
Measuring the Similarity between Implicit Semantic
Relations from the Web

Danushka Bollegala∗

The University of Tokyo
Hongo 7-3-1, Tokyo

113-8656, Japan
danushka@mi.ci.i.u-

tokyo.ac.jp

Yutaka Matsuo
The University of Tokyo

Hongo 7-3-1, Tokyo
113-8656, Japan

matsuo@biz-model.t.u-
tokyo.ac.jp

Mitsuru Ishizuka
The University of Tokyo

Hongo 7-3-1, Tokyo
113-8656, Japan

ishizuka@i.u-tokyo.ac.jp

ABSTRACT

Measuring the similarity between semantic relations that hold among
entities is an important and necessary step in various Web related
tasks such as relation extraction, information retrieval and analogy
detection. For example, consider the case in which a person knows
a pair of entities (e.g. Google, YouTube), between which a partic-
ular relation holds (e.g. acquisition). The person is interested in
retrieving other such pairs with similar relations (e.g. Microsoft,

Powerset). Existing keyword-based search engines cannot be ap-
plied directly in this case because, in keyword-based search, the
goal is to retrieve documents that are relevant to the words used in
a query – not necessarily to the relations implied by a pair of words.
We propose a relational similarity measure, using a Web search en-
gine, to compute the similarity between semantic relations implied
by two pairs of words. Our method has three components: repre-
senting the various semantic relations that exist between a pair of
words using automatically extracted lexical patterns, clustering the
extracted lexical patterns to identify the different patterns that ex-
press a particular semantic relation, and measuring the similarity
between semantic relations using a metric learning approach. We
evaluate the proposed method in two tasks: classifying semantic
relations between named entities, and solving word-analogy ques-
tions. The proposed method outperforms all baselines in a relation
classification task with a statistically significant average precision
score of 0.74. Moreover, it reduces the time taken by Latent Rela-
tional Analysis to process 374 word-analogy questions from 9 days
to less than 6 hours, with an SAT score of 51%.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Retrieval

General Terms

Algorithms

Keywords

Relational Similarity, Web Mining, Natural Language Processing

∗Research Fellow of the Japan Society for the Promotion of Sci-
ence (JSPS)

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

1. INTRODUCTION
Similarity measures can be categorized broadly into two types:

attributional similarity measures and relational similarity measures.
For attributional similarity measures, the objective is to compute
the similarity between two given words by comparing the attributes
of each word. For example, the two words car and automobile

share many attributes (e.g. has wheels, is used for transportation).
Consequently, they are considered as synonyms. On the other hand,
relational similarity is the correspondence between semantic rela-
tions that exist between two word pairs. Word pairs that show a
high degree of relational similarity are considered as analogies. For
example, the two word pairs (ostrich, bird) and (lion, cat). Ostrich
is a large bird and lion is a large cat are illustrative of high rela-
tional similarity. The semantic relation, is a large, pertains between
the two words in each word pair.

The information available on the Web can be considered as a
vast, hidden network of classes of objects (e.g. named entities) that
is interconnected by various semantic relations applying to those
objects. Measuring the similarity between semantic relations is an
important intermediate step in various tasks in information retrieval
and natural language processing such as relation extraction [7, 8,
40], in which the goal is to retrieve instances of a given relation.
For example, given the relation, ACQUIRER-ACQUIREE, a rela-
tion extraction system must extract the instance (Google, YouTube)
from the sentence Google completed the acquisition of YouTube.
Bootstrapping methods [25, 6, 14], which require a few seeds (ca.
10 pairs of instances per relation) have extracted numerous candi-
date instance pairs from a text corpus. Given a set of candidate
instance pairs, a relational similarity measure can be used to com-
pute the similarity between the relations in the seeds and in the
candidates. Candidate instance pairs with high relational similarity
with the seed pairs can then be selected as the correct instances of
a relation.

Relational similarity measures have been used to find word analo-
gies [10, 24, 31, 33, 38]. Word analogy questions have been used
from the Scholastic Aptitude Test (SAT; Educational Testing Ser-
vice) to benchmark relational similarity measures. An SAT word
analogy question consists of a stem word pair that acts as the ques-
tion and five choice word pairs, out of which only one is analogous
to the stem. A relational similarity measure is used to compare the
stem word pair with each choice word pair and to select the choice
word pair with the highest relational similarity as the answer.

An interesting application of relational similarity in informa-
tion retrieval is to search using implicitly stated analogies [21, 37].
For example, the query “Muslim Church” is expected to return
“mosque”, and the query “Hindu bible” is expected to return “the
Vedas”. These queries can be formalized as word pairs: (Christian,

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

651

Church) vs. (Muslim,X), and (Christian, Bible) vs. (Hindu,Y).
We can then find the words X and Y that maximize the relational
similarity in each case.

Despite the wide applications of relational similarity measures,
accurately measuring the similarity between implicitly stated rela-
tions remains a challenging task for several reasons. First, rela-
tional similarity is a dynamic phenomenon: it varies with time. For
example, two companies can be competitors initially; subsequently
one company might acquire the other. Second, there can be more
than one relation between a given word pair. For example, between
the two words ostrich and bird, aside from the relation is a large,
there is also the relation is a flightless. A relational similarity mea-
sure must first extract all relations between the two words in each
word pair before it can compute the similarity between the word
pairs. Third, there can be more than one way to express a particular
semantic relation in a text. For example, the three patterns – X was

acquired by Y, Y completed the acquisition of X, and Y buys X –
all indicate an acquisition relation between X and Y. In addition to
the problems described above, measuring relational similarity be-
tween pairs in which one or both words are named entities (e.g.,
company names, personal names, locations, etc.) is even more dif-
ficult because such words are not well covered by manually created
dictionaries such as WordNet1[23].

As described herein, we propose a relational similarity measure
that uses a Web search engine to measure the similarity between
implicitly stated semantic relations in two word pairs. Formally,
given two word pairs, (a,b) and (c,d), we design a function, rel-

sim((a, b), (c, d)), that returns a similarity score in the range [0, 1].
The proposed relational similarity measure first extracts implicitly
stated relations that exist between the two words in each word pair.
The measure then compares the extracted relations between word
pairs.

