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Abstract

Background: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and

to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform

and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and

reproducibility of Hi-C data are essential to determine whether the output should be used further in a study.

Results: Using real and simulated data, we profile the performance of several recently proposed methods for

assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep.

By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing

simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data

produce better measures of reproducibility. We also show how to use established measures, such as the ratio of

intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments.

Conclusions: In this work, we assess reproducibility and quality measures by varying sequencing depth,

resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176

simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best

practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available

at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community.

Background

The Hi-C assay couples chromosome conformation

capture (3C) with next-generation sequencing, making

it possible to profile the three-dimensional structure

of chromatin in a genome-wide fashion [1]. Recently,

application of the Hi-C assay has allowed researchers

to profile the 3D genome during important biological pro-

cesses such as cellular differentiation [2, 3], X inactivation

[4–6], and cell division [7] and to identify hallmarks of

3D organization of chromatin, such as compartments

[1], topologically associating domains (TADs) [8–10],

and DNA loops [11]. Because the Hi-C assay measures

the 3D conformation of a genome in the form of pairs

of mapped reads (“interactions”) connecting different

loci, many such pairs are required to adequately

characterize all pairwise interactions across a complete

genome [11–13]. Consequently, the Hi-C assay can be

costly to run. It is thus essential to have accurate and

robust methods to evaluate the quality and reproduci-

bility of Hi-C experiments, both to ensure the validity

of scientific conclusions drawn from the data and to

indicate when an experiment should be repeated or se-

quenced more deeply. Reproducibility measures are

also important for deciding whether two replicates can

be pooled, a strategy that is frequently used to obtain

a large number of Hi-C interactions [11].

A rich collection of literature for assessing the qual-

ity and reproducibility of a large collection of next-

generation sequencing-based genomics assays, such as

ChIP-seq [14] and DNase-seq [15], has been compiled

over the past decade [16–18]. For these assays, enrich-

ment of signal (“peaks”) at loci of interest [19] and

assay-specific properties of sequencing fragments have
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been used as indicators of the quality of an experi-

ment [16]. Correlation coefficient [20–22] and statis-

tical methods such as the irreproducible discovery

rate (IDR) [17] have been used to measure the re-

producibility of such assays. However, all of these

methods are designed to operate on data that is laid

out in one dimension along the genome. Further-

more, unlike other functional genomics assays, Hi-C

data must be analyzed at an effective resolution de-

termined by the user [13, 23, 24]. For these reasons,

existing methods for assessing genomic data quality

and reproducibility are not directly applicable to

Hi-C data.

A variety of methods have been used previously to

measure the quality and reproducibility of Hi-C exper-

iments. Ad hoc measures include using, for reproduci-

bility, the Pearson or Spearman correlation coefficient

[2, 25–27] and, for data quality, statistics that describe

the properties of Hi-C fragment pairs [1, 28]. The

drawbacks of using correlation as a reproducibility

measure for genomics experiments, both because of

its susceptibility to outliers and because it implicitly

treats all elements of the Hi-C matrix as independent

measurements, have been documented [16, 29]. In

practice, because most of the Hi-C signal arises from

interactions between loci less than 1 Mb apart [23, 24],

the correlation coefficient will be dominated by these

short-range interactions. To alleviate such problems,

distance-based stratification [30] and dimensionality

reduction of Hi-C signal [31], prior to measuring the

correlation, have been proposed. Conversely, simple

mapping statistics may be used to indicate a high or

low percent of invalid or artefactual Hi-C fragments

[24, 32], but such statistics reflect only the mapping

stage of the analysis and cannot be immediately com-

bined into a robust quality score.

To overcome these problems, members of the ENCODE

Consortium have recently developed methods for asses-

sing both the quality and the reproducibility of the Hi-C

assay [33–36]. In this study, we used large sets of real and

simulated Hi-C data to assess and compare the perform-

ance of methods for measuring the reproducibility of

Hi-C data and evaluating Hi-C data quality. We generated

multiple benchmarks for testing the performance of re-

producibility measures and established that all of these

methods can accurately measure the reproducibility of

Hi-C data, whereas correlation coefficient cannot. Simi-

larly, we have used real and simulated datasets to profile

the performance of quality control methods and com-

pared these methods to established statistics that have

been used as indicators of high-quality Hi-C experiments.

Here, we offer a thorough assessment of quality control

and reproducibility methods and describe best practices

for analyzing the quality and reproducibility of Hi-C data.

Results
Experimental and simulated Hi-C datasets for

performance evaluation

We performed two replicate Hi-C experiments on cells

from 13 immortalized human cancer cell lines from a

variety of tissues and lineages using HindIII and DpnII

restriction enzyme digestion (Additional file 1: Table S1).

After aligning and filtering of paired end sequencing

reads, we obtain 10 to 61 million paired reads per ex-

periment for 11 cell types (generated using HinDIII) and

more than 400 million paired reads for the remaining two

deeply sequenced cell types (generated using DpnII). These

Hi-C interactions serve as a readout of three-dimensional

proximity of the corresponding genomic loci. The interac-

tions are binned into fixed-sized bins, and a count of the

number of Hi-C interactions that connect each pair of bins

is stored in a Hi-C contact matrix. Unless otherwise noted,

we used 40-kb bins because this value achieves reasonable

sparsity of the Hi-C contact matrices, based on the depth

of sequencing of the datasets used in our study. Also, this

resolution has been adopted in multiple previous studies

[7, 8]. We use the resulting Hi-C matrices as input to every

reproducibility and quality control analysis in this study,

except where indicated.

For use in assessing reproducibility and quality mea-

sures for Hi-C data, we designed a model for simulating

noisy Hi-C experiments (Fig. 1a). Our noise model aims

to simulate a contact matrix from a Hi-C experiment

performed on chromatin that lacks any high-order struc-

ture, such as loops and topologically associating do-

mains. For this purpose, our simulation models two

main phenomena: the “genomic distance effect,” i.e., the

higher prevalence of crosslinks between genomic loci

that are close together along the genome [1], and ran-

dom ligations generated by the Hi-C protocol [24]. For

the first phenomenon, we use real Hi-C data, and we

sample from the empirical marginal distribution of

counts as a function of genomic distance. The second

phenomenon, random ligation noise, is modeled by gen-

erating Hi-C interactions between random bin pairs (see

the “Methods” section for details). Counts generated by

these two “noise” components of the model can be

mixed with different proportions to produce simulated

“pure noise” Hi-C matrices. We then mix the simulated

contacts with experimental contact matrices in varying

proportions to obtain noise-injected matrices.

In addition to noise, we tested the effects of sparsity

and the resolution of Hi-C matrices on the performance

of each method. We profiled the effects of sparsity expli-

citly by downsampling real Hi-C matrices to contain a

set of fixed total number of intrachromosomal Hi-C inter-

actions. Binning resolution further controls the sparsity of

a Hi-C matrix, at the same time dictating the scale of

chromatin organization that can be observed in a Hi-C
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Fig. 1 (See legend on next page.)
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matrix. By binning deeply sequenced Hi-C datasets

containing at least 400 million intrachromosomal Hi-C

interactions from two cell types, we generated Hi-C

matrices binned at high, mid, and low resolutions (10 kb, 40

kb, 500 kb) and used these to investigate the effect of reso-

lution on each method as well (Additional file 1: Table S1).

A schematic of the full range of datasets used in this

study to validate each method is shown in Fig. 1b.

Measures for quality and reproducibility of Hi-C data

Four recently developed methods for measuring the quality

of and reproducibility of Hi-C experiments were assessed

in this study (Fig. 1c). HiCRep [34], GenomeDISCO [35],

HiC-Spector [33], and QuASAR-Rep [36] measure repro-

ducibility, and QuASAR-QC measures quality of Hi-C data.

