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We present the first direct determination of the running top-quark mass based on the total cross section

of top-quark pair production as measured at the Tevatron. Our theory prediction for the cross section

includes various next-to-next-to-leading order QCD contributions, in particular, all logarithmically

enhanced terms near threshold, the Coulomb corrections at two loops and all explicitly scale-dependent

terms at next-to-next-to-leading order accuracy. The result allows for an exact and independent variation

of the renormalization and factorization scales. For Tevatron and LHC we study its dependence on all

scales, on the parton luminosity and on the top-quark mass using both the conventional pole mass

definition as well as the running mass in the MS scheme. We extract for the top quark an MS mass of

mð� ¼ mÞ ¼ 160:0þ3:3
�3:2 GeV, which corresponds to a pole mass of mt ¼ 168:9þ3:5

�3:4 GeV.
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I. INTRODUCTION

The top quark is the heaviest elementary particle dis-
covered so far and it is likely to be the most sensitive probe
of the electroweak symmetry breaking. This is reflected in
the fact that in many extensions of the standard model the
top quark plays a special role. The precise measurement of
top-quark properties is thus an important task for the Large
Hadron Collider (LHC) (see e.g. Refs. [1,2]). One of the
most basic quantities in that respect is the total cross
section which is currently measured at the Tevatron and
will be measured at the LHC. The precise measurements
aimed for at the LHC are asking for an equally precise
theoretical prediction to compare with. In this paper, we
update and extend the predictions of Refs. [3,4] for the
total hadronic cross section of top-quark pairs and its
associated theoretical uncertainty. Related recent studies
have also appeared in Refs. [5–7]. As a novel aspect of this

paper, we employ theMS definition for the top-quark mass
and present the total cross section as a function of the
running mass. This allows the direct determination of an

MS mass from Tevatron measurements for the total cross
section [8].

We start by recalling the relevant formulas for the total
cross section of top-quark hadroproduction within pertur-
bative quantum chromodynamics (QCD):
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dŝ

ŝ
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where S and mt denote the hadronic center-of-mass energy
squared and the top-quark mass (here taken to be the pole

mass), respectively, while Lij is the usual definition of the

parton luminosity with the parton distributions (PDFs)
�i=p at the factorization scale �f. The scaling functions

fij parametrize the hard partonic scattering process. They

depend only on dimensionless ratios of mt, �f, the renor-

malization scale�r and the partonic center-of-mass energy
squared s, with the definitions � ¼ 4m2

t =s, R ¼ �2
r=�

2
f

and M ¼ �2
f=m

2
t . The radiative corrections to the scaling

functions fij at the next-to-leading order (NLO) [9–11] are

long known and recently even the complete analytic ex-
pressions have become available [12]. In order to quantify
the theory uncertainty also the next-to-next-to-leading or-
der (NNLO) must be included. Presently, these NNLO
corrections [3,4] are approximated by the complete tower
of the Sudakov logarithms and including all two-loop
Coulomb corrections.
In the present study we include consistently the chan-

nels, q �q, gg and gq through NNLO and we provide pa-
rametrizations for all necessary scaling functions in the

standardMS scheme for mass factorization. This allows for
an easy handling in phenomenological applications. Our
phenomenological study reflects the latest measured value
for the top-quark mass [13], mt ¼ 173:1þ1:3

�1:3 GeV, and

employs new PDF sets [7,14]. Let us briefly summarize
the key aspects of our update with respect to Refs. [3,4]:
(i) We use exact dependence on the renormalization and

factorization scale. This allows for an independent
variation of �r and �f (extending Ref. [15]) and is

commonly considered as more reliable to establish
the theoretical uncertainty of perturbative predic-
tions (see e.g. Ref. [16]).

(ii) We perform the singlet-octet color decomposition
consistently when matching our threshold expansion
at NLO using results of Refs. [17–19]. The numeri-
cal impact on phenomenology at LHC and Tevatron
turns out to be negligible, though.
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(iii) We discuss those residual systematical uncertainties
of our predictions for LHC and Tevatron, which are
inherent in the approach based on threshold resum-
mation and we comment on the size of unknown
corrections.

(iv) We quantify the numerical impact of other known
effects on the total cross section, such as the electro-
weak radiative corrections at NLO [20–22] and
bound state corrections in QCD at threshold [18,19].

(v) We study the dependence of the total cross section on
the definition of the mass parameter. For the conver-
sion of the conventionally used pole mass mt [see

Eq. (1)] and the scale-dependentMSmassmð�rÞ we
exploit well-known relations to NNLO [23] (see also
Refs. [24,25]). We investigate the apparent conver-
gence of both definitions, mt and mð�rÞ, in pertur-
bation theory through NNLO.

We also employ the analytic results for the NLO scaling
functions [12]. As a net effect these lead to small improve-
ments in the gq- and the gg-channel contributions of our
NNLO prediction.

II. THEORETICAL SETUP

The perturbative expansion of the scaling functions fij
in the strong coupling �s up to two loops aroundM ¼ R ¼
1, i.e. mt ¼ �r ¼ �f, reads

fijð�; 1; 1Þ ¼ fð0Þij ð�Þ þ 4��sf
ð10Þ
ij ð�Þ þ ð4��sÞ2fð20Þij ð�Þ;

(3)

and the functions fð0Þij , f
ð10Þ
ij and fð20Þij contain, at each order

in �s, genuinely new information to be calculated from
first principles in perturbation theory. At the Born level,

fð0Þq �q ¼ ���

27
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where � is the heavy quark velocity with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
. At

NLO the known functions fð10Þij can be described through

parametrizations which are accurate at the per mille level.
Our one-loop fits use the following ansatz:
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where nf denotes the number of light quarks and we have

kept the complete dependence on nf in all parametrizations

manifest. The Sudakov logarithms ln� at threshold and the
Coulomb corrections (� 1=�) in Eqs. (7)–(9) are exact

[9]. The constants aij0 read

aqq0 ¼ 299

324�
� 43

1296
�� 121

108

ln2

�
þ 16

27

ln22

�

� 0:032 947 34; (10)

agg0 ¼ 1111

2304�
� 283

18 432
�� 89

128

ln2

�
þ 7

16

ln22

�

� 0:018 752 87: (11)

They are known from the computation of the NLO QCD
corrections to hadroproduction of quarkonium [17] (see
also Refs. [18,19]), where also details of the decomposition
of agg0 for color-singlet and color-octet states can be found.