Our contributions are summarized as follows:

• We propose a shallow, lexical-patterns-based approach to rep-
resent the various semantic relations that pertain between the
two words in a given word pair. The proposed pattern extrac-
tion algorithm requires no language dependent preprocessing
steps such as part-of-speech tagging or dependency parsing,
which can be time consuming or even infeasible at the Web
scale. We extract numerous lexical patterns that describe var-
ious semantic relations.

• We present an efficient sequential clustering algorithm to clus-
ter lexical patterns, to identify the different patterns that de-
scribe a particular semantic relation. The proposed clustering
algorithm requires only one pass through the set of extracted
patterns. For that reason, it scales linearly with the number
of patterns. We then use the clusters to define features for a
supervised metric learning algorithm.

• We evaluate the proposed method in two tasks: classify-
ing semantic relations between named entities, and solving
SAT word-analogy questions. In the relation classification
task, the proposed method significantly outperforms all base-
lines, including the state-of-the art Latent Relational Analy-
sis (LRA) [33]. Moreover, the proposed method achieves an
SAT score of 51.1 and reduces the time taken to answer 374
questions by LRA from 9 days to less than 6 hours.

1http://wordnet.princeton.edu/

2. RELATED WORK
The Structure Mapping Theory (SMT) [15] is based on the premise

that an analogy is a mapping of knowledge from one domain (base)
into another (target), which conveys that a system of relations known
to hold in the base also holds in the target. The target objects need
not resemble their corresponding base objects. This structural view
of analogy is based on the intuition that analogies are about rela-
tions, rather than simple features. Although this approach works
best when the base and the target are rich in higher-order causal
structures, it can fail when structures are missing or flat [39].

Turney et al. [35] combined 13 independent modules by con-
sidering the weighted sum of the outputs of each module to solve
SAT analogy questions. The best performing individual module
was based on the Vector Space Model (VSM). In the VSM ap-
proach [34], a vector is first created for a word pair (X,Y) by count-
ing the frequencies of various lexical patterns containing X and Y.
In their experiments, they used 128 manually created patterns such
as “X of Y”, “Y of X”, “X to Y”, and “Y to X”. These patterns
are then used as queries to a search engine. The numbers of hits
for respective queries are used as elements in a vector to repre-
sent the word pair. Finally, the relational similarity is computed as
the cosine of the angle between the two vectors that represent the
two word pairs. Turney et al. [35] introduced a dataset containing
374 SAT analogy questions to evaluate relational similarity mea-
sures. An SAT analogy question consists of a stem word pair that
acts as the question, and five choice word pairs. The choice word
pair that has the highest relational similarity with the stem word
pair is selected by the system as the correct answer. The average
SAT score reported by high school students for word-analogy ques-
tions is 57%. The VSM approach achieves a score of 47% on this
dataset.

Turney [31, 33] proposed Latent Relational Analysis (LRA) by
extending the VSM approach in three ways: a) lexical patterns are
automatically extracted from a corpus, b) the Singular Value De-
composition (SVD) is used to smooth the frequency data, and c)
synonyms are used to explore variants of the word pairs. Similarly,
in the VSM approach, LRA represents a word pair as a vector of
lexical pattern frequencies. First, using a thesaurus, he finds related
words for the two words in a word pair and create additional word
pairs that are related to the original word pairs in the dataset. Sec-
ond, n-grams of words are extracted from the contexts in which the
two words in a word pair cooccur. The most frequent n-grams are
selected as lexical patterns to represent a word pair. Then a matrix
of word pairs vs. lexical patterns is created for all the word pairs in
the original dataset and the additional word pairs. Elements of this
matrix correspond to the frequency of a word pair in a lexical pat-
tern. Singular value decomposition is performed on this matrix to
reduce the number of columns (i.e. patterns). Finally, the relational
similarity between two word pairs is computed as the average co-
sine similarity over the original word pairs and the additional word
pairs derived from them. In fact, LRA achieves a score of 56.4%
on SAT analogy questions.

Both VSM and LRA require numerous search engine queries to
create a vector to represent a word pair. For example, with 128
patterns, the VSM approach requires at least 256 queries to cre-
ate two pattern-frequency vectors for two word pairs before it can
compute the relational similarity. In fact, LRA considers synony-
mous variants of the given word pairs. For that reason, it requires
even more search engine queries. Methods that require numerous
queries impose a heavy load on search engines. Despite efficient
implementations, singular value decomposition of large matrices is
time consuming. In fact, LRA takes over 9 days to process the 374
SAT analogy questions [33]. This is problematic when computing

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

652

relational similarity on the scale of the Web. Moreover, in the case
of named entities, thesauri of related words are not usually avail-
able or are not complete, which becomes a problem when creating
the additional word pairs required by LRA.

Veale [38] proposed a relational similarity measure based on the
taxonomic similarity in WordNet. The quality of a candidate anal-
ogy A:B::C:D (i.e. A to B as C to D) is evaluated through compar-
ison of the paths in the WordNet, joining A to B and C to D. Rela-
tional similarity is defined as the similarity between the A:B paths
and C:D paths. However, WordNet does not fully cover named
entities such as personal names, organizations and locations, which
becomes problematic when using this method to measure relational
similarity between named entities.

Using a relational similarity measure, Turney [32] proposed an
unsupervised learning algorithm to extract patterns that express im-
plicit semantic relations from a corpus. His method produces a
ranked set of lexical patterns that unambiguously describes the re-
lation between the two words in a given word pair. Patterns are
ranked according to their expected relational similarity (i.e. perti-
nence); they are computed using an algorithm similar to LRA. To
answer an SAT analogy question, first, ranked lists of patterns are
generated for each of the six word pairs (one stem word pair and
five choice word pairs). Then each choice is evaluated by taking
the intersection of its patterns with the stem’s patterns. The shared
patterns are scored by the average of their rank in the stem’s list and
the choice’s lists. The algorithm picks the choice with the lowest
scoring shared pattern as the correct answer. This method reports
an SAT score of 54.6%.

Relational similarity measures have been applied in natural lan-
guage processing tasks such as generating word analogies [10],
and classifying noun-modifier compounds based on the relation be-
tween the head and the modifier [33, 24, 9, 24]. Davidov and Rap-
poport [10] proposed an unsupervised algorithm to discover general
semantic relations that pertain between lexical items. They repre-
sent a semantic relation with a cluster of patterns. They use the
pattern clusters to generate SAT-like word analogy questions for
English and Russian languages. The generated questions are then
solved by human subjects. They do not evaluate their method for
relational similarity between named entities.