The four reproducibility methods we evaluate employ a var-

iety of transformations of the Hi-C contact matrix. HiCRep

stratifies a smoothed Hi-C contact matrix according to gen-

omic distance and then measures the weighted similarity of

two Hi-C contact matrices at each stratum. In this way,

HiCRep explicitly corrects for the genomic distance effect

and addresses the sparsity of contact matrices through

stratification and smoothing, respectively. GenomeDISCO

uses random walks on the network defined by the Hi-C

contact map to perform data smoothing before computing

similarity. The resulting score is sensitive to both differ-

ences in 3D DNA structure and differences in the genomic

distance effect [35] and makes it thus more challenging for

two contact maps to be reproducible, as they have to satisfy

both criteria to be deemed similar. HiC-Spector transforms

the Hi-C contact map to a Laplacian matrix and then

summarizes the Laplacian by matrix decomposition. QuA-

SAR calculates the interaction correlation matrix, weighted

by interaction enrichment. The two variants of QuA-

SAR, QuASAR-QC and QuASAR-Rep, both assume

that spatially close regions of the genome will establish

similar contacts across the genome, and they measure

quality and reproducibility, respectively, by testing the val-

idity of this assumption for a single and pair of replicates.

Reproducibility measures correctly rank noise-injected

datasets

To assess the performance of the reproducibility mea-

sures, we simulated pairs of Hi-C matrices with varying

noise levels. Intuitively, a good reproducibility measure

should declare the least noisy replicate pair as most repro-

ducible and the noisiest replicate pair as least reproducible.

We paired a real Hi-C contact matrix with a noisier version

of the same matrix using a wide range of simulated noise

levels (5%, 10%, 15%, 20%, 30%, 40%, and 50%). This pro-

cedure yielded seven pairs of replicates for each of 11 differ-

ent cell types. We performed this approach using two

different sets of randomly generated noise matrices, using

one-third genomic distance noise and two-thirds random

ligation noise or vice versa. Each replicate pair was assigned

a reproducibility measure by HiCRep, GenomeDISCO,

HiC-Spector, QuASAR-Rep, and Pearson correlation.

Our analysis showed that all reproducibility measures

were able to correctly rank the simulated datasets. Aver-

aged over 11 different cell types, we observed a mono-

tonic trend for all of these measures (Fig. 2a). Indeed,

for every cell type and every measure, increasing the

noise level always led to a decrease in estimated repro-

ducibility (Additional file 1: Figure S1). Qualitatively, the

trends in Fig. 2a suggest that QuASAR and HiCRep may

be more robust to noise than the other reproducibility

measures.

Comparing the two noise models, we saw less consistent

trends. HiC-Spector assigned higher reproducibility scores

to matrices with 66% genomic distance noise and 33%

random ligation noise. GenomeDISCO showed the oppos-

ite behavior whereas QuASAR-Rep, HiCRep, and Pearson

correlation gave similar scores regardless of the underlying

noise proportions. This variability suggests that the vari-

ous reproducibility measures exhibit different sensitivities

to different sources of noise, thus potentially yielding

complementary assessments of reproducibility.

Assessment using real datasets reveals differences among

reproducibility measures

Inevitably, any simulation approach is only as good as its

underlying assumptions; thus, we also analyzed the per-

formance of the four reproducibility measures using real

data. Specifically, we asked whether the reproducibility

measures can discriminate between pairs of independent

Hi-C experiments repeated on the same cell type versus

pairs of experiments from different cell types. In this

setup, we used three types of replicate pairs: a single pair

(See figure on previous page.)

Fig. 1 Overview of the study. a Schematic showing the approach for generating noise-injected Hi-C matrices. In the upper panel, we generate

two types of noise from real Hi-C data (center): random ligation noise (right) and genomic distance effect noise (left). The three matrices are then

mixed to generate noisy datasets (lower panel). By changing the mixing proportions, we can create datasets with varying percentages of noise. b

To benchmark the performance of various quality control and reproducibility measures, we compiled a large number of Hi-C replicates from 13

cell types and simulated noise-injected datasets from the original data. Real and simulated datasets binned at different resolutions and

downsampled to different coverage levels are the inputs to reproducibility and quality control measures where each replicate pair and single

replicate are assigned a score. Performance of each measure is evaluated on their ability to correctly rank real and simulated datasets. c Summary

of the basic principles of the four reproducibility methods evaluated in this study
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of matrices from the same cell type (which we call “bio-

logical replicates,” although each pair represents the

same cells being prepped twice, rather than two different

sets of cells), pairs of matrices from different cell types

(non-replicates), and pairs of matrices sampled from

combined biological replicates (pseudo-replicates, see

the “Methods” section for details about the generation of

pseudo-replicates) [34]. We assigned a reproducibility

score to every matrix pair for each measure and asked if

reproducibility scores differ among replicate pair types.

Because pseudo-replicates are generated from pooled bio-

logical replicates, their variation solely stems from statistical

sampling, with no biological (including distance effect) or

technical variance. Therefore, we expect pseudo-replicates

to exhibit the highest reproducibility. Conversely, non-repli-

cate pairs are expected to have the lowest degree of

reproducibility, because they contain all the experimental

variation observed in biological replicates, as well as cell

type-specific differences in 3D chromatin organization.

In contrast to the simulation analysis, the analysis using

real datasets showed distinct differences among the five

methods. For each of the 11 cell types and each reproduci-

bility measure, we assigned reproducibility scores to a

single biological replicate pair, 20 non-replicate pairs, and 3

A

B

C

D

Fig. 2 Comparison of reproducibility measures. a Curves showing the mean reproducibility score assigned to 11 cell types at each noise injection

level for 33% and 66% random ligation noise configurations. Vertical bars represent one standard deviation away from the mean. b

Reproducibility scores assigned to biological replicate (blue), non-replicate (red), and pseudo-replicate (purple) pairs for each cell type. Coverage

values are the mean number of interactions for each pair of replicates. c Reproducibility scores assigned to biological replicate (blue), non-

replicate (red), and pseudo-replicate (purple) pairs from six cell types at seven different coverage levels. Dashed lines indicate the empirical

threshold for distinguishing biological replicate pairs from non-replicate pairs. d Reproducibility scores assigned to biological replicate (blue) and

non-replicate (red) pairs for clone-8 and S2 cells from Drosophila. Each panel shows the separation between two replicate pair types for each Hi-C

reproducibility measure. Dashed lines correspond to the empirical thresholds inferred from human Hi-C data
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pseudo-replicate pairs (Fig. 2b). The reproducibility score

of a replicate pair is the score obtained by averaging re-

producibility scores assigned to each chromosome. All

four reproducibility measures and the Pearson correl-

ation can separate replicate pair types from each other

(Additional file 1: Figure S2); however, the reproduci-

bility measures generally achieved clearer separation

between different replicate pair types. These differences

are statistically significant according to a one-sided

Kolmogorov-Smirnov test (P < 0.01). In addition to the

Pearson correlation, we considered the rank-based Spear-

man correlation as a potential method for assessing repro-

ducibility. We also considered using either type of

correlation in conjunction with ICE normalization. The re-

sults (Additional file 1: Figure S3) show that none of these

four methods successfully separates biological replicate

from non-replicate pairs. Intuitively, we prefer a

measure that separates non-replicates from biological

replicates with a clear margin. By this measure, the

HiC-Spector measure yields the largest separation,

followed by HiCRep, QuASAR-Rep, and GenomeDISCO

(Fig. 2b). Among them, HiC-Spector and HiCRep cor-

rectly rank all replicate types for all 11 comparisons, with

a clear separation between biological replicates and

non-replicates. GenomeDISCO ranks a biological replicate

lower than a non-replicate for a single case out of 11. The

pair of biological replicates that GenomeDISCO ranks

lower than non-replicates shows a marked difference in

genomic distance effect (Additional file 1: Figure S4), to

which this method is sensitive [35]. QuASAR-Rep is able

to correctly rank biological replicates above non-replicates

in 7 out of 11 cases. The cell types in which it fails have

only 12 to 28 million interactions, suggesting that

QuASAR-Rep does not perform well when coverage is

low and the resolution is set to 40 kb. However,

re-analysis of the same data suggests that switching to

a larger resolution (120 kb) improves QuASAR-Rep’s

performance, leading to separation between replicates

and non-replicates for all cell lines but two (data not

shown). As expected, the Pearson correlation performs

worse than the Hi-C-specific measures, ranking non-repli-

cates higher than biological replicates in 7 cases.

