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Measuring the scales of segregation: looking at the residential separation 

of White British and other school children in England using a multilevel 

index of dissimilarity 

Abstract 

Within the segregation literature there has been a movement away from 

measuring ethnic segregation at a single scale, using traditional indices, to 

instead treating segregation as a multiscale phenomenon about which 

measurement at a range of scales will shed knowledge. Amongst the 

contributions, several authors have promoted multilevel modelling as a way of 

looking at segregation at multiple scales of a geographical hierarchy, estimating 

the micro-, meso- and macro effects of segregation simultaneously. This paper 

takes the approach forward by outlining a multilevel index of dissimilarity that 

combines the advantages of using a widely-understood index with a means to 

identify scale effects in a way that is computationally fast to estimate and uses 

freely available software to do so. To demonstrate the method, a case study is 

made looking at the residential separation of White British pupils from six other 

ethnic groups in England in 2011. It examines a claim made by the Casey Review 

into opportunity and integration that school children are more residentially 

segregated than the population-at-large. The results suggest that school children 

were indeed more residentially divided but comparison with earlier data and the 

general uplift in the scales at which patterns of segregation are evident suggest a 

trend of decreasing segregation overall and the spreading-out of ‘minority’ 
groups. 
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Measuring the scales of segregation: looking at the residential separation 

of White British and other school children in England using a multilevel 

index of dissimilarity 

1. Introduction 

This paper contributes to the literature on multi-scale measures of segregation, 

providing methodological innovation in the form of a multilevel index of 

dissimilarity that is used to look at the residential segregation of White British 

school pupils from other ethnic groups in England. The recently published Casey 

Review (Casey 2016) has rekindled the idea that social and ethnic segregation 

are increasing in some parts of Britain, arguing that segregation reduces how 

often people from different ethno-cultural groups meet and undermines social 

integration. It gives particular attention to the young, stating that “the school age 
population is even more segregated when compared to residential patterns of living” (p.11). This paper will examine that claim. 

Studies of ethnic (and socio-economic) segregation continue to debate 

measurement issues. This is important because, as Simpson and Peach (2009, 

1379) note, the act of measurement is not neutral but “depends upon what the 
measurer conceives segregation to be.” It is also enduring because of the political 

and media attention that is given to ethnic segregation in the UK, as in other 

countries. In response to the Casey Review, the free national Metro newspaper 

published the headline, “Diverse yet divided: UK is growing apart”,1 whilst the 

tabloid The Sun wrote in characteristically measured tones, “GHETTO BLASTER 
                                                        
1 http://metro.co.uk/2016/12/05/diverse-yet-divided-uk-is-growing-apart-casey-report-finds-

6303352/ 
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Mass immigration to Britain has changed it beyond recognition and turned 

communities into ghettos, reveals damning report.”2 Earlier in the same year, a 

Member of Parliament expressed a belief that “Britain has become more 

ethnically segregated with widening cracks in our communities” (The i 

newspaper, May 23, 2016, reporting on a speech by Chuka Umunna MP). 

An important role of measurement is to challenge misperception with empirical 

evidence: in fact, the various studies that have compared 2011 to 2001 UK 

Census data have all revealed that ethnic segregation is decreasing, not 

increasing in the UK, as ‘minority’ groups spread out geographically into what 

are becoming increasingly mixed neighbourhoods (Johnston et al. 2013, 2014, 

Harris 2014, Catney 2016a, 2016b). This is not to deny the persistence of ethnic 

separations in the UK (or elsewhere: Nightingale 2012, Logan 2013), or to 

suggest that neighbourhoods all are diverse and mixed. However, it is to 

acknowledge that the scale of segregation in the UK is changing both numerically 

(decreasing in its measured quantity) and geographically (minority groups are 

less spatially concentrated in distinct places than they have been previously). 

A recent development in the measurement of segregation is to treat it as a 

multiscale phenomenon, the outcome of choices, processes, structural 

constraints and behaviours that operate simultaneously at multiple scales – of 

what Galster and Shevky (2017) theorise as the differential effects of the spatial 

opportunity structure that create the spatial foundations of inequality. An 

attraction of this approach is it allows the dominant scales of segregation to be 

                                                        
2 https://www.thesun.co.uk/news/2327147/british-towns-have-changed-beyond-recognition-

as-mass-immigration-turns-communities-into-ghettos-as-report-raps-governments-for-failing-

to-deal-with-crisis/ 
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identified: is it something that occurs at a micro-scale, a meso-scale, a macro-

scale or some combination of all three? (Manley et al. 2015). 

This paper takes the idea and applies it to the well-known index of dissimilarity 

(Jahn et al. 1947, Duncan & Duncan, 1955). It shows how the index can be 

formulated within a regression framework to measure both spatial variation and 

scale effects thereby capturing the two principal dimensions of segregation, 

unevenness and clustering. A study is made of the residential segregation of 

White British from school children of other ethnicities in England in 2011, of the 

scales at which those separations occur, of how they compare with those for the 

whole Census population in the same year, and of whether they have changed 

over the decade prior. The focus on the White British is because when politicians 

and the media talk of ethnic segregation in the UK, they usually mean between 

the White British and other ethnic groups. The paper questions whether the 

impression of increasing segregation fostered by the Casey Review is correct. 

2. Measuring segregation as a spatial and multi-scale phenomenon 

Reardon et al. (2008) write that the study of racial segregation has three main 

analytical aims: to investigate the patterns of segregation, to investigate the 

causes of segregation, and to investigate the consequences of segregation. The 

first of these sheds light on the other two – patterns suggest processes. However, 

what we determine as a pattern is scale dependent. A checker or chessboard has 

complete segregation at the scale of the individual square that is either white or 

black. Yet, at the scale of the board, the black-white pattern suggests a high 
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degree of mixing because the board is as much white as it is black, and the two 

groups are spread out across it equally. 