Relational similarity measures have been used to classify the re-
lationships between the head and the modifier in noun-compounds
[33, 24, 9]. For example, in the compound viral flu, the flu (head)
is caused by a virus (modifier). The Diverse dataset of Barker and
Szpakowicz [1], which consists of 600 head-modifier pairs (noun-
noun, adjective-noun and adverb-noun) is used as a benchmark
dataset to evaluate relation classification of noun-compounds. Each
noun-modifier pair in this dataset is annotated with one of the fol-
lowing five relations: causal, temporal, spatial, participant, and
quality. Nakov and Hearst [24] proposed a linguistically motivated
method that utilizes verbs, prepositions, and coordinate conjunc-
tions that can help make explicit the hidden relations between the
target nouns. They report a classification accuracy of 40.5% on the
Diverse dataset using a single nearest neighbor classifier.

3. METHOD

3.1 Outline
Given two pairs of words (or named entities), (a,b) and (c,d), the

problem of measuring the similarity of implicit semantic relations
between the two pairs can be viewed as a two-stage process.

First, we must extract the semantic relations that pertain in each
word pair. We use a web search engine to retrieve the various con-
texts in which the two words in a word-pair cooccur. We then ex-

Google to acquire YouTube for $1.65 billion in stock. Combination
will create new opportunities for users and content owners every-
where...

Figure 1: A snippet returned for the query “Google * * *

YouTube”.

tract lexical patterns from the retrieved contexts to represent the
various semantic relations that hold between two words. However,
not all patterns represent different semantic relations. A single se-
mantic relation can be expressed using more than one lexical pat-
tern. For example, both lexical patterns X acquired Y and Y was

bought by X indicate an ACQUISITION relation between entities
X and Y. We present an efficient clustering algorithm to identify the
various lexical patterns that denote a particular semantic relation.

Second, we must compare the extracted semantic relations be-
tween the two word pairs to compute their relational similarity. We
model this problem as one of learning a distance metric between
relationally similar and dissimilar word pairs. Unlike previously
proposed relational similarity measures, we do not assume seman-
tic relations to be independent, and learn a non-Euclidean Maha-
lanobis distance metric.

3.2 Retrieving Contexts
We must first identify the implicitly stated relations that hold be-

tween the two words in each word pair to compute the relational
similarity between two given word pairs. The context in which two
words cooccur provides useful clues about the semantic relations
that pertain between those words. We propose the use of text snip-
pets retrieved using a Web search engine as an approximation of the
context of two words. Snippets (also known as dynamic teasers) are
brief summaries provided by most Web search engines along with
the search results. Typically, a snippet contains a window of text
selected from a document that includes the queried words. Snippets
are useful for search because, most of the time, a user can read the
snippet and decide whether a particular search result is relevant,
without even opening the url. Using snippets as contexts is also
computationally efficient because it obviates the need to download
the source documents from the Web, which can be time consuming
if a document is large.

A snippet for a query containing two words captures the local
context in which they cooccur. For example, consider the snippet
shown in Figure 1, returned by Yahoo2 for the query “Google *

* YouTube”. Here, the wildcard operator “*” matches one word
or none in a document. The snippet in Figure 1 is extracted from
an online newspaper article about the acquisition of YouTube by
Google.

To retrieve snippets for a word pair (A,B), we use the following
seven types of queries: “A * B”, “B * A”, “A * * B”, “B * * A”,
“A * * * B”, “B * * * A”, and A B. The queries containing the
wildcard operator “*” returns snippets in which the two words, A

and B appear within a window of specified length. We designate
such queries a wildcard queries. We search for snippets in which
the query words cooccur within a maximum window of three words
(tokens). This process is intended to approximate the local context
of two words in a document. The quotation marks around a query
will ensure that the two words appear in the specified order (e.g.
A before B in snippets retrieved for the query “A * B”). As a fall-
back in the case that all wildcard queries fail to return any snippets,
we use the query A B (without wildcards or quotations) to retrieve
snippets where A and B appear in any order.

2http://developer.yahoo.com/search/boss/

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

653

Once we collect snippets for a word pair using the procedure
described above, we remove duplicate search results. We consider
two snippets to be duplicates if they contain the exact sequence of
all words. Duplicate snippets exist mainly for two reasons. First,
a web page can be mirrored in more than one location, and the
default de-duplication mechanism of the search engine might fail
to filter out the duplicates. Second, the queries we construct for
a word pair are not independent. For example, a query with two
wildcards might return a snippet that can also be retrieved using a
query with one wildcard. However, we observed that the ranking
of search results vary with the number of wildcards used. A search
engine usually returns only the top ranking results (in the case of
Yahoo, only the top 1000 snippets can be downloaded). We use
multiple queries per word pair that induce different rankings, and
aggregate search results to circumvent this limitation.

3.3 Extracting Lexical Patterns
Lexical syntactic patterns have been used in various natural lan-

guage processing tasks such as extracting hypernyms [17, 30], or
meronyms [2], question answering [28], and paraphrase extrac-
tion [3]. Following these previous works, we present a shallow lex-
ical pattern extraction algorithm to represent the semantic relations
between two words. The proposed method requires no language-
dependent preprocessing such as part-of-speech tagging or depen-
dency parsing, which can be both time consuming at Web scale,
and likely to produce incorrect results because of the fragmented
and ill-formed snippets. The pattern extraction algorithm consists
of the following three steps.

Step 1: Given a context S, retrieved for a word pair (A, B) ac-
cording to the procedure described in section 3.2, we replace
the two words A and B, respectively, with two variables X
and Y . Legal abbreviations such as Inc., Ltd., Corp., and ti-
tles such as Mr., Ms., Prof., Dr., Rev. are considered as occur-
rences of the query terms. For example, Google Inc. is con-
sidered as an occurrence of the entity Google. We replace all
numeric values by D, a marker for digits. Punctuation marks
are not removed.

Step 2: We generate all subsequences of the context S that satisfy
all of the following conditions.

(i). A subsequence must contain exactly one occurrence of
each X and Y (i.e., exactly one X and one Y must
exist in a subsequence).