The constants aij0 in Eqs. (10) and (11) emerge from

Refs. [17–19] by means of a simple Mellin transformation
and agree with the values quoted in Ref. [12]. The coef-
ficients of the functions hð�; a1; . . . ; a17Þ and

hðaÞgq ð�; a1; . . . ; a15Þ in Eqs. (7)–(9) are determined in a fit
to the analytic expressions of Ref. [12]. Near threshold we
have hð�Þ ¼ Oð�2Þ. More details are given in Eqs. (A7)
and (A8). Because of the larger number of parameters in
the fit functions, it is evident that Eqs. (7)–(9) supersede
earlier parametrizations [9] with respect to accuracy.
At the two-loop level we know the complete tower of

Sudakov logarithms, lnk� with k¼1; . . . ;4, for the func-

tions fð20Þq �q and fð20Þgg and, in addition, also the complete

Coulomb contributions, �1=�2, 1=�. The channel gq is
power suppressed near threshold relative to q �q and gg.
However, extending soft gluon resummation to power
suppressed quantities (see e.g. Refs. [26,27]) and using
Eq. (8), we can determine (at least) the leading term

�ln3� of the function fð20Þgq . We find
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fð20Þq �q ¼ fð0Þq �q
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Equations (12) and (14) are exact up to the unknown
constant terms Cð2Þ

q �q and Cð2Þ
gg of order Oð�0Þ, whereas

Eq. (13) receives further corrections of order Oð�3ln2�Þ.
Please note that the numerical coefficients in Eqs. (12) and
(14) have slightly changed compared to Ref. [3]. The ln2�
terms in Eqs. (12) and (14) are affected by using the exact
coefficients (10) and (11) in the matching at NLO. The
linear terms proportional to ln� in Eqs. (12) and (14)
contain genuine two-loop contributions. Among those is
the soft anomalous dimensionDð2Þ

Q �Q
(see Ref. [3]). Inserting

the respective numerical coefficients we find 730:739 16þ
23:776 275nf in Eq. (12) and 3035:5764� 0:887 613 78nf
in Eq. (14). The latter value has changed with respect to
Ref. [3] due to a consistent separation of the color-singlet
and color-octet contributions in agg0 at NLO [17–19].
However the phenomenology is rather insensitive to this
change and is only affected at the per mille level. The
Coulomb terms (� 1=�) in Eqs. (12) and (14) contain
all contributions from the two-loop virtual corrections.
Equation (13) gives the leading (though formally power
suppressed) contribution at two loops to the gq channel.
We include fð20Þgq in our analysis for three reasons. First,
under evolution of the factorization scale the gq channel
mixes with the two other channels and for a consistent
study of the factorization scale dependence this channel
also needs to be taken into account. Next, the luminosity
Lgq in particular at LHC is sizable and Eq. (13) offers a
way to control its numerical impact at higher orders.
Finally, Eq. (13) provides a first step towards a general
study of power suppressed but logarithmically enhanced
terms near threshold for top-quark production.

In Eq. (1) the dependence of the scaling functions fij on

the renormalization and factorization scales, �r and �f,

respectively, can also be made explicit. Starting from the
expansion in �s through NNLO around R ¼ 1, i.e. �r ¼

�f, we introduce

fijð�;M; 1Þ ¼ fð0Þij ð�Þ þ 4��sffð10Þij ð�Þ þ LMf
ð11Þ
ij ð�Þg

þ ð4��sÞ2ffð20Þij ð�Þ þ LMf
ð21Þ
ij ð�Þ

þ L2
Mf

ð22Þ
ij ð�Þg; (15)

where we abbreviate LM ¼ lnð�2
f=m

2
t Þ. The logarithmic

tower inM ¼ �2
f=m

2
t , that is, all terms proportional to LM

in Eq. (15), can be derived by renormalization group
methods in a straightforward manner. The explicit results

in the MS scheme for all channels read at NLO

fð11Þij ¼ �ð2Pð0Þ
ij � 2�01Þ � fð0Þij ; (16)

fð11Þgq ¼ �Pð0Þ
gq � fð0Þgg � 1

2nf
Pð0Þ
qg � fð0Þq �q ; (17)

where ij ¼ fq �q; ggg in Eq. (16). At NNLO we have

fð21Þq �q ¼ �ð2Pð1Þ
qq � 2�11Þ � fð0Þq �q � ð2Pð0Þ

qq � 3�01Þ � fð10Þq �q

� 2Pð0Þ
gq � fð10Þgq ; (18)

fð22Þq �q ¼
�
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2nf
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01
�
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gq � Pð0Þ
gq � fð0Þgg ; (19)

fð21Þgq ¼ � 1

2nf
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qq þ Pð0Þ
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gq � fð10Þgg ; (20)
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fð22Þgq ¼ 1
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In Eqs. (16)–(23) the � products have to be understood as
standard convolutions and a sum over all active quarks and
antiquarks is implied as well. The coefficients of the QCD
� function are given by

�0 ¼ 1

16�2

�
11� 2

3
nf

�
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�1 ¼ 1

ð16�2Þ2
�
102� 38

3
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�
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The splitting functions PðlÞ
ij can be taken e.g. from

Refs. [28,29]. At leading order they read

ð16�2ÞPð0Þ
qqðxÞ ¼ 4

3

�
4

1� x
� 2� 2xþ 3�ð1� xÞ

�
; (25)
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x
� 8þ 4x� 4x2
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3
�ð1� xÞ

�
� 2

3
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where the factor ð16�2Þ accounts for the normalization
used in Eqs. (16)–(23). In general, we have

PðlÞ
ij ðthis articleÞ ¼ ð16�2Þ�ðlþ1ÞPðlÞ

ij (Refs. [28,29]). Please

also note the explicit factor of ð2nfÞ�1 in Eqs. (17)–(23),

which is due to the definition of Pð0Þ
qg in Eq. (26) and P

ð1Þ
qg in

Ref. [29]. Simple fully analytic expressions for fð11Þq �q , fð11Þgq

and fð11Þgg are long known [9] and precise fits for all scaling

functions fð21Þij , fð22Þij in Eqs. (18)–(23), typically to per

mille accuracy, are presented in the appendix in
Eqs. (A1)–(A6) and Tables V, VI, and VII. Finally, the
complete scale dependence for fijð�;M;RÞ in Eq. (1) with
�r � �f is easily obtained as

fijð�;M; RÞ ¼ fijð�;M; 1Þ þ 4��sf2�0LRf
ð0Þ
ij g

þ ð4��sÞ2f3�0LRf
ð10Þ
ij þ 2�1LRf

ð0Þ
ij

þ 3�0LRLMf
ð11Þ
ij þ 3�2

0L
2
Rf

ð0Þ
ij g; (29)

fgqð�;M;RÞ ¼ fgqð�;M; 1Þ þ ð4��sÞ2f3�0LRf
ð10Þ
gq

þ 3�0LMf
ð11Þ
gq g; (30)

where LR ¼ lnð�2
r=�

2
fÞ and ij ¼ fq �q; ggg in Eq. (29).

III. PHENOMENOLOGICAL APPLICATIONS

We are now in the position to address the phenomeno-
logical consequences. The approximate NNLO prediction
which includes exact dependence on all scales is based on
Eqs. (12)–(14), (18)–(23), (29), and (30). If not otherwise
stated, the top-quark mass is the pole mass at mt ¼
173 GeV.
Let us start with the scale dependence of the NNLO

cross section as shown in Fig. 1. Our study of the theoreti-
cal uncertainty allows us to assess the effect of independent
variations of the renormalization and factorization scale�r

and �f in the scaling functions for the hard partonic

scattering process in Eq. (1). In doing so, one should
keep in mind, however, that all currently available PDF
sets from global fits always fix �r ¼ �f. We define the

theory uncertainty arising from the independent variation
of �r and �f in the standard range �r;�f 2 ½mt=2; 2mt�
as

min�ð�r;�fÞ � �ðmtÞ � max�ð�r;�fÞ: (31)

The contour lines of the total cross section for the LHC and
Tevatron arising from this procedure are shown in Fig. 1.
The standard range �r;�f 2 ½mt=2; 2mt� corresponds to

the region displayed in Fig. 1 because of log10ð2Þ � 0:3.
We have normalized all results to the value at �r ¼ �f ¼
mt and the variation with fixed scales �r ¼ �f proceeds

along the diagonal from the lower left to upper right in the
plots. For Tevatron in Fig. 1(b) we see that the gradient in
the complete ð�r;�fÞ plane is almost parallel to this

diagonal, and thus the uncertainty according to Eq. (31)
remains�5% � �� � þ3% in very good agreement with
previous results [3,4]. At LHC in Fig. 1(a) the maximal
deviations in the ð�r;�fÞ plane are �3% located at

ð2mt; 2mtÞ and þ1% at roughly ðmt=2; 2mtÞ, so that the
uncertainty range (31) becomes slightly larger, �3% �
�� � þ1% compared to what has been derived before
with a fixed scale ratio �r ¼ �f. Very similar numbers for

both colliders are obtained with the PDF set CTEQ6.6 [7].
Also recall that we include the gq channel through two
loops. Thanks to Eqs. (18)–(23) we control the exact scale
dependence also for all contributions proportional to the
parton luminosity Lgq. We conclude from Fig. 1 that the
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theoretical uncertainty due to �r and �f variation is well

estimated by the case of identical scales �r ¼ �f.