Pseudo-replicate reproducibility scores provide an

upper bound for each reproducibility measure. In gen-

eral, these scores show similar trends to those de-

scribed above. For example, the Pearson correlation

scores assigned to pseudo-replicates show a relatively wide

separation from the rest of the scores, even though

non-replicates and biological replicates are intermingled.

On the other hand, GenomeDISCO, HiC-Spector, HiCRep,

and QuASAR-Rep show the desired behavior: a high de-

gree of separation between non-replicates and biological

replicates, and a relatively small separation between bio-

logical replicates and pseudo-replicates.

Reproducibility can be determined over a range of

experimental coverage

To directly investigate the effects of the coverage of a

Hi-C experiment on the reproducibility measures, we

downsampled real Hi-C matrices to contain fewer inter-

actions and examined the effects on the resulting repro-

ducibility scores. We limited this analysis to real data

from six cell types with higher coverage, and we subsam-

pled each replicate multiple times to contain 1 to 30 mil-

lion total Hi-C interactions (see the “Methods” section

for details). These datasets were used for testing the abil-

ity of each method to distinguish among different repli-

cate types at lower coverage levels and for explicitly

profiling the dependence of reproducibility scores on

coverage levels.

Hi-C reproducibility measures retained their ability to

distinguish between replicate types, even at extremely

low coverage levels. Visualization of the reproducibility

scores revealed that the HiCRep, HiC-Spector, and Geno-

meDISCO measures successfully separate non-replicates

from biological replicates even with only 5 million Hi-C

interactions, a feat that Pearson correlation cannot achieve

at even the highest coverage level (Fig. 2c). QuASAR-Rep

can successfully separate biological replicates from non-

replicates at 25 and 30 million interactions but fails to

distinguish them when coverage is lower than 20 million

interactions, consistent with the results from Fig. 2b. As

before, pseudo-replicate pairs continue to serve as an

upper bound for reproducibility measures. However, the

separation between pseudo-replicates and biological repli-

cates is reduced at lower coverage levels, and so is the sep-

aration between biological replicates and non-replicates.

Furthermore, this analysis suggests we can infer empirical

thresholds for these reproducibility measures that can

effectively separate all biological replicates from non-repli-

cates at a given coverage level, as explained in the

“Methods” section. These empirical thresholds, selected as

the midpoint between the most reproducible non-

replicate pair and the least reproducible replicate

pair, are shown as dashed lines in Fig. 2c and can be

found in Additional file 1: Table S2.

Consistent with the trends observed in the analysis of

real datasets, the reproducibility of downsampled repli-

cate pairs exhibits a dependence on sequencing depth.

We observe that reproducibility scores associated with

biological replicates become significantly smaller as

coverage decreases, according to a one-sided Wilcoxon

signed rank test (P < 0.05, Additional file 1: Figure S5).

The HiCRep, GenomeDISCO, QuASAR-Rep, and Pear-

son correlation scores exhibit a statistically significant

drop for every level of coverage. In contrast, reproduci-

bility scores from HiC-Spector only start to significantly

and consistently decay below 20 million interactions,

exhibiting a lesser degree of dependence on the coverage
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level. This may be because the leading eigenvectors used

by HiC-Spector tend to capture local or mesoscopic

structures, which are less likely to be affected by cover-

age. Despite varying levels of dependence on coverage,

downsampling analysis convincingly shows that all mea-

sures exhibit a dependence on coverage. Thus, coverage

of different replicate pairs must be factored into repro-

ducibility analyses, especially for comparative purposes.

Reproducibility measures are robust to changes in

resolution

The resolution of a Hi-C matrix effectively dictates the

scale of 3D organization observable from the data: a

low-resolution matrix can only reveal compartments and

TADs [1, 8], whereas high-resolution matrices reveal

additional finer scale structures like chromatin loops

[11]. To investigate the effect of resolution on reproduci-

bility, we used deeply sequenced Hi-C replicates with at

least 400 million intrachromosomal interactions gener-

ated from the HepG2 and HeLa cell lines. From these

data, we generated real and simulated replicate pairs at

10-kb, 40-kb, and 500-kb resolution, and we measured

the reproducibility of each replicate pair.

HiCRep, GenomeDISCO, HiC-Spector, QuASAR-Rep,

and Pearson correlation accurately measure reproducibility

at both high and low resolutions. The four Hi-C-specific

methods can correctly rank pseudo, biological, and non-

replicate pairs at 10-kb, 40-kb and 500-kb resolutions

(Fig. 3a) with a clear margin between biological replicate

and non-replicate pairs. Surprisingly, we found that the

Pearson correlation can correctly rank replicate types for

these deeply sequenced datasets. Notably, the repro-

ducibility scores from the four methods are largely

independent of resolution. While GenomeDISCO and

especially QuASAR-Rep exhibit some dependence of

resolution, assigning lower reproducibility scores to

replicates with lower coverage, they maintain a clear

boundary with large margins between biological and

non-replicates at all resolutions. However, the Pearson

correlation exhibits a larger degree of dependence on

resolution for all replicate pair types and maintains

relatively smaller margins between non-replicate and

biological replicate pairs. Simulated datasets further

validate that reproducibility scores from each method

decrease with increasing levels of noise at 10-kb,

40-kb and 500-kb resolution (Fig. 3b).

Next, we used deeply sequenced datasets to further in-

vestigate the effect of coverage on reproducibility scores of

biological replicates at three resolution levels using a

wider range of coverage values (30, 60, 120, 240, and 400

Fig. 3 Effects of resolution on reproducibility measures. a Reproducibility scores assigned to biological replicate (blue), non-replicate (red), and

pseudo-replicate (purple) pairs from HepG2 and HeLa Hi-C datasets at 10-kb, 40-kb and 500-kb resolutions. b Reproducibility scores assigned to

different cell types at different resolutions, plotted as a function of noise level. c Reproducibility scores assigned to downsampled biological

replicate pairs at different resolutions. Both the HepG2 and HeLa datasets contain > 400 million read pairs
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million intrachromosomal interactions). For HiCRep,

QuASAR-Rep, and GenomeDISCO, we observed that

reproducibility scores tend to plateau at 240 million

interactions at 10-kb and 40-kb resolutions, whereas

reproducibility scores of 500-kb resolution matrices

benefit little from higher coverage (Fig. 3c). Consistent

with our previous observations, HiC-Spector exhibits a

lower degree of dependence on coverage, with scores

reaching maxima at 120 kb. Overall, the four Hi-C repro-

ducibility measures exhibit robustness to coverage and

resolution differences, as measured by their ability to dis-

tinguish between replicate and non-replicate pairs.

Next, we tested whether the reproducibility measures

can be used to select empirically the optimal resolution

for a Hi-C dataset. Although resolution strongly influ-

ences almost every downstream analysis of Hi-C data,

this parameter is generally set in an ad hoc fashion. To

explore the performance of the measures as a function

of the resolution parameter, we binned four pairs of

biological replicates at an increasingly high resolution

ranging from 40 kb, 20 kb, 10 kb and 5 kb and asked if

the reproducibility scores of biological replicates decay

significantly at higher resolutions. We chose six samples

performed using HindIII with coverage values ranging

from 15 million to 60 million interactions and two sam-

ples generated using DpnII and coverage of ~ 400 mil-

lion interactions.

We observed that the four reproducibility measures

show variable trends in how reproducibility scores

assigned to biological replicates decay with respect to in-

creasing resolution (Additional file 1: Figure S6). For

HiCRep, GenomeDISCO, and QuASAR-Rep, the HindIII

replicates (A549, G410, and LNCaP) exhibit a decay in

reproducibility scores, whereas the scores assigned to

replicate pairs generated by DpnII (HepG2) are more ro-

bust to changes in resolution. Notably, for these three

reproducibility measures, the degree of decay also corre-

lates with the sequence coverage of the data. For

HiC-Spector, we do not observe consistent trends. These

observations generally support the idea that deeply se-

quenced replicates generated by a 4-cutter such as DpnII

can support resolutions higher than 40 kb, whereas rela-

tively shallow replicates (< 100 million read pairs) gener-

ated using a 6-cutter are not suitable for binning

resolutions higher than 40 kb. However, given the lack of

a clear elbow or maximum in Additional file 1: Figure

S6, we do not recommend using reproducibility scores

to attempt to select an appropriate resolution.