(ii). The maximum length of a subsequence is L words.

(iii). A subsequence is allowed to have gaps. However, we
do not allow gaps of more than g number of words.
Moreover, the total length of all gaps in a subsequence
should not exceed G words.

(iv). We expand all negation contractions in a context. For
example, didn’t is expanded to did not. We do not skip
the word not when generating subsequences. For ex-
ample, this condition ensures that from the snippet X is

not a Y, we do not produce the subsequence X is a Y.

Step 3: We count the frequency of all generated subsequences for
all word pairs in the dataset. We select subsequences with
frequency greater than N as lexical patterns to represent the
semantic relations between words.

Our pattern extraction algorithm has four parameters (ca. L, g,

G and N). We set the values of those parameters experimentally, as

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 F
re

qu
en

cy

Word-Pair IDs

X buys Y
X acquires Y

Y ceo X
Y chief executive X

Figure 2: Distribution of four lexical patterns in word pairs.

explained later in section 4. It is noteworthy that the proposed pat-
tern extraction algorithm considers all the words in a snippet, and
is not limited to extracting patterns only from the mid-fix (i.e., the
portion of text in a snippet that appears between the queried words).
Moreover, the consideration of gaps enables us to capture relations
between distant words in a snippet. We use a modified version of
the prefixspan algorithm [26] to generate subsequences. The condi-
tions in Step 2 are used to prune the search space, thereby reducing
the number of generated subsequences in prefixspan. For example,
some patterns extracted form the snippet shown in Figure 1 are: X

to acquire Y, X acquire Y, and X to acquire Y for.

3.4 Identifying Semantic Relations
A semantic relation can be expressed using more than one pat-

tern. For example, consider the two distinct patterns, X acquired Y,
and X completed the acquisition of Y. Both these patterns indicate
that there exists an acquisition relation between X and Y. It is im-
portant to know whether any correspondence pertains between the
sets of patterns extracted for each word pair when we compute the
relational similarity between two word pairs. We can expect a high
relational similarity if there are many related patterns between two
word pairs.

We use the distributional hypothesis [16] to find semantically
related lexical patterns. The distributional hypothesis states that
words that occur in the same context have similar meanings. The
distributional hypothesis has been used in various related tasks,
such as identifying related words[18], discovering inference rules[19],
and extracting paraphrases[3]. If two lexical patterns are similarly
distributed over a set of word pairs (i.e. occurs with the same set
of word pairs), then from the distributional hypothesis it follows
that the two patterns must be similar. For example, consider the
distributions shown in Figure 2 for four lexical patterns: X buys Y,
X acquires Y, Y CEO X, and Y chief executive X, over a set of 100
word pairs. Each distribution is normalized such that the sum of
frequencies over all word pairs equals one. Figure 2 shows that the
distributions of patterns Y CEO X, and Y chief executive X have a
high overlap (i.e., cosine similarity of 0.969). Similarly, the distri-
butions of patterns X buys Y, and X acquires Y show a high overlap
(i.e. cosine similarity of 0.853). However, almost no overlap is ap-
parent between other combinations of distributions. Consequently,
to recognize semantically related patterns, we cluster lexical pat-
terns using the similarity of their distributions over word pairs.

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

654

We represent a pattern p by a vector p of word-pair frequencies.
We designate p, the word-pair frequency vector of pattern p. It
is analogous to the document frequency vector of a word, as used
in information retrieval. The value of the element corresponding
to a word pair (ai, bi) in p, is the frequency, f(ai, bi, p), that the
pattern p occurs with the word pair (ai, bi). As demonstrated later
in the experiments of this study, the proposed pattern extraction
algorithm typically extracts numerous lexical patterns (more than
140, 000). Clustering algorithms based on pairwise comparisons
among all patterns are not feasible when the patterns are numerous.
Next, we present a sequential clustering algorithm to efficiently
cluster the extracted patterns.

Given a set P of patterns and a clustering similarity threshold θ,
Algorithm 1 returns clusters (of patterns) that express similar se-
mantic relations. First, in Algorithm 1, the function SORT sorts
the patterns into descending order of their total occurrences in all
word pairs. The total occurrence of a pattern p is the sum of fre-
quencies over all word pairs (i.e.,

∑

i f(ai, bi, p)). After sorting,
the most common patterns appear at the beginning in P , whereas
rare patterns (i.e., patterns that occur with only few word pairs) get
shifted to the end. Next, in line 2, we initialize the set of clusters, C,
to the empty set. The outer for-loop (starting at line 3), repeatedly
takes a pattern pi from the ordered set P , and in the inner for-loop
(starting at line 6), finds the cluster, c∗ (∈ C) that is most simi-
lar to pi. First, we represent a cluster by the centroid of all word
pair frequency vectors corresponding to the patterns in that cluster
to compute the similarity between a pattern and a cluster. Next, we
compute the cosine similarity between the cluster centroid (cj), and
the word pair frequency vector of the pattern (pi). If the similarity
between a pattern pi, and its most similar cluster, c∗, is greater than
the threshold θ, we append pi to c∗ (line 14). We use the operator
⊕ to denote the vector addition between c∗ and pi. Then we form
a new cluster {pi} and append it to the set of clusters, C, if pi is
not similar to any of the existing clusters beyond the threshold θ.

The only parameter in Algorithm 1, the similarity threshold, θ,
ranges in [0, 1]. It decides the purity of the formed clusters. Set-
ting θ to a high value ensures that the patterns in each cluster are
highly similar. However, high θ values also yield numerous clusters
(increased model complexity). In section 4, we investigate, experi-
mentally, the effect of θ on the overall performance of the proposed
relational similarity measure.

The computational time complexity of Algorithm 1 is O(n|C|),
where n is the number of patterns to be clustered and |C| is the
number of clusters. Usually, n is much larger than |C| (i.e. n ≫
|C|). Therefore, the overall time complexity of Algorithm 1 lin-
early scales with the number of patterns. The sequential nature
of the algorithm avoids pairwise comparisons among all patterns.
Moreover, sorting the patterns by their total word-pair frequency
prior to clustering ensures that the final set of clusters contains the
most common relations in the dataset.