In order to quantify the PDF uncertainty we apply the
standard definition

�� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k¼1;nPDF

ð�kþ � �k�Þ2
s

; (32)

which determines �� from the variations �k� of the cross
section with respect to the k parameters of the PDF fit.
Typically the PDF error is added linearly to the theory
uncertainty obtained from the scale variation. This is the
commonly adopted choice and we employ the PDF sets
CTEQ6.6 [7] and MSTW 2008 [14]. The latter set gives
two uncertainties at different confidence levels (C.L.), one
at 68% C.L. and the second at 90% C.L. Throughout this
study we use 68% C.L. only. Moreover in the chosen
interval � 2 ½mt=2; 2mt� for a given � ¼ �r ¼ �f the

error ��ð�Þ in Eq. (32) has only a very weak scale
dependence. That is to say we find to good accuracy
��ð� ¼ mt=2Þ ’ ��ð� ¼ mtÞ ’ ��ð� ¼ 2mtÞ so that
a determination of �� at the central scale � ¼ mt should
suffice for all practical purposes.

In Fig. 2 we show the mass dependence of the total cross
section, comparing the NLO and our approximate NNLO
prediction. The band summarizes the total theoretical un-
certainty from the linear combination of the scale uncer-
tainty for the case �r ¼ �f and the PDF uncertainty

Eq. (32). We display the LHC and Tevatron predictions
using the MSTW 2008 PDF set [14]. The improvement of
the NNLO prediction is manifest for both colliders.
Next, we discuss the sources of remaining systematical

uncertainties. Undoubtedly, a complete calculation of the
complete NNLO QCD corrections to hadronic top-quark
pair production would be highly desirable (see Refs. [30–
37] for progress in this direction). This lacking, the main
systematic uncertainty of our approximate NNLO result

are the subleading terms in the scaling function fð20Þij . They

might become accessible by extending the approach of
Refs. [26,27] or else could be modeled through power
suppressed terms in Mellin space (see e.g. the scheme A ¼
2 in Ref. [38]). By including the leading term for fð20Þgq we
have taken a first step in this direction and we have found
numerically small effects only. In order to quantify our
systematical uncertainty, we adopt the following prescrip-
tion: We compute the ratio �NLLþCoul=�exact at one loop,
where �NLLþCoul only contains the Sudakov logarithms

and the Coulomb terms in fð10Þq �q and fð10Þgg , i.e. the content

of the square brackets in Eqs. (7) and (9). This checks how
well the exact hadronic cross section in Eq. (1) is approxi-
mated, if only the threshold approximation enters in the
convolution with the parton luminosities. Typically we find
�NLLþCoul=�exact * 0:7 ð0:9Þ for the LHC (Tevatron). If
translated to the genuine two-loop contribution (see e.g.
Table I below), then a systematic uncertainty of Oð30%Þ
implies a cross section uncertainty of �� ’ Oð15Þ pb at

log10(µf/ mt)

lo
g 1

0
( µ

r/
m

t)

896 ˆ 1%

891 ˆ 0.5%

887

887

883 ˆ 0.5%

879 ˆ 1%

874 ˆ 1.5%

870 ˆ 2%

865 ˆ 2.5%

861 ˆ 3%

(a)

log10(µf/ mt)

lo
g 1

0
( µ

r/
m

t)

7.25 ˆ 3%

7.18 ˆ 2%

7.11 ˆ 1%

7.04

6.97 ˆ 1%

6.90 ˆ 2%

6.83 ˆ 3%

6.76 ˆ 4%

(b)

FIG. 1 (color online). The contour lines of the total hadronic cross section from the independent variation of renormalization and
factorization scale �r and �f for LHC with

ffiffiffi
S

p ¼ 14 TeV (left) and Tevatron with
ffiffiffi
S

p ¼ 1:96 TeV (right) with MSTW 2008 [14].

The cross sections are normalized to the values at �r ¼ �f ¼ mt and the range corresponds to �r;�f 2 ½mt=2; 2mt�.
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LHC and of �� ’ Oð0:2Þ pb at Tevatron. These numbers
are corroborated by other observations, like the generally
small impact of the gq channel which is entirely
subleading.

How does this affect the previous discussion of the scale
dependence? Let us define a systematic uncertainty �sys

obtained from a variation of the scaling functions fð20Þij in

Eqs. (12)–(14) by �30%. All other scaling functions are
known exactly anyway. The result for our NNLO cross
section (always normalized to the value at � ¼ mt and
�sys ¼ 0) is shown in Fig. 3 for � ¼ �r ¼ �f and the

MSTW 2008 PDF set [14]. It is obvious that the predictions
are very stable within the standard range � 2 ½mt=2; 2mt�
for all cases, i.e. �sys ¼ 0 and �� �sys. For the case

�sys ¼ 0 we find a variation of �3% � �� � þ0:5%

for LHC and �5% � �� � þ3% for Tevatron (compat-
ible with Fig. 1) and similar numbers for the other two
cases, �� �sys.

In the present analysis, we have also neglected the effect
of the new parton channels qq, �q �q and qi �qj (for unlike

flavors i � j), which come in through real emission at
NNLO only. Important insight can be gained here from
the recent calculation [39,40] of the radiative corrections
for t�tþ 1-jet production at NLO, because they represent a
significant part of the complete NNLO corrections for
inclusive top-quark pair production. At NLO t�tþ 1-jet
production contains the one-loop one-parton real emis-
sions as well as the double real emission processes, and
the latter also include the above mentioned new channels.
It was found that the radiative corrections at the scale�r ¼
�f ¼ mt are rather small. Depending on the kinematical

cuts (e.g. on the transverse momentum of the jet) they
amount to Oð20Þ pb at LHC and to Oð0:2Þ pb at
Tevatron (see Ref. [40]). This provides further evidence
that the hard corrections to the inclusive top-quark pair
production at NNLO are indeed not large and it supports
the estimate of our systematical uncertainty.
To summarize, our approximate NNLO prediction

leaves us with a rather small residual theoretical uncer-
tainty based on the scale variation. It is also worth stressing
that the numerical impact of our theory improvements in
Eqs. (12)–(14) and (18)–(23) is rather small, which again
nicely illustrates the stability of the approximate NNLO
predictions. In Table I we compare with our previous
numbers [3,4] for the CTEQ6.6 [7] set at mt ¼ 171 GeV
and �r ¼ �f ¼ mt. At Tevatron, we find no changes, as

the cross section is entirely dominated by the q �q channel at
parton kinematics close to threshold. At LHC, there is a
small net change of 2.5 pb in the prediction. Here, the
effect of the improved NLO matching [in particular, the

µr µ f .
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0
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σ 
[p

b]

NLO

NNLOapprox

σ(pp -> tt-) [pb] @ LHC, MSTW 2008 NNLO

(a)

165 170 175 180

mt [GeV]

0

5

10

σ 
[p

b]

NLO

NNLOapprox

σ(pp- -> tt-) [pb] @ Tevatron, MSTW 2008 NNLO

(b)

FIG. 2 (color online). The mass dependence of the total cross section at NLO (green) and approximate NNLO (blue) order for LHC
at

ffiffiffi
S

p ¼ 14 TeV (left) and Tevatron at
ffiffiffi
S

p ¼ 1:96 TeV (right) and the PDF set MSTW 2008 [14]. The bands denote the theoretical
uncertainty from scale variation keeping �r ¼ �f and the PDF uncertainty in the range ½mt=2; 2mt�. In (b) for the Tevatron the NLO

and approximate NNLO bands overlap only partially giving rise to the corresponding medium band (dark green).

