tei)

ATP (tei) + 1
+ (1− k)×

SGP (tei)

ASGP (tei) + 1
)

Assume we have a plan library for the same agent that can handle same number

of external event(identical n, αi and k), we can have a measure for maximum

reactivity as follows:

Rmax(ag) =
n∑

i=1

αi ×Rmax(te)i (3.8)

=
n∑

i=1

αi × (k ×Rmax(TPi
)′ + (1− k)×Rmax(SGPi

)′)

=
n∑

i=1

αi × (k ×
TPmax(tei)

ATPmax
(tei) + 1

+ (1− k)×
SGPmax(tei)

ASGPmax
(tei) + 1

)

We can thus create a reactivity measure for goal-oriented behaviour by dividing

current agent’s reactivity by the maximum reactivity it can reach:

Rgob(ag) =
R(ag)

Rmax(ag)
(3.9)

When agent is not reactive at all, Rgob(ag) = 0. However, if agent is most

reactive, then Rgob(ag) = 1. A figure below shows the distribution of the measure.

27

3. Research Approach

Figure 3.1: Goal-oriented Behaviour Reactivity Measure Distribution

3.2.3 Domain Graph for Triggering Event

Measures on agent reactivities are based on domains of triggering events and

subgoals. The definition of triggering events and subgoals domains stems from

the hierarchical structure of BDI agents’ plan: events are handled by plans which

generate further events handled by other plans and so on. The domain of a

trigging event is represented as a graph that contains sub-goal nodes, context

condition nodes and action nodes that are reachable from the trigging event.

Figure 3.2 shows an example of a domain triggering events and subgoals for the

following plans.

28

3. Research Approach

P1 TE : C1← SG1

P2 TE : ¬C1← A1

P3 SG1 : C2← A2;A3;SG2

P4 SG2 : C3← A4

P5 SG2 : ¬C3← SG1

Figure 3.2: An example of a domain of triggering events and subgoals

29

3. Research Approach

Based on the measure, the reactivity of an agent which has the above plans

P1–P5 is 0.88. The reactivity values of each design options discussed in section

3.1 are 0.14 (design options 1 and 3) and 0.45 (design option 2). These justify

the fact that having subgoals (that are handled by different plans in different

situations) increase the reactivity of an agent.

As can be seen node types can be a trigging event (TE), plan (e.g. P-SG1),

context conditions (C), sub-goals(SG) and actions (A). The definition of the do-

main of a subgoal is given as follows:

Definition 2:

The domain of a subgoal is defined as all the subgoals, context conditions and

actions in the plans handling the subgoal that are reachable from the sub-goal. If

there are nested sub-goals, then nested subgoals, context conditions and actions

belong to the nearest sub-goal domain it contains.

For design option 1 mentioned in section 3.1, we can have the domain graph

for triggering event in figure 3.3. In order to create the domain graph, we fetch

triggering event or goal, TE, from the design option 1 at first. As TE has two

available plans depending on different returned results of context condition C,

two branches, P1-TE and P2-TE, with context condition C are linked to TE. As

plan P1 contains primary actions a1, a2 and a3, these actions can be joined to

context condition C under P1-TE. As P2 contains primary actions a1, a
′
2 and a′3,

these actions can be joined to context condition ¬C under P2-TE. As there does

not exist sub-graph in design option 1, we can say all actions, plans and context

conditions are in the domain of TE.

In figure 3.3, if TE is received by the agent, plan P1-TE and P2-TE are

available for it. By checking the context condition C, an agent can either perform

< a1, a2, a3 > or < a1, a
′
2, a

′
3 >. Therefore, the logic in domain graph is consistent

with design option 1.

30

3. Research Approach

Figure 3.3: Domain Graph for Design Option 1

For design option 2 mentioned in section 3.1, we can have the domain graph

for triggering event in figure 3.4. In order to create the domain graph, we fetch

triggering event or goal, TE, from the design option 2 at first. Unlike design

option 1, in design option 2, TE has one plan, P-TE, available only. As there

are no context conditions before a1, a1 can be performed once TE is received by

agent. So we can join P-TE to TE, then joining a1 to plan P-TE. As a subgoal

SG follows after a1, a sub-goal SG can be created after a1. After creating the

sub-goal node, we can focus on plans for the subgoal SG. We noticed a context

condition C in subgoal SG. Thus, we can create two branches for boolean value

of returned from context condition C. For C is true, a2, a3 can be performed. So

actions a2 and a3 can be joined to C. For C is false, a′2 and a′3 can be performed.

So actions a2 and a3 can be joined to ¬C. As design option 2 has a subgoal SG,

sub-domain SG contains P-SG, C, ¬C, a2, a3, a
′
2 and a′3. What worth mentioning

is all subgoals, actions, plans and context conditions still belong to domain TE.

31

3. Research Approach

Upon tracing the flow of domain graph 3.4 for TE, a1 can be executed as long

as TE is received. When context condition C is true, a2 and a3 can be performed.

Otherwise, a′2 and a′3 can be performed. By comparing logics with design option

2, logics in domain graph is consistency with design option 2.

Figure 3.4: Domain Graph for Design Option 2

32

3. Research Approach

Let us focus on the domain graph 3.5 for design option 3 in section 3.1. As

we can see, two plans, P1-TE and P2-TE, are available for triggering event TE.

Hence we can create two branches after TE with context condition C and ¬C.

Action a1 can be performed in both plan, so we can add a node ’a1’ after C and

another node ’a1’ after ¬C. As two distinct sub-goals, SG2 and SG2’, follow after

a1 in P1-TE and a1 in P2-TE respectively, two sub-domains can be created for

them. Because there does not exist context condition in plan for SG2 and plan

for SG′
2, a2 and a3 can be linked to P − SG2 directly. At the same time, a′2 and

a′3 can be linked to P − SG3 directly. By looking at the figure, there are two

sub-domains, one for sub-goal SG2 containing P − SG2, a2 and a3 and another

for sub-goal SG′
2 containing P −SG′

2, a
′
2 and a′3. All subgoals, actions, plans and

context conditions are in the domain TE as well.

In order to provide the correct mapping between design option 3 and domain

graph 3.5, we trace the flow of the domain graph. When TE is received by agent,

there are two options available for it. When C is true, agent performs action

a1, a2 and a3. Otherwise, agent performs a1, a
′
2 and a′3. By comparing the flow

mentioned in design option 3, we can say the domain graph keeps functionality

in design option 3.

33

3. Research Approach

Figure 3.5: Domain Graph for Design Option 3

3.2.4 Example on reactivity calculation

Three plan libraries with different implementation style on student going for

dinner are used to demonstrate the calculation using the measure for reactivity.

34

3. Research Approach

Figure 3.6: Plan library of student going back for dinner(without subgoal)

In plan library 3.6, there is not sub-goals, and only one valid alternative plan

for initial goal (with the context condition and has action after it). There are

six actions defined on the domain the top trigging event. So the reactivity of the

agent is: R(student) = 0.5× 1

6+1
+ 0.5× 0

1
= 0.071

Figure 3.7: Plan library of student going back for dinner(with one subgoal)

In plan library 3.7, action of waiting for bus is placed in a sub-goal with two

alternative plans. This makes it possible for agent to check whether a perception

of see friend drive car is received or not. The plan library contains one sub-goal,

one alternative plan for initial goal, 5 actions in initial goal, two valid alternative

35

3. Research Approach

plans and two actions in sub-goal alternative plans. So the reactivity of it is:

R(student) = 0.5× 1

5+1
+ 0.5× 2

2+1
= 0.416

Figure 3.8: Plan library of student going back for dinner(with four subgoals)

In plan library 3.8, actions of ’waiting for bus’, ’get on bus’, ’get off bus’ and

’walk back home’ are all moved to sub-goals. This makes it possible for agent to

check whether a perception of see friend drive car is received or not. If the agent

receives this perception, actions such as get on bus, get off bus and walk back

home cannot be performed. This plan consists 5 alternative plans for sub-goals, 1

valid alternative plan for initial goal , two actions under initial goal and 5 actions

in subgoals. So the reactiveness of it is: R(student) = 0.5× 1

2+1
+0.5× 5

5+1
= 0.576

36

3. Research Approach

3.2.5 The reactivity algorithm

Based on the reactivity measure described in the previous section, we propose

an algorithm to calculate the reactivity of an agent’s plan library as follows. For

each top triggering event in the plan library, we need to construct a domain graph

for it (as in figure 3.2 in the previous section).

function ReactivityCalculation(PlanLibrary)
1 if PlanLibrary is empty then
2 return 0
3 end if
4 set sum to 0
5 set alpha to 1 //default to 1
6 for each TEgraph in PlanLibrary
7 set sumTeAlt to 0
8 set sumSubAlt to 0
9 set sumTEAction to 1
10 set sumSubAction to 1
11 if TEgraph has no node inside of it then
12 continue
13 end if
14 DFSCalcuation(TEgraph, triggeringEventNodeId,

triggerEventNodeType)
15 if not default TriggingEvent Weight is used then
16 set alpha to User Input
17 end if
18 set sum to sum + alpha × (k × sumTeAlt

sumTeAction
+ (1-k) × sumSubAlt

sumSubAction
)

19 end for
20 return sum

end function

Figure 3.9: Calculating the reactivity of an agent’s plan library

The algorithm given in figure 3.9 compute the reactivity of an agent’s plan

library based on the reactivity measure. It first checks whether the plan library

is empty or not (line 1). If the agent’s plan library is empty, the reactivity of

agent should be 0 (line 2). The sum variable initialized to 0 (line 4) is used to

store the reactivity result. Alpha is set to 1 by default to represent all triggering

events having the same effect on the agent’s reactivity (line 5). The for loop in

37

3. Research Approach

the algorithm (lines 6-19) calculates the reactivity of each trigging event graph in

the plan library and add to sum (line 18). In the loop, it resets global variables

sumTeAlt, sumSubAlt, sumTEAction and sumSubAction at the beginning of

each iteration (lines 7- 10). If a triggering event’s domain graph TEgraph does not

contain any element in it (line 11), this triggering event’s reactivity is 0. Under

this condition, the algorithm stops (line 12) and starts to calculate the reactivity

for the rest of the TEgraph. If TEgraph has some elements, a depth first search

(line 14) is called on the TEgraph to set the value of sumTeAlt, sumSubAlt,

sumTEAction and sumSubAction. The TriggeringEventNodeId represents the

unique identifier of the node representing the triggering event in TEgraph and

the TriggerEventNodeType represents the node’s type which is Trigger Event (line

14). What worth mentioning is that the algorithm also allow users to specify each

triggering event’s weight (lines 15-17).

38

3. Research Approach

Procedure: DFSCalcuation(TEgraph, currentNodeId, domainNodeType)

1 if number of visitedNodes in TEgraph is not equal to number of nodes in TEgraph then

2 set CurrentNode TO the Node with currentNodeId

3 if CurrentNode is Not visited And Exist then

4 if domainNodeType is SUBGOAL AND CurrentNode is ContextCondition

5 AND CurrentNode→NEXT is Action or Sub-Goal then

6 increment sumSubAlt by 1

7 else if domainNodeType is TRIGGERINGEVENT AND CurrentNode is

8 PLAN type then increment sumTEAlt by 1

9 else if CurrentNode Type is ACTION then

10 if domainNodeType is SUBGOAL then increment sumSubAction by 1

11 else if domainNodeType is TRIGGERINGEVENT then

12 increment sumTEAction by 1

13 end if

14 end if

15 set CurrentNode to VISITED

16 if CurrentNode Type is SUBGOAL OR TRIGGERINGEVENT then

17 for each Edge IN CurrentNode’s Outgoing Edge do

18 if Edge Type is ALTER PLAN EDGE AND destinationNode is

19 NOT visited then

20 DFSCalcuation(TEGraph, Edge’s destination Node Id, CurrentNode Type)

21 end if

22 end for

23 end if

24 for each Edge IN CurrentNode’s OutgoingEdge do

25 if Edge Type is SEQUENCE EDGE AND destination Node is Not visited then

26 DFSCalcuation(TEGraph, Edge’s destination Node Id, domainNodeType)

27 end if

28 end for

29 end if

30 end if

31 end procedure

Figure 3.10: Performing a depth first search on the domain graph to compute the

reactivity
39

3. Research Approach

The algorithm given in figure 3.10 traverses the TEgraph using depth first

search combined with alternative plan priority algorithm. In the algorithm, if

not all the nodes in TEgraph are visited (line 1), then it starts to execute. The

current node is fetched from the TEGraph according to the current node identifier

(line 2). If the current node does exist but is not being visited (line 3), sumTeAlt,

sumSubAlt, sumTEAction or sumSubAction will be incremented based on current

node’s type. If the current node is in the domain of a sub-goal, it is a context

condition node and its next node is an action or sub-goal node (line 4), then

there exists a valid sub-goal alternative plan (increment sumSubAlt by 1). If the

current node is in the domain of the trigging event and it is a plan node, then

it is a valid triggering event alternative plan (increment sumTEAlt by 1). If the

current node is an action node and is in the domain of sub-goal, then it is a

sub-goal action node (lines 8-10). On the other hand, if the current action node

is in the domain of triggering event, then it belongs to the triggering event (lines

11-12). The current node is set to “visited” (line 14) before we go to search for

its child nodes. If the current node is a sub-goal node or a trigging event node,

alternative plan paths are searched based on the depth first search in priority

(lines 15-21). In addition, the domain type is set to current node type (line 18).