3.5 Measuring Relational Similarity
Evidence from psychological experiments suggest that similar-

ity can be context-dependent and even asymmetric [36, 22]. Hu-
man subjects have reportedly assigned different similarity ratings
to word pairs when the two words were presented in reverse order.
However, experimental results investigating the effects of asymme-
try, report that the average difference in ratings for a word pair is
less than 5 percent [22]. Consequently, we assume relational sim-
ilarity to be symmetric and limit ourselves to symmetric similarity
measures. This assumption is in line with previous work on rela-
tional similarity described in section 2.

We model the problem of measuring relational similarity be-

Algorithm 1 Sequential pattern clustering algorithm.

Input: patterns P = {p1, . . . ,pn}, threshold θ
Output: clusters C

1: SORT(P)
2: C ← {}
3: for pattern pi ∈ P do

4: max ← −∞
5: c∗ ← null
6: for cluster cj ∈ C do

7: sim ← cosine(pi, cj)
8: if sim > max then

9: max ← sim
10: c∗ ← cj

11: end if

12: end for

13: if max > θ then

14: c∗ ← c∗ ⊕ pi

15: else

16: C ← C ∪ {pi}
17: end if

18: end for

19: return C

tween word pairs as one of learning a Mahalanobis distance metric
from a given set of relationally similar and dissimilar word pairs.
Given two points xi, xj, the (squared) Mahalanobis distance be-
tween them, dA(xi,xj), is parametrized using a positive definite
matrix A as follows,

dA(xi,xj) = (xi − xj)
T
A(xi − xj). (1)

The Mahalanobis distance is a straightforward extension of the stan-
dard Euclidean distance. In fact, if we let A be the identity matrix,
then the Mahalanobis distance reduces to the Euclidean distance.

The motivation behind using Mahalanobis distance to measure
relational similarity is two-fold. First, Mahalanobis distance can
be learned from a few data points, and efficient algorithms that can
scale well to high-dimensional feature spaces are known [13, 12].
Second, unlike Euclidean distance, Mahalanobis distance does not
assume that features are independent. This is particularly important
for relational similarity measures because semantic relations are
not always independent. A posterior analysis of the Mahalanobis
matrix (A) can provide useful information related to the correlation
between semantic relations.

To learn a Mahalanobis distance metric, we first represent each
word pair (ai, bi) as a feature vector xi. The j-th element of xi is
the total frequency of the word pair (ai, bi) in the j-th cluster; it is
given as

∑

p∈cj
f(ai, bi, p). Here, p is a pattern in the cluster cj ,

and f(ai, bi, p) is the number of times that the word pair (ai, bi)
appears with the pattern p. We L2 normalize all feature vectors.

Given a set of relationally similar pairs S and dissimilar pairs
D, the problem of learning a relational similarity measure becomes
one of finding a positive definite matrix A, such that dA(xi,xj) ≤
u for all (i, j) ∈ S, and dA(xi,xj) ≥ l for all (i, j) ∈ D. Here u
and l respectively signify upper and lower bounds of the decision
threshold, and are set experimentally as described later in section 4.
Intuitively, word pairs that share identical semantic relations must
have a higher relational similarity. We set an additional constraint
that the learned Mahalanobis matrix A must be “close” to the iden-
tity matrix I to incorporate this prior knowledge in the learning
problem at hand. This keeps the Mahalanobis distance similar to
the Euclidean distance; it also helps to prevent overfitting of the

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

655

data. We follow the information theoretic metric learning (ITML)
approach proposed by Davis et al. [13] to optimize the matrix A.

We observe the fact that there exists a simple bijection (up to a
scaling function) between the set of Mahalanobis distances and the
set of equal mean multivariate Gaussian distributions to quantify
the “closeness” between A and I. Assuming the equal mean to be
µ, for a Mahalanobis distance parameterized by A, the correspond-
ing Gaussian is given by p(x; A) = 1

Z
exp(− 1

2
dA(x, µ)), where

Z is a normalizing constant and A−1 is the covariance of the distri-
bution. Then, the closeness between A and I is measurable using
the Kullback-Liebler (KL) divergence between their corresponding
multivariate Gaussians:

KL(p(x; I) ‖ p(x; A)) =

∫

p(x; I) log
p(x; I)

p(x; A)
dx. (2)

Using Formula 2, the learning problem can be stated as

min
A

KL(p(x; I) ‖ p(x; A)) (3)

s.t dA(xi,xj) ≤ u (i, j) ∈ S

dA(xi,xj) ≥ l (i, j) ∈ D.

The integral form of the KL divergence presented in Formula 2
is difficult to numerically optimize directly. However, it has been
shown that the KL divergence between two multivariate Gaussians
can be expressed as the convex combination of a Mahalanobis dis-
tance between mean vectors and the LogDet divergence between
the covariance matrices [11]. Therefore, assuming that the means
of the Gaussians are equal, we have

KL(p(x; I) ‖ p(x; A)) =
1

2
Dld(A, I). (4)

Here, Dld(A, B) is the LogDet divergence of n×n positive-definite
matrices A, B. It is given as

Dld(A, B) = tr(AB−1) − log det(AB−1) − n. (5)

Finally, we incorporate slack variables into the formulation 3 to
guarantee the existence of a feasible solution for A, and pose the
following optimization problem:

min
Aº0,ξ

Dld(A, I) + γDld(diag(ξ), diag(ξ0)) (6)

s.t. tr(A(xi − xj)(xi − xj)
T) ≤ ξc(i,j) (i, j) ∈ S

tr(A(xi − xj)(xi − xj)
T) ≥ ξc(i,j) (i, j) ∈ D,

where c(i, j) is the index of the (i, j)-th constraint, ξ is a vector of
slack variables, initialized to ξ0 (components of ξ0 are initialized
to u and v, respectively, for similar and dissimilar constraints), and
γ is the parameter that controls the tradeoff between satisfying the
constraints and minimizing Dld(A, I). Algorithm 2 solves the op-
timization problem 6 by repeatedly projecting the current solution
onto a single constraint. Unlike Latent Relational Analysis [33],
Algorithm 2 requires no eigen-decomposition, which is time con-
suming for large matrices. In Algorithm 2, a single iteration of
looping through all constraints costs O(cd2), where c signifies the
number of constraints, and d represents the dimensionality of fea-
ture vectors.