Finally, we compared the run times of each reproducibil-

ity measure, using a large number of pairs of chromosome

21 contact matrices binned at 40-kb resolution. As seen in

Additional file 1: Figure S7, QuASAR-Rep achieves the fast-

est median running time (0.82 s), followed by HiC-Spector

(2.76 s), GenomeDISCO (5.77 s), and HiCRep (9.00 s).

Reproducibility measures accurately quantify

reproducibility of Hi-C data from non-human genomes

We investigated whether the four Hi-C reproducibility

measures can be applied to data derived from a non-hu-

man genome. We wanted to investigate a genome that is

markedly different from human, but replicate Hi-C

experiments in organisms other than human and mice

are rare. We used Hi-C data from Ramirez et al., which

has two biological replicates from two cell types (clone-8

and S2) from the fruitfly Drosophila melanogaster [37].

The fruitfly genome is approximately 18 times smaller

than the human genome. For this analysis, we binned

the Hi-C matrices at 10 kb and compared the reproduci-

bility of the four large, non-heterochromatic chromo-

somes in Drosophila (chromosomes 2, 3, 4, and X). As

before, we assigned reproducibility scores to each repli-

cate pair and each non-replicate pair. The results show

that biological replicate pairs are clearly separated from

non-replicates for each measure in both cell types

(Fig. 2d). Furthermore, for three out of the four reprodu-

cibility measure, the empirical thresholds that we in-

ferred from the human Hi-C data (shown as dashed

lines in Fig. 2d) generalize to the fruitfly genome.

Noise reduces the consistency and the prevalence of

higher order structures in Hi-C matrices

Having investigated four different methods for evaluat-

ing the reproducibility of a given pair of Hi-C matrices,

we now focus on methods for evaluating the quality of a

single Hi-C matrix. As before, we perform this evalu-

ation by injecting noise into real Hi-C data, producing a

collection of 88 matrices corresponding to 11 cell types

and 8 different noise profiles (see the “Methods” section).

Among our four Hi-C reproducibility measures, only one

(QuASAR-QC) provides a variant to assess the quality of a

single matrix. The procedure yields a single, bounded

summary statistic indicative of homogeneity of the under-

lying sample population and the signal-to-noise ratio of

the interaction map. In addition to QuASAR-QC analysis,

we profiled two well-known features of 3D organization:

statistically significant long-range contacts [38, 39], which

include DNA loops, and topologically associating domains

(TADs). Intuitively, we expect that significant contacts

and TADs should be harder to detect in noisy matrices

and that such matrices should have a lower degree of

consistency.

Our analysis suggests that QuASAR-QC is indeed sen-

sitive to the noise and the coverage of a Hi-C matrix.

For each simulated Hi-C matrix from 11 cell types,

QuASAR-QC detects a perfectly monotonic relationship

between the noise level and the consistency of the

matrix (Fig. 4a). The same trend is observed in deeply

sequenced HepG2 and HeLa cell types at 10-kb, 40-kb,

and 500 kb resolutions (Additional file 1: Figure S8).
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Although the majority of noise-free combined repli-

cates are assigned a QuASAR-QC score ranging from

0.05 to 0.07, three cell types have strikingly lower

QuASAR-QC scores ranging from 0.03 and 0.02. The

Hi-C matrices from these three cell types (LNCaP,

SKNDZ, SKNMC) contain fewer Hi-C interactions.

Thus, the lower consistency scores are likely partially

due to the sparsity that results from low experimental

coverage (Additional file 1: Table S1). Furthermore, in-

vestigation of contact probabilities at given genomic

distances for each cell type revealed that the three cell

types with lower QuASAR-QC scores have significantly

higher contact probabilities at genomic distances larger

than 50 Mb (Additional file 1: Figure S9). Because such

long-range contacts are unlikely to occur due to the

organization of chromatin, it is likely that such long-range

contacts represent random ligation of uncrosslinked DNA

fragments, which is a known source of noise in a Hi-C ex-

periment [24]. Thus, the QuASAR-QC measure is poten-

tially sensitive to both the level of simulated noise and the

Fig. 4 Quality measures. a QuASAR-QC scores assigned to noise-injected matrices from 11 cell types (b). Total number of significant contacts

above a 5% FDR threshold from noise-injected matrices from 11 cell types. c Violin plots showing the distribution of TAD boundary distances

between biological replicates and noise-injected replicates for T470 cells. There is no significant change in the distribution of TAD boundary

distances at any given noise level. d QuASAR-QC scores assigned to downsampled replicates from six different cell types. e Total number of

significant contacts above a 5% FDR threshold from downsampled replicates from six different cell types. f Violin plots showing the distribution

of distances between domain boundaries in biological replicates and noise-injected replicates for T470 cells. In panels c and f, asterisks indicate

that the distribution of boundary distances is significantly larger than the null distribution, which is obtained by comparing biological replicates
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differences in the level of inherent noise that each com-

bined replicate contains.

Statistically significant mid-range (50 kb–10Mb) inter-

actions are depleted in noisy Hi-C matrices. We identi-

fied statistically significant Hi-C contacts using Fit-Hi-C

[38] for each of the Hi-C matrices that make up our

simulated dataset. Because robust identification of such

contacts requires deeply sequenced datasets that contain

large numbers of Hi-C interactions, we chose to use a

somewhat liberal false discovery rate threshold of 0.05 to

facilitate discovery of statistically significant contacts.

For 11 cell types, we observed that 8 out of 11 cell types

exhibit a perfect or near perfect anti-correlation between

the injected noise percentage and the total number of

significant interactions (Fig. 4b). For the other three cell

lines (LNCaP, SKNDZ, SKNMC), Fit-Hi-C identifies al-

most no significant contacts with or without any noise

injection, further supporting the conclusion that these

Hi-C datasets have low quality. These three cell lines are

also the cell lines that have the lowest QuASAR-QC

scores, corroborating the results between these two in-

dependent analyses. For the deeply sequenced two data-

sets (HepG2 and HeLa), we observed a similar trend at

both 10-kb and 40-kb resolutions, with a higher number

of significant mid-range contacts due to the higher

coverage, as expected (Additional file 1: Figure S10).

Surprisingly, we found that topologically associating

domain detection is highly robust to noise. We identified

TADs using the insulation score [5, 40] method for the

88 simulated matrices, and we characterized the changes

in the total number of TADs and TAD size distribution

and the changes to TAD boundaries with respect to the

noise level. The total number of identified TADs and

their size distribution are only altered at the highest level

of noise injection (Additional file 1: Figures S11 and S12).

In addition, TAD boundaries between the original repli-

cate and noise-injected levels exhibit the same degree of

variation between two biological replicates, further sup-

porting the idea that TAD boundaries identified with the

insulation score approach are highly robust to noise

(Fig. 4c, Additional file 1: Figure S13).

Quality control measures require different levels of

experimental coverage

Continuing our assessment of Hi-C quality measures,

we used downsampled Hi-C matrices to investigate

the relationship between experimental coverage and

each QC measure using a similar setup as before (see

the “Methods” section).

Quality control metrics exhibit a predictable dependence

on the coverage of Hi-C matrices. For each of the six cell

types we downsampled, we observed that QuASAR-QC

scores are lower for Hi-C matrices with fewer interactions

(Fig. 4d). We observe the same trend for deeply sequenced

matrices at 10-kb and 40-kb resolutions; however,

QuASAR-QC scores at 500 kb tend to benefit less from

deeper coverage, likely because coarse resolutions do

not require large numbers of Hi-C interactions (Add-

itional file 1: Figure S14). Similarly, the number of statisti-

cally significant long-range interactions also decreases as

we reduce the number of total Hi-C interactions. However,

the number of significant interactions decreases at a much

higher rate: even at 15 million interactions, most cell lines

lose the majority of significant interactions (Fig. 4e). Larger

numbers of significant interactions are detected in deeply

sequenced datasets, due to added statistical power, but a

similar relationship between coverage and number of

significant contacts is observed at both 10-kb and 40-kb

resolutions (Additional file 1: Figure S15). Conversely, we

found that TADs detected by insulation score are robust to

low coverage levels. Using the same approach for noise-

injected datasets, we found that the total number of TADs

and their size distribution are not altered by lower coverage

(Additional file 1: Figures S16 and S17). Indeed, the

distances between TAD boundaries identified at lower

coverage and original replicates only differ from the base-

line distribution at 10 million or fewer interactions (Fig. 4f,

Additional file 1: Figure S18).