TABLE I. The LO, NLO and approximate NNLO prediction
for the total cross section at LHC (

ffiffiffi
S

p ¼ 14 TeV) and Tevatron
(

ffiffiffi
S

p ¼ 1:96 TeV) using mt ¼ 171 GeV, the PDF set CTEQ6.6
[7] and �r ¼ �f ¼ mt. For comparison we also give the pre-

vious numbers of Refs. [3,4].

LHC Tevatron

�LO [pb] 583.7 5.820

�NLO [pb] 877.4 7.229

�NNLO [pb] (this work) 923.0 7.814

�NNLO [pb] (Refs. [3,4]) 920.5 7.810
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ln2� term in Eq. (14) depending on the constant agg0 in

Eq. (11)] and the leading two-loop term fð20Þgq in Eq. (13) in
the gq channel partially compensate. The numerical im-
pact of the exact color decomposition at NLO [affecting
the ln� term in Eq. (14)] is completely negligible.

As a central result of the current studies we quote our

approximate NNLO prediction at LHC (
ffiffiffi
S

p ¼ 14 TeV)

and Tevatron (
ffiffiffi
S

p ¼ 1:96 TeV) for a pole mass of mt ¼
173 GeV. For the MSTW 2008 set [14] we have

�LHC ¼ 887 pb þ9
�33 pb ðscaleÞ þ15

�15 pb ðMSTW 2008Þ;
(33)

�Tev ¼ 7:04 pb þ0:24
�0:36 pb ðscaleÞ

þ0:14
�0:14 pb ðMSTW 2008Þ; (34)

and for CTEQ6.6 [7],

�LHC ¼ 874 pb þ9
�33 pb ðscaleÞ þ28

�28 pb ðCTEQ6:6Þ;
(35)

�Tev ¼ 7:34 pb þ0:24
�0:38 pb ðscaleÞ þ0:41

�0:41 pb ðCTEQ6:6Þ:
(36)

Please note that the MSTW 2008 set [14] is based on a
global analysis to NNLO in QCD while CTEQ6.6 [7]
performs a fit to NLO only. Therefore, the two PDF sets
return slightly different default values for the coupling
constant �s. While the LHC predictions of both sets are
largely in agreement for these choices of �s, the difference
in the Tevatron predictions can be attributed to differences
in the parametrization of the light quark PDFs at large x. In
addition, there is a systematical uncertainty in Eqs. (33)–

(36) estimated to be Oð2%Þ due to unknown NNLO con-

tributions, i.e. the exact expression for fð20Þij in Eqs. (12)–

(14). One could of course argue that the accuracy of a given
PDF set should match the accuracy of the theoretical
prediction of the partonic cross section. However, we
would like to disentangle the shift originating from correc-
tions to the hard parton scattering (which is the main
subject of our paper) from PDF effects. Therefore we
always use the same order in perturbation theory as far
as the chosen PDFs are concerned (cf. Table I and also
Appendix B of Ref. [3]).
For applications, the mass dependence of the hadronic

cross section (1) is conveniently parametrized by the fol-
lowing simple fit formula:

�ðmt;�Þ ¼ aþ bxþ cx2 þ dx3 þ ex4 þ fx5 þ gx6;

(37)

with � ¼ �r ¼ �f, x ¼ ðmt=GeV� 173Þ and the scale

choices � ¼ mt, 2mt, mt=2. For the cross section at LHC

(
ffiffiffi
S

p ¼ 14 TeV and
ffiffiffi
S

p ¼ 10 TeV) and Tevatron (
ffiffiffi
S

p ¼
1:96 TeV) all fit coefficients are listed in Tables III and IV,

TABLE II. The LO, NLO and approximate NNLO results for
the top-quark mass in the MS scheme ( �m) and the pole mass
scheme (mt) for the measured cross section of � ¼ 8:18 pb at
Tevatron [8]. The uncertainties in the table reflect the quoted
experimental uncertainties.

�m [GeV] mt [GeV]

LO 159:2þ3:5
�3:4 159:2þ3:5

�3:4

NLO 159:8þ3:3
�3:3 165:8þ3:5

�3:5

NNLO 160:0þ3:3
�3:2 168:2þ3:6

�3:5
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LHC @ 14 TeV, MSTW NNLO 2008

(a)
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(b)

FIG. 3 (color online). The scale dependence of the approximate NNLO cross section �NNLO for the choice � ¼ �r ¼ �f using the
MSTW 2008 PDF set [14] at LHC with

ffiffiffi
S

p ¼ 14 TeV (left) and Tevatron with
ffiffiffi
S

p ¼ 1:96 TeV (right). �sys denotes the estimated

systematic uncertainty of our threshold approximation at NNLO and all results are normalized to the value of �ð� ¼ mtÞ.
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where we have used the PDF sets CTEQ6.6 [7] and MSTW
2008 [14]. In the mass range 150 GeV � mt � 220 GeV,
the accuracy of the fit is always better than 2:5w.

Let us briefly mention also other types of radiative
corrections, which have not been considered here, e.g. in
Eqs. (33)–(37). Within QCD these are bound state effects
for the t�t pair near threshold [18,19]. They affect the total
cross section at LHC of the orderOð10Þ pb and, even more
so, differential distributions in the invariant mass of the
top-quark pair. At Tevatron, due to the dominance of the q �q
channel in the color-octet configuration, they are negligible

though. Precision analyses at the percent level naturally
need to consider also the electroweak radiative corrections
at NLO [20–22]. Depending on the Higgs mass they cause
a decrease relative to the LO cross section betweenOð2%Þ
for a light Higgs (mh ¼ 120 GeV) and Oð2:5%Þ for a
heavy Higgs (mh ¼ 1000 GeV) at the LHC. This amounts
to a negative contribution ��EW ’ Oð10–15Þ pb. At the
Tevatron, the electroweak radiative corrections are almost
zero for a light Higgs (mh ¼ 120 GeV) and give a negative
contribution of order Oð1%Þ, i.e. ��EW ’ Oð0:05Þ pb for
a heavy Higgs (mh ¼ 1000 GeV).