After searching current the sub-goal or triggering event node’s alternative plans,

other nodes that are directly link to current node (any type of current node) will

become a start node and have DFS algorithm implemented on them (lines 22-26).

3.3 Agent Behavioural Preservation

An agent plan library provides possible plans for handling goals that agent can

achieve. However, in the process of enhancing agent reactivity, agent may lose the

ability of achieving original goals. For instance, a student can go back home from

university by walking to bus stop, getting on bus, waiting for bus to destination,

getting off the bus and walking back home.

1 +!go back home : at university

2 ← walk to bus stop;

3 get on bus;

40

3. Research Approach

3 stay on bus;

4 get off bus;

5 walk back home.

6 +!go back home : near home

7 ← turn around;

8 walk back home.

However, if actions get on bus and wait for bus to destination are swapped

after reactivity of the plan being enhanced, the student can no longer perform

actions in the sequence as before.

1 +!go back home : at university

2 ← walk to bus stop;

3 !try to stay on bus;

4 !get on bus;

5 get off bus;

6 walk back home.

7 +!get on bus : bus arrived

8 ← get on bus.

9 +!try to stay on bus: on bus

10 ← stay on bus.

11 +!go back home : near home

12 ← turn around;

13 walk back home.

In the enhanced plan library, student can perform actions <walk to bus stop,

stay on bus, get on bus, get off bus, walk back home>, <walk to bus stop, get on

bus, get off bus, walk back home>, <walk to bus stop, stay on bus, get off bus,

walk back home> , <walk to bus stop, get off bus, walk back home> or<turn around,

walk back home>. However, it is impossible to perform actions<walk to bus stop,

get on bus, stay on bus, get off bus, walk back home>, which could be performed

if original plan library was used.

41

3. Research Approach

Therefore, a definition is required to preserve agent’s orginal behaviour while

peforming reactivity enhancement. Inspired by business profiles on process mod-

els [50], I am going to propose the definition of agent behavioural profile which

can be used for fetching relationships of actions in agent plan library. This thesis,

we are interested in how behaviours can be reserved when performing reactivity

enhancement. According to my research, loop in agent system is not a factor that

can affect system reactivity. Therefore, we assume there are no loops in agent

plan library.

3.3.1 Behavioural Profile for Agent Plan Library

Definition 1 (Weak Order Relation). Given an agent plan library P, the

weak order relation ≻P is defined as ⊆ A × A × C, where A is a set of all actions

and C is a set of all context conditions in agent plan library. < x, y, c > in ≻P

if and only if there exists a plan in P where c is the context condition and action

x precedes action y in the plan. x
c
≻P y can be used as a shorthand for < x, y, c

> in weak order relation.

In weak order relation, actions in tuples can be related to each other directly

or indirectly. For instance, actions in weak order relation can have no other

actions between them or have one or more actions between them. Weak order

relation restricts the sequence of actions as well as conditions of what actions can

be performed.

Definition 2 (Strict Order Relation). Given an agent plan library P, the

strict order relation P is defined as ⊆ A × A × C, where < x, y, c > in P if

and only if there exists a plan in P where x
c
≻P y and y

c

⊁P x. x
c
 P y can be

used as a shorthand for <x, y, c> in strict order relation.

The same as weak order relation, strict order relation enforces the sequence of

actions. In addition, if two actions are defined in strict order relation, loop is not

allowed in these two actions. We consider a pair is reverse strict order, denoted

by x
c

−1

P y, if and only if y
c
 P x.

Definition 3 (Exclusiveness Relation). Given an agent plan library P,

the exclusiveness relation +P is defined as ⊆ A × C × A × C, where <x, c, y,

c’> in +P if and only if there exists a plan in P where x
c

⊁P y and y
c′

⊁P x. x
c

+P
c′

42

3. Research Approach

y can be used as a shorthand for <x, c, y, c’> in exclusiveness relation.

According to the definition of exclusiveness relation, actions in exclusiveness

relation should not appear in weak order relation, strict order relation or concur-

rency relation. Exclusiveness relation appears after a context condition. Based

on the result of context condition, agent can choose a most suitable plan among

multiple plans and perform actions under that plan.Thus, actions in alternative

plans will not be performed by agent.

Definition 4 (Concurrency Relation). Given an agent plan library P, the

concurrency relation ‖P is defined as ⊆ A × A × C, where <x, y, c> in ‖P if and

only if there exists a plan in P where x
c
≻P y and y

c
≻P x. x

c

‖P y can be used as

a shorthand for <x, y, c> in concurrency order relation.

Based on the definition above, x can happen before y or y can happen before

x under the condition of c. That means, if a pair of actions is in concurrency

relation, there is no occuring sequence of actions. For a single action, it can either

be defined as exclusive to itself or concurrent to itself, i.e., (a
c

+P
c

a) or (a
c

‖P a).

If an action is exclusive to itself, this action can not be repeated under specific

context condition. On the other hand, if an action is concurrent to itself, this

action can be repeated under certain condition.

Strict order relation, exclusiveness relation and concurrency relation make up

the behavioural profile for agent plan library. In order words, behavioural profile

BP is a set of { P ,+P , ‖P}.

Definition 5 (Relationship Transitivity) Given an agent plan library P,

for all {x, y, z} ⊆ A, if x
c
≻P y and y

c
≻P z, then x

c
≻P z. For strict order relation,

if x
c
 P y and y

c
 P z, then x

c
 P z. For concurrency relation, if x

c

‖P y and y
c

‖P z, then x
c

‖P z.

According to the definition of relationship transitivity, relationship transitivity

applies to weak order relation, strict order relation and concurrency relation, but

not for exclusiveness relation.

Definition 6 (Relationship Reversibility) Given an agent plan library

P, for all {x, y} ⊆ A and {c, c′} ⊆ C, if x
c

+P
c′

y, then y
c′

+P
c

x, vice versa. For

concurrency relation, if x
c

‖P y, then y
c

‖P x, vice versa.

Definition of relationship reversibility means the order of actions in exlusiveness

43

3. Research Approach

and concurrency relation does not affect behavioural profile.

3.3.2 Examples for Creating Behavioural Profile

As true concurrency does not exist in Jason, we will not cover concurrency rela-

tionship in examples.

3.3.2.1 Example One

Example of student going back home in section 3.3 can be used to demonstrate

the process of constructing agent behavioural profile. According to the plan li-

brary, we can create agent behavioural profile as follows:

Strict Order relation: {walk to bus stop
at university
 P get on bus, get on bus

at university
 P stay on bus, stay on bus

at university
 P get off bus, get off bus

at university
 P

walk back home, turn around
near home
 P walk back home}

Exclusiveness relation:{walk to bus stop
at university

+ P
near home

turn around, walk to bus

stop
at university

+ P
near home

walk back home, get on bus
at university

+ P
near home

turn around, get on bus

at university

+ P
near home

walk back home, stay on bus
at university

+ P
near home

turn around, stay on bus

at university

+ P
near home

walk back home, get off bus
at university

+ P
near home

turn around, get off bus

at university

+ P
near home

walk back home}

Concurrency relation: {φ}

3.3.2.2 Example Two

For the purpose of comparision, the enhanced agent plan library for student go-

ing back home in section 3.3 is used. Agent behavioural profile for the enhanced

agent plan library can be created as follows:

Strict Order relation: {walk to bus stop
at university&on bus

 P stay on bus, stay on

bus
at university&on bus&bus arrived

 P get on bus, get on bus
at university&bus arrived

 P get off

bus, get off bus
at university
 P walk back home, turn around

near home
 P walk back home}

Exclusiveness relation:{walk to bus stop
at university

+ P
near home

turn around, walk to

44

3. Research Approach

bus stop
at university

+ P
near home

walk back home, get on bus
at university&bus arrived

+ P
near home

turn around,

get on bus
at university&bus arrived

+ P
near home

walk back home, stay on bus
at university&on bus

+ P
near home

turn around, stay on bus
at university&on bus

+ P
near home

walk back home, get off bus
at university

+ P
near home

turn around, get off bus
at university

+ P
near home

walk

back home}

Concurrency relation: {φ}

3.3.2.3 Comparison

As can be seen in the set of strict order relation in first example, get on bus

has strict order relation with stay on bus (get on bus
at university
 P stay on bus).

However, in the second example, relationship between get on bus and stay on bus

is defined as stay on bus
at university&on bus&bus arrived

 P get on bus, which conflicts

which the strict order relation defined in the first example. Therefore, agent

behavioural in first agent plan library is not preserved in the second agent plan

library despite the fact that agent reactivity has been enhanced.

3.3.2.4 Resolve Conflict

For the purpose of resolving the conflict in agent plan libraries, we can simply

swap subgoals !get on bus and !try to stay on bus in the enhanced agent plan

library.

1 +!go back home : at university

2 ← walk to bus stop;

3 !get on bus;

4 !try to stay on bus;

5 get off bus;

6 walk back home.

7 +!get on bus : bus arrived

8 ← get on bus.

9 +!try to stay on bus: on bus

10 ← stay on bus.

45

3. Research Approach

11 +!go back home : near home

12 ← turn around;

13 walk back home.

Now, let’s create the behavioural profile for the fixed agent plan library:

Strict Order relation: {walk to bus stop
at university&bus arrived

 P get on bus,ge

t on bus
at university&bus arrived&on bus

 P stay on bus, stay on bus
at university&on bus

 P

get off bus, get off bus
at university
 P walk back home, turn around

near home
 P walk

back home}

Exclusiveness relation:{walk to bus stop
at university

+ P
near home

turn around, walk to

bus stop
at university

+ P
near home

walk back home, get on bus
at university&bus arrived

+ P
near home

turn around,

get on bus
at university&bus arrived

+ P
near home

walk back home, stay on bus
at university&on bus

+ P
near home

turn around, stay on bus
at university&on bus

+ P
near home

walk back home, get off bus
at university

+ P
near home

turn around, get off bus
at university

+ P
near home

walk

back home}

Concurrency relation: {φ}

Now, the relationship between get on bus and stay on bus turns to be get on bus
at university&bus arrived&on bus

 P stay on bus which is consistent with get on bus
at university
 P

stay on bus in the original plan library. Someone may notice the difference

of context conditions in these two strict order relationships. However, when

at university&bus arrived&on bus is true, at university must be true. In other

words, at university&bus arrived&on bus |= at university. We will cover be-

havioural profile entailment in section 3.3.4.

3.3.3 Behavioural Profile Identity

Definition 7 (Behavioural Profile Identity) Behavioural profiles are identi-

cal iff BP = B′
P . That means for every x

c1
 P y, x

c1

+P
c1′

y or x
c1

‖P y in BP , there

exists a x
c2
 P y, x

c2

+P
c2′

y or x
c2

‖P y in B′
P such that c1 = c2 and c′1 = c′2.

46

3. Research Approach

Some cases of behavioural profile identity are listed as follows:

Case 1: Behavioural profiles are identical when adjacent actions or subgoals are

repeated:

Plan 1

+!g1 : c ← a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g1 : c ← a1; a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Case 2: Behavioural profiles are identical when additional goal is empty:

Plan 1

+!g1 : c ← a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g1 : c ← a1; a2; a3.

+!g2.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Case 3: Behavioural profiles are identical when goal is different:

Plan 1

+!g1 : c ← a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

47

3. Research Approach

Plan 2

+!g2 : c ← a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Case 4: Behavioural profiles are identical when relationships can be transited:

Plan 1

+!g : c ← a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g : c ← a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3, a1

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Case 5: Behavioural profiles are identical when relationships can be reversed:

Plan 1

+!g : c1 ← a1; a2.

+!g : c2 ← a3; a4.

Strict Order Relation: {a1
c1
 P a2, a3

c2
 P a4}

Exclusiveness Relation: {a1
c1

+P
c2

a3, a1
c1

+P
c2

a4, a2
c1

+P
c2

a3, a2
c1

+P
c2

a4}

Concurrency Relation: {φ}

Plan 2

+!g : c2 ← a3; a4.

+!g : c1 ← a1; a2.