Quality control measures are consistent with mapping

statistics

To further validate the performance of the quality con-

trol measures at our disposal, we investigated the rela-

tionship between the QuASAR-QC scores assigned to

real Hi-C matrices and various read-mapping statistics

that have been used previously to evaluate Hi-C data

quality [24]. The four statistics we compared against are

the percentages of fragment pairs that can be mapped

uniquely to the genome (aligned pairs), fragment pairs

from the same restriction fragments (invalid pairs),

intrachromosomal interactions (intrachromosomal per-

centage), and fragment pairs that are repeated in the

dataset (PCR duplicate rate).

Overall, we observe varying degrees of correlation between

the quality control measures and the mapping statistics for

biological replicates. The percentage of aligned pairs is corre-

lated with higher quality experiments, consistent with what

one would intuitively expect from high-quality sequencing li-

braries (Fig. 5a). The percentage of invalid pairs is also

weakly anti-correlated with QuASAR-QC scores, consistent

with the fact that invalid pairs represent uninformative Hi-C

interactions (Fig. 5b). However, we observed the highest de-

gree of correlation between QuASAR-QC scores and intra-

chromosomal percentage (Fig. 5c). In a typical Hi-C

experiment, a portion of interchromosomal interactions re-

sult from random ligation of non-crosslinked fragments;

thus, a significant enrichment of interchromosomal interac-

tions, which results in a depletion of intrachromosomal
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interactions, indicates a low-quality Hi-C experiment. In par-

ticular, six biological replicates with lower than 30% intra-

chromosomal interactions have the lowest QuASAR-QC

scores; these replicates are from the LNCaP, SKNDZ, and

SKNMC cell types. Analysis of downsampled data shows

that this effect is not simply due to the overall lower se-

quencing depth of these three replicates (Additional file 1:

Figure S19). These replicates were also identified to have

lower quality in our simulation studies (Fig. 4a) and are de-

pleted for significant mid-range interactions, establishing

the consistency of quality control measures overall. We

note that this finding is consistent with the previously sug-

gested range of 40–60% intrachromosomal interactions for

high-quality experiments [24]. The PCR duplicate rate is

uncorrelated with QuASAR-QC. Note that the PCR dupli-

cate rate may be influenced by overall coverage, which we

have not controlled for in this experiment. Nonetheless,

even for sets of experiments with very similar coverage

(red dots in Fig. 5d), we observe very little correlation.

Discussion and conclusions
We evaluated the recently proposed methods for measur-

ing the quality and reproducibility of Hi-C experiments.

Using a rich set of Hi-C experiments from a variety of hu-

man cell types, we tested whether these methods can

identify reproducible and high-quality experiments. Fur-

thermore, we generated Hi-C contact matrices with con-

trolled levels of noise by designing a simulated noise

injection process. Our analysis shows that these measures

perform well and improve upon the shortcomings of using

generic or qualitative approaches.

The Hi-C reproducibility measures that we evaluated as-

sess reproducibility more accurately than the Pearson or

Spearman correlation for real and simulated datasets. In

particular, measures specifically designed for Hi-C data can

better distinguish subtle differences in the 3D organization

of different cell types, because these methods directly ac-

count for the special noise properties of this data type that

are overlooked by traditional similarity scores.

Selecting an appropriate reproducibility measure for a

given study may depend in part upon the goals of the

study. A scientist may be primarily interested in a meas-

ure that distinguishes between biological replicates and

non-replicates. Such a goal might be appropriate, for ex-

ample, if the method will be used to check for sample

swaps during large-scale experiments. In this setting, our

Fig. 5 Comparison of QuASAR-QC to mapping statistics. Scatter plots of QuASAR-QC scores of biological replicates from 13 cell types plotted

against quality statistics that describe percentages of a successful mapping, b artifactual Hi-C fragments, c intrachromosomal interactions, and d

PCR duplicates. Dots correspond to low coverage Hi-C replicates from 11 cell types generated using HindIII, and triangles correspond to replicates

from two deeply sequenced cell types generated by DpnII. Red dots correspond to a subset of samples with very similar total coverage (138–171

million read pairs). Each plot lists two Pearson correlation coefficients: the correlations between the given statistic and QuASAR-QC scores for only

the 11 HinDIII cell types and for all 13 cell types
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results show that HiC-Spector often had the best margin

among all four measures (Fig. 2b and c). This is true

even when we place all four measures on a similar scale

by using the variance associated with non-replicate pairs

(data not shown). On the other hand, simply discrimin-

ating among replicates and non-replicates may not be

sufficient in some contexts. If the study aims to use the

reproducibility measure to quantify similarities among

various experiments, then HiCRep has been shown pre-

viously to discriminate well among cell types [34],

whereas the other methods in this study have not been

examined in this fashion.

Furthermore, our analysis also suggests that the differ-

ent reproducibility measures may be more sensitive to

different types of noise, with GenomeDISCO showing

more sensitivity to random ligation noise than to gen-

omic distance noise, HiC-Spector showing the opposite

behavior, and QuASAR-Rep and HiCRep showing simi-

lar sensitivities to both types of noise (Fig. 2a). Because

genomic distance noise preferentially affects short-range

Hi-C interactions, this observation is consistent with the

hypothesis that HiC-Spector largely focuses on local struc-

tures which are detected by short-range Hi-C interactions.

Overall, QuASAR-Rep and HiCRep appear to exhibit an

overall lower sensitivity to varying noise levels than

HiC-Spector and GenomeDISCO. Also, GenomeDISCO

tends to be more sensitive to differences in genomic dis-

tance effect between the samples compared [35].

The scores produced by all four reproducibility

methods decrease in the presence of decreasing se-

quencing depth and fixed resolution or in the presence

of increasing resolution at a fixed sequencing depth.

Nonetheless, three out of four methods (Genome-

DISCO, HiCRep, and HiC-Spector) show robustness to

increasing sparsity, as measured by their ability to distin-

guish replicate from non-replicate pairs. Only QuASAR-

Rep fails to measure reproducibility accurately for the

most sparse datasets at high resolutions, though this effect

is ameliorated if the data is analyzed using a lower reso-

lution (data not shown). Thus, we hypothesize that one

reason why GenomeDISCO and HiCRep perform well on

low-coverage datasets is because they perform smoothing

on the contact matrix. Overall, these results suggest that

experimenters can assess whether a given set of samples

are “reproducible enough” with as few as valid 5 million

Hi-C interactions and then follow up with deeper sequen-

cing. Among the four methods, HiC-Spector exhibits the

least dependence on sequencing depth (Fig. 3c) or reso-

lution (Additional file 1: Figure S6). These results are fur-

ther consistent with the hypothesis that HiC-Spector

focuses on local features of chromatin structure, which ex-

plains HiC-Spector’s robustness to low coverage.

Note that if the goal of a study is to quantify similar-

ities among various experiments, then the dependence

of reproducibility scores on data sparsity must be taken

into account. For example, in our study, the SKMEL5

and SKNMC experiments differ in sequencing depth by

a factor of 2. This difference could confound attempts to

cluster or hierarchically organize cell types. In such a

setting, all datasets should be randomly downsampled to

a common sequencing depth prior to analysis.

An important question is whether the methods and

thresholds derived here will generalize to non-human

genomes. Preliminary analysis (Fig. 2d) suggests that the

empirical reproducibility thresholds derived for Geno-

meDISCO, HiCRep, and HiC-Spector may generalize to

the much smaller Drosophila genome, whereas the

QuASAR-Rep measure does not. However, this result

is preliminary due to the small number of currently

available, replicated Hi-C experiments in non-human

genomes.