TABLE III. Fit coefficients to Eq. (37) for �ð� ¼ mt; 2mt;mt=2Þ and �ð� ¼ mtÞ ��� for the PDF set CTEQ6.6 [7] and the
colliders LHC and Tevatron.

a [pb] b [pb] c [pb] d [pb] e [pb] f [pb] g [pb]

LHC
ffiffiffi
s

p ¼ 14 TeV, CTEQ6.6

�ð� ¼ mtÞ 8:744 28� 102 �2:351 92� 101 3:740 83� 10�1 �4:624 18� 10�3 4:993 29� 10�5 �4:554 63� 10�7 2:370 50� 10�9

�ð� ¼ mt=2Þ 8:725 17� 102 �2:342 60� 101 3:721 03� 10�1 �4:595 25� 10�3 4:957 90� 10�5 �4:517 13� 10�7 2:347 71� 10�9

�ð� ¼ 2mtÞ 8:411 76� 102 �2:264 14� 101 3:603 29� 10�1 �4:456 24� 10�3 4:814 68� 10�5 �4:395 15� 10�7 2:289 15� 10�9

�ð� ¼ mtÞ þ �� 9:023 78� 102 �2:409 42� 101 3:818 62� 10�1 �4:718 06� 10�3 5:105 68� 10�5 �4:672 81� 10�7 2:438 20� 10�9

�ð� ¼ mtÞ � �� 8:464 79� 102 �2:294 41� 101 3:662 98� 10�1 �4:530 09� 10�3 4:881 09� 10�5 �4:437 54� 10�7 2:303 62� 10�9

LHC
ffiffiffi
s

p ¼ 10 TeV, CTEQ6.6

�ð� ¼ mtÞ 3:968 77� 102 �1:120 77� 101 1:853 52� 10�1 �2:366 59� 10�3 2:628 00� 10�5 �2:448 41� 10�7 1:289 59� 10�9

�ð� ¼ mt=2Þ 3:971 24� 102 �1:118 89� 101 1:847 06� 10�1 �2:355 01� 10�3 2:611 83� 10�5 �2:429 89� 10�7 1:278 05� 10�9

�ð� ¼ 2mtÞ 3:798 52� 102 �1:073 58� 101 1:776 67� 10�1 �2:269 77� 10�3 2:522 23� 10�5 �2:352 20� 10�7 1:240 16� 10�9

�ð� ¼ mtÞ þ �� 4:151 25� 102 �1:159 47� 101 1:902 85� 10�1 �2:417 72� 10�3 2:678 43� 10�5 �2:494 80� 10�7 1:314 88� 10�9

�ð� ¼ mtÞ � �� 3:786 28� 102 �1:082 07� 101 1:804 16� 10�1 �2:315 32� 10�3 2:577 69� 10�5 �2:403 23� 10�7 1:265 69� 10�9

Tevatron
ffiffiffi
s

p ¼ 1:96 TeV, CTEQ6.6

�ð� ¼ mtÞ 7:343 17� 100 �2:274 86� 10�1 3:940 86� 10�3 �5:223 02� 10�5 6:094 97� 10�7 �5:994 14� 10�9 3:279 25� 10�11

�ð� ¼ mt=2Þ 7:583 12� 100 �2:345 71� 10�1 4:058 22� 10�3 �5:370 18� 10�5 6:254 08� 10�7 �6:139 01� 10�9 3:354 67� 10�11

�ð� ¼ 2mtÞ 6:963 03� 100 �2:157 48� 10�1 3:731 28� 10�3 �4:930 12� 10�5 5:732 18� 10�7 �5:620 92� 10�9 3:070 38� 10�11

�ð� ¼ mtÞ þ �� 7:758 54� 100 �2:422 54� 10�1 4:236 65� 10�3 �5:659 55� 10�5 6:632 96� 10�7 �6:529 35� 10�9 3:570 62� 10�11

�ð� ¼ mtÞ � �� 6:927 80� 100 �2:127 18� 10�1 3:645 06� 10�3 �4:786 28� 10�5 5:556 79� 10�7 �5:460 23� 10�9 2:990 03� 10�11

TABLE IV. Same as Table III for the PDF set MSTW2008 [14] at NNLO. The PDF uncertainty �� has been obtained with the 68%
confidence level set.

a [pb] b [pb] c [pb] d [pb] e [pb] f [pb] g [pb]

LHC
ffiffiffi
s

p ¼ 14 TeV, MSTW 2008 NNLO

�ð� ¼ mtÞ 8:874 96� 102 �2:383 44� 101 3:782 24� 10�1 �4:663 07� 10�3 5:021 55� 10�5 �4:569 10� 10�7 2:373 74� 10�9

�ð� ¼ mt=2Þ 8:855 30� 102 �2:373 87� 101 3:762 03� 10�1 �4:633 31� 10�3 4:984 11� 10�5 �4:529 80� 10�7 2:351 37� 10�9

�ð� ¼ 2mtÞ 8:540 52� 102 �2:295 66� 101 3:645 47� 10�1 �4:496 61� 10�3 4:845 39� 10�5 �4:415 74� 10�7 2:299 07� 10�9

�ð� ¼ mtÞ þ �� 9:029 02� 102 �2:419 07� 101 3:831 90� 10�1 �4:718 08� 10�3 5:076 42� 10�5 �4:618 04� 10�7 2:399 89� 10�9

�ð� ¼ mtÞ � �� 8:720 90� 102 �2:347 83� 101 3:732 57� 10�1 �4:607 76� 10�3 4:966 61� 10�5 �4:522 97� 10�7 2:351 68� 10�9

LHC
ffiffiffi
s

p ¼ 10 TeV, MSTW 2008 NNLO

�ð� ¼ mtÞ 4:032 19� 102 �1:139 04� 101 1:881 77� 10�1 �2:398 35� 10�3 2:658 11� 10�5 �2:473 37� 10�7 1:302 17� 10�9

�ð� ¼ mt=2Þ 4:034 39� 102 �1:136 95� 101 1:874 88� 10�1 �2:386 25� 10�3 2:640 67� 10�5 �2:451 91� 10�7 1:288 31� 10�9

�ð� ¼ 2mtÞ 3:860 12� 102 �1:091 54� 101 1:804 86� 10�1 �2:301 94� 10�3 2:552 75� 10�5 �2:377 10� 10�7 1:252 72� 10�9

�ð� ¼ mtÞ þ �� 4:119 12� 102 �1:160 47� 101 1:912 87� 10�1 �2:433 44� 10�3 2:692 97� 10�5 �2:503 69� 10�7 1:317 93� 10�9

�ð� ¼ mtÞ � �� 3:945 26� 102 �1:117 61� 101 1:850 66� 10�1 �2:363 10� 10�3 2:623 15� 10�5 �2:444 19� 10�7 1:288 19� 10�9

Tevatron
ffiffiffi
s

p ¼ 1:96 TeV, MSTW 2008 NNLO

�ð� ¼ mtÞ 7:042 17� 100 �2:188 00� 10�1 3:803 66� 10�3 �5:067 95� 10�5 5:963 08� 10�7 �5:921 50� 10�9 3:263 69� 10�11

�ð� ¼ mt=2Þ 7:277 46� 100 �2:257 94� 10�1 3:920 60� 10�3 �5:218 16� 10�5 6:126 61� 10�7 �6:057 62� 10�9 3:323 60� 10�11

�ð� ¼ 2mtÞ 6:679 70� 100 �2:075 17� 10�1 3:600 70� 10�3 �4:782 94� 10�5 5:601 41� 10�7 �5:526 80� 10�9 3:028 83� 10�11

�ð� ¼ mtÞ þ �� 7:184 07� 100 �2:224 29� 10�1 3:855 13� 10�3 �5:131 71� 10�5 6:054 82� 10�7 �6:043 97� 10�9 3:345 49� 10�11

�ð� ¼ mtÞ � �� 6:900 28� 100 �2:151 71� 10�1 3:752 14� 10�3 �5:003 94� 10�5 5:871 70� 10�7 �5:802 14� 10�9 3:185 53� 10�11
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IV. THE TOP-QUARK MASS IN THE MS SCHEME

So far we have used the pole mass of the top quark as a
definition of the mass parameter. However, it is well known
that the concept of the pole mass has intrinsic theoretical
limitations owing to the fact that the top quark is a colored
object. As such it does not appear as an asymptotic state of
the S matrix due to confinement. In other words the S
matrix does not have a pole in the top-quark channel.
The impact of different mass renormalizations has been
investigated in great detail in the context of top-quark mass
measurements at a future linear collider where a precision
of the order of a few hundred MeV is envisaged. In par-
ticular, it has been shown that indeed the conceptual limi-
tations of the pole mass lead to a poorly behaved
perturbative series. A class of alternative mass definitions,
so-called short distance masses, offer a solution to this
problem, e.g. the 1S mass or the potential subtracted
mass (see e.g. Ref. [41]).