Once we obtain a Mahalanobis matrix A from Algorithm 2, we
can use Formula 1 to compute relational distances. Distance and
similarity are inversely related. Therefore, it is possible to use
Formula 1 directly to compare word pairs. However, if one wants
to convert distance values ranging in [0, +∞) to similarity scores
ranging in [0, 1], it can be done using sigmoid functions [27].

Algorithm 2 Information-theoretic metric learning.

Input: X, (d×n matrix); S, set of similar pairs; D, set of dissim-
ilar pairs; u, l: distance thresholds; I, identity matrix; γ, slack
parameter; c, constraint index function

Output: A: Mahalanobis matrix

1: A ← I, λij ← 0 ∀i, j
2: ξc(i,j) ← u for (i, j) ∈ S; otherwise ξc(i,j) ← l
3: repeat

4: Pick a constraint (i, j) ∈ S or (i, j) ∈ D

5: p ← (xi − xj)
T
A(xi − xj)

6: δ ← 1 if (i, j) ∈ S, −1 otherwise

7: α ← min
(

λij ,
δ
2

(

1
p
− γ

ξc(i,j)

))

8: β ← δα/(1 − δαξc(i,j))
9: ξc(i,j) ← γξc(i,j)/(γ + δαξc(i,j))

10: λij ← λij − α

11: A ← A + βA(xi − xj)(xi − xj)
T
A

12: until convergence
13: return A

4. EXPERIMENTS
We use two different datasets to evaluate the proposed relational

similarity measure in two tasks: classifying semantic relations be-
tween named entities, and solving SAT word-analogy questions.
Solving SAT word analogy questions was first proposed by Turney
et al. [35] as a benchmark to evaluate relational similarity mea-
sures. An SAT analogy question consists of a stem word pair that
acts as the question, and five choice word pairs. A relational sim-
ilarity measure under evaluation will compare the stem word pair
with each choice word pair separately, and select the choice word
pair with the highest relational similarity as the correct answer. The
dataset contains 374 questions.

A limitation frequently associated with the SAT dataset is that it
contains no named entities or relations that Web users are typically
interested in, such as relations pertaining to companies or people.
Consequently, in addition to the SAT dataset, we created a dataset3

containing only entity pairs to evaluate the proposed relational sim-
ilarity measure. Hereinafter, we designate this as the ENT dataset.
The ENT dataset contains 100 instances (i.e. named-entity pairs)
of the following five relation types.

ACQUIRER-ACQUIREE This relation holds between pairs of com-
pany names (A,B), where the company B (acquiree) is ac-
quired by the company A (acquirer). We only consider ac-
quisitions that have already completed.

PERSON-BIRTHPLACE This relation holds between pairs (A,B),
where A is the name of a person, and B is the location (place)
where A was born. We consider city names and countries as
locations.

CEO-COMPANY This relation holds between pairs (A,B), where
A is the chief executive officer (CEO) of a company B. We
consider both current as well as past CEOs of companies.

COMPANY-HEADQUARTERS This relation holds between pairs
A,B, where company A’s headquarters is located in a place B.
We select names of cities as B.

PERSON-FIELD This relation holds between pairs (A,B), where
a person A is an expert or is known for his or her abilities in a

3http://www.miv.t.u-tokyo.ac.jp/danushka/reldata.zip

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

656

Table 1: Overview of the relational similarity dataset.
Relation Type Total contexts Examples (20 in all for each relation type)

ACQUIRER-ACQUIREE 91439 (Google, YouTube), (Adobe Systems, Macromedia), (Yahoo, Inktomi)

PERSON-BIRTHPLACE 72836 (Franz Kafka, Prague), (Charlie Chaplin, London), (Marie Antoinette, Vienna)

CEO-COMPANY, 82682 (Terry Semel, Yahoo), (Eric Scmidt, Google), (Steve Jobs, Apple)

COMPANY-HEADQUARTERS 100887 (Microsoft, Redmond), (Yahoo, Sunnyvale), (Google, Mountain View)

PERSON-FIELD 99660 (Albert Einstein, Physics), (Roger Federer, Tennis), (Shane Warne, Cricket)

field B. Instances of this relation contain scientists and their
field of expertise, athletes and the sports they are associated
with, and artists and the genre in which they perform.

We selected the relation types described above because previous
studies of relation detection on the Web have frequently used those
relations in evaluations [6]. We manually selected 20 instances for
each of the five relation types. Instances were selected from various
information sources such as Wikipedia4, online newspapers, and
company reviews5.

For word pairs in SAT and ENT datasets using the YahooBOSS
API6, we download snippets as described in section 3.2. For each
relation type in ENT dataset, in Table 1, we show some instances
and the total number of contexts. We randomly split the ENT
dataset into five equal-sized partitions to conduct five-fold cross
validation. Four partitions are used to extract patterns, clustering
and training. The remaining partition is used for testing. For ENT
data, positive training instances are generated by coupling word
pairs that belong to the same relation type (i.e., 5× (20× 19)/2 =
950 instances), and an equal number of negative training instances
are generated by randomly coupling word pairs that belong to dif-
ferent relation types.

We run the pattern extraction algorithm described in section 3.3
on the contexts in our dataset to extract lexical patterns. Experi-
mentally, we set the values for the various parameters in the pattern
extraction algorithm: L = 5, g = 2, and G = 4. The proposed
pattern extraction algorithm identifies numerous lexical patterns.
For example, for ENT training data, the algorithm extracts 473910
unique patterns. However, of those, only 148655 (31.36% of the
total) occur more than twice. Patterns that only occur once contain
misspellings or badly formatted text. We only select the patterns
that occur at least twice to filter-out this noise. The remaining ex-
periments described in this paper are performed using those pat-
terns. We first compute the distribution of Euclidean distances over
the training data to determine the values for distance thresholds u
and l in Algorithm 2. We then respectively select the 5-th and 95-th
percentiles of distance distribution as u (1.96) and l (0.22). Slack
parameter γ is set to 0.01 experimentally.