The QuASAR-QC measure provides an interpretable

score that can accurately rank simulated datasets accord-

ing to noise levels and distinguish low-quality real Hi-C

experiments from high-quality ones (in submission). This

measure correlates with previously established statistics

that indicate high quality in a Hi-C experiment and have

been used as qualitative indicators of quality. Each of these

statistics captures different sources of error in a Hi-C

assay. In contrast, QuASAR-QC offers a single score that

allows direct ranking of multiple experiments.

Significant mid-range interactions, such as DNA loops,

are also depleted in low-quality Hi-C experiments in both

simulated and real datasets. Surprisingly, we found that

TAD detection is fairly robust to all but high levels of

noise, presumably because TAD detection only requires

that a dataset contains a sufficient proportion of valid

short-range Hi-C interactions and ignores mid- and

long-range interactions. Unfortunately, it is challenging to

convert the enrichment of such features into a quality

control measure, due to other quality-independent bio-

logical processes which can cause variation of these fea-

tures. However, a near total depletion of these features,

mid-range interactions in particular, may certainly indicate

lower quality overall.

We anticipate that the reproducibility measures we

evaluated in this study may be applicable to data from

recently developed single-cell Hi-C assays [41–43]. The

primary challenge, in this setting, would be the extreme

sparsity of single-cell data. Our experiments show that,

even when we randomly downsample to 1 million inter-

actions per cell, all four methods are capable of distin-

guishing replicates from non-replicates (Fig. 2c), with

the best separation provided by HiCRep. This difference

may arise because HiCRep explicitly incorporates an ex-

plicit smoothing procedure; in contrast, GenomeDISCO

uses an implicit smoothing procedure and the other two

methods do not perform smoothing at all. Note that
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these results do not fully resolve the question of whether

the reproducibility measures will generalize to single-cell

data, because in addition to higher sparsity, the variance

and noise characteristics of single-cell data are expected

to markedly differ from those of bulk Hi-C data. Hence,

exploring the applicability of these methods to single-cell

Hi-C data more fully is an important direction for future

research.

An additional direction for future research is the devel-

opment of alternative score functions that are designed to

focus on particular aspects of chromatin architecture. For

example, in the context of single-cell Hi-C analysis, mea-

sures have been developed that focus entirely on the gen-

omic distance effect, for use in segregating cells according

to cell cycle stages [42]. Similarly, for bulk or single-cell

Hi-C, researchers may wish to separately assess whether

two cells or cell types exhibit similar chromosome territor-

ies, compartment structure, domain structure, or patterns

of looping interactions. Developing scores that separately

assess these aspects of genome 3D architecture will facili-

tate automated inference from growing Hi-C datasets.

We release a software package that incorporates the

four reproducibility measures and the QuASAR-QC

measure (https://github.com/kundajelab/3DChromatin_-

ReplicateQC). Until recently, proven measures have been

lacking, and currently, there is no standard for measur-

ing for quality and reproducibility of Hi-C data. This

tool will both greatly simplify the task of measuring both

the quality and reproducibility of Hi-C datasets robustly

by using the methods we show to be accurate in this

study. We also propose a set of empirical quality and re-

producibility thresholds for use at various coverage

levels, which are built into the software package to make

it easy to determine whether samples pass quality and

reproducibility standards (Additional file 1: Table S2).

While the methods we compared are tailored for Hi-C

data, similar chromosome conformation capture assays

such capture Hi-C [44] and ChIA-PET [45] are used to

study three-dimensional interactions in the genome.

These assays differ from Hi-C due to their targeted na-

ture; however, they share many properties of Hi-C assay,

such as the genomic distance effect, and can be repre-

sented as a contact matrix similar to Hi-C [46, 47]. Re-

producibility and quality measures of these assays are

lacking in general, raising the possibility of adaptation of

the methods we evaluate here to these assays.

In summary, we show that the recently proposed Hi-C

quality and reproducibility measures accurately measure

these qualities on a large collection of real and simulated

data. By profiling various parameters of Hi-C contact

matrices, we describe best practices for applying and inter-

preting these measures. We also make available a conveni-

ent software tool that simplifies the application of these

measures to Hi-C datasets. We hope that adoption of this

standard toolkit will help to improve the quality and re-

producibility of Hi-C data generated in the future.

Methods

Measures of reproducibility

HiCRep

This method assesses reproducibility by taking into ac-

count two dominant spatial features of Hi-C data: distance

dependence and domain structure. The method first

smooths the given Hi-C matrices to help capture domain

structures and reduce stochastic noise due to insufficient

sampling. It then addresses the distance-dependence effect

by stratifying Hi-C data according to genomic distance.

Specifically, the method consists of two stages.

In the first stage, HiCRep smooths the Hi-C raw contact

map using a 2D mean filter, which replaces the read count

of each contact with the average counts of all contacts in

its neighborhood. The neighborhood size is obtained from

a deeply sequenced benchmark dataset using a training

procedure. In this analysis, neighborhood size parameter

of 20, 5, and 1 are used for the resolutions of 10 kb, 40 kb,

and 500 kb, respectively. Smoothing improves the contigu-

ity of regions with elevated interaction, consequently en-

hancing the domain structures.

In the second stage, HiCRep takes into account the

distance-dependence effect by a stratification and aggrega-

tion strategy. This stage consists of two steps. The algo-

rithm first stratifies the contacts according to the genomic

distances of the contacting loci and computes the correl-

ation coefficients within each stratum. HiCRep then as-

sesses the reproducibility of the Hi-C matrix by applying a

novel stratum-adjusted correlation coefficient statistic

(SCC) to aggregate the stratum-specific correlation coeffi-

cients using a weighted average, with the weights derived

from the Cochran-Mantel-Haenszel (CMH) statistic. The

SCC has a range of [− 1, 1] and is interpreted in a way

similar to the standard correlation coefficient.

GenomeDISCO

This method focuses on two key aspects of contact maps:

the need for smoothing and the multiscale nature of these

maps. The need for smoothing arises because contact

maps are insufficiently sampled, especially at low sequen-

cing depths. This means that a pair of genomic regions

can exhibit a low count either from a lack of contact or

from insufficient sampling. This problem is addressed by

smoothing the data, essentially assuming that two contact

maps are reproducible as long as they capture similar

higher order structures, even if they differ in terms of indi-

vidual contacts. GenomeDISCO investigates contact maps

at multiple scales by comparing them at different levels of

smoothing and computing a reproducibility score that

takes all these comparisons into account.
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The smoothing approach is based on random walks on

networks. Each contact map is treated as a network, where

each node is a genomic region and each edge is weighted

by the Hi-C count matrix, following normalization. In this

work, square root was used for normalization, but similar

results were obtained by using alternative normalization

methods, including simple row- and column-based

normalization or Knight-Ruiz normalization [48] (data not

shown). Random walks are performed on networks to

smooth the data, asking for each pair of nodes what is the

probability of reaching node i from node j, if t steps are

allowed in a random walk biased by the edge weights. The

smoothed data can be computed by raising the adjacency

matrix of our weighted network to the power t. Lower

values of t perform local smoothing of the data, revealing

structures such as domains, while larger values of t

emphasize compartments. This graph-based smoothing

scheme aims to preserve sharp domain boundaries that 2D

methods may dilute.

To obtain the GenomeDISCO reproducibility score,

each contact map is separately smoothed across a range

of t values. For each value of t, the L1 distance (i.e., the

sum of the absolute values in the difference matrix) be-

tween the two smoothed contact maps is computed and

normalized by the average number of nodes with

non-zero total counts across the two original contact

maps compared. Afterward, a combined distance be-

tween the two contact maps is obtained by computing

the area under the curve of the L1 difference as a func-

tion of t. This allows us to consider multiple levels of

smoothing and thus multiple scales when computing

our scores. Finally, this distance is converted into a re-

producibility score as follows:

Reproducibility ¼ 1− combined distanceð Þ

This score is in the range [− 1, 1], with higher scores

representing higher reproducibility. This is because, for

each node, the maximum L1 difference is 2, correspond-

ing to the case when the node has mutually exclusive

contacts in the two contact maps being compared. Thus,

the combined distance lies in the range [0, 2], making

the reproducibility score fall in the range [− 1, 1].