Strict Order Relation: {a1
c1
 P a2, a3

c2
 P a4}

Exclusiveness Relation: {a3
c2

+P
c1

a1, a3
c2

+P
c1

a2, a4
c2

+P
c1

a1, a3
c2

+P
c1

a2}

Concurrency Relation: {φ}

48

3. Research Approach

3.3.4 Behavioural Profile Entailment

Definition 8 (Behavioural Profile Entailment) BP |= B′
P iff. for every

x
c1
 P y, x

c1

+P
c1′

y or x
c1

‖P y in BP , there exists a x
c2
 P y, x

c2

+P
c2′

y or x
c2

‖P y in B′
P

such that c1 |= c2 and c′1 |= c′2.

In other words, for every context condition that is true in first behavioural profile,

if it is impossible to find a false corresponding context condition in second be-

havioural profile, then the first behavioural profile entails the seconds behavioural

profile. Behavioural profile entailment allows relationships with different context

conditions that can be entailed.

Some cases of behavioural profile entailment are listed as follows:

Case 1: Behavioural profiles could be entailed when at least one common ele-

ment exists in OR joined context conditions:

Plan 1

+!g : c1 ← a1; a2; a3.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g : c1 | c2 | c3 ← a1; a2; a3.

Strict Order Relation: {a1
c1|c2|c3
 P a2, a2

c1|c2|c3
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

As c1 |= (c1 | c2 | c3), behavioural profile for Plan 1 entails behavioural profile

for Plan 2, BP1 |= BP2. Therefore, when c1 is true, agent can perform same

behavioural by using either Plan 1 or Plan 2.

Case 2: Behavioural profiles could be entailed when there exists empty con-

text condition:

Plan 1

+!g ← a1; a2; a3.

Strict Order Relation: {a1 P a2, a2 P a3}

Exclusiveness Relation: {φ}

49

3. Research Approach

Concurrency Relation: {φ}

Plan 2

+!g : c1 & c2 ← a1; a2; a3.

Strict Order Relation: {a1
c1&c2
 P a2, a2

c1&c2
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 3

+!g : c1 | c2 | c3 ← a1; a2; a3.

Strict Order Relation: {a1
c1|c2|c3
 P a2, a2

c1|c2|c3
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

As (c1 & c2) |= φ, (c1 | c2 | c3) |= φ, behavioural profile for Plan 2 entails

behavioural profile for Plan 1(BP2 |= BP1) and behavioural profile for Plan 3

entails behavioural profile for Plan 1(BP3 |= BP1). What worth mentioning is in

this case, Plan 2 entails Plan 3(BP2 |= BP3) as well due to Case 1.

Case 3: Behavioural profiles could be entailed when ONLY duplicate elements

occured in AND joined context condition:

Plan 1

+!g : c ← a1; a2; a3.

Strict Order Relation: {a1
c
 P a2, a2

c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g : c & c & c ← a1; a2; a3.

Strict Order Relation: {a1
c&c&c
 P a2, a2

c&c&c
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Case 4: Behavioural profiles could be entailed when some elements are removed

from AND joined context condition:

Plan 1

+!g : c1 & c2 & c3 ← a1; a2; a3.

Strict Order Relation: {a1
c1&c2&c3
 P a2, a2

c1&c2&c3
 P a3}

50

3. Research Approach

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g : c1 & c2 ← a1; a2; a3.

Strict Order Relation: {a1
c1&c2
 P a2, a2

c1&c2
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

3.3.5 Behavioural Preservation

Examples in section 3.3.2 reveals processes of finding conflicts in agent behavioural

profile and method of resolving conflicts. Generally speaking, if there are no con-

flicts in behavioural profiles, then agent behaviour is preserved after redesign. In

order to well define the agent behavioural preservation, we need a formal defini-

tion of behavioural preservation.

Definition 9 (Behavioural Preservation) Behavioural of an agent is preserved

if and only if BP ⊆ B′
P or BP |= B′

P , where BP is the original agent behavioural

profile and B′
P is the redesigned agent behavioural profile.

That means if all relationships { P ,+P , ‖P} defined in original agent plan library

still hold after agent plan being redesigned, agent behaviour can be regarded to

be preserved. What worth mentioning is definition of relation transitivity and

relation reversibility can be applied in checking behavioural preservation. Un-

der the condition that relations defined in original agent behavioural profile can

be implied from redesigned agent behavioural profile, those relationships are re-

garded as identical as well. For instance, if {x
c
 P z} ⊆ P and {x

c
 P y,

y
c
 P z} ⊆ ′

P}, then {x
c
 P z} and {x

c
 P y and y

c
 P z} are identical.

Some cases of behavioural profile preservation are listed as follows:

Case 1: Behaviour could be preserved when actions are moved to sub-goals:

Plan 1

+!g : c1 ← a1; a2; a3.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3}

Exclusiveness Relation: {φ}

51

3. Research Approach

Concurrency Relation: {φ}

Plan 2

+!g : c1 ← a1; !sg2; a3.

+!sg2 : c2 ← a2.

Strict Order Relation: {a1
c1&c2
 P a2, a2

c1&c2&c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

As c1&c2 |= c1 and c1&c2&c1 |= c1, behavioural profile for Plan 2 entails be-

havioural profile for Plan 1, BP2 |= BP1. Consequently, behaviours in Plan 1 are

preserved in Plan2.

Case 2: Behaviour could be preserved when additional actions are introduced:

Plan 1

+!g : c1 ← a1; a2; a3.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g : c1 ← a1; a2; a3; a4.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3, a3

c1
 P a4}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

As behavioural profile for Plan 1 is a subset of behavioural profile for Plan 2,

Plan 2 preserve original behaviour in Plan 1.

Case 3: Behaviour could be preserved when additional subgoals are introduced:

Plan 1

+!g : c1 ← a1; a2; a3.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g : c1 ← a1; a2; a3; !sg4.

52

3. Research Approach

+!sg4 : c2 ← a4.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3, a3

c1
 P !sg4, !sg4

c2
 P a4}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

As behavioural profile for Plan 1 is a subset of behavioural profile for Plan 2,

Plan 2 preserve original behaviour in Plan 1.

Case 4: Behaviour could be preserved when additional goals are introduced:

Plan 1

+!g : c1 ← a1; a2; a3.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

Plan 2

+!g : c1 ← a1; a2; a3.

+!ga : c2 ← a4.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3, a4

c2

+P
c2

a4}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

As behavioural profile for Plan 1 is a subset of behavioural profile for Plan 2,

Plan 2 preserve original behaviour in Plan 1.

53

3. Research Approach

3.3.6 Relationships between Behavioural Preservation, Iden-

tity and Entailment

Figure 3.11: Relationships between Behavioural Preservation, Identity and En-

tailment

If behavioural profiles are identical, those behavioural profiles can be mutually

entailed. Because context conditions in those behavioural profiles are exactly the

same. For those behavioural profiles that can be entailed, entailed agent can still

perform behaviours of original agent. Therefore, agent behaviours are preserved.

We can thus arise the summary that agent behavioural preservation includes

behavioural entailment, behavioural entailment includes behavioural identity. A

figure in 3.11 shows relationship among them vividly.

54

3. Research Approach

3.4 Preserve Agent Behaviours while Increasing

Agent Reactivity

As known in section 3.1, factors affecting agent reactivities are sub-goals deco-

rated with context conditions, actions with context conditions in front as well as

fresh new plans for other event. Consequently, it might not possible to increase

agent reactivity in the scope of behavioural profile identity and behavioural profile

entailment. The reason is, when behaviour profiles are identical or can be en-

tailed, new sub-goals or plans are not allows. Hence, agent behavioural-preserved

reactivity enhancement can only be performed in the scope of behavioural preser-

vation ⊕ behavioural entailment. Analysing behavioural preservation cases in

section 3.3.5, only Case 1 and Case 4 get reactivity enhanced.

Case 1: Behaviour could be preserved when actions are moved to sub-goals:

Plan 1

+!g : c1 ← a1; a2; a3.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

R(P1) = 0.5×
1

2 + 1
+ 0.5×

0

0 + 1
=

1

6

Plan 2

+!g : c1 ← a1; !sg2; a3.

+!sg2 : c2 ← a2.

Strict Order Relation: {a1
c1&c2
 P a2, a2

c1&c2&c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

R(P1) = 0.5×
1

1 + 1
+ 0.5×

1

0 + 1
=

3

4

55

3. Research Approach

Case 4: Behaviour could be preserved when additional goals are introduced:

Plan 1

+!g : c1 ← a1; a2; a3.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

R(P1) = 0.5×
1

2 + 1
+ 0.5×

0

0 + 1
=

1

6

Plan 2

+!g : c1 ← a1; a2; a3.

+!ga : c2 ← a4.

Strict Order Relation: {a1
c1
 P a2, a2

c1
 P a3, a4

c2

+P
c2

a4}

Exclusiveness Relation: {φ}

Concurrency Relation: {φ}

R(P1) = (0.5×
1

2 + 1
+ 0.5×

0

0 + 1
) + (0.5×

1

0 + 1
) =

2

3

Therefore, in order to preserve agent behaviour while enhancing agent reac-

tivity, we can move actions to sub-goals or create fresh new plans.

56

Chapter 4

Evaluation

In order to evaluate measures and algorithms in this thesis, a prototype is imple-

mented and several experiments are described and discussed in this chapter.

4.1 Implementation

Based on the reactivity measure for BDI agent programs and the algorithm to

calculate it from agents’ plan libraries, a prototype has been developed to demon-

strate the effectiveness of the reactivity measure. More specifically, a plugin1 has

been implemented for the Eclipse-based code editor of Jason2, one of the most

well-known platforms for developing agent applications in AgentSpeak3.

The reactivity plugin reads the source code of an agent program, which may

consist of a number of agents. The plugin analyses the plan library of each

agent in the program and constructs the graphs representing the domain model

of the top triggering event in the plan library. It then calculates the reactivity of

each agent’s plan library using the algorithm described in the previous section.

Figure 4.1 shows a snapshot of the reactivity plugin for Jason. Having the plugin

installed, Jason developers can invoke it by clicking on a small icon namely R

(R for reactivity) on the toolbar of the Eclipse-based editor for Jason. A small

1The plugin is available at http://designmetrics.googlecode.com/svn/

designmetrics/
2http://jason.sourceforge.net/Jason/
3AgentSpeak is one of the most well-known languages for implementing BDI agent.

57

http://designmetrics.googlecode.com/svn/designmetrics/
http://designmetrics.googlecode.com/svn/designmetrics/
http://jason.sourceforge.net/Jason/

4. Evaluation

Figure 4.1: A snapshot for the reactivity plugin for the Eclipse-based Jason editor

dialog would be displayed with the reactivity value for each agent in the current

program. The developers can modify the program and the reactivity values may

be updated to reflect the changes.

4.2 Preliminary empirical study

Using the prototype tool technique has been evaluated by conducting a prelim-

inary empirical study. In the small experiment, an investigation is done on the

following research question: programs showing a high value in the reactivity mea-

sure perform better in responding to changes in the environment than those with

a low value.

In order to assess the hypothesis, an experiment has been performed on a

simple agent-based auction system that has been developed with the inspiration of

[9]. There are four agents in this system: an auctioneer and three bidders. Three

different sets of environments have been designed. First, the static environment

58

4. Evaluation

generates only one type of event indicating when the auction starts. Second, the

relatively dynamic environment generates two types of events indicating when

the auction starts and when bids are accepted. Third, the extremely dynamic

environment generates not only the previous two event types but also the event

when a bid is successful. The three bidders are classified into three levels: basic,

intermediate and advanced. The basic bidder has a plan to handle the event of

an auction starting by submitting a bid (as a primitive action). The intermediate

bidder also has a plan to handle such event but submitting a bid is designed

as a subgoal which is handled by another plan that is applicable only when a

permission for bidding is broadcast. Finally, the advanced bidder has the same

plans as in the intermediate bidder and a plan to handle a successful bidding.

The reactivity tool was used to calculate the reactivity of the three types of agent.

The reactivity value of the basic bidder is 0.2, the intermediate bidder is 0.5, and

the advanced bidder is 1.1.

Agent/Environment Basic Intermediate Advanced
Static 1 1 1
Relatively dynamic 1 2 2
Extremely dynamic 1 2 3

Figure 4.2: The scores of three bidders in three types of environment

The auction system was run in the three types of environments described

earlier to observe behaviours of three bidders. In order to assess how reactive the

agents are during execution, a rough score is given based on how their behaviour

changes when a significant event occurs in the environment. More specifically,

assume that there are n significant events potentially occurring in the environment

(e.g. n = 3 for the extremely dynamic environment in the experiment). The

behaviour of an agent during execution is observed and every time its behaviour

changes to respond to an event occur in the environment, one mark is given. The

score for each bidder in each type of environment is shown in Figure 4.2.