4.1 Relation Classification
We evaluate the proposed relational similarity measure in a re-

lation classification task. Given an entity pair, the goal is to select
a relation out of the five relation types in the ENT dataset that de-
scribes the relation between the two entities. This is a multi-class
classification problem. We use k-nearest neighbor classification
to assign a relation to a given entity pair. Specifically, given an
entity pair (a, b), for which a relation R holds, we compute the re-
lational similarity between (a, b) and the remaining entity pairs in
the dataset. We then sort the word pairs in the descending order of
relational similarity with (a, b), and select the most similar k en-

4http://wikipedia.org/
5http://www.forbes.com/
6http://developer.yahoo.com/search/boss/

tity pairs. We then find the relation that is given to most of those k
entity pairs and assign this relation to (a, b). Ties are resolved ran-
domly. This procedure is repeated for each entity pair in the ENT
dataset. Overall accuracy of relation classification is computed as

Accuracy =
No. of correctly classified entity pairs

Total no. of entity pairs
. (7)

A good relational similarity measure must assign higher similarity
scores to word pairs with similar implicit relations. However, the
classification accuracy does not evaluate the relative rankings of
similarity scores. We use average precision [29] to evaluate the top
k most similar entity pairs to a given entity pair. Average precision
integrates the precision at different ranks. It is frequently used as
an evaluation measure in retrieval tasks. The average precision for
a particular relation type R is defined as

AveragePrecision =

∑k

r=1 Pre(r) × Rel(r)

No of relevant word pairs
. (8)

Here, Rel(r) is a binary valued function that returns 1 if the entity
pair at rank r has the same relation (i.e., R) as in (a, b). Other-
wise, it returns zero. Furthermore, Pre(r) is the precision at rank
r, which is given as

Pre(r) =
no. of entity pairs with relation R in top r pairs

r
. (9)

The number of relevant entity pairs is 20 for all five relation types
in our dataset. We consider the 10 most similar entity pairs (i.e.,
k = 10) for nearest neighbor classification. The average precision
is computed for those top 10 entity pairs.

We use ENT training data to investigate the effect of clustering
threshold θ (Algorithm 1) on relation classification performance.
Results are summarized in Figure 3. Overall, in Figure 3, we see
that performance increases with θ. This is because higher values
of θ result in highly similar pattern clusters that represent specific
semantic relations. However, a slight drop of performance can be
observed for high θ values, because it produces a large number of
pattern clusters (i.e., increased model complexity), which results
in over fitting the data. The best performance is reported for θ =
0.905. The remaining experiments described in this section use this
value of theta.

In Table 2, we show the top 10 clusters with the largest number
of lexical patterns. The number of patterns in each cluster is shown
within brackets in the first column. For each cluster in Table 2, we
show the top four patterns that occur in the greatest number of en-
tity pairs. For explanatory purposes, we label the clusters with the
five relation types as clusters 1 and 4 (acquirer-acquiree); clusters
2, 3, 6, and 7 (person-field); cluster 5 (CEO-company); cluster 8
and 10 (company-headquarters); cluster 9 (person-birthplace). Ta-
ble 2 clarifies that patterns representing various semantic relations
are extracted by the proposed pattern extraction algorithm. More-
over, we see that each cluster contains different lexical patterns that
express a specific semantic relation. We can also find multiple clus-
ters even among the top few clusters shown in Table 2 that represent

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

657

Table 2: Most frequent patterns in the largest clusters.

cluster 1 (2868) X acquires Y X has acquired Y X’s Y acquisition X, acquisition, Y Y goes X

cluster 2 (2711) Y legend X was X’s championship Y Y star X was X autographed Y ball Y star X robbed
cluster 3 (2615) Y champion X world Y champion X X teaches Y X’s greatest Y Y players like X

cluster 4 (2008) X to buy Y X and Y confirmed X buy Y is Y purchase to boost X X is buying Y

cluster 5 (2002) Y founder X Y founder and CEO X X, founder of Y X says Y X talks up Y

cluster 6 (1364) X revolutionized Y X professor of Y in Y since X ago, X revolutionized Y X’s contribution to Y

cluster 7 (845) X and modern Y genius: X and modern Y Y in DDDD, X was on Y by X X’s lectures on Y

cluster 8 (280) X headquarters in Y X offices in Y past X offices in Y the X conference in Y X headquarters in Y on
cluster 9 (144) X’s childhood in Y X’s birth in Y Y born X Y born X introduced the sobbing X left Y to
cluster 10 (49) X headquarters in Y X’s Y headquarters Y - based X X works with the Y Y office of X

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rf

or
m

an
ce

Clustering Threshold

Accuracy
Average Precision

Figure 3: Performance of the proposed method against the clus-

tering threshold (θ)

a particular relation type. For example, cluster 1 and 4 both repre-
sent an acquirer-acquiree relation, although the patterns in cluster
1 are derived from the verb acquire, whereas the patterns in cluster
4 are derived from the verbs buy and purchase. We can expect a
certain level of correlation among such clusters, which justifies the
use of the Mahalanobis distance instead of Euclidean distance when
computing relational similarity. We compare the proposed rela-
tional similarity measure (PROP) to the Euclidean distance base-
line (EUC), vector space model-based relational similarity [35]
(VSM) and the state-of -the-art Latent Relational Analysis [33]
(LRA). Next, we explain each of those relational similarity mea-
sures in detail.

VSM: This is the vector space model-based approach proposed by
Turney et al. [35]. First, each word pair is represented using
a vector of pattern frequencies. Then the relational similarity
between two word pairs is computed as the cosine of the an-
gle between the two vectors representing the two word pairs.
This approach is equivalent to computing relational similar-
ity using Formula 1, if we define feature vectors as pattern
frequency vectors and take the identity matrix as A.

LRA: This is the Latent Relational Analysis (LRA) proposed by
Turney [33]. First, a matrix is created, in which the rows

Table 3: Performance of the proposed method and baselines.
Relation VSM LRA EUC PROP

acquirer-acquiree 0.9227 0.9224 0.9147 0.9415

comp.-headquarters 0.8455 0.8254 0.7986 0.8653

person-field 0.4470 0.4396 0.5195 0.5715

CEO-comp. 0.9582 0.9612 0.9058 0.9578

person-birthplace 0.2747 0.2795 0.3343 0.3648

Overall Average Precision 0.6896 0.6856 0.6946 0.7403

Classification Accuracy 0.86 0.88 0.90 0.93

represent word pairs and the columns represent lexical pat-
terns. An element of the matrix corresponds to the frequency
of occurrence of a word pair in a particular lexical pattern.
Next, singular value decomposition (SVD) is performed on
this matrix to reduce the number of columns. Finally, the
relational similarity between two word pairs is computed as
the cosine of the angle between the corresponding row vec-
tors. We re-implemented LRA as described in the original
paper. However, we do not use related word thesauri to find
additional word pairs, because such resources are not avail-
able for named entities. Following, Turney’s proposal, we
used the most frequent 4000 lexical patterns in the matrix
and reduced the number of columns to 300 via SVD (i.e.,
eigenvectors corresponding to the largest 300 eigenvalues are
used to approximate the matrix). We used Scientific Python’s
SVD library7 for the computation of SVD. LRA is the cur-
rent state-of-the-art relational similarity measure.