Parameter optimization on an orthogonal dataset revealed

the optimal t= {3} [34], which was used in this study.

In all pairwise comparisons in this paper, the sample

with higher coverage was downsampled to match the

coverage of the other sample.

HiC-Spector

The starting point of spectral analysis is the Laplacian

matrix L, which is defined as L =D −W, where W is a

symmetric and non-negative matrix representing a

chromosomal contact map and D is a diagonal matrix in

which Dii ¼
P

jW ij . The matrix L is further normalized

by the transformation D−1/2LD−1/2, and its leading eigen-

vectors are found. As in other commonly used dimen-

sionality reduction procedures, the first few eigenvalues

are of particular importance because they capture the

basic structure of the matrix, whereas the latter eigen-

values are essentially noise. Given two contact maps WA

and WB, their corresponding Laplacian matrices LA and

LB and corresponding eigenvectors are calculated. Let f

λ
A
0 ; λ

A
1 ,…, λAn−1} and fλB0 ; λ

B
1 ,…, λBn−1} be the spectra of LA

and LB and fυA0 ; υA1 ,…, υAn−1} and fυB0 ; υB1 ,…, υBn−1} be their

normalized eigenvectors. A distance metric is defined as:

Sd A;Bð Þ ¼
Xr−1

i¼0
vAi −v

B
i

�

�

�

�

:

Here ‖‖ represents the Euclidean distance between the

two vectors. The parameter r is the number of leading

eigenvectors used. In general, Sd provides a metric to

gauge the similarity between two contact maps. The dis-

tance is then linearly rescaled to a reproducibility score

ranging from 0 to 1.

QuASAR-Rep

The Quality Assessment of Spatial Arrangement Repro-

ducibility (QuASAR) measure uses the concept that

within a distance matrix, as the distance between two

features approaches zero, the correlation between the

rows corresponding to those two features approaches

one. This relationship is exploited by calculating the

interaction correlation matrix, weighted by interaction

enrichment. To determine reproducibility across repli-

cates, the correlation of weighted correlation matrices is

calculated as follows. In every case, matrices are first fil-

tered by removing intrachromosomal interaction matrix

rows and columns such that all remaining rows and col-

umns contain at least one non-zero entry within 100 bins

up- or downstream of the diagonal. The background

signal-distance relationship is estimated as the mean num-

ber of reads for each inter-bin distance. The interaction

correlation matrix is calculated across all pairwise sets of

rows and columns within 100 bins of each other from the

log-transformed enrichment matrix (non-filtered counts

divided by background signal-distance values), excluding

bins falling on the diagonal in either set. For a given pair

of rows A and B, the correlation is calculated from all col-

umns within 100 bins of both A and B, excluding filtered

columns. The interaction matrix is then found by adding

1 to valid entries and taking the square root. The weighted

correlation matrix is an element-wise product of the cor-

relation matrix and the interaction matrix divided by the

sum of all valid interaction matrix entries. The replication

score is the correlation of weighted correlation matrices

between two samples. Note that, to distinguish the use of
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QuASAR for assessing reproducibility versus data quality

(described below), we refer in the main text to “QuA-

SAR-Rep” and “QuASAR-QC.”

Processing of reproducibility scores

All the reproducibility measures we use in this study as-

sign a reproducibility score to a pair of Hi-C contact

matrices. Due to the sparsity and noise nature of inter-

chromosomal matrices, reproducibility scores are only

calculated for intrachromosomal matrices. The final re-

producibility score assigned to a pair of Hi-C experi-

ments in this study is the mean of the reproducibility

scores assigned to pairs of Hi-C contact matrices of each

chromosome.

Empirical reproducibility score thresholds

To infer empirical thresholds for distinguishing non-repli-

cates for biological replicate pairs for each method, we

used the distribution of reproducibility scores assigned to

non-replicate pairs and biological replicate pair at a given

coverage level. Similar to the concept of a maximal margin

hyperplane, the empirical threshold we inferred is the

midpoint of the reproducibility score of the highest scor-

ing non-replicate pair and the reproducibility score of the

lowest scoring biological replicate pair. For each coverage

level from 30 million Hi-C interactions to 5 million inter-

actions, we inferred a single empirical threshold for each

reproducibility metric. These thresholds are available in

Additional file 1: Table S2.

Measures of quality

QuASAR-QC

The sample quality measure from QuASAR (“QuA-

SAR-QC”) uses the same transformation as described

above for reproducibility. However, instead of looking at

weighted correlation matrices between samples, the

quality score is found by taking the weighted correlation

mean across all chromosomes and then subtracting the

unweighted correlation mean across all chromosomes.

TAD boundary calling and analysis

TAD boundaries were identified using the insulation

score [40]. This score captures the density of signal in

the Hi-C contact matrix around the diagonal, as a func-

tion of genomic position. Because the signal is weaker at

the boundary of two TADs, minima in the insulation

score profile correspond to TAD boundaries. We used

the TAD calling software described in Giorgetti et al. [5],

employing the previously used parameters (--ss 80000

--im iqrMean --is 480000 --ids 320000) for calculation

of the insulation score and identification of minima.

To characterize the effects of noise and coverage on

TAD boundary identification, we used noise-injected

and downsampled datasets as explained before and used

insulation score method as described in the previous

section. For noise-injected datasets, we found that the

number of identified TADs across the genome is only al-

tered at the highest noise levels: the number of total

TADs increased only by 5% with 50% noise injection

(Additional file 1: Figure S11). Consistent with the

changes in the total number of TADs, the distribution

of TAD sizes is only altered at high noise levels. For

7 out of 11 cell types, we detect a statistically signifi-

cant reduction in the TAD size distribution (P < 0.01,

Kolmogorov-Smirnov test) only at either 40% or 50%

noise (Additional file 1: Figure S12). Furthermore, po-

sitions of TAD boundaries are not altered with in-

creasing noise levels. For 11 cell types, we calculated

the distances between the TAD boundaries of the combined

noise-free biological replicate and the TAD boundaries

from noise-injected replicates. These distances were com-

pared against the TAD boundary distances from biological

replicate pairs, which serves as a baseline for how much the

TAD boundaries fluctuate between different replicates from

the same cell type. Again, we found that the boundary dis-

tances are significantly larger than the baseline distribution

(one-sided KS test, P < 0.05) only at the 50% noise level for

four cell types and never larger for the remaining four cell

types (Fig. 4c, Additional file 1: Figure S13).

We adopted the same approach for investigating the

effect on coverage on insulation score-identified TADs.

For each of the six downsampled cell lines, we identified

TADs using insulation score method and compared the

total number of TADs, the size distribution of TADs,

and the differences between TAD boundaries between

the original replicate and downsampled replicates. We

observe that the total number of TADs detected and

TAD size distributions are similar at all coverage levels

(Additional file 1: Figures S16 and S17). We calculated

the distances between TAD boundaries identified from

downsampled replicates against the TAD boundaries

from original biological replicates, and we compared this

distribution against the distances between biological rep-

licates as a baseline. For five of the six cell types, down-

sampling causes the TAD boundaries to shift away from

the original boundaries significantly (Kolmogorov-Smir-

nov test, P < 0.05) only 10 million and lower number of

interactions, further supporting the idea that TAD

boundary by insulation score detection is mostly robust

to low coverage (Fig. 4f, Additional file 1: Figure S18).

Number of significant contacts

For a given normalized Hi-C contact map, we computed

the number of contacts that are deemed statistically

significant using Fit-Hi-C [38]. Hi-C contact maps were

binned at the 40-kb resolution and normalized using

the Knight-Ruiz matrix balancing algorithm [42]. Deeply

sequenced Hi-C data from two cell types were binned at
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10-kb and 40-kb resolutions for Fit-Hi-C analysis (Add-

itional file 1: Table S2). Fit-Hi-C assigns a statistical signifi-

cance to each contact between two bins by assigning a P

value and a q value. For each experiment, we counted the

number of contacts that are above a given q value threshold

for every intrachromosomal interaction and aggregated

them over all chromosomes and used this sum as the total

number of significant contacts for a given experiment.