The index of dissimilarity (ID) looks at whether the places where one population 

group is most likely to be resident are also the places where another group is 

most likely to reside too. If not, then it may be said that the groups have an 

uneven geographical distribution (relative to one another) and this is taken as 

evidence of segregation. Unevenness is, however, only one of the five dimensions 

of segregation identified by Massey and Denton (1988). The others are exposure, 

clustering, concentration and centralisation. Amongst them, unevenness and 

clustering are regarded as the most important (Reardon & O’Sullivan 1997, Oka 

& Wong 2014). Unevenness is a measure of spatial heterogeneity, the variation 

displayed across the map.  Clustering measures the scale of spatial similarity, the 

extent to which closely located neighbourhoods are alike. Although unevenness 

may be related to clustering, it need not be so. Reflecting again on the case of a 

chess or checkers board, the standard pattern of black-white alternation can be 

compared with a hypothetical board for which the top half is wholly black and 

the bottom wholly white. A well-known problem with the ID is that these two 

patterns of segregation generate the same index value for the board despite the 

different scales of black and white clustering they present. 

Because of this deficiency, several spatial alternatives haven been proposed that 

include creating localised values and spatial surfaces (Reardon & Sullivan 2004, O’Sullivan & Wong 2007, Lloyd 2012, 2015, Lloyd & Shuttleworth 2012), 

sometimes using what have been described as egocentric neighbourhoods (Lee 

et al. 2008, Reardon et al. 2008, 2009, Spielman & Logan 2013, Hongwei et al. 
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2014). These neighbourhoods are overlapping sub-spaces of the map formed by 

taking a location (an ‘ego’) and combining it with a user-defined subset of 

surrounding places, in much the same way as how local indicators of spatial 

association (Anselin 1995) or geographically weighted statistics (Brunsdon et al. 

2002) are calculated. Increasing the number of locations increases the scale of 

aggregation and by building-up the level of aggregation, segregation profiles can 

be formed across a range of analytical scales (Clark et al. 2015, Fowler et al. 

2016).  

A limitation of this approach is that it does not measure how much of the 

segregation is due to a specific scale because the act of aggregation conflates but 

does not separate out the scales of segregation. Others have advanced a 

multilevel approach that does disentangle the amounts due to the various levels 

of a geographically hierarchical data structure such as that of the UK Census 

(Leckie et al. 2012, Jones et al. 2015, Leckie & Goldstein 2015, Manley et al. 

2016). The multilevel approach is based on using statistical measures of variance 

as indicators of segregation, whereby greater variance indicates greater 

unevenness between places (greater spatial heterogeneity) and therefore 

greater segregation. Critically, the variance at any one level of the analysis is 

estimated net of the variances at the other levels, allowing scale differences to be 

identified. It also permits the variance to be apportioned between the levels of 

the model, allowing their separate contributions to the overall segregation to be 

assessed. Apportioning the variance in this way creates a measure of spatial 

clustering. 
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A problem is that the variance does not translate directly into an interpretable 

index of the sort offered by classic approaches (although see Johnston et al. 

2017): it is not constrained to lie within a given range (but it cannot be negative) 

and it is dependent upon the measurement units. This is problematic if what is 

measured has a prevalence in the population that is susceptible to economic 

effects or to a conceptual redefinition, such as counts of benefit claimants per 

neighbourhood or the number of free school meal eligible pupils. Other problems 

with multilevel modelling are that it assumes the areal and hierarchical units of 

analysis have some meaningful correspondence with the real-world patterns of 

segregation studied, and it confuses levels with scale – a point that is returned to 

in the conclusion. 

Despite these shortcomings, it is the multilevel approach that is extended in this 

paper. The methods outlined are motivated by the work of Jones et al. (2015) 

and especially of Owen (2015). However, the approach given here is different in 

three key ways. First, it combines the advantages of a widely-used and 

interpretable index (the ID) with a means to apportion the ID between the scales 

of analysis net of the other scales. Combining the multilevel approach with the ID 

allows the two dimensions of segregation, unevenness and clustering to be 

measured. Second, the methods are computationally fast: fitting the multilevel 

models to the data takes only a matter of seconds using the software R, which is 

free and open source – important criteria for reproducible research (Brunsdon 

2016). However, the speed arises because, third, the method does not directly 

model the observed counts (of a population) against a random data generating 

process – for example, a Poisson distribution – in the way that Owen and Jones et 
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al. outline. In some regards, what is presented is a simpler and more accessible 

variant of those earlier approaches. A tutorial in how to fit the models is 

available at https://rpubs.com/profrichharris/211772. 

3. Forming a spatially disaggregated and multiscale index of dissimilarity 

The Index of Dissimilarity 

The index of dissimilarity (ID) is calculated as  

ID𝑌𝑋 = 𝑘 ∑ | 𝑛𝑌𝑖𝑛𝑌+ − 𝑛𝑋𝑖𝑛𝑋+|𝑚𝑖=1  

(1) 

where the calculation is based on a series of neighbourhood counts: 𝑛𝑌𝑖  is the 

number of population group Y who are living in a neighbourhood, i; 𝑛𝑋𝑖  is the 

number of a second, comparator group, X, living in the same; the summation is 

across the m neighbourhoods in the study region; 𝑛𝑌+ and 𝑛𝑋+ are the total 

count of X and Y in the study region (𝑛𝑌+ = ∑ 𝑛𝑌𝑖𝑚𝑖=1  and 𝑛𝑋+ = ∑ 𝑛𝑋𝑖𝑚𝑖=1 ); and k is 

a scaling constant. Simplified, and scaled to lie in the range from 0 to 1: 

ID𝑌𝑋 = 0.5 × ∑ |𝑝𝑌𝑖 − 𝑝𝑋𝑖|𝑚𝑖=1  

(2) 

where 𝑝𝑌𝑖 is the proportion of group Y that lives in neighbourhood i, and 𝑝𝑋𝑖 is 

the corresponding value for X. If the two groups are distributed evenly then, for 

every neighbourhood, 𝑝𝑌𝑖 = 𝑝𝑋𝑖 (so if 1 per cent of the purple population lives in 

neighbourhood A then 1 per cent of the orange population lives there too), and 
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with no differences between 𝑝𝑌𝑖 and 𝑝𝑋𝑖, the index will be zero, interpreted as no 

segregation. At the opposite extreme, if wherever the purple group is found, the 

orange group is not (and vice versa) then the index will be one, a situation of 

complete segregation. The index gives the proportion of either of the two groups 

that would have to change neighbourhoods for the index to be zero, assuming 

the other group remained in place. 