EUC: We set A in Formula 1 to the identity matrix and compute
relation similarity using pattern clusters. This is equivalent
to computing relational similarity between two word pairs as
the Euclidean distance between the corresponding two fea-
ture vectors created using pattern clusters. This baseline is a
cut-down version of the proposed method, where all clusters
are assumed to be independent. This baseline is expected to
show the decrease in the performance when we do not use
Mahalanobis distance learning.

PROP: This is the proposed relational similarity measure, defined
in Formula 1. For both EUC and PROP, we used the same
set of clusters. Therefore, any difference in performance can
be attributable to using the Mahalanobis distance when com-
puting relational similarity. We used the 10447 clusters de-
rived by setting the clustering threshold θ to the value 0.905.

7www.scipy.org

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

658

Table 4: Performance on the SAT dataset.
Algorithm score Algorithm score

Random guessing 20.0% LSA+Predictation [20] 42.0%

Jiang & Conrath [33] 27.3% Veale (WordNet) [38] 43.0%

Lin [33] 27.3% Bicici & Yuret [4] 44.0%

Leacock & Chodrow [33] 31.3% VSM [34] 47.1%

Hirst & St.-Onge [33] 32.1% PROPOSED 51.1%

Resnik [33] 33.2% Pertinence [32] 53.5%

PMI-IR [33] 35.0% LRA [33] 56.1%

SVM [5] 40.1% Human 57.0%

The four methods described above presented for comparison in
Table 3. For each relation type, Table 3 shows the average precision
scores computed using Formula 8. Moreover, the overall perfor-
mance is reported using both average precision and classification
accuracy. The proposed method (PROP) reports the highest over-
all average precision (0.7403) in Table 3. In fact, PROP has the
best average precision scores for four out of the five relation types.
Analysis of variance (ANOVA) reveals that the average precision
scores in Table 3 are statistically significant. Moreover, paired t-
tests conducted between the proposed method (PROP) and each of
the remaining three methods in Table 3, reveal that the improve-
ment shown by PROP over VSM, EUC, and LRA is statistically
significant (α = 0.01). PROP has the highest classification accu-
racy (0.93), followed by EUC, LRA, and VSM, in that order. It
is noteworthy that the EUC baseline that does not consider inter-
cluster correlation performs better than the VSM method. This re-
sult shows that clustering similar patterns prior to computing rela-
tional similarity indeed improves performance. Among the five re-
lation types compared in Table 3, high average precision scores are
reported for the following three relation types: acquirer-acquiree,
company-headquarters, and CEO-company. Lowest performance
is reported for the person-birthplace relation. A closer look into
the snippets extracted for the person-birthplace pairs revealed that
there were many snippets that convey information related to places
that people associate with places other than their place of birth. For
example, regarding actors, the locations where they gave their first
performance are incorrectly extracted as contexts for the person-
birthplace relation.

4.2 Solving SAT Word Analogy Questions
Following the previous work on relational similarity measures,

we use the proposed method to solve SAT word-analogy questions.
We split the SAT dataset (374 questions) randomly into five parti-
tions and select four partitions as training data and the remainder as
test data. The procedure is repeated with different partitions. Then
the experimental results are reported for five-fold cross-validation.
For all word pairs in the SAT dataset, we download contexts from
the Web (section 3.2), and extract lexical patterns (section 3.3). We
then cluster the extracted patterns using Algorithm 1. Next, for
each SAT question in the training dataset, we create a positive train-
ing instance by coupling the stem word pair with the correct answer.
Similarly, negative training instances are created by coupling the
stem word pair with incorrect answers. We then use Algorithm 2
to learn a Mahalanobis distance matrix from the training data. To
solve an SAT question in the test dataset, we compute the relational
similarity (alternatively distance) between the stem word pair and
each choice word pairs using Formula 1, and select the choice with
the highest relational similarity (lowest distance) as the correct an-
swer. The SAT score is computed as the percentage of correctly
answered questions to the total questions in the dataset.

As shown in Table 4 the proposed method reports an SAT score
of 51.1%; it is ranked 3rd among 16 systems. The average SAT

score reported by high-school students is 57%. Randomly guess-
ing one out of five choices gives the lower bound of 20%. The
proposed method outperforms WordNet-based relational similarity
measures (Veale [38]) as well as various corpus-based approaches.
The two systems that perform better than the proposed method
(i.e., Pertinence and LRA) use a synonym dictionary to find simi-
lar word pairs. However, the proposed method requires no external
resources such as synonym dictionaries to compute relational sim-
ilarity. In fact, synonym dictionaries for named entities are either
not available or incomplete. Moreover, as stated in the original pa-
per, LRA takes over 9 days to answer the 374 questions in the SAT
dataset, whereas the proposed method requires less than 6 hours to
answer the same set of questions. The gain in processing time can
be attributable to two factors. First, unlike LRA and Pertinence, the
proposed method requires no singular value decomposition (SVD).
Performing SVD on large matrices is time consuming. For exam-
ple, in LRA the data matrix consists of 2176 word pairs (rows) and
4000 patterns (columns). Second, compared to LRA, the proposed
method requires much fewer search engine queries. In LRA, to
compute the feature vector for a word pair we must issue a query
for each pattern extracted. For example, with 4000 patterns, LRA
requires at least 8000 (4000×2 word pairs) search engine queries to
compute the relational similarity between two word-pairs. On the
other hand, the proposed method searches for patterns only within
the snippets downloaded for a word pair. Because multiple snippets
can be downloaded by issuing a single query, the proposed method
requires only two search engine queries to compute the relational
similarity between two word pairs. Moreover, the number of search
engine queries is independent of the number of patterns. Therefore,