In the following we study the impact of the conversion

from the pole mass scheme to the MS scheme (see
Refs. [23–25], and references therein) for the total cross
section of top-quark hadroproduction. This is a novel
feature and, in principle, the cross section in terms of the

MS mass can be used for a direct measurement of the
running mass at a high scale. This is similar to the case
of b-quark production at LEP (see Refs. [42–47]). Let us
first describe briefly how we translate the predictions for

the total cross section from the pole mass to the MS mass
scheme. The starting point is the well-known relation

between the pole mass mt and the MS mass mð�rÞ to
NNLO:

mt ¼ mð�rÞð1þ asð�rÞdð1Þ þ asð�rÞ2dð2ÞÞ; (38)

with as ¼ �
ðnf¼5Þ
s =� (i.e. five active flavors) and coeffi-

cients dðiÞ, which in general depend on the ratio
�2

r=mð�rÞ2,

dð1Þ ¼ 4

3
þ Lmð�rÞ; (39)

dð2Þ ¼ 307

32
þ 2	2 þ 2

3
	2 ln2� 1

6
	3 þ 509

72
Lmð�rÞ

þ 47

24
L2
mð�rÞ �

�
71

144
þ 1

3
	2 þ 13

36
Lmð�rÞ

þ 1

12
L2
mð�rÞ

�
nf þ 4

3

X
i

�ðmi=mtÞ: (40)

Here nf denotes the number of light flavors and Lmð�rÞ ¼
lnð�2

r=mð�rÞ2Þ. The function �ðmi=mtÞ accounts for all
massive quarks mi lighter than the top quark. For all light
quarks we setmi ¼ 0 so the sum in Eq. (40) vanishes. Note
also that the decoupling of the top quark is assumed to be

done at the scale of the MS mass mð�rÞ.

Let us start by making the mass dependence in the total
cross section manifest order by order in perturbation the-
ory. For the pole mass mt we have through NNLO

� ¼ a2s
X2
i¼0

ais�
ðiÞðmtÞ: (41)

Next, we use the relation (38) above to convert from the

pole mass to the MS mass mðmÞ. For simplicity we abbre-
viate �m ¼ mðmÞ and obtain

� ¼ a2s
X2
i¼0

ais

�
�ðiÞð �mÞ þ �m

Xi
l¼1

dðlÞ@m�ði�lÞðmÞjm¼ �m

þ �i;2

1

2
ð �mdð1ÞÞ2@2m�ð0ÞðmÞjm¼ �m

�
: (42)

We note that the coefficients dðiÞ have to be evaluated for
�r ¼ �m (corresponding to the scale of �s). Thus, the task
in Eq. (42) amounts to determine the derivatives of the

cross sections �ðiÞ with respect to the mass. To do so in
practice we have chosen the following approach. For all

coefficients �ðiÞ we use the ansatz of Eq. (47) to parame-
trize the mass dependence. More precisely we evaluate the
hadronic cross section order by order in perturbation theory
for a fixed renormalization and factorization scale. Then,
varying the top-quark mass (in the pole mass scheme) and
performing a fit similar to what has been discussed before
in Eq. (37) we obtain the total cross section in the following
form:

� ¼ a2s
X2
i¼0

ais
XN
k¼0

ðmt �m0ÞkcðiÞk ; (43)

where cðiÞk denote the (order-dependent) fit coefficients. N
is the order of the polynomial inmt [N ¼ 6 in Eq. (37)] and
m0 is our fixed reference mass [taken to be 173 GeV in
Eq. (37)]. Since all dependence on the pole mass mt is
manifest, it is now a straightforward exercise to convert to

the MS mass �m and to perform the derivatives in Eq. (42),

� ¼ a2s
X2
i¼0

ais
XN
k¼0

�
ð �m�m0ÞkcðiÞk þ k �mð �m�m0Þk�1

�Xi
l¼1

dðlÞcði�lÞ
k þ �i;2

1

2
kðk� 1Þ

� �m2ð �m�m0Þk�2ðdð1ÞÞ2cð0Þk

�

¼m0¼ �m
a2sðcð0Þ0 þ asfcð1Þ0 þ �mdð1Þcð0Þ1 g þ a2sfcð2Þ0 þ �mdð1Þcð1Þ1

þ �mdð2Þcð0Þ1 þ �m2ðdð1ÞÞ2cð0Þ2 gÞ: (44)

If the expansion point m0 is chosen to be the MS mass �m,
Eq. (44) simplifies considerably and the truncation of the
power series in �m to first (second) order is exact at NLO
(NNLO). Generally though, for applications, it is of some
advantage to keepm0 at a fixed numerical value and to rely
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on the fact that our ansatz (43) with a polynomial of high

enough degree N approximates all coefficients �ðiÞ and
their first two derivatives sufficiently well. As discussed
below Eq. (37), the choice N ¼ 6 achieves per mille accu-
racy in the phenomenologically interesting range. We have
also checked that the choices m0 ¼ �m and m0 � �m yield
the same result.

We stress again that we have fixed �r ¼ �m in Eq. (44).
However, it is also possible to restore the complete renor-
malization scale dependence using the well-known relation
for the running coupling

asð �mÞ ¼ asð�rÞð1þ 4�2asð�rÞL �R�0

þ ð4�2Þ2asð�rÞ2ð�1L �R þ �2
0L

2
�R
ÞÞ; (45)

with L �R ¼ lnð�2
r= �m2Þ and �0 and �1 given in Eq. (24). To

summarize, Eq. (44) represents an explicit expression for
the total cross section of top-quark hadroproduction with

the top-quark mass defined in the MS scheme.
Let us illustrate the phenomenological consequences of

theMSmass for predictions at Tevatron and LHC. In Fig. 4
we plot the scale dependence of the total cross section
again at the various orders in perturbation theory. The value
of �m ¼ 163 GeV roughly corresponds to a pole mass of
mt ¼ 173 GeV and we choose three (fixed) values for the
factorization scale �f ¼ �m=2, �m and 2 �m. The band to the

left denotes the maximum and the minimum values of
�r 2 ½ �m=2; 2 �m� for the three choices of �f according to

Eq. (31); cf. the contour plot in Fig. 1 for the pole mass. We
observe a great stability with respect to scale variations
when including higher order perturbative corrections

through NNLO. Remarkably, at Tevatron, the scale varia-
tion at NNLO is even reduced further by more than a factor
of 2 compared to the result in the pole mass scheme.
Next, in Fig. 5 we show the mass dependence of the total

cross section employing the MS mass definition and per-
forming the same scale variation as above, i.e. �f ¼ �m=2,

�m and 2 �m and �r 2 ½ �m=2; 2 �m�. Upon adding the higher
order perturbative corrections we observe as a striking
feature the extremely small numerical effect of the radia-
tive corrections. For example, for �m ¼ 163 GeV at
Tevatron, we find the effect of the NLO corrections to be
only 1.5% and even less (0.9%) for the approximate NNLO
results. Also for the LHC, we observe a much faster con-

vergence of the perturbative expansion when using theMS
mass. The NLO (approximate NNLO) corrections amount
to 31% (4%) at �m ¼ 163 GeV which is roughly half of the
size of the corrections in the pole mass scheme. This
demonstrates an extremely good stability of the perturba-

tive series in theMS mass scheme. We can understand this
behavior qualitatively by looking at the mass dependence
of the scaling functions in Eqs. (4)–(9). We find e.g.