Calculating the index within a regression framework 

Since the expectation is that 𝑝𝑌𝑖 will be equal to 𝑝𝑋𝑖 under a condition of zero 

segregation so the index may be regarded as summarising the differences 

between a set of observed values, y, and a set of expected values, x. Writing this 

within a regression framework,  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 
(3) 

where 𝑦𝑖 = 𝑝𝑌𝑖  and 𝑥𝑖 = 𝑝𝑋𝑖 . Fixing 𝛽0 to zero, 𝛽1 to one and rearranging gives, 

𝑦𝑖 − 𝑥𝑖 = 𝜀𝑖  

(4) 

and substituting into Equation 1, 

ID𝑌𝑋 = 0.5 × ∑ |𝜀𝑖|𝑚𝑖=1  

(5) 
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What equations (3) to (5) show is that the index can be calculated from the 

residuals of a regression model with dependent variable, y, no intercept and an 

offset equal to x. 

The method is not limited to the index of dissimilarity, an index which is not 

invariant to changes in the group sizes when 𝑥𝑖  and 𝑦𝑖  sum to the total 

population per area of analysis (for example, when x is the White British and y is 

not White British). Other indices such as the Gorard index can then be used 

instead (Gorard 2003); doing so requires only a change to the offset. A further 

extension is to add weights to the models to reflect the fact that the units of 

measurement (the neighbourhoods) are not of equal population size. Weights 

proportional to the population size of each neighbourhood might be considered 

but are not used here to maintain comparability with the standard index of 

dissimilarity. 

The expected value under randomisation 

Although, in principle, the ID ranges from 0 to 1 (or from 0 to 100 as some 

authors prefer), there is a large degree of uncertainty associated with the index 

when small counts of population are involved (Voas & Williamson 2000). For the 

pupil data used in the case study that follows, there are 6.77 million pupils in 

total, living in 170,545 small area Output Areas (OAs), of which, for example, 

105,446 (1.56 per cent) are recorded as being Asian Bangladeshi, whereas 

5,001,508 (73.8 per cent) are White British. That difference in number means 

that it is very hard and potentially impossible for the ID to reach its theoretical 
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value of zero – there are too few Bangladeshi pupils for their distribution across 

the OAs to be the same as for the White British. 

The expected value for the ID, given the group sizes and given the geography of 

the study region can be estimated by simulation: 

�̂� = 𝑏𝑖𝑛𝑜𝑚(𝑁, 𝑇, 𝒑𝑻) 

𝒙 = 𝑏𝑖𝑛𝑜𝑚(𝑁, �̂�, 𝑃𝑥) 

�̂� = 𝑏𝑖𝑛𝑜𝑚(𝑁, �̂�, 𝑃𝑦) 

ID𝑌𝑋 = ∑ | 𝑛�̂�𝑖𝑛�̂�+ − 𝑛�̂�𝑖𝑛�̂�+|𝑚𝑖=1  

(6) 

where binom indicates a random, binomial process, 𝑁 is the number of areas (e.g. 

OAs), 𝑇  is the total number of pupils (the number of trials), 𝒑𝑻  are the 

proportions of the total living in each of the areas (the probabilities of success), �̂� 

is the simulated number of pupils per area, 𝑃𝑥 is the proportion of the total 

population that is White British, �̂� is the simulated number of White British 

pupils per area, and 𝑃𝑦 and �̂� are the corresponding values for the Bangladeshi 

pupils. Each of 𝒑𝑻 , �̂�, �̂� and �̂� is a vector of size N. Repeating over 1000 

simulations, the average is taken, E(ID) ≅ ID̅̅̅. 

The procedure is like randomly shuffling the individual pupils around the areas, 

the difference being that the permutation approach (the shuffling) would hold 

the total population in each area at its observed value, whereas the binomial 

draws permit some fluctuation. The method does not incorporate an allowance 
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for stochastic variation directly into the model of segregation in the manner of 

Jones et al. (2015), Owen 2015 and Johnston et al. (2017). Instead, the expected 

value under randomisation is modelled as a separate process. 

Calculating localised measures of dissimilarity   

Recall that the regression residuals are the differences between what is observed 

for population group Y, and what is expected from population group X, for each 

neighbourhood. Drawing on the spatial analysis literature, each neighbourhood-

level residual can be regarded as a localised disturbance from a general trend at 

location (𝑢𝑖, 𝑣𝑖), where the global value is proportional to their sum: ID𝑌𝑋 ∝∑ |𝜀(𝑢𝑖,𝑣𝑖)|𝑚𝑖=1 . Simply plotting the residuals on a map would reveal any spatial 

variation; it would show where the proportion of group Y is greater or less than 

expected given the proportion of group X. The level of variation can also be 

gauged by the standard error of the residuals, which is itself a measure of 

unevenness and of segregation. In simulations, the standard error (also the 

variance) of the residuals was found to be correlated almost perfectly with the ID 

score: 𝑟(𝐼𝐷,𝜎𝜀 ) ≅ 0.99 (an empirical link from which Jones et al. 2015 also 

benefit). 

Using the residuals, localised measures of dissimilarity can be calculated using 

an index of the form, 

𝑖𝑑(𝑢𝑖,𝑣𝑖) ∝ ∑ 𝑤𝑖𝑗|𝜀𝑗|𝑚𝑗=1  

(7) 
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where 𝑤𝑖𝑗 is a spatial weights matrix specifying which places to include in the 

index for neighbourhood i and its surrounding areas (see also Wong 1996, 

Feitosa 2007). Alternatively, we may be interested in exploring the amount by 

which sub-regions of the map contribute to the overall ID. If n is the number of 

neighbourhoods in the sub-region then the regional share of the total ID is 

𝑠ℎ𝑎𝑟𝑒 = ∑ |𝜀𝑖|𝑛𝑖=1ID𝑌𝑋  

(8) 

From this, the parts of the map contributing most to the segregation can be 

identified. The problem with the measure is it increases with n. This does not 

matter if a series of localised values are created based on a fixed number of 

nearest neighbours around each location because then n would be constant. 