As can be seen, the basic bidder gets the same score (i.e. 1) in all three types

of environment. In addition, for the static environment all the three bidders score

the same mark. The advanced bidder however has the highest score (i.e. 3) in

the extremely dynamic environment.

59

4. Evaluation

As mentioned earlier, the reactivity measure indicates the advanced bidder

is the most reactive agent while the basic agent is the least reactive one. Re-

sults from the experiments by executing those agents confirm this in which the

advanced agent outperforms the other agents (with respect to reactivity) in the

extremely dynamic environment.

4.3 Experiment on subgoals

Another small experiment has also been conducted to investigate on the research

question: subgoals with context conditions can enhance the reactivity of the agent.

In this experiment, a state transition system was set up to describe different

behaviours of the system. The time-based state transition system produces events

in a certain period of time. For experimental purposes, two agent plan library

profiles were set up. The first library(reactivity value of 0.1) has a plan with all

atomic actions, and the second library (reactivity value of 0.5) has a number of

plans and subgoals as follows:

1 !start.
2 +!start : p & q ← a1; a2; a3; a4.

Figure 4.3: Plan Library for Agent 1

1 !start.
2 +!start : p & q ← a1; !sg2; a3; !sg4.
3 +!sg2: p & q ← a2.
4 +!sg2.
4 +!sg4: p & q ← a4.
6 +!sg4.

Figure 4.4: Plan Library for Agent 2

60

4. Evaluation

Initially (at t0), the environment is set up such that both p and q are true.

After 5 seconds (i.e. at t0 +5), the environment changes such that p is no longer

true and after 7 seconds (i.e. at t0 + 7), the environment changes again such that

p is true again. Assuming every action in agents takes 6 seconds to complete,

the experiment is then run for 24 seconds and log the execution of both agents.

System logging(figure 4.5) of an execution of the agent system is attached as

follows:

Figure 4.5: Agent system logging

The execution log of the agent with the first plan library indicates that it has

performed (a1; a2; a3; a4), regardless of changes in the environment with respect

to context condition p. Meanwhile, with the second plan library the agent has

performed(a1; a3; a4), indicating the agent has responded to changes in the

environment. Five seconds after performing action a1, context condition p was

no longer true and the execution of subgoal sg2 resulted in no action. At 22:08:07

(the deliberation of checking context condition took 1 second), context condition

p was true again and the execution of subgoal sg4 resulted in the execution of

action a4.

When context condition p was no longer true, agent 2 did not perform action

a2. However, agent 1 performed a2, which was not as accurate as agent 2. The

experiment proves that agent 2, which has more subgoals (with context condi-

tions) than agent 1, is more reactive than agent 1. However, in this experiment,

61

4. Evaluation

action a4 does not help in comparing agent 1 and agent 2 plan libraries. It might

be better to add and remove event p or q at different time to provide more solid

evidence that subgoals with context conditions can improve the agent reactivity.

4.4 Experiment on external events

A complex experiment has been conducted based on the gold miner example in

the Jason agent platform. This experiment is used to investigate the following

research question: adding plans for external events can enhance the reactivity of

the agent.

The experiment is made in static and dynamic environments respectively. In

the original version of gold miner, miners can detect gold, picking gold, sharing

position of gold they detected and giving up the belief of picking gold if it has

been picked by other miners. It cannot be denied that the example is robust on

cooperation between miners and exception handling. However, in order to do a

comparison, an enhanced version of gold miner agent program is developed. In

the enhanced version of gold miner agent program, apart from handling gold,

miners can get the perception of diamonds and pick diamonds.

In static environment, the plugin in eclipse that developed based on the reac-

tivity measure is used to calculate reactivity of all agents in gold miners program.

In the experiment, weights for triggering events {αi} are assumed to be identical

to each other {αi = 1 | i ∈ [0, n] }.Weight of reactivity to external events k is

assumed to be 0.5. After running the plugin, the reactiveness of original gold-only

miner agent is 6.427, while the reactiveness of enhanced gold-and-diamond miner

agent climbs to 6.6369 as shown in Figure 4.6. As leader agent plan libraries are

the same, reactivity of both leader plan libraries are 2.55. As can be seen from

the statistics in this experiment, the systems reactiveness increased due to the

enhancement.

62

4. Evaluation

Figure 4.6: Gold miner multi-agent system reacitivity

In dynamic environment, perception of diamond is added into miners with

plan library that can deal with gold only. By running the gold miners system

4.7, miners do not make any response to diamonds. In comparison, agent system

with enhanced plan library is executed. This time, miners can pick both gold

and diamond shown in figure 4.8. In addition, when miner in left-bottom corner

is on its way to right-bottom corner for picking a diamond, if the diamond is

picked by miner at the right-bottom corner, the miner at left-bottom corner goes

back to left-bottom corner and keeps researching for resources. Results from

dynamic environment experiment provide evidence that reactivity of the system

get increased by adding plans for external events.

63

4. Evaluation

Figure 4.7: Gold miners for picking gold only

64

4. Evaluation

Figure 4.8: Gold miners for picking gold and diamond

This experiment has been conducted in static as well as dynamic environ-

ments. When it comes to the static environment, adding plans for external event

can trigger an increase on the reactivity measure result. It proves that the mea-

sure works for plans for external events. In the dynamic environment, it can be

observed that enhanced gold miners can make reactions on diamonds while the

original version of gold miners cannot. It not only proves the conclusion made in

the static environment is correct, but also proves adding plans for external events

can increase the reactivity of the agent. This experiment proves that adding plans

for one extra external event can enhance the reactivity of the agent. However, it

might be better if more experiments on different number of external events can

be conducted.

65

4. Evaluation

4.5 Experiment on a paper submission multi-

agent system

In addition, a large experiment has been conducted to assess influences from both

external events and subgoals. In paper submission processes, author submits the

paper to a submission management system. The submission management system

generates paper ID and stores paper before sending an acknowledgement message

back to the client. After submission due date, PC chair enters reviewer details into

the review management system. Then, the reviewer management system would

invite reviewers. On receiving acceptance from reviewers, the review management

system asks reviewers for preference. Then it gets the preference and assigns

papers to corresponding reviewer. Reviewers then review papers and send result

back to the review management system. The review management system then

collects all the review reports. After review deadline, PC Chair will make decision

based on review reports and send his decision to review management system. The

Review management system then finalizes decision and sends notification back

to authors. If author receives acceptance, a camera-ready will be sent to process

management system. The process management system then collects camera-

ready and sends to publisher. Based on activities in the system, a multi-agent

system with environment 4.1 and agents plan libraries 4.2, 4.3, 4.4, 4.5 4.6, 4.7

are created to simulate conference paper submission process.

Listing 4.1: Environment for Paper Submission Multi-Agent System

1 import j a son . asSyntax . ∗ ;

2 import j a son . environment . ∗ ;

3 import java . u t i l . l o gg ing . ∗ ;

4 import java . u t i l .Random ;

5 public class ConEnv extends Environment {

6 private f ina l stat ic int numOfAuthors = 4 ;

7 private Logger l o gg e r = Logger . getLogger (” Con f e r en c e f u l l . mas2j . ”

+ ConEnv . class . getName ()) ;

8 private I n t eg e r paperReceived = null ;

9 private Random r = new Random(System . cur r entT imeMi l l i s ()) ;

10 private boolean i n v i t e d [] = new boolean [1 1] ;

11 private boolean pape r s e l e c t ed [] = new boolean [1 0 0] ;

66

4. Evaluation

12 /∗∗ Cal l ed b e f o r e the MAS execu t i on wi th the args informed in

. mas2j ∗/

13 @Override

14 public void i n i t (S t r ing [] a rgs) {

15 super . i n i t (args) ;

16 paperReceived = new I n t eg e r (0) ;

17 for (int i = 0 ; i < 10 ; i ++) {

18 i nv i t e d [i] = fa l se ;

19 }

20 for (int i = 0 ; i < 100 ; i++) {

21 pape r s e l e c t ed [i] = fa l se ;

22 }

23 addPercept (L i t e r a l . p a r s eL i t e r a l (”hasPaper (\”Paper \”) ”)) ;

24 int rd = Math . abs (r . next Int ()) % 101 ;

25 i f (rd > 50) {

26 addPercept (”submissionManagement” ,

L i t e r a l . p a r s eL i t e r a l (” databaseAva i lab l e ”)) ;

27 }

28 rd = Math . abs (r . next Int ())% 101 ;

29 i f (rd > 40) {

30 addPercept (”submissionManagement” ,

L i t e r a l . p a r s eL i t e r a l (” i n t e rne tAcc e s s ”)) ;

31 }

32 addPercept (”reviewManagement” ,

L i t e r a l . p a r s eL i t e r a l (” dea lWithReject ion ”)) ;

33 }

34 @Override

35 public boolean executeAct ion (S t r ing agName , St ruc ture ac t i on) {

36 int rd = Math . abs (r . next Int ()) % 101 ;

37 i f (ac t i on . getFunctor () . equa l s (” storePaper ”)) {

38 paperReceived ++;

39 addPercept (”reviewManagement” ,

L i t e r a l . p a r s eL i t e r a l (”paperNum(”+ paperReceived +”) ”)) ;

40 } else i f (ac t i on . getFunctor () . equa l s (” s to r ePaperLoca l l y ”)) {

41 paperReceived ++;

42 addPercept (”reviewManagement” ,

L i t e r a l . p a r s eL i t e r a l (”paperNum(”+ paperReceived +”) ”)) ;

43 } else i f (ac t i on . getFunctor () . equa l s (” paperReceived ”)) {

44 i f (rd > 50) {

45 addPercept (agName , L i t e r a l . p a r s eL i t e r a l (”emergency”)) ;

67

4. Evaluation

46 }

47 try {

48 Thread . s l e e p (200) ;

49 } catch (Exception e) {}

50 }

51 else i f (ac t i on . getFunctor () . equa l s (” inv i t eRev i ewer s ”)) {

52 int paperNum = (int) ((NumberTerm) ac t i on . getTerm (0)) . s o l v e () ;

53 for (int i = 0 ; i < paperNum ; i++) {

54 int r ev i ewer = Math . abs (r . next Int ()) % 10 + 1 ;

55 i f (i n v i t e d [r ev i ewer − 1]) {

56 i −−;

57 continue ;

58 }

59 addPercept (” rev i ewer ”+reviewer ,

L i t e r a l . p a r s eL i t e r a l (” i nv i t a t i onRec e i v ed ”)) ;

60 i nv i t e d [r ev i ewer − 1] = true ;

61 }

62 }

63 else i f (ac t i on . getFunctor () . equa l s (” i nv i t a t i onRec e i v ed ”)) {

64 i f (rd > 20) {

65 addPercept (agName , L i t e r a l . p a r s eL i t e r a l (” accept ”)) ;

66 }

67 } else i f (ac t i on . getFunctor () . equa l s (” sendReviewPref ”)) {

68 for (int i = 0 ; i < paperReceived ; i++) {

69 i f (! pape r s e l e c t ed [i]) {

70 pape r s e l e c t ed [i] = true ;

71 addPercept (”reviewManagement” ,

L i t e r a l . p a r s eL i t e r a l (” r e c e i v eP r e f s (”+agName+” , ”+(i +1)+”) ”)) ;

72 break ;

73 }

74 }

75 } else i f (ac t i on . getFunctor () . equa l s (” s endNo t i f i c a t i on ”)) {

76 for (int i = 1 ; i <= numOfAuthors ; i++) {

77 int temp = (Math . abs (r . next Int ()) % 101) ;

78 i f (temp > 50) {

79 addPercept (” author ”+i ,

L i t e r a l . p a r s eL i t e r a l (” avai lableTOGetResult ”)) ;

80 }

81 try {

82 Thread . s l e e p (200) ;

68

4. Evaluation

83 } catch (Exception e) {}

84 }

85

86 int paperNum = (int) ((NumberTerm) ac t i on . getTerm (0)) . s o l v e () ;

87 for (int i = 1 ; i <= paperNum ; i++) {

88 rd = Math . abs (r . next Int ())% 101 ;

89 i f (rd > 50) {

90 addPercept (” author ”+i , L i t e r a l . p a r s eL i t e r a l (” accept ”)) ;

91 } else {

92 addPercept (” author ”+i , L i t e r a l . p a r s eL i t e r a l (” r e j e c t ”)) ;

93 }

94 }

95 } else i f (ac t i on . getFunctor () . equa l s (” dealWithReject ”)) {

96 for (int i = 0 ; i < 1 ; i++) {

97 int r ev i ewer = Math . abs (r . next Int ())% 10 + 1 ;

98 i f (i n v i t e d [r ev i ewer − 1]) {

99 i−−;

100 continue ;

101 }

102 addPercept (” rev i ewer ”+reviewer ,

L i t e r a l . p a r s eL i t e r a l (” i nv i t a t i onRec e i v ed ”)) ;

103 i nv i t e d [rev iewer −1] = true ;

104 }

105 } else

i f (ac t i on . getFunctor () . equa l s (” inviteReviewersInEmergency ”))

{

106 /∗ i f not a l l t he rev i ewer are i n v i t e d ∗/

107 boolean f l a g = fa l se ;

108 for (int i = 0 ; i < 10 ; i++) {

109 i f (i n v i t e d [i] == fa l se) {

110 f l a g = true ;

111 }

112 }

113 i f (! f l a g) {

114 l ogg e r . warning (”No Reviewer i s a v a i l a b l e ! ”) ;

115 return fa l se ;

116 }

117 int paperCode = (int) ((NumberTerm) ac t i on . getTerm (0)) . s o l v e () ;

118 pape r s e l e c t ed [paperCode − 1] = fa l se ;

119 for (int i = 0 ; i < 1 ; i++) {

69

4. Evaluation

120 int r ev i ewer = Math . abs (r . next Int ()) % 10 + 1 ;

121 i f (i n v i t e d [r ev i ewer − 1]) {

122 i−−;

123 continue ;

124 }

125 addPercept (” rev i ewer ”+reviewer ,

L i t e r a l . p a r s eL i t e r a l (” i nv i t a t i onRec e i v ed ”)) ;

126 i nv i t e d [rev iewer −1] = true ;

127 }

128

129 }

130 return true ;

131 }

132 /∗∗ Cal l ed b e f o r e the end o f MAS execu t i on ∗/

133 @Override

134 public void stop () {

135 super . s top () ;

136 }

137 }

Listing 4.2: Less reactive author plan library(Reactivity 0.9583)

1 /∗ I n i t i a l g oa l s ∗/

2 ! submit Paper .

3 /∗ Plans ∗/

4 +! submit Paper : hasPaper (P) <− ?hasPaper (P) ;

5 . p r i n t (”Submit Paper”) ;

6 . send (submissionManagement , t e l l , r e ce ivePaper (P)) .

7 +! submit Paper : not hasPaper (P) .

8 +rece iveAck [source (A)]<− . p r i n t (”Ack r e c e i v ed ”) ;

9 ackReceived (A) .

10 +accept [source (A)] <− . p r i n t (”Receive Accept”) ;

11 rece iveAccept ;

12 . p r i n t (”Prepare Camera−ready”) ;

13 prepareCameraReady ;

14 . p r i n t (”Send Camera−read ”) ;

15 . send (processingManagement , t e l l ,

receiveCameraReady) ;

16 −accept .

17 +r e j e c t [source (A)] <− . p r i n t (”Receive Reject ”) ;

70

4. Evaluation

18 r e c e i v eRe j e c t ;

19 −r e j e c t .

Listing 4.3: Less reactive PC chair plan library(Reactivity 0.4167)

1 /∗ I n i t i a l g oa l s ∗/

2 ! wait .

3 /∗ Plans ∗/

4 +!wait <− . wait (3000) ;

5 +submiss ionDeadl inePassed ;

6 ! ente rRev i ewerDeta i l .

7 +! ente rRev i ewerDeta i l : submiss ionDeadl inePassed

8 <− . p r i n t (”Enter Reivewer Deta i l ”) ;

9 . send (reviewManagement , t e l l ,

r e c e v i c e r e v i ew e rDe t a i l) ;

10 . wait (6000) ;

11 . p r i n t (”Read Review”) ;

12 readReview ;

13 . p r i n t (”Make a Dec i s i on ”) ;

14 . send (reviewManagement , t e l l ,

r e c e i v eDe c i s i o n) .

15 +! ente rRev i ewerDeta i l : not submiss ionDeadl inePassed

16 <− . wait (100) ;

17 ! ente rRev i ewerDeta i l .

Listing 4.4: Less reactive submission managememt agent plan library(Reactivity

0.1667)

1 /∗ Plans ∗/

2 +rece ivePaper (P) [source (A)] <− . p r i n t (P, ” Received From ” ,A) ;

3 paperReceived (A,P) ;

4 ! generatePaperID (A,P) ;

5 ! s torePaper (A,P) ;

6 . p r i n t (”Send Ack to ” , A) ;

7 . send (A, t e l l , r ece iveAck) .

8 +! generatePaperID (A,P)<− . p r i n t (”Generate Paper ID For ” , A , ” ’ s

” , P) ;

9 generatePaperID (A,P) .

10 +! storePaper (A,P) <− . p r i n t (” Store Paper For ” , A, ” ’ s ” , P) ;

11 storePaper (A,P) .

71

4. Evaluation

Listing 4.5: Less reactive process management agent plan library(Reactivity

0.125)

1 /∗ Plans ∗/

2 +receiveCameraReady [source (A)] <− . p r i n t (”Camera−ready Received

from ” , A) ;

3 cameraReadyReceived ;

4 . p r i n t (” Co l l e c t Camera−ready”) ;

5 col lectCameraReady ;

6 . p r i n t (”Send to Pub l i she r ”) ;

7 sendToPubl isher .

Listing 4.6: Less reactive review management agent plan library(Reactivity

0.9333)

1 /∗ Plans ∗/

2

3 +r e c e v i c e r e v i ewe rDe t a i l [source (A)] <− . p r i n t (”Review Deta i l Recived

From ” , A) ;

4 r ev i ewerDeta i lRecev i ed ;

5 ?paperNum(N) ;

6 . p r i n t (” I nv i t e Reviewers ”) ;

7 inv i t eRev i ewer s (N) .

8 +accept [source (A)] <− . p r i n t (”Receive Accept to Review From ” , A) ;

9 acceptToReview ;

10 . p r i n t (”Ask ” ,A, ” For Pre f s ”) ;

11 . send (A, t e l l , r e c e i v eP r e f) .

12 +r e j e c t [source (A)] <− . p r i n t (”Receive Reject to Review From ” , A) ;

13 rejectToReview .

14 +r e c e i v eP r e f s (R,N) [source (A)] <− . p r i n t (” Pre f s Received From ” ,R, ”

On Author” ,N, ” ’ s Paper”) ;

15 pre f e r enceRece ived ;

16 . p r i n t (” Co l l e c t Pre f s ”) ;

17 c o l l e c tP r e f e r e n c e ;

18 . p r i n t (”Assign Papers to ” , R) ;

19 . send (R, t e l l , r e cev i ePaper (N)) .

20

21 +rece iveRev iewrReport s (N) [source (A)] <− . p r i n t (”Review Reports

Rec iv i ed On Paper” ,N, ” From ” , A) ;

22 rece iveReviewReport ;

72

4. Evaluation

23 . p r i n t (” Co l l e c t Review

Reports On Paper” , N) ;

24 co l l ec tRev iewReport .

25 +r e c e i v eDe c i s i o n [source (A)] <− . p r i n t (”Dec i s i on Received ”) ;

26 dec i s i onRece i v ed ;

27 . p r i n t (” F i n a l i s e d e c i s i o n ”) ;

28 f i n a l i s eD e c i s i o n ;

29 . p r i n t (”Send No t i f i c a t i o n ”) ;

30 ?paperNum(N) ;

31 . p r i n t (”Send No t i f i c a t i o n ”) ;

32 s endNo t i f i c a t i o n (N) .

Listing 4.7: Less reactive reviewer plan library(Reactivity 0.85)

1 /∗ I n i t i a l g oa l s ∗/

2 +inv i t a t i onRec e i v ed [source (A)]<−. p r i n t (” I n v i t a t i o n Received ”) ;

3 i nv i t a t i onRec e i v ed ;

4 ! sendReply .

5 +! sendReply : accept

6 <− . p r i n t (”Send Accept to rev iew ”) ;

7 . send (reviewManagement , t e l l , accept) ;

8 −accpet .

9 +! sendReply : not accept

10 <− . p r i n t (”Send Reject to rev iew ”) ;

11 . send (reviewManagement , t e l l , r e j e c t) .

12 +r e c e i v eP r e f [source (R)] <− . p r i n t (” Pre f s r eque s t r e c e i v ed From ” ,

R) ;

13 pre f sRequstRece ived ;

14 . p r i n t (”Send Pre f s ”) ;

15 sendReviewPref .

16 +recev i ePaper (N) [source (R)] <− . p r i n t (”Paper ” ,N, ” Received ”) ;

17 paperReceived ;

18 . p r i n t (”Review Paper” , N) ;

19 reviewPaper ;

20 p r i n t (”Send Review Reports on

Paper” , N) ;

21 . send (reviewManagement , t e l l ,

r ece iveRev iewrReports (N)) .

73

4. Evaluation

Listing 4.8: Trace of System Execution

1 [author4] Submit Paper

2 [author2] Submit Paper

3 [author1] Submit Paper

4 [author3] Submit Paper

5 [submissionManagement] Paper Received From author4

6 [submissionManagement] Paper Received From author2

7 [submissionManagement] Paper Received From author1

8 [submissionManagement] Paper Received From author3

9 [submissionManagement] Generate Paper ID For author4 ’ s Paper

10 [submissionManagement] Generate Paper ID For author1 ’ s Paper

11 [submissionManagement] Generate Paper ID For author2 ’ s Paper

12 [submissionManagement] Generate Paper ID For author3 ’ s Paper

13 [submissionManagement] Store Paper For author4 ’ s Paper

14 [submissionManagement] Store Paper For author1 ’ s Paper

15 [submissionManagement] Store Paper For author2 ’ s Paper

16 [submissionManagement] Send Ack to author4

17 [submissionManagement] Store Paper For author3 ’ s Paper

18 [submissionManagement] Send Ack to author1

19 [author4] Ack r e c e i v ed

20 [submissionManagement] Send Ack to author2

21 [submissionManagement] Send Ack to author3

22 [author1] Ack r e c e i v ed

23 [author2] Ack r e c e i v ed

24 [author3] Ack r e c e i v ed

25 [pccha i r] Enter Reivewer Deta i l

26 [reviewManagement] Review Deta i l Recived From pccha i r

27 [reviewManagement] I n v i t e Reviewers

28 [r ev i ewer4] I n v i t a t i o n Received

29 [r ev i ewer9] I n v i t a t i o n Received

30 [r ev i ewer6] I n v i t a t i o n Received

31 [r ev i ewer5] I n v i t a t i o n Received

32 [r ev i ewer6] Send Accept to rev iew

33 [r ev i ewer5] Send Accept to rev iew

34 [r ev i ewer9] Send Reject to rev iew

35 [r ev i ewer4] Send Reject to rev iew

36 [reviewManagement] Rece ive Accept to Review From rev i ewer6

37 [reviewManagement] Ask rev i ewer6 For Pre f s

38 [reviewManagement] Rece ive Accept to Review From rev i ewer5

74

4. Evaluation

39 [r ev i ewer6] Pre f s r eque s t r e c e i v ed From reviewManagement

40 [r ev i ewer6] Send Pre f s

41 [reviewManagement] Rece ive Reject to Review From rev i ewer9

42 [reviewManagement] Rece ive Reject to Review From rev i ewer4

43 [reviewManagement] Ask rev i ewer5 For Pre f s

44 [reviewManagement] Pre f s Received From rev i ewer6 On Author1 ’ s Paper

45 [reviewManagement] Co l l e c t Pre f s

46 [r ev i ewer5] Pre f s r eque s t r e c e i v ed From reviewManagement

47 [reviewManagement] Assign Papers to rev i ewer6

48 [r ev i ewer5] Send Pre f s

49 [r ev i ewer6] Paper 1 Received

50 [r ev i ewer6] Review Paper1

51 [reviewManagement] Pre f s Received From rev i ewer5 On Author2 ’ s Paper

52 [reviewManagement] Co l l e c t Pre f s

53 [reviewManagement] Review Reports Rec iv i ed On Paper1 From rev i ewer6

54 [reviewManagement] Assign Papers to rev i ewer5

55 [reviewManagement] Co l l e c t Review Reports On Paper1

56 [r ev i ewer5] Paper 2 Received

57 [r ev i ewer5] Review Paper2

58 [reviewManagement] Review Reports Rec iv i ed On Paper2 From rev i ewer5

59 [reviewManagement] Co l l e c t Review Reports On Paper2

60 [pccha i r] Read Review

61 [pccha i r] Make a Dec i s i on

62 [reviewManagement] Dec i s i on Received

63 [reviewManagement] F i n a l i s e d e c i s i o n

64 [reviewManagement] Send No t i f i c a t i o n

65 [reviewManagement] Send No t i f i c a t i o n

66 [author2] Rece ive Reject

67 [author4] Rece ive Accept

68 [author1] Rece ive Reject

69 [author4] Prepare Camera−ready

70 [author3] Rece ive Accept

71 [author4] Send Camera−read

72 [author3] Prepare Camera−ready

73 [author3] Send Camera−read

74 [processingManagement] Camera−ready Received from author4

75 [processingManagement] Co l l e c t Camera−ready

76 [processingManagement] Camera−ready Received from author3

77 [processingManagement] Send to Pub l i sher

78 [processingManagement] Co l l e c t Camera−ready

75

4. Evaluation

79 [processingManagement] Send to Pub l i sher

By enhancing reactivity of agents using the rules defined in section 3.1, agent

plan libraries can be redesigned as in 4.9, 4.10, 4.11, 4.12 4.13, 4.14 to receive

more perception from environment and deal events more accurately.

Listing 4.9: More reactive author plan library(Reactivity 1.25)

1 /∗ I n i t i a l g oa l s ∗/

2 ! submit Paper .

3 /∗ Plans ∗/

4 +! submit Paper : hasPaper (P) <− ?hasPaper (P) ;

5 . p r i n t (”Submit Paper”) ;

6 . send (submissionManagement , t e l l , r e ce ivePaper (P)) .

7 +! submit Paper : not hasPaper (P) .

8 +rece iveAck [source (A)]<− . p r i n t (”Ack r e c e i v ed ”) ;

9 ackReceived (A) .

10 +accept [source (A)] <− ! r e c e iveAccept ;

11 . p r i n t (”Prepare Camera−ready”) ;

12 prepareCameraReady ;

13 . p r i n t (”Send Camera−read ”) ;

14 . send (processingManagement , t e l l ,

receiveCameraReady) ;

15 −accept .

16 +! rece iveAccept : avai lableTOGetResult

17 <− . p r i n t (”Receive Accept”) ;

18 rece iveAccept .

19

20 +! rece iveAccept : not avai lableTOGetResult

21 <− . p r i n t (”<<<Wait to be ava i l ab l e>>>”) ;

22 . wait (100) ;

23 . p r i n t (”Receive Accept”) ;

24 rece iveAccept .

25

26 +r e j e c t [source (A)] <− . p r i n t (”Receive Reject ”) ;

27 r e c e i v eRe j e c t ;

28 −r e j e c t .

Listing 4.10: More reactive PC chair plan library(Reactivity 0.4167)

1 /∗ I n i t i a l g oa l s ∗/

2 ! wait .

76

4. Evaluation

3 /∗ Plans ∗/

4 +!wait <− . wait (3000) ;

5 +submiss ionDeadl inePassed ;

6 ! ente rRev i ewerDeta i l .

7 +! ente rRev i ewerDeta i l : submiss ionDeadl inePassed

8 <−. p r i n t (”Enter Reivewer Deta i l ”) ;

9 . send (reviewManagement , t e l l ,

r e c e v i c e r e v i ew e rDe t a i l) ;

10 . wait (6000) ;

11 . p r i n t (”Read Review”) ;

12 readReview ;

13 . p r i n t (”Make a Dec i s i on ”) ;

14 . send (reviewManagement , t e l l ,

r e c e i v eDe c i s i o n) .

15 +! ente rRev i ewerDeta i l : not submiss ionDeadl inePassed

16 <−.wait (100) ;

17 ! ente rRev i ewerDeta i l .

Listing 4.11: More reactive submission managememt agent plan li-

brary(Reactivity 0.5833)

1 /∗ Plans ∗/

2 +rece ivePaper (P) [source (A)] <− . p r i n t (P, ” Received From ” ,A) ;

3 paperReceived (A,P) ;

4 ! generatePaperID (A,P) ;

5 ! s torePaper (A, P) ;

6 ! sendAckToAuthor (A) .

7 +! generatePaperID (A, P) <− . p r i n t (”Generate Paper ID For ” , A ,

” ’ s ” , P) ;

8 generatePaperID (A,P) .

9 +! storePaper (A, P) : databaseAva i lab l e

10 <− . p r i n t (” Store Paper For ” , A, ” ’ s ” , P) ;

11 storePaper (A,P) .

12 +! storePaper (A,P) : not databaseAva i lab l e

13 <− . p r i n t (”<<<Store Paper in System Local Disk

f o r ” , A, ” ’ s ” , P, ”>>>”) ;

14 s to r ePaperLoca l l y (A,P) .

15 +!sendAckToAuthor (A) : i n t e rn e tAcce s s

16 <− . p r i n t (”Send Ack to ” , A) ;

17 . send (A, t e l l , r ece iveAck) .

77

4. Evaluation

18 +!sendAckToAuthor (A) : not i n t e rne tAcc e s s

19 <− . p r i n t (”<<<Send Ack to ” , A, ” v ia mail>>>”) ;

20 . send (A, t e l l , r ece iveAck) .

Listing 4.12: More reactive process management agent plan library(Reactivity

0.125)

1 /∗ Plans ∗/

2 +receiveCameraReady [source (A)] <− . p r i n t (”Camera−ready Received

from ” , A) ;

3 cameraReadyReceived ;

4 . p r i n t (” Co l l e c t Camera−ready”) ;

5 col lectCameraReady ;

6 . p r i n t (”Send to Pub l i she r ”) ;

7 sendToPubl isher .

Listing 4.13: More reactive review management agent plan library(Reactivity

1.7667)

1 /∗ Plans ∗/

2 +r e c e v i c e r e v i ewe rDe t a i l [source (A)] <− . p r i n t (”<<<Review Deta i l

Recived From ” , A, ”>>>”) ;

3 r ev i ewerDeta i lRecev i ed ;

4 ?paperNum(N) ;

5 . p r i n t (” I nv i t e Reviewers ”) ;

6 inv i t eRev i ewer s (N) .

7 +accept [source (A)] <− . p r i n t (”Receive Accept to Review From ” , A) ;

8 acceptToReview ;

9 . p r i n t (”Ask ” ,A, ” For Pre f s ”) ;

10 . send (A, t e l l , r e c e i v eP r e f) .

11 +r e j e c t [source (A)] <− . p r i n t (”Receive Reject to Review From ” , A) ;

12 ! dea lWithReject ion (A) .

13 +! dea lWithReject ion (A) : dea lWithReject ion

14 <− . p r i n t (”<<<Deal With ” , A, ” ’ s Review

Reject>>>”) ;

15 dealWithReject .

16 +! dea lWithReject ion (A) : not dea lWithReject ion

17 <− rejectToReview .

18 +r e c e i v eP r e f s (R,N) [source (A)] <− . p r i n t (” Pre f s Received From ” ,R, ”

On Author” ,N, ” ’ s Paper”) ;

19 pre f e r enceRece ived ;

78

4. Evaluation

20 . p r i n t (” Co l l e c t Pre f s ”) ;

21 c o l l e c tP r e f e r e n c e ;

22 . p r i n t (”Assign Papers to ” , R) ;

23 . send (R, t e l l , r e cev i ePaper (N)) .

24 +rece iveRev iewrReport s (N) [source (A)] <− . p r i n t (”<<<Review Reports

Rec iv i ed On Paper” ,N, ” From ” , A, ”>>>”) ;

25 rece iveReviewReport ;

26 . p r i n t (” Co l l e c t Review

Reports On Paper” , N) ;

27 co l l ec tRev iewReport .

28 +r e c e i v eDe c i s i o n [source (A)] <− . p r i n t (”Dec i s i on Received ”) ;

29 dec i s i onRece i v ed ;

30 . p r i n t (” F i n a l i s e d e c i s i o n ”) ;

31 f i n a l i s eD e c i s i o n ;

32 . p r i n t (”Send No t i f i c a t i o n ”) ;

33 ?paperNum(N) ;

34 . p r i n t (”Send No t i f i c a t i o n ”) ;

35 s endNo t i f i c a t i o n (N) .

36 +emergency (N) [source (A)] <− . p r i n t (”Receive Emergency

No t i f i c a t i o n ”) ;

37 . p r i n t (”<<<I n v i t e Reviewer f o r Deal ing

With Emergency on Paper” ,N, ”>>>”) ;

38 inviteReviewersInEmergency (N) .

Listing 4.14: More reactive reviewer plan library(Reactivity 1.7667)

1 /∗ I n i t i a l g oa l s ∗/

2 +inv i t a t i onRec e i v ed [source (A)]<−. p r i n t (” I n v i t a t i o n Received ”) ;

3 i nv i t a t i onRec e i v ed ;

4 ! sendReply .

5 +! sendReply : accept

6 <− . p r i n t (”Send Accept to rev iew ”) ;

7 . send (reviewManagement , t e l l , accept) ;

8 −accpet .

9 +! sendReply : not accept

10 <− . p r i n t (”Send Reject to rev iew ”) ;

11 . send (reviewManagement , t e l l , r e j e c t) .

12 +r e c e i v eP r e f [source (R)] <− . p r i n t (” Pre f s r eque s t r e c e i v ed From ” ,

R) ;

13 pre f sRequstRece ived ;

79

4. Evaluation

14 . p r i n t (”Send Pre f s ”) ;

15 sendReviewPref .

16 +recev i ePaper (N) [source (R)] <− . p r i n t (”Paper ” ,N, ” Received ”) ;

17 paperReceived ;

18 ! reviewPaper (N) ;

19 ! sendReviewReports (N) .

20 +! reviewPaper (N) : emergency

21 <− . p r i n t (”<<<Send Emergency No t i f i c a t i o n l>>>”) ;

22 . send (reviewManagement , t e l l , emergency (N)) .

23 +! reviewPaper (N) : not emergency

24 <−. p r i n t (”Review Paper” , N) ;

25 reviewPaper .

26 +! sendReviewReports (N) : not emergency

27 <−pr in t (”Send Review Reports on Paper” , N) ;

28 . send (reviewManagement , t e l l ,

r ece iveRev iewrReports (N)) .

29 +! sendReviewReports (N) .

Listing 4.15: Trace of System Execution

1 [author1] Submit Paper

2 [author3] Submit Paper

3 [author4] Submit Paper

4 [author2] Submit Paper

5 [submissionManagement] Paper Received From author1

6 [submissionManagement] Paper Received From author3

7 [submissionManagement] Paper Received From author4

8 [submissionManagement] Paper Received From author2

9 [submissionManagement] Generate Paper ID For author2 ’ s Paper

10 [submissionManagement] Generate Paper ID For author1 ’ s Paper

11 [submissionManagement] Generate Paper ID For author4 ’ s Paper

12 [submissionManagement] Generate Paper ID For author3 ’ s Paper

13 [submissionManagement] Store Paper For author2 ’ s Paper

14 [submissionManagement] Store Paper For author1 ’ s Paper

15 [submissionManagement] Store Paper For author4 ’ s Paper

16 [submissionManagement] Store Paper For author3 ’ s Paper

17 [submissionManagement] <<<Send Ack to author2 v ia mail>>>

18 [author2] Ack r e c e i v ed

19 [submissionManagement] <<<Send Ack to author1 v ia mail>>>

20 [submissionManagement] <<<Send Ack to author4 v ia mail>>>

80

4. Evaluation

21 [submissionManagement] <<<Send Ack to author3 v ia mail>>>

22 [author1] Ack r e c e i v ed

23 [author4] Ack r e c e i v ed

24 [author3] Ack r e c e i v ed

25 [pccha i r] Enter Reivewer Deta i l

26 [reviewManagement] Review Deta i l Recived From pccha i r

27 [reviewManagement] I n v i t e Reviewers

28 [r ev i ewer1] I n v i t a t i o n Received

29 [r ev i ewer4] I n v i t a t i o n Received

30 [r ev i ewer8] I n v i t a t i o n Received

31 [r ev i ewer4] Send Accept to rev iew

32 [r ev i ewer8] Send Accept to rev iew

33 [r ev i ewer1] Send Reject to rev iew

34 [r ev i ewer5] I n v i t a t i o n Received

35 [reviewManagement] Rece ive Accept to Review From rev i ewer4

36 [r ev i ewer5] Send Accept to rev iew

37 [reviewManagement] Ask rev i ewer4 For Pre f s

38 [reviewManagement] Rece ive Accept to Review From rev i ewer8

39 [reviewManagement] Rece ive Reject to Review From rev i ewer1

40 [reviewManagement] Rece ive Accept to Review From rev i ewer5

41 [r ev i ewer4] Pre f s r eque s t r e c e i v ed From reviewManagement

42 [reviewManagement] Ask rev i ewer8 For Pre f s

43 [r ev i ewer4] Send Pre f s

44 [reviewManagement] <<<Deal With rev i ewer1 ’ s Review Reject>>>

45 [reviewManagement] Ask rev i ewer5 For Pre f s

46 [r ev i ewer8] Pre f s r eque s t r e c e i v ed From reviewManagement

47 [r ev i ewer8] Send Pre f s

48 [reviewManagement] Pre f s Received From rev i ewer4 On Author1 ’ s Paper

49 [reviewManagement] Pre f s Received From rev i ewer8 On Author2 ’ s Paper

50 [r ev i ewer5] Pre f s r eque s t r e c e i v ed From reviewManagement

51 [reviewManagement] Co l l e c t Pre f s

52 [r ev i ewer5] Send Pre f s

53 [reviewManagement] Co l l e c t Pre f s

54 [reviewManagement] Pre f s Received From rev i ewer5 On Author3 ’ s Paper

55 [reviewManagement] Assign Papers to rev i ewer4

56 [reviewManagement] Assign Papers to rev i ewer8

57 [reviewManagement] Co l l e c t Pre f s

58 [r ev i ewer4] Paper 1 Received

59 [reviewManagement] Assign Papers to rev i ewer5

60 [r ev i ewer8] Paper 2 Received

81

4. Evaluation

61 [r ev i ewer5] Paper 3 Received

62 [r ev i ewer8] Review Paper2

63 [r ev i ewer4] Review Paper1

64 [r ev i ewer5] Review Paper3

65 [reviewManagement] <<<Review Reports Rec iv i ed On Paper2 From

reviewer8>>>

66 [reviewManagement] <<<Review Reports Rec iv i ed On Paper1 From

reviewer4>>>

67 [reviewManagement] Co l l e c t Review Reports On Paper2

68 [reviewManagement] <<<Review Reports Rec iv i ed On Paper3 From

reviewer5>>>

69 [reviewManagement] Co l l e c t Review Reports On Paper1

70 [reviewManagement] Co l l e c t Review Reports On Paper3

71 [rev i ewer10] I n v i t a t i o n Received

72 [rev i ewer10] Send Accept to rev iew

73 [reviewManagement] Rece ive Accept to Review From rev iewer10

74 [reviewManagement] Ask rev iewer10 For Pre f s

75 [r ev i ewer10] Pre f s r eque s t r e c e i v ed From reviewManagement

76 [rev i ewer10] Send Pre f s

77 [reviewManagement] Pre f s Received From rev iewer10 On Author4 ’ s Paper

78 [reviewManagement] Co l l e c t Pre f s

79 [reviewManagement] Assign Papers to rev i ewer10

80 [rev i ewer10] Paper 4 Received

81 [rev i ewer10] <<<Send Emergency No t i f i c a t i on>>>

82 [reviewManagement] Rece ive Emergency No t i f i c a t i o n

83 [reviewManagement]<<< I n v i t e Reviewer f o r Deal ing With Emergency on

Paper4>>>

84 [r ev i ewer9] I n v i t a t i o n Received

85 [r ev i ewer9] Send Accept to rev iew

86 [reviewManagement] Rece ive Accept to Review From rev i ewer9

87 [reviewManagement] Ask rev i ewer9 For Pre f s

88 [r ev i ewer9] Pre f s r eque s t r e c e i v ed From reviewManagement

89 [r ev i ewer9] Send Pre f s

90 [reviewManagement] Pre f s Received From rev i ewer9 On Author4 ’ s Paper

91 [reviewManagement] Co l l e c t Pre f s

92 [reviewManagement] Assign Papers to rev i ewer9

93 [r ev i ewer9] Paper 4 Received

94 [r ev i ewer9] <<<Send Emergency No t i f i c a t i on>>>

95 [reviewManagement] Rece ive Emergency No t i f i c a t i o n

82

4. Evaluation

96 [reviewManagement] <<<I n v i t e Reviewer for Deal ing With Emergency on

Paper4>>>

97 [r ev i ewer3] I n v i t a t i o n Received

98 [r ev i ewer3] Send Accept to rev iew

99 [reviewManagement] Rece ive Accept to Review From rev i ewer3

100 [reviewManagement] Ask rev i ewer3 For Pre f s

101 [r ev i ewer3] Pre f s r eque s t r e c e i v ed From reviewManagement

102 [r ev i ewer3] Send Pre f s

103 [reviewManagement] Pre f s Received From rev i ewer3 On Author4 ’ s Paper

104 [reviewManagement] Co l l e c t Pre f s

105 [reviewManagement] Assign Papers to rev i ewer3

106 [r ev i ewer3] Paper 4 Received

107 [r ev i ewer3] <<<Send Emergency No t i f i c a t i on>>>

108 [reviewManagement] Rece ive Emergency No t i f i c a t i o n

109 [reviewManagement] <<<I n v i t e Reviewer f o r Deal ing With Emergency on

Paper4>>>

110 [r ev i ewer6] I n v i t a t i o n Received

111 [r ev i ewer6] Send Accept to rev iew

112 [reviewManagement] Rece ive Accept to Review From rev i ewer6

113 [reviewManagement] Ask rev i ewer6 For Pre f s

114 [r ev i ewer6] Pre f s r eque s t r e c e i v ed From reviewManagement

115 [r ev i ewer6] Send Pre f s

116 [reviewManagement] Pre f s Received From rev i ewer6 On Author4 ’ s Paper

117 [reviewManagement] Co l l e c t Pre f s

118 [reviewManagement] Assign Papers to rev i ewer6

119 [r ev i ewer6] Paper 4 Received

120 [r ev i ewer6] Review Paper4

121 [reviewManagement] <<<Review Reports Rec iv i ed On Paper4 From

reviewer6>>>

122 [reviewManagement] Co l l e c t Review Reports On Paper4

123 [pccha i r] Read Review

124 [pccha i r] Make a Dec i s i on

125 [reviewManagement] Dec i s i on Received

126 [reviewManagement] F i n a l i s e d e c i s i o n

127 [reviewManagement] Send No t i f i c a t i o n

128 [reviewManagement] Send No t i f i c a t i o n

129 [author1] <<<Wait to be ava i l ab l e>>>

130 [author3] Rece ive Reject

131 [author4] Rece ive Accept

132 [author2] Rece ive Accept

83

4. Evaluation

133 [author4] Prepare Camera−ready

134 [author2] Prepare Camera−ready

135 [author4] Send Camera−read

136 [author2] Send Camera−read

137 [processingManagement] Camera−ready Received from author4

138 [processingManagement] Camera−ready Received from author2

139 [processingManagement] Co l l e c t Camera−ready

140 [processingManagement] Co l l e c t Camera−ready

141 [processingManagement] Send to Pub l i sher

142 [processingManagement] Send to Pub l i sher

143 [author1] Rece ive Accept

144 [author1] Prepare Camera−ready

145 [author1] Send Camera−read

146 [processingManagement] Camera−ready Received from author1

147 [processingManagement] Co l l e c t Camera−ready

148 [processingManagement] Send to Pub l i sher

By comparing execution results in 4.8 and 4.15, under the same environment,

the second MAS for confluence submission process simulation has more alterna-

tive actions than the first one, marked as <<< ∗ ∗ ∗ >>> in 4.15. That means

the second agent system is more reactive than the first one. Because it can get

more perceptions from the environment and react to the environment. For ex-

ample, when the Internet is not available, the system can send acknowledgement

letter to author via mail; when one reviewer has an emergency, the system can

receive emergency notification and invite another reviewer. It can bee seen in li-

brary headers, reactivity for author plan library is increased from 0.9583 to 1.25;

submission management agent plan library is increased from 0.1667 to 0.5833;

review management agent plan library is increased from 0.9333 to 1.7667.

Based on the analysis above, a conclusion can be made that the measure

on agent reactivity can be used to compare different agent plan libraries. The

reactivity measure proposed in this thesis not only tells the increase of reactivity,

but also illustrates how much it is increased. The only problem for the reactive

measure is that it is not easy to calculate by hand, especially for some large MAS

systems. Therefore, a tool such as the eclipse plugin mentioned in this thesis

is necessary in calculating the reactivity measure. That tool should be robust

enough to handle various syntaxes and formats in agent plan libraries.

84

Chapter 5

Conclusions and Future Work

Researchers and business communities have been interested in intelligent agent

technology since 1980s. Agent’s capability and features have been evidenced in

various areas [39, 43, 17]. Agents have four key properties, namely autonomy,

reactivity, proactiveness and sociability[53]. Although a lot of agent-oriented ar-

chitectures and agent programming languages have been designed and proposed,

there has been limited research on software quality measures specifically for agent-

based systems. In this thesis, work towards a measure suite for agent systems,

focusing specially for the famous BDI agent programs, has been described. This

thesis also puts forword defintion on agent behavioural profile and behavioural

preservation which can be used to check whether agent’s original behaviours are

preserved after reactivity enhancement.

One of the most significant properties of agents is they can make immediate

response to changes in the environment they operate (i.e. reactivity). Several

factors can affect the reactivity of an agent systems are argued in this thesis in-

cluding: (1) the availability of plans to handle all external events relevant to the

agents; and (2) the ability to delay their commitment to a certain course of ac-

tion as late as possible (i.e. wait until the agent has the most updated knowledge

about the environment) by preferring subgoals over primitive actions. Reactiv-

ity measures for agent programs that takes into these factors are proposed. An

algorithm has also been proposed based on this measure to examine the plan

library of an agent program and returns the reactivity of the program. A reactiv-

ity plug-in integrated with the Eclipse-based development environment of Jason,

85

5. Conclusions

a well-known agent-oriented programming platform, has been implemented. In

order to guarantee the reliability of reactivity measures, several experiments have

been conducted.

When working on the agent reactivity, it is found that being too reactive to

the environment is not a good thing in some cases. Some actions might depend

on the state of the environment. For instance, only when it is raining, will people

open umbrella. Therefore, before opening an umbrella, people may need to know

whether it is raining or not. If it is not raining, opening an umbrella turns out to

be an unnecessary action. In order to avoid inaccurate and unnecessary actions

in goal-oriented behaviors, a state transition system for the environment can be

developed. The state transition system is made up of states of the environment

with available actions associated with each state. If an action is defined in a

state, a checking on the state of the environment needs to be executed before

performing the action. A model of the state transition system for goal-oriented

reactive agent is shown as follows:

Figure 5.1: State Transition System for the Environment

In the model, there exists four states combined with actions that can be

performed in each state. A1 and A2 can be performed in state 1; A3 and A4

86

5. Conclusions

can be performed in state 2; A5 and A6 can be performed in state 3 and A6 and

A7 can be performed in state 4. For instance, if an agent wants to perform A3,

a checking on the state of the environment needs to be performed. If current

state is state 2, performing A3 proves to be a correct action. Otherwise, the

agent might not reactive to the environment enough. Suppose a person wants to

go to city by train. The plan can be expressed as: +!to city : trainworking ←

go to station;wait for train; get on train; arrive. However, it is possible that

the train stops working when he is going to station or waiting for the train.

Under such conditions, agent cannot make correct response if this plan is used.

To tuning the plan, a state transition model for train can be set up. Each state

contains its allowable actions.

Figure 5.2: State Transition System for the Environment Example

According the state transition diagram, context condition checking is required

before performing go to station, wait for train, get on train and go back home.

Without context condition, the reactivity of agent to the environment would be

reduced. By moving actions to condition-decorated sub-goals, the agent should

be reactive enough now. Unlike the old plan library, the redesigned plan library

allows the person go back home before waiting for the train or getting on the

train if the train stop working.

+!to city : train work ← go to station; !sg1; !sg2; arrive.

+!sg1 : train work ← wait for train.

+!sg1 : train not working ← go back home.

+!sg2 : train work ← get on train.

+!sg2 : train not working ← go back home.

With the assistance of state transition system of the environment, agent will

87

5. Conclusions

not be too reactive to the environment. That means, actions not defined in state

transition system do not rely on any states of the environment. Therefore, placing

a context condition before those actions cannot bring positive effect. Context

condition for those actions may even bring performance issue to an agent. A

state transition system of the environment brings some differences in calculating

agent reactiveness. According to the current reactivity measure, actions without

context condition in front of them should be counted. However, actions without

context condition in front of them and appeared in state transition system should

be considered as a negative effect to agent reactivivity if state transititon system

for the environment is introduced.

As a state transition system for the environment is a future work of this

research, the concept mentioned above might lack of consideration.

88

References

[1] F. Alonso, J. L. Fuertes, L. Mart́ınez, and H. Soza. Measuring the social

ability of software agents. In Proceedings of the 2008 Sixth International

Conference on Software Engineering Research, Management and Applica-

tions, pages 3–10, Washington, DC, USA, 2008. IEEE Computer Society.