@mf
ð0Þ
ij ’ ð1� �2Þ=�, which implies sizably enhanced

contributions near partonic threshold, i.e. precisely in the
region which contributes dominantly in the convolution
with the parton luminosities; cf. Eq. (1). This observation
is yet another argument in favor of the phenomenological
importance of our approximate NNLO predictions in
Eqs. (12)–(14).
A different way to address the issue of perturbative

stability is the extraction of the MS mass from the total
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FIG. 4 (color online). The scale dependence of the total cross section with the top-quark mass in theMS scheme at �m ¼ 163 GeV at
LO (red), NLO (green) and approximate NNLO (blue). The dashed lines denote the �f ¼ �m for the factorization scale, the solid lines

the maximal deviations for �r 2 ½ �m=2; 2 �m� and �f ¼ �m=2, �m and 2 �m. We use the MSTW 2008 PDF set [14] at LHC with
ffiffiffi
S

p ¼
14 TeV (left) and Tevatron with

ffiffiffi
S

p ¼ 1:96 TeV (right). The vertical bars indicate the size of the scale variation in the standard range
½ �m=2; 2 �m�.
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cross section as measured at Tevatron. Reference [8]
quotes a value with a combined uncertainty of � ¼
8:18þ0:98

�0:87 pb for a top-quark mass mt ¼ 170 GeV along

with a (weak) dependence on the value of the mass, e.g.
� ¼ 7:99 pb for the latest world average [13], mt ¼
173:1þ1:3

�1:3 GeV. Using the measured value of � ¼
8:18 pb which is consistent with the theory predictions of
Refs. [3,4] (and with this work; see Table II) we extract the

MSmass �m order by order. As mentioned earlier we use the
same NNLO PDF set of MSTW 2008 [14] independent of
the order of perturbation theory and the results at LO, NLO
and approximate NNLO are given in Table II. The value of
�m ¼ 160:0þ3:3

�3:2 GeV represents to the best of our knowl-

edge the first direct determination of the running top-quark
mass from experimental data. For comparison, we also
quote the values of the pole massmt at the respective order
extracted in the same way by directly comparing the theory
prediction with the measured cross section. Alternatively,

we can also convert the MS mass value back to the pole
mass scheme with the help of Eq. (38). Our NNLO value
for �m corresponds to mt ¼ 168:9þ3:5

�3:4 GeV, which consti-

tutes a theoretically well-defined determination of the pole
mass and is also (within the experimental uncertainties) in
agreement with the world average [13] of mt ¼
173:1þ1:3

�1:3GeV. To summarize, the MS mass scheme is

distinguished by the great stability in the value of the
extracted top-quark mass. This feature has been studied
in the past in detail for processes at a future linear collider
[41] and our observation is also in agreement with recent
considerations based on the renormalization group flow for
heavy quark masses [48].

V. SUMMARY

In this Letter, we update and extend the predictions of
Refs. [3,4] for the cross section of top-quark hadroproduc-
tion at LHC and Tevatron. We have applied some improve-
ments in the threshold approximation for the two-loop
scaling functions (12)–(14) as described in the text. We
provide new and precise parametrizations in Eqs. (7)–(9)
and (18)–(23) for all scaling functions that can be deter-
mined exactly. All fit functions are documented in the
appendix. Moreover, we have performed the independent
variation of the renormalization and the factorization scale
with the help of Eqs. (29) and (30). As a novel aspect, in
addition to the conventionally used pole mass we provide

predictions for the total cross section employing the MS
definition for the mass parameter. The central result is
Eq. (44).
Our main phenomenological results are the parametri-

zations in Eq. (37), Tables III and IVand the cross sections
in Eqs. (33)–(36) for the pole mass. The differences with
respect to our previous numbers are quite small, though;
see Table I. The theory uncertainty according to Eq. (31)
defined by exploring the ð�r;�fÞ plane in the standard

range �r;�f 2 ½mt=2; 2mt� does not differ significantly

from the case of fixed scales �r ¼ �f. We have also

addressed the residual systematical uncertainty due to the
threshold approximation and we have quantified the effect
of other higher order corrections, such as electroweak or
QCD bound state effects. The most interesting aspect of
our phenomenological studies consists of the conversion to

the MS mass scheme in Figs. 4 and 5. The cross section

predictions with the MS mass definition exhibit a greatly
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FIG. 5 (color online). The mass dependence of the total cross section for the MS mass �m at NLO (green) and approximate NNLO
(red) order with the scale variation in the range �r 2 ½ �m=2; 2 �m� and �f ¼ �m=2, �m and 2 �m for the MSTW 2008 PDF set [14] at LHC

with
ffiffiffi
S

p ¼ 14 TeV (left) and Tevatron with
ffiffiffi
S

p ¼ 1:96 TeV (right). The value for the Tevatron cross section is taken from Ref. [8].
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improved pattern of apparent convergence for the pertur-
bative expansion and very good stability with respect to
scale variations. This leads to very stable values for the
extracted mass parameter �m as given in Table II. In par-
ticular, we find

�m ¼ 160:0þ3:3
�3:2 GeV: (46)

This is the first direct determination of the running top-
quark mass from top-quark pair production. The corre-
sponding value for the pole mass derived from Eq. (46)
reads

mt ¼ 168:9þ3:5
�3:4 GeV; (47)

which is consistent with the current world average [13],
mt ¼ 173:1þ1:3

�1:3 GeV. Altogether, this provides substantial
support in view of the reliability of our approximate NNLO

numbers. We believe that the QCD radiative corrections for
top-quark pair production at hadron colliders are well
under control.
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APPENDIX: USEFUL FORMULAS

fð21Þq �q ¼ 1

ð16�2Þ2 f
ð0Þ
q �q

�
� 8192

9
ln3�þ

�
12 928

3
� 32 768

9
ln2

�
ln2�þ

�
�840:510 65þ 70:183 854

1

�

�
ln�� 82:246 703

1

�

þ 467:904 02

�
þ nf

ð16�2Þ2 f
ð0Þ
q �q

�
� 256
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ln2�þ

�
2608

9
� 2816

9
ln2

�
ln�þ 6:579 736 3

1

�
� 64:614 276

�

þ hð�; bi þ nfciÞ �
4n2f

ð16�2Þ2 f
ð0Þ
q �q

�
4

3
ln2� 2

3
ln�� 10

9

�
; (A1)

fð22Þq �q ¼ 1

ð16�2Þ2 f
ð0Þ
q �q

�
2048

9
ln2�þ

�
� 7840

9
þ 4096

9
ln2

�
ln�þ 270:897 24

�
þ nf

ð16�2Þ2 f
ð0Þ
q �q

�
320

9
ln�� 596

9
þ 320

9
ln2

�

þ hð�; bi þ nfciÞ þ
4n2f

3ð16�2Þ2 f
ð0Þ
q �q ; (A2)