However, where census regions are considered, and where those regions are 

unequal in the number of neighbourhoods they contain, we should expect the 

share to be greater for those with more neighbourhoods, making direct 

comparisons difficult. 

A solution is to divide ∑ |𝜀𝑖|𝑛𝑖=1  by the expected value, which is 𝑛|𝜀|̅̅̅̅ , where |𝜀|̅̅̅̅  is 

the mean absolute residual for the whole study region. In this way, the relative 

impact of each region upon the overall index value can be calculated, 

𝑖𝑚𝑝𝑎𝑐𝑡 = ∑ |𝜀𝑖|𝑛𝑖=1𝑛|𝜀|̅̅̅̅  × 100 

(9) 
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A score of 100 indicates the impact is as expected, 200 indicates it is double 

expectation, and 50 that it is half. The values can also be scaled to help identify impacts that are ‘significant’ on average: 
𝑧̅ = ∑ |𝜀𝑖|𝑛𝑖=1𝑛(𝜎𝜀)  

(10) 

where 𝜎𝜀 is the standard error of the regression residuals. 

A multilevel (multiscale) index 

The methods described above are flexible in allowing the constituent parts of the ID to be ‘summed up’ into higher-level units. However, there is nothing 

specifically multilevel about them. They are based solely on adding together 

calculations made at a neighbourhood scale, which is useful for identifying places 

that contribute most to the ID score but not on separating out the scale effects 

due to each level. To achieve the latter, we need to handle the regression 

residuals in a different way using a multilevel model. 

Census geographies are hierarchical. In England, the small area OAs (with a 

mean population size of 309 persons and 129 households), nest into what are 

called Lower Level Super Output Areas (LLSOAs, a mean of 1614 persons and 

672 households), which themselves nest into Middle Level Super Output Areas 

(MLSOAs, 7806 persons and 3249 households), Local Authority Districts (LAs, 

163,619 persons and 68,097 households), and governmental regions (GORs, 

5,890,273 persons and 2,451,485 households).  
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Neighbourhood studies often focus on the OAs. There is logic in doing so. They 

are the smallest areas for which census data are available and will, in principle, 

be less susceptible to the effects of aggregation than other less detailed 

geographies. However, sometimes aggregation is desirable if it increases the 

number of observations per area unit and decreases the uncertainty associated 

with the estimates. 

For the analysis of the pupil data that follows there is an insufficient number of 

pupils per OA to support calculations at that scale: for example, the mean 

number of Asian Bangladeshi pupils per OA is 0.618 and that figure excludes OAs 

where there are no pupils living there at all. At the OA scale, the ID for White 

British and Asian Bangladeshi pupil segregation is 0.924 but the uncertainty of 

the estimate is very high, with over half of it expected due to randomisation 

alone (the expected ID is 0.490). Aggregating the data into LLSOAs produces an 

ID of 0.848 against a much-reduced expected value of 0.218. LLSOAs will 

therefore provide the base scale for the analysis.   

In any case, it is not just the small area differences that matter as these can co-

exist with differences measured at coarser scales of analysis that sometimes 

exceed the micro-level contributions to segregation (Jones et al. 2015, Johnston 

et al. 2017).  A multilevel model may be specified as 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜆𝑖 + 𝜇𝑗 + 𝜈𝑘 + 𝜉𝑙 
(11) 

where 𝜆𝑖 are the residuals due to the base scale (the LLSOAs), and 𝜇𝑗 , 𝜈𝑘 and 𝜉𝑙, 
are the residuals calculated at higher levels of the hierarchy (MLOAs, LAs and 
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GORs). The sums of these residuals are equal to those in the standard regression 

model (Equation 2); that is, 

𝜀𝑖 = 𝜆𝑖 + 𝜇𝑗 + 𝜈𝑘 + 𝜉𝑙  

(12) 

Substituting into Equation 4 gives, 

𝑦𝑖 − 𝑥𝑖 = 𝜆𝑖 + 𝜇𝑗 + 𝜈𝑘 + 𝜉𝑙  

(13) 

and therefore 

 

ID𝑌𝑋 = 0.5 × ∑|𝜆𝑖 + 𝜇𝑗 + 𝜈𝑘 + 𝜉𝑙| 
(14) 

The multilevel approach allows the influence of each level upon the overall lD to 

be considered with that influence measured net of the other levels of the hierarchy. There are parallels with the decomposition of Theil’s entropy index of 
segregation (Theil 1972) into the contribution of different scales of segregation 

(Fischer et al. 2004, Fischer M, 2008, Lichter et al. 2015) – both it and the ID 

measure unevenness and both may be used to look at scale effects. However, the 

multilevel ID follows more closely to Leckie et al., (2012), Leckie and Goldstein 

(2015) and Jones et al. (2015) in that it is by estimating and comparing the 

variances of 𝜆𝑖, 𝜇𝑗 , 𝜈𝑘 and 𝜉𝑙 that the importance of each scale can be determined. 
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Specifically, the proportion of the total variance is calculated at each scale. For 

example, at the LLSOA scale that proportion is �̂�𝜆2 (�̂�𝜆2 + �̂�𝜇2 + �̂�𝜈2 + �̂�𝜉2)⁄  where 

the �̂�2 are the variance estimates at each level. The greater the proportion, the 

more spatially clustered the two population groups are away from each other at 

that level and the more it contributes to the overall ID. 

In addition, a holdback approach is adopted, which is to calculate the ID with one 

of the levels omitted (its effect set to zero) and to consider the consequence that 

has on the index. For example, the percentage change in the ID of omitting level i, 

is, 

% △𝐼𝐷(−𝑖)= 100 (∑|0 + 𝜇𝑗 + 𝜈𝑘 + 𝜉𝑙| − ID𝑥𝑦ID𝑌𝑋 ) 

(15) 

4. Case study of the residential segregation of White British pupils from 

other ethnic groups 

Using the National Pupil Database, residential information was extracted on 

pupils who were in state-funded primary or secondary schools in 2011, omitting 

those in the upper, non-compulsory years (also those in fee-charging schools, 

which was 7.2 per cent of all pupils nationally).3 Pupil counts per LLSOA were 

calculated using the pupils’ home postcodes, matched to the census geography. 

From these, the multilevel index and the various measures of residential 

                                                        
3 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/219261/sfr1

0-2012nt.xls, although it varies by local authority: 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/219262/sfr1

0-2012lat.xls  
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segregation outlined in Section 3 were calculated for the White British against 

each the of six major ethnic groups included in the data: Asian Bangladeshis, 

Asian Indians, Asian Pakistanis, Black Africans, Black Caribbeans and those of a 

White but not White British ethnicity. For the analysis, the generic statistics 

functions in R were used, supplemented with the lme4 (Linear Mixed-Effects 

Models) package (Bates et al. 2015). Initial estimates were checked against those 

from the multilevel modelling software MLwiN and yielded the same results. 

The results are in Table 1. Taking the White British – Asian Bangladeshi ID as an 

example, its value for the whole of England is, as previously stated, 0.848 against 

an expected value of 0.218. The ID value is high because the Bangladeshi group is 

concentrated especially in the eastern parts of London but also in parts of the 

urban North West such as Oldham, Burnley and Bradford, whereas the White 

British are more spatially dispersed across urban and rural regions. 

 

[TABLE 1 ABOUT HERE] 

 

Regarding the scale of their separation, the holdback scores suggest the 

differences between local authorities are important. To discount them has the 

effect of reducing the ID by 30.7 per cent, whereas discounting the MLSOA scale 

reduces it by 10.3, the LLSOA by 9.1 per cent, and the regions by 5.6 per cent. The 

estimates of the variance at each level have the same rank ordering but the 

differences between the LA, MLSOA and LLSOA scales are less clear: 35.3 per 

cent of the variance in the ID is assigned to the LA scale, 34.6 per cent to the 
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MLSOA scale, 29.7 per cent to the LLSOA scale, and only 0.7 per cent to the GOR 

scale. Looking at the local authorities, it is Tower Hamlets and Newham, both 

situated in the former Docklands of London, together with Oldham in the North West that make the most ‘significant’ contribution to the ID score, where 𝑧̅ >1.96 (from Equation 10) and the impact scores are 2669, 969 and 679, 

respectively – many times greater than the ‘as average’ value of 100. 
Whereas the variance measures indicate that the variations within local 

authorities, at the MLSOA scale, are almost equal to the variation between local 

authorities, at the LA scale, the holdback scores suggest that the effect of the LA 

variation is greater. This is not inconsistent because they are measuring different 

things. The model is additive so any uplift (or decrease) in segregation that is 

due to the LA scale applies to all the neighbourhoods within the LA, whereas the 

change due to the MLSOA is restricted to the smaller sub-group of 

neighbourhoods that are in that MLSOA. It is therefore entirely possible for the 

proportion of the variance to be small at the higher levels but for the differences 

between places at those levels to still have a strong cumulative effect upon all the 

lower levels to which they must be added. This will be picked-up on by the 

holdback scores. 

Looking again at Table 1, although the level of residential segregation is highest 

from the White British for the Asian Bangladeshi pupils, it remains high for each 

of the other ethnic groups too. The ID usually exceeds 0.800 and is always higher 

than what would be expected under randomisation. Amongst the groups, the 

least separation is for the White British from the White Other group (ID = 0.506); 

the next lowest is from the Indian group (0.738).  The scale of separation is 
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usually greatest at the LA scale, although the MLSOA scale exceeds it in a few 

instances, most obviously for the Asian Pakistanis. This suggests that the spatial 

clustering of the six ethnic groups is at a scale typically above the ‘micro’ scale of 
the LLSOAs but below the macro scale of Government regions. 

A lot of the LA clustering occurs within London. In fact, 28 of the 32 London Boroughs are listed as making a ‘significant’ contribution to the various ID scores 
in Table 1. For the Black African, Black Caribbean and White Other groups, none 

of the LAs listed is outside London. The LA for these three groups overlap – 

notably Brent, Hackney and Haringey – but, except for Newham, not with the LAs 

listed for any of the three Asian groups. Despite the spatial deconcentration and mixing of ‘minority’ groups in London that is evidenced by the 2001 and 2011 

Censuses, there remains a geography to where the pupils of different ethnic 

groups are most likely to be living (see Harris 2016, Figure 11.2). 

Because the model is additive, we can map how the geography unfolds 

cumulatively at each level. As an example, Figure 1 considers White British 

segregation from the three Asian groups (Bangladeshi, Indian and Pakistani) 

combined. It begins with the regional estimate for London (𝜉𝑙), which is, of 

course, constant across the London region. It also maps the regional estimate 

plus the local authority estimates (𝜈𝑘 + 𝜉𝑙), those plus the MLOA estimates (𝜇𝑗 +𝜈𝑘 + 𝜉𝑙), and then the same but with the LLOA estimates included (𝜆𝑖 + 𝜇𝑗 + 𝜈𝑘 +𝜉𝑙). Every shaded area of the map has an ‘excess share’ of the Asian pupils 

relative to the White British ones, and the darker the shading the greater the 

difference is. 
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[FIGURE 1 ABOUT HERE] 

 

At the regional scale, London is predicted to have a higher than expected share of 

the Asian pupils: its share is greater than its share of White British pupils. There 

are differences between the local authorities, with increased shares suggested in 

Redbridge, Newham, Tower Hamlets and Hounslow. However, the residential 

patterning does not always match local authority boundaries and more detail 

emerges as the MLOA effects are added in: Redbridge, Newham and Tower 

Hamlets do still contain clusters of Asian pupils but the cluster in Hounslow 

appears to be split across it and neighbouring authorities. Adding in the LLOA 

effects makes some but less difference to the map than those at the MLOA and 

local authority scales.   