Mapping statistics

We have used three statistics to summarize alignment qual-

ity, valid Hi-C fragment pairs, and the ratio of intrachromo-

somal and interchromosomal Hi-C interactions. A thorough

description of these statistics and their application is

reviewed in Lajoie et al. [24]. The first statistic we use is the

percentage of aligned pairs, which corresponds to the per-

centage of Hi-C fragment pairs that uniquely map to the

genome on both sides. Typically, single-sided and

non-unique alignments are discarded in Hi-C pipelines [23,

24]. The second statistic is invalid pairs, which is the percent-

age of aligned pairs that map against the same restriction

fragment. These fragment pairs are non-informative since

they do not correspond to a fragment between two different

regions [24]. The third statistic is the percentage of intra-

chromosomal valid pairs. Random ligations are much more

likely to result in interchromosomal fragments; thus, a high

ratio of non-informative random ligation events results in

an enrichment of interchromosomal interactions and a de-

pletion of intrachromosomal interactions [24]. The fourth

statistic is the percentage of PCR duplicates, which is esti-

mated from the number of aligned pairs that map to the

exact same coordinates as another aligned pair [24].

Simulation of noisy Hi-C matrices

To generate noise for Hi-C data in a realistic manner,

we simulated two Hi-C contact matrices that would re-

sult from two processes that are not dictated by the 3D

organization of chromatin. These “pure noise” matrices

are mixed with the real Hi-C contact matrix to generate

the final, noisy Hi-C matrix. The first noise matrix

models the genomic distance effect, namely the higher

probability of observing a Hi-C interaction between two

regions that are close along the one-dimensional length

of a chromosome. Because such regions are constrained

to be close to each other, they are more likely to interact

compared to more distal regions, in the absence of any

higher order structure. This effect has been documented

early on and is generally corrected in Hi-C contact

matrices to better visualize medium- and long-range in-

teractions [1]. The second noise matrix models the

ligation of non-crosslinked DNA fragments during the

ligation step of the Hi-C protocol. Fragment pairs that

result from random ligation are uninformative since they

can link two regions independently of 3D organization.

Additionally, the Hi-C assay is subject to the same

biases that other next-generation sequencing assays suffer

from. These biases’ results include a bias in favor of

GC-rich regions and a bias against regions of low mapp-

ability. During the generation of both types of noise matri-

ces, we factored in such biases by using the sum of each

row as a proxy for the overall bias of a bin. Coverage

normalization of Hi-C matrices [1] similarly uses mar-

ginals to counter such biases.

To generate the genomic distance noise matrix G, we

sampled from empirical distributions derived from real

Hi-C matrix. In this setting, the genomic distance D is de-

fined as the number of bins that lie between a pair of bins

i and k, i.e., ∣i − k ∣ =D. For every value of D, we build a

vector S by collecting the set of real Hi-C matrix entries

Mik for which ∣i − k ∣ =D. We then randomly select

values from S for insertion into G, again considering only

entries Gik for which ∣i − k ∣ =D. This sampling strategy

effectively shuffles the matrix entries in M at a fixed dis-

tance, thus preserving the original genomic distance effect

while disrupting other higher order structures. However,

instead of uniformly sampling from S, we adopted a strati-

fied sampling strategy to better model GC and mappabil-

ity biases. Specifically, S was broken into multiple strata

before sampling. The strata are determined by products of

marginals, i.e., Mik is assigned to a certain stratum based

on the product of the marginals of bin i and bin k. For a

given value of D, we chose stratum size in such a way that

each stratum contains 100 elements. When sampling the

Gik, we sampled a value from the stratum that Mik belongs

to. By repeating the stratified sampling for every value of

D, the final matrix G is obtained.

To generate the random ligation noise matrix R, we

generated random Hi-C interactions and aggregated

them to build a Hi-C contact matrix. We generated

these interactions by randomly choosing two bins i and

k and adding one to the matrix entry Rik in the random

noise contact matrix. Instead of sampling the bins uni-

formly, the probability of sampling a bin was set propor-

tional to marginal of that bin, thus modeling the GC and

mappability bias of each bin. The sampling process was

repeated N times, where N is the total number of inter-

actions in the original Hi-C contact matrix M, to gener-

ate a random ligation noise matrix.

After both noise matrices are generated from the ori-

ginal Hi-C matrix, these matrices were mixed in varying

proportions to generate a series of noisy Hi-C matrices.

Each such matrix is a mixture of three matrices: a real

matrix, a genomic distance noise matrix, and a random

ligation noise matrix. To generate a simulated matrix with

c total counts from, we sampled counts uniformly at ran-

dom from one real and two simulated matrices at a given

target ratio. In practice, we varied the total proportion of

noise from 0 to X%, and for each total noise level, we
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consider two settings for the relative proportions of gen-

omic distance noise random ligation noise: we either used

one third of matrix G and two thirds of matrix R, or vice

versa. We note that most analyses in this study were ro-

bust to either scenario.

The software for injecting noise into Hi-C contact

matrices is available at https://github.com/gurkanyar-

dimci/hic-noise-simulator.

Downsampling

Downsampled datasets were generated by converting an

input Hi-C matrix into a set of pairwise individual intra-

chromosomal interactions and uniformly sampling a

given number of interactions from this set. Following

downsampling, we re-binned the set of chosen interac-

tions into a Hi-C matrix.

For analysis of reproducibility measures, we limited the

analysis to real data from six cell types with replicates of at

least 30 million interactions, and we downsampled each in-

dividual replicate to have a wide range of total interactions

(30 × 106, 25 × 106, 20 × 106, 15 × 106, 10 × 106, 5 × 106,

106). Using a single pseudo-replicate and a single biological

replicate pair for each cell type and 15 non-replicates at

each coverage level, we generated a total of 189 replicate

pairs. These datasets were used for testing the ability of

each method to distinguish among different replicate types

at lower coverage levels and for explicitly profiling the de-

pendence of reproducibility scores on coverage levels.

For the analysis of QC measures, we generated down-

sampled biological replicates from the same six cell types

to have fewer interactions (30 × 106, 25 × 106, 20 × 106,

15 × 106, 10 × 106, 5 × 106, 106), resulting in a set of 84

matrices. In addition, we applied the same setup to

deeply sequenced datasets from two cell types at a wider

range of coverage values (30 × 106, 60 × 106, 120 × 106,

240 × 106, 400 × 106), at multiple resolutions, resulting in

30 matrices. For each downsampled matrix, we calcu-

lated QuASAR scores and identified statistically signifi-

cant long-range contacts and TAD boundaries.

Generation of pseudo-replicates

Given two biological replicate experiments, we generated

pseudo-replicates by aggregating the two replicates and

downsampling from the combined matrix. Combination of

two biological replicates is performed by summing the two

Hi-C contact matrices of these replicates. Following combin-

ation, the resulting combined Hi-C matrix is downsampled

as described above to generate pseudo-replicates. We forced

the pseudo-replicates to have the average of the total number

of interactions of two seed biological replicates.

Resolution analysis

To investigate whether an optimum resolution exists for

a given sample, we profiled the reproducibility scores

assigned to biological replicate pairs from four cell

types: A549, G410, LNCaP, and HepG2. Hi-C data

from the first three cell types were generated by the

HindIII restriction enzyme, whereas the HepG2 data

was generated using DpnII. These samples also ex-

hibit differing levels of coverage (Additional file 1:

Table S1). In this analysis, we binned the contact

matrix of each replicate at 40-kb, 20-kb, 10-kb, and

5-kb resolution and calculated the various reproduci-

bility scores assigned to each biological replicate

pair. For this analysis only, we limited the computa-

tion of reproducibility scores to the contact matrices

of chr22.

Additional file

Additional file 1: Supplementary figures and tables describing

additional results and the datasets used in this study, respectively.
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The code for running reproducibility and quality controls methods is publicly
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3DChromatin_ReplicateQC that was used to generate the results presented

in this study is available at https://doi.org/10.5281/zenodo.1208922. Software

for simulating noise injected matrices can be accessed at https://github.com/

gurkanyardimci/hic-noise-simulator.
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