13

[2] F. Alonso, J. L. Fuertes, L. Martinez, and H. Soza. Towards a set of mea-

sures for evaluating software agent autonomy. In Proceedings of the 2009

Eighth Mexican International Conference on Artificial Intelligence, MICAI

’09, pages 73–78, Washington, DC, USA, 2009. IEEE Computer Society. 14

[3] F. Alonso, J. L. Fuertes, L. Martinez, and H. Soza. Measuring the pro-

activity of software agents. International Conference on Software Engineer-

ing Advances, 0:319–324, 2010. 1, 12

[4] M. Andersson and P. Vestergren. Object-oriented design quality metrics,

2004. 16

[5] G. Barnes and B. Swim. Inheriting software metrics. Journal of Object-

Oriented Programming, 6(7):27–34, November - December 1993. 22

[6] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors. Methodologies and

Software Engineering for Agent Systems. Kluwer Academic Publishing (New

York), 2004. 1

[7] R. Bordini, L. Braubach, M. Dastani, A. El Fallah Seghrouchni, J. Gomez-

Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming

89

REFERENCES

languages and platforms for multi-agent systems. In Informatica 30, pages

33–44, 2006. 8

[8] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, edi-

tors. Multi-Agent Programming: Languages, Platforms and Applications.

Springer, 2005. 1, 8

[9] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-

agent programs by model checking. Journal of Autonomous Agents and

Multi-Agent Systems (JAAMAS), 12:239–256, 2006. 58

[10] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-agent

systems in AgentSpeak using Jason. Wiley, 2007. ISBN 0470029005. 5, 8

[11] B. Bounabat, R. Romadi, and S. Labhalla. Designing multi-agent reactive

systems: A specification method based on reactive decisional agents. In

H. Nakashima and C. Zhang, editors, Approaches to Intelligence Agents,

volume 1733 of Lecture Notes in Computer Science, pages 775–775. Springer

Berlin / Heidelberg, 1999. 10.1007/3-540-46693-2 15. 11

[12] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded

practical reasoning. Computational Intelligence, 4:349–355, 1988. 5

[13] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. BDI-Agents for

agile goal-oriented business processes. In Padgham, Parkes, Müller, and

Parsons, editors, Proceedings of the 7th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2008), pages 37–44, Es-

toril, Portugal, May 2008. 1

[14] P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI

agents in functional clusters. In Agent Theories, Architectures, and Lan-

guages (ATAL-99), pages 277–289. Springer-Verlag, 2000. LNCS 1757. 8

[15] L. Cernuzzi, G. Rossi, and L. Plata. On the evaluation of agent oriented

modeling methods. In In Proceedings of Agent Oriented Methodology Work-

shop, pages 21–30, 2002. 11, 13

90

REFERENCES

[16] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented

design. IEEE Trans. Softw. Eng., 20(6):476–493, June 1994. 18

[17] H. K. Dam and M. Winikoff. Towards a next-generation aose methodology.

Science of Computer Programming, 78(6):684 – 694, 2013. ¡ce:title¿Special

section: The Programming Languages track at the 26th ACM Symposium

on Applied Computing (SAC 2011) & Special section on Agent-oriented De-

sign Methods and Programming Techniques for Distributed Computing in

Dynamic and Complex Environments¡/ce:title¿. 1, 85

[18] A. Dasgupta and A. K. Ghose. Implementing reactive BDI agents with

user-given constraints and objectives. Int. J. Agent-Oriented Softw. Eng.,

4(2):141–154, Apr. 2010. 10

[19] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification

of dMARS. In ATAL ’97: Proceedings of the 4th International Workshop on

Intelligent Agents IV, Agent Theories, Architectures, and Languages, pages

155–176, London, UK, 1998. Springer-Verlag. 8

[20] J. Doyle. Rationality and its roles in reasoning. Computational Intelligence,

8:376–409, 1994. 5

[21] C. Gall, S. Lukins, L. Etzkorn, S. Gholston, P. Farrington, D. Utley, J. For-

tune, and S. Virani. Semantic software metrics computed from natural lan-

guage design specifications. Software, IET, 2(1):17 –26, february 2008. 18

[22] R. Gunnalan, M. Shereshevsky, and H. Ammar. Pseudo dynamic metrics

[software metrics]. In Computer Systems and Applications, 2005. The 3rd

ACS/IEEE International Conference on, page 117, 2005. 18

[23] M. H. Halstead. Elements of Software Science (Operating and programming

systems series). Elsevier Science Ltd, 1977. 15

[24] W. A. Harrison and K. I. Magel. A complexity measure based on nesting

level. SIGPLAN Not., 16(3):63–74, Mar. 1981. 15, 16

[25] B. Henderson-Sellers and P. Giorgini, editors. Agent-Oriented Methodologies.

Idea Group Publishing, 2005. 1

91

REFERENCES

[26] K. V. Hindriks, F. S. D. Boer, W. V. D. Hoek, and J.-J. C. Meyer. Agent pro-

gramming in 3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–

401, 1999. 8

[27] T. Honglei, S. Wei, and Z. Yanan. The research on software metrics and soft-

ware complexity metrics. In Computer Science-Technology and Applications,

2009. IFCSTA ’09. International Forum on, volume 1, pages 131 –136, dec.

2009. 15

[28] M. J. Huber. Agent autonomy: Social integrity and social independence. In

Information Technology, 2007. ITNG ’07. Fourth International Conference

on, pages 282 –290, april 2007. 13

[29] S. Husein and A. Oxley. A coupling and cohesion metrics suite for object-

oriented software. In Computer Technology and Development, 2009. ICCTD

’09. International Conference on, volume 1, pages 421 –425, nov. 2009. 17

[30] C. A. Iglesias, M. Garijo, J. C. González, and J. R. Velasco. Analysis and

design of multiagent systems using MAS-commonKADS. In Agent Theories,

Architectures, and Languages, pages 313–327, 1997. 12

[31] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time

reasoning and system control. IEEE Expert: Intelligent Systems and Their

Applications, 7(6):34–44, 1992. 8

[32] K. Kim, Y. Shin, and C. Wu. Complexity measures for object-oriented

program based on the entropy. In Software Engineering Conference, 1995.

Proceedings., 1995 Asia Pacific, pages 127 –136, dec 1995. 16

[33] D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling tech-

nique for systems of BDI agents. In R. van Hoe, editor, Seventh European

Workshop on Modelling Autonomous Agents in a Multi-Agent World, 1996.

12

[34] W. Li. Software product metrics. Potentials, IEEE, 18(5):24 –27, 1999/jan

1999. 15

92

REFERENCES

[35] Z. Lin and K. Carley. Proactive or reactive: An analysis of the effect of agent

style on organizational decision-making performance. Intelligent Systems in

Accounting Finance and Management, 2:271–287, 1993. 12

[36] C. E. Martin, K. S. Barber, and K. S. Barber. Agent autonomy: Speci-

fication, measurement, and dynamic adjustment. In In Proceedings of the

Autonomy Control Software Workshop, Agents ’99, pages 8–15, 1999. 13

[37] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Winikoff. An open

meteorological alerting system: Issues and solutions. In V. Estivill-Castro,

editor, Proceedings of the 27th Australasian Computer Science Conference,

pages 351–358, Dunedin, New Zealand, 2004. 1, 20

[38] T. McCabe. A complexity measure. Software Engineering, IEEE Transac-

tions on, SE-2(4):308 – 320, dec. 1976. 15

[39] S. Munroe, T. Miller, R. A. Belecheanu, M. Pěchouček, P. McBurney, and

M. Luck. Crossing the agent technology chasm: Lessons, experiences and

challenges in commercial applications of agents. Knowledge Engineering Re-

view, 21(4):345–392, 2006. 1, 85

[40] L. Padgham and M. Winikoff. Developing intelligent agent systems: A prac-

tical guide. John Wiley & Sons, Chichester, 2004. ISBN 0-470-86120-7. 1

[41] P. Piwowarski. A nesting level complexity measure. SIGPLAN Not.,

17(9):44–50, Sept. 1982. 16

[42] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning

engine. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, ed-

itors, Multi-Agent Programming, pages 149–174. Springer Science+Business

Media Inc., USA, 9 2005. Book chapter. 8

[43] M. Pěchouček and V. Mař́ık. Industrial deployment of multi-agent technolo-

gies: review and selected case studies. Journal of Autonomous Agents and

Multi-Agent Systems (JAAMAS), 17:397–431, 2008. 1, 85

93

REFERENCES

[44] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable lan-

guage. In W. V. de Velde and J. Perrame, editors, Agents Breaking Away:

Proceedings of the Seventh European Workshop on Modelling Autonomous

Agents in a Multi-Agent World (MAAMAW’96), pages 42–55. Springer Ver-

lag, 1996. LNAI, Volume 1038. 2

[45] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. Technical

Note 56, Australian Artificial Intelligence Institute, Apr. 1995. 5

[46] O. Simonin and F. Gechter. An environment-based methodology to design

reactive multi-agent systems for problem solving. In D. Weyns, H. Van

Dyke Parunak, and F. Michel, editors, Environments for Multi-Agent Sys-

tems II, volume 3830 of Lecture Notes in Computer Science, pages 32–49.

Springer Berlin / Heidelberg, 2006. 10.1007/11678809 3. 11

[47] R. So and L. Sonenberg. Situation awareness in intelligent agents: founda-

tions for a theory of proactive agent behavior. In Intelligent Agent Technol-

ogy, 2004. (IAT 2004). Proceedings. IEEE/WIC/ACM International Con-

ference on, pages 86 – 92, sept. 2004. 11, 12

[48] H. Tao and Y. Chen. A metric model for trustworthiness of softwares.

In Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT ’09.

IEEE/WIC/ACM International Joint Conferences on, volume 3, pages 69

–72, sept. 2009. 18

[49] J. Thangarajah, S. Sardina, and L. Padgham. Measuring plan coverage and

overlap for agent reasoning. In Proceedings of the 11th International Confer-

ence on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS

’12, pages 1049–1056, Richland, SC, 2012. International Foundation for Au-

tonomous Agents and Multiagent Systems. 14

[50] M. Weidlich, J. Mendling, and M. Waske. Computation of behavioural pro-

files of processs models. Technical report 08-2009, June 2009. 42

[51] M. Weidlich, M. Weske, and J. Mendling. Change propagation in process

models using behavioural profiles. In Services Computing, 2009. SCC ’09.

IEEE International Conference on, pages 33–40, 2009. 19

94

REFERENCES

[52] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons

(Chichester, England), 2002. ISBN 0 47149691X. 1, 4

[53] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10(2), 1995. 2, 5, 85

[54] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.

The Knowledge Engineering Review, 10(2):115–152, 1995. 9

[55] M. Zheng and O. Ormandjieva. Reliability analysis in the early develop-

ment of real-time reactive systems. In Computer Science and Information

Engineering, 2009 WRI World Congress on, volume 7, pages 807 –812, 31

2009-april 2 2009. 14

[56] K. Q. Zhu, W.-Y. Tan, A. E. Santosa, and R. H. C. Yap. Reactive web agents

with open constraint programming. In Proceedings of the Fifth International

Symposium on Autonomous Decentralized Systems, ISADS ’01, pages 251–,

Washington, DC, USA, 2001. IEEE Computer Society. 10

95

	Measuring the reactivity of intelligent agent programs
	Recommended Citation

	Contents
	List of Figures
	Nomenclature
	2 Background
	2.1 Agent Technology
	2.2 BDI agents
	2.3 Jason
	2.4 Reactive Agent Programming
	2.5 Measuring Reactivity
	2.6 Other agent metrics
	2.7 Similar measures in other parts of software engineering
	2.8 Behavioural Profile

	3 Research Approach
	3.1 Factors contributing to reactivity
	3.2 Reactive Measures
	3.2.1 Measure for Agents' Reactivities
	3.2.2 Reactivity Measure for Goal-oriented Behaviour
	3.2.3 Domain Graph for Triggering Event
	3.2.4 Example on reactivity calculation
	3.2.5 The reactivity algorithm

	3.3 Agent Behavioural Preservation
	3.3.1 Behavioural Profile for Agent Plan Library
	3.3.2 Examples for Creating Behavioural Profile
	3.3.2.1 Example One
	3.3.2.2 Example Two
	3.3.2.3 Comparison
	3.3.2.4 Resolve Conflict

	3.3.3 Behavioural Profile Identity
	3.3.4 Behavioural Profile Entailment
	3.3.5 Behavioural Preservation
	3.3.6 Relationships between Behavioural Preservation, Identity and Entailment

	3.4 Preserve Agent Behaviours while Increasing Agent Reactivity

	4 Evaluation
	4.1 Implementation
	4.2 Preliminary empirical study
	4.3 Experiment on subgoals
	4.4 Experiment on external events
	4.5 Experiment on a paper submission multi-agent system

	5 Conclusions and Future Work
	References