Comparison with the residential segregation of the Census population 

Although the data are collected separately, pupils in state-funded schools in 

2011 are a sub-group of the entire English population enumerated by the 2011 

Census. If segregation from the White British is decreasing then we might expect 

the residential segregation between school pupils to be less than the ethnic 

segregation for the Census population as a whole because the residential 

locations of school children represent the younger members of society and their 

parents/guardians. 
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In fact, the reverse is true, apparently supporting what the Casey Review 

(discussed in the Introduction) has claimed. Under the columns headed Census 

2011 and Pupils 2011, Table 2 shows that for each of the six groups, the ID value 

for the segregation from the White British is less for the Census population than 

it is for the pupils alone. Typically, the former is about 85-90 per cent of the 

latter. Even allowing that there is less uncertainty associated with the Census 

figures because they are drawn from a larger population and so the expected 

value under randomisation is also always less, this seems insufficient to explain 

the difference. 

 

[TABLE 2 ABOUT HERE] 

 

Looking at Table 2, it is notable that the regional differences are stronger for the 

Census population – the holdback scores and the variances are greater at this 

level than they were when calculated for the pupils. This is most evident for the 

Asian Indian group: the estimated 1.1 per cent of the variance due to the GOR 

scale in the model for the pupils now rises to 11.5 per cent for the Census 

population. At the opposite end of the scale, for all groups the percentage of the 

variance falls at the LLSOA level and for most it decreases at the MLSOA scale 

(the exception is the Black Caribbean group for which it rises marginally). The 

LA scale share of the variance rises for the Asian Bangladeshi, Asian Indian and 

Asian Pakistani groups but falls for the Black Africans, Black Carribeans and 

White Other. 
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The increase in the regional effect is due to London. It is evident in Figure 2, 

which is a caterpillar plot showing the regional level residuals and their 95 per 

cent confidence interval estimated for the Asian Indian – White British model of 

segregation. For the pupil data, although there is some evidence of an increased 

regional effect for London (the capital has a greater than expected share of the 

Asian Indian pupils), the confidence interval for the estimate overlaps with the 

interval for the West Midlands and is not too far apart from the other regions. 

London is different but not excessively so. 

 

[FIGURE 2 ABOUT HERE] 

 

However, for the census population, London stands clearly apart. The situation 

for the Asian Bangladeshi – White British model is similar but there are even 

starker differences between London and the other regions when the census 

populations of the Black African, Black Caribbean or White Other groups are 

considered relative to the White British. Only for the Asian Pakistani group is 

there little difference between London and the rest. This is the group for which 

the increase in the variance at the GOR scale is less than for the other groups 

when comparing the census population with the pupils, and, for which, the two ‘significant’ cases of LA-level segregation are both outside of London for the 

pupils (see Table 1). 

To summarise, the evidence for 2011 is that school age members of ‘minority’ 
ethnic groups are unevenly distributed relative to the White British more than 
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the all-age census population is. In addition, there is greater clustering at coarser 

geographical scales for the census population than for the pupils, with clear 

evidence of a London effect. Given children usually live with a parent of the same 

ethnic group, the implication is that what is observed for London is caused by 

residential differences between elder members of the census population. 

Previous studies have highlighted the reduced number of White British living in 

cities, notably London (Goodhart 2013, Hellen 2013, Kaufmann & Harris 2014). 

However, the median age of the White British is greater at 40-44 years than for 

other ethnic groups, especially Asian Bangladeshis, for whom the median is 20-

24 years (Simpson 2013, Harris 2016b). If there is a general process of migration 

out from cities with aging then the White British will, on average, be ahead of 

other ethnic groups and more financially positioned to make the move. This 

would be consistent with other evidence, which has shown: (a) a pattern of 

spatial retrenchment and contraction of the White British out of London and 

other traditionally industrial cities; (b) a process of dispersion and spatial 

diffusion of ‘minority’ groups across cities as their numbers grow and they move 
out from their previous enclaves; (c) that the places that those groups move to 

have declining numbers of White British residents; but (d) that the places that 

the White British are moving to are gradually becoming more ethnically diverse 

(Harris 2014, 2015, 2016a, Johnston et al. 2014, Catney 2015b). Paradoxically, 

what makes London seem unusual might not be not unique at all. The reason is 

that a process whereby some of the ‘minority’ groups spread out, and some of 

the White British residents move out, can act either to even-up the shares of each 

group living in each neighbourhood or to increase the disparity between them. It 

all depends on the starting values and the amount of change. 
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Critically, what cannot be concluded is that because the school age population 

appears more segregated when compared to residential patterns of living so 

there is evidence that ethnic segregation is increasing. If the pupil data for 2011 

are compared with that for 2002 (the earliest date for which comparable data 

are available) then there is no evidence that the ID has increased for pupils; in 

fact, it has decreased slightly for all groups except the Black Caribbeans, for 

which there has been only a marginal increase (from 0.808 to 0.820). This can be 

seen by looking again at Table 2 and comparing the columns headed Pupils 2011 

with the columns header Pupils 2002. 

Also evident from the table is a general uplift in the scale of segregation for 

pupils in 2011 when compared with those for 2002. This can be seen by looking 

at the holdback and variance measures for the two years and noting that these 

tend to reduce in magnitude at the lower scales and to increase at the coarser 

ones. The finding is again consistent with a process of spreading out of the 

minority groups and the spatial contraction of the White British, creating 

broader scale patterns of ethnic geography. These broader patterns replace 

some of the finer scale differences but do so against a backdrop in which the 

overall divisions are lessening. The evidence is of decreasing residential 

segregation as other studies also have shown. 

Conclusion 

This paper makes two connected advances. The first is a methodological 

development that adds to a growing interest in multiscale measures of 

segregation. The second is a contribution to current public and policy debates in 
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response to the Casey Review into opportunity and integration and the 

perception that ethnic segregation is rising in the UK – this despite the evidence 

of multiple census-based studies that show it to have decreased. 

The paper looks at the residential segregation of White British school pupils in 

comparison to other ethnic groups in England. It agrees with the Review in 

finding that the school age population is more segregated residentially than is 

the population-at-large but that difference needs to be set in the context of what 

is decreasing segregation for the school-age population over the decade to 2011. 

The general uplift in the geographical scale at which patterns of segregation can 

be observed is consistent with a process of the minority groups spreading out 

from their more traditional enclaves occurring in tandem with the spatial 

contraction of the White British from urban areas, especially London. However, 

there is no reason to conclude this is driven by or is driving a presumed lack of 

integration because the differential rate of movement can arise because of their 

different age profiles and spatial opportunity structures. The other ethnic groups 

are generally younger than the White British (Rees & Butt 2004, Rees et al. 

2013), which means their movement into new areas to raise families can 

increase their number in those places and give an impression of increased 

segregation. However, such increases are likely to be short-lived: they are a 

demographic effect that will decline as those children age and themselves move.  

The oobserved patterns of segregation have been studied by showing how the 

traditional index of dissimilarity can be disaggregated into a series of localised 

values, which are derived as residuals from a regression model with a zero 

intercept and an appropriate offset. Those residuals can also be estimated in a 
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multilevel model that allows them to be apportioned between the various levels 

of a geographical hierarchy. Measures of the amount and spatial impact of the 

segregation at each level can be calculated, allowing for the study of scale effects. 

As such, the index begins to consider both the principal dimensions of 

segregation, unevenness and clustering.  

More advanced developments would be to consider how the approach can be 

extended into a multi-group index (Reardon & Firebaugh, 2002) or to place the 

index within the framework of a hierarchical spatial autoregressive model (Dong 

& Harris 2015, Dong et al., 2016). Such a model provides an integration of 

multilevel modelling with a spatial econometric approach and would move away 

from the idea that patterns of segregation are contained within the discrete boundaries of the model’s geographical hierarchical and can instead overspill 

into neighbouring locations. A weakness of the multilevel approach is it does not 

really look at the impact of scale upon segregation but upon the amount of 

segregation that can be attributed to the various levels of the model. The problem 

is that these levels are usually somewhat arbitrary; in fact, any one level is 

usually a mixture of scales because the areal units that comprise it vary in shape 

and size. There is potential in adopting a more consistent geography such as 

using the gridded data available at https://popchange.liverpool.ac.uk/ (Lloyd, 

2016). 

Most broadly, we need to ask what measures of segregation can actually tell us 

about the processes of segregation. Ultimately, the indices measure outcomes 

not causes, and the multilevel models reveal only (unexplained) spatial variation, 

not the processes by which patterns of spatial clustering and dissimilarity arose. 
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Although a focus on multiscale measurement is important, to better achieve its 

potential, a future research agenda needs to link the measurement both to the 

causes of spatial differentiation (demographic change, immigration, employment 

structures, the operation of the housing market, and so forth) and to its 

outcomes (for example, the impact of segregation on health, well-being or 

educational performance).  
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Figure 2. Caterpillar plots showing the regional level effects of Asian Indian – 
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Asian Bangladeshi 

ID = 0.848 

E(ID) = 0.218 

Holdback score % of variance 

Asian Pakistani 

ID = 0.842 

E(ID) = 0.139 

Holdback score % of variance 

GOR -5.6 GOR 0.4 GOR -9.4 GOR 0.8 

LA -30.7 LA 35.3 LA -14.3 LA 13.3 

MLSOA -10.3 MLSOA 34.6 MLSOA -19.4 MLSOA 61.6 

LLSOA -9.1 LLSOA 29.7 LLSOA -6.8 LLSOA 24.5 

Significant LAs 𝑧̅ Impact 
% pupils Asian 

Bangladeshi 

% pupils 

White British 
Significant LAs 𝑧̅ Impact 

% pupils Asian 

Pakistani 

% pupils 

White British 

Tower Hamlets (LDN) 8.45 2669 60.7 11.1 Bradford (Y&H) 2.79 702 33.3 50.2 

Newham (LDN) 3.07 969 17.9 8.8 Pendle (NW) 2.05 515 31.0 63.5 

Oldham (NW) 2.15 679 13.9 60.3 
     

Asian Indian 

ID = 0.738 

E(ID) = 0.171 

Holdback score % of variance 

White Other 

ID = 0.506 

E(ID) = 0.130 

Holdback score % of variance 

GOR -8.5 GOR 1.1 GOR -17.2 GOR 11.7 

LA -25.9 LA 28.1 LA -28.8 LA 41.7 
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LLSOA -7.9 LLSOA 24.4 LLSOA -11.5 LLSOA 25.1 

Significant LAs 𝑧̅ Impact 
% pupils Asian 

Indian 

% pupils 

White British 
Significant LAs 𝑧̅ Impact 

% pupils White 

Other 

% pupils  

White British 

Leicester (EMID) 4.20 939 29.4 37.3 Enfield (LDN) 4.68 691 25.7 25.0 

Blackburn (NW) 2.81 628 17.5 55.5 Haringey (LDN) 3.70 546 23.4 19.0 

Harrow (LDN) 2.43 542 19.6 20.7 Waltham Forest (LDN) 2.49 368 14.4 22.0 

Oadby and Wigston (EMID) 2.36 528 23.1 61.4 Hackney (LDN) 2.48 365 16.9 15.3 

Hounslow (LDN) 2.26 504 17.2 29.7 Barnet (LDN) 2.39 353 17.6 35.3 

Slough (SE) 2.24 500 14.8 24.7 Brent (LDN) 2.09 309 12.9 8.8 

Redbridge (LDN) 2.08 465 14.4 20.5 
     

Black Caribbean Holdback score % of variance Black African Holdback score % of variance 
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ID = 0.820 