fð21Þgq ¼ � �

ð16�2Þ2 �
3

�
770

27
ln2�þ

�
� 6805

81
þ 6160

81
ln2

�
ln�þ 0:137 077 84

1

�
þ 0:220 688 68

�

� �nf

81ð16�2Þ2 �
3

�
46 ln�� 163

3
þ 76 ln2

�
þ hðbÞgq ð�; bi þ nfciÞ; (A3)

fð22Þgq ¼ �

ð16�2Þ2 �
3

�
385

81
ln�� 1540

243
þ 385

81
ln2

�
þ hðbÞgq ð�; bi þ nfciÞ; (A4)

fð21Þgg ¼ 1

ð16�2Þ2 f
ð0Þ
gg

�
�4608ln3�þ

�
109 920

7
� 18 432 ln2

�
ln2�þ

�
69:647 185� 248:150 05

1

�

�
ln�þ 56:867 721

1

�

þ 17:010 070

�
þ nf
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�
�64ln2�þ

�
4048

21
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�
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1

�
� 37:602 004

�

þ hð�; bi þ nfciÞ; (A5)
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fð22Þgg ¼ 1

ð16�2Þ2 f
ð0Þ
gg ½1152ln2�þ ð�2568þ 2304 ln2Þ ln�

� 79:743 121 40� þ nf

ð16�2Þ2 f
ð0Þ
gg ½16 ln�� 16

þ 16 ln2� þ hð�; bi þ nfciÞ; (A6)

where all threshold logarithms lnð�Þ and the Coulomb
corrections (� 1=�) are exact. The fit functions are given

in Eqs. (A7)–(A9) and all parameters of the fit are listed in
Tables V, VI, and VII. The fits to the scaling functions fð21Þij ,
fð22Þij in Eqs. (A1)–(A6) are, in general, accurate at the per
mille level. Exceptions are regions close to zero, which is
not surprising. There we retain an accuracy better than 1%.

FORTRAN subroutines with the parametrizations of all

scaling functions and the coefficient in Tables V, VI, and
VII are available from the authors upon request.

TABLE VI. Coefficients for fits of the gq scaling functions.

fð10Þgq fð21Þgq fð22Þgq

i ai bi ci bi ci

1 �0:261 039 70 �0:001 205 32 0.000 032 57 �0:000 222 47 0.000 017 89

2 0.301 926 72 �0:049 063 53 0.000 142 76 0.000 504 22 0.000 000 71

3 �0:015 054 87 �0:208 857 25 �0:004 020 17 �0:029 455 04 �0:000 205 81
4 �0:001 421 50 �13:731 372 24 0.063 298 31 0.343 404 12 0.001 087 59

5 �0:046 606 99 14.018 188 40 �0:059 528 25 �0:318 949 17 �0:000 862 84
6 �0:150 890 38 �0:009 304 88 0.000 026 94 0.000 092 13 0.000 000 10

7 �0:253 977 61 �0:522 236 68 0.001 598 04 0.006 904 02 0.000 016 38

8 �0:009 991 29 �4:684 405 15 0.015 226 72 0.078 472 33 0.000 227 30

9 0.398 787 17 �7:610 461 66 0.028 694 38 0.160 420 51 0.000 456 98

10 �0:024 441 72 1.366 877 43 �0:008 755 89 �0:051 869 74 �0:000 256 20
11 �0:141 783 46 1.846 982 91 �0:008 002 71 �0:038 610 21 �0:000 160 26
12 0.018 672 87 �7:262 659 88 0.040 434 79 0.216 503 62 0.000 707 13

13 0.002 386 56 �4:893 640 26 0.019 658 78 0.101 376 56 0.000 349 37

14 �0:000 033 99 11.045 667 84 �0:052 622 93 �0:280 562 64 �0:000 725 47
15 �0:000 000 89 4.136 601 90 �0:014 573 95 �0:080 904 69 �0:000 255 25
16 0.000 000 00 �6:334 770 51 0.023 146 16 0.130 778 89 0.000 340 15

17 0.000 000 00 �1:089 954 40 0.002 917 92 0.018 138 62 0.000 066 13

18 0.000 000 00 1.190 105 61 �0:002 201 15 �0:015 857 57 �0:000 065 62

TABLE V. Coefficients for fits of the q �q scaling functions.

fð10Þq �q fð21Þq �q fð22Þq �q

i ai bi ci bi ci

1 0.071 206 03 �0:153 887 65 �0:079 606 58 0.379 470 56 �0:002 241 14
2 �1:271 699 99 4.852 265 71 0.501 112 94 �4:251 380 41 0.026 855 76

3 1.240 995 36 �7:066 028 40 �0:094 964 32 2.917 160 94 �0:017 771 26
4 �0:040 504 43 2.369 352 55 �0:325 902 03 0.949 944 70 �0:006 261 21
5 0.020 537 37 �0:036 346 51 �0:022 290 12 0.105 375 29 �0:000 620 62
6 �0:317 633 37 1.258 608 37 0.233 976 66 �1:696 898 74 0.009 809 99

7 �0:714 396 86 2.754 419 01 0.302 234 87 �2:609 771 81 0.016 311 75

8 0.011 700 02 �1:265 717 09 0.131 138 18 �0:272 155 67 0.001 825 00

9 0.001 489 18 �0:002 305 36 �0:001 626 03 0.007 878 55 �0:000 046 27
10 �0:144 514 97 0.156 339 27 0.083 784 65 �0:479 338 27 0.002 861 76

11 �0:139 063 64 1.795 352 31 �0:091 478 04 �0:182 171 32 0.001 114 59

12 0.010 767 56 0.369 604 37 �0:015 815 18 �0:040 679 72 0.000 174 25

13 0.493 978 45 �5:457 948 74 0.268 343 09 0.541 471 94 �0:003 595 93
14 �0:005 673 81 �0:766 516 36 0.032 516 42 0.084 044 06 �0:000 353 39
15 �0:537 419 01 5.353 504 36 �0:256 794 83 �0:519 184 14 0.003 633 00

16 �0:005 093 78 0.396 909 27 �0:016 701 22 �0:043 364 52 0.000 179 15

17 0.182 503 66 �1:689 356 85 0.079 930 54 0.159 579 88 �0:001 151 64
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hð�; a1; . . . ; a17Þ ¼ a1�
2 þ a2�

3 þ a3�
4 þ a4�

5 þ a5�
2 ln�þ a6�

3 ln�þ a7�
4 ln�þ a8�

5 ln�þ a9�
2ln2�

þ a10�
3ln2�þ a11� ln�þ a12�ln

2�þ a13�
2 ln�þ a14�

2ln2�þ a15�
3 ln�þ a16�

3ln2�

þ a17�
4 ln�; (A7)

hðaÞgq ð�; a1; . . . ; a15Þ ¼ a1�
4 þ a2�

5 þ a3�
6 þ a4�

4 ln�þ a5�
5 ln�þ a6�

6 ln�þ a7�
2� ln�þ a8�

2�ln2�

þ a9�
3� ln�þ a10�

3�ln2�þ a11�
4� ln�þ a12�
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2�ln3�þ a14�

2�ln4�
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hðbÞgq ð�; a1; . . . ; a18Þ ¼ a1�
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5 þ a4�

6 þ a5�
7 þ a6�
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6 ln�þ a9�
7 ln�
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