E(ID) = 0.234 
GOR -19.5 GOR 5.5 ID = 0.779 

E(ID) = 0.156 
GOR -23.5 GOR 8.4 

LA -33.6 LA 40.1 LA -24.5 LA 28.3 

MLSOA -6.1 MLSOA 32.0 MLSOA -8.0 MLSOA 35.9 

LLSOA -4.2 LLSOA 22.4 LLSOA -5.0 LLSOA 27.5 

Significant LAs 𝑧̅ Impact 
% pupils Black 

Caribbean 

% pupils 

White British 
Significant LAs 𝑧̅ Impact % Black African 

% pupils 

White British 

Lewisham (LDN) 3.96 738 16.6 25.8 
Barking & Dagenham 

(LDN) 
3.43 631 22.0 39.5 

Lambeth (LDN) 3.72 693 17.5 15.8 Southwark (LDN) 3.25 598 29.8 23.0 

Hackney (LDN) 3.04 566 12.9 15.3 Greenwich (LDN) 2.74 504 22.5 41.6 

Croydon (LDN) 3.00 559 12.1 37.1 Newham (LDN) 2.71 498 16.6 8.8 

Haringey (LDN) 2.76 514 10.9 19.0 Lambeth (LDN) 2.39 441 24.0 15.8 

Brent (LDN) 2.74 510 10.5 8.8 Hackney (LDN) 2.35 432 21.2 15.3 

Southwark (LDN) 2.41 449 10.6 23.0 Enfield (LDN) 2.10 387 15.6 25.0 

Waltham Forest (LDN) 2.39 444 8.4 22.0 Haringey (LDN) 2.08 384 17.5 19.0 

     
Brent (LDN) 2.07 381 16.8 8.8 

 

Table 1. Showing the ID, expected ID, holdback scores and variance measures for the residential segregation of each of six ethnic groups 

from the White British at four levels of analysis (LLSOAs, MLSOAs, LAs and GORs) for pupils in state schools in England in 2011. Also 

shown are the LAs contributing most greatly to the ID score in each case and the regions where those LAs are located (EMID = East 

Midlands, LDN = London, NW = North West, Y&H = Yorkshire and the Humber, SE= South East). 
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Census 2011 Pupils 2011 Pupils 2002 

Asian 

Bangladeshi 

ID 0.772 ID 0.848 ID  0.874 

E(ID)  0.109 E(ID) 0.218 E(ID) 0.266 

% population 0.8 % population 1.6 % population 1.1 

 

Holdback score % Variance Holdback score % Variance Holdback score % Variance 

GOR -15.0 6.4 -5.6 0.4 -2.9 0.1 

LA -4.9 36.2 -30.7 35.3 -27.9 31.5 

MLSOA -8.9 32.2 -10.3 34.6 -9.3 32.7 

LLSOA -7.3 25.2 -9.1 29.7 -11.5 35.7 

Asian 

Indian 

ID 0.658 ID 0.738 ID  0.772 

E(ID)  0.060 E(ID)  0.171 E(ID)  0.178 

% population 2.6 % population 2.5 % population 2.3 

 Holdback score % Variance Holdback score % Variance Holdback score % Variance 

GOR -18.6 11.5 -8.5 1.1 -10.2 1,0 

LA -12.1 30.0 -25.9 28.1 -23.4 23.4 

MLSOA -10.6 40.6 -13.0 46.5 -12.2 50.1 

LLSOA -5.2 17.9 -7.9 24.4 -6.7 25.6 

Asian 

Pakistani 

ID 0.775 ID 0.842 ID 0.852 

E(ID)  0.068 E(ID) 0.139 E(ID) 0.166 

% population 2.1 % population 3.8 % population 2.6 

 Holdback score % Variance Holdback score % Variance Holdback score % Variance 

GOR -13.9 2.8 -9.4 0.8 -9.2 0.6 

LA -12.0 15.0 -14.3 13.3 -9.1 8.4 

MLSOA -16.8 61.3 -19.4 61.6 -20.4 59.6 

LLSOA -5.5 20.9 -6.8 24.3 -9.0 31.3 

Black 

African 

ID  0.699 ID 0.779 ID  0.841 

E(ID)  0.072 E(ID)  0.156 E(ID)  0.227 

% population 1.8 % population 3.0 % population 1.4 

 Holdback score % Variance Holdback score % Variance Holdback score % Variance 

GOR -32.9 33.0 -23.5 8.4 -22.9 5.3 

LA -4.4 17.2 -24.5 28.3 -29.9 34.2 

MLSOA -8.8 32.0 -8.0 35.9 -5.0 28.9 

LLSOA -4.7 17.8 -5.0 27.5 -4.2 31.5 

Black 

Caribbean 

ID 0.717 ID  0.820 ID  0.808 

E(ID)  0.093 E(ID)  0.234 E(ID)  0.231 

% population 1.1 % population 1.3 % population 1.4 

 Holdback score % Variance Holdback score % Variance Holdback score % Variance 

GOR -33.8 32.6 -19.5 5.5 -19.1 4.4 

LA -7.5 22.4 -33.6 40.1 -29.9 33.2 

MLSOA -6.9 32.2 -6.1 32.0 -7.2 37.0 

LLSOA -2.9 12.8 -4.2 22.4 -4.5 25.4 

White 

Other 

ID   0.464 ID  0.506 ID  0.610 

E(ID)  0.041 E(ID) 0.130 E(ID) 0.165 
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% population 5.7 % population 4.3 % population 2.7 

 Holdback score % Variance Holdback score % Variance Holdback score % Variance 

GOR -34.5 48.5 -17.2 11.7 -14.1 6.4 

LA -7.6 22.7 -28.8 41.7 -29.9 36.4 

MLSOA -11.3 17.4 -11.7 21.6 -10.0 31.6 

LLSOA -5.5 11.4 -11.5 25.1 -8.7 25.5 

 

Table 2. Comparing the ID and scale of segregation from the White British for 

each of the six ethnic groups: for the Census population in 2011, for pupils in 

state schools in 2011, and for pupils in state schools in 2002, in England. 

 

 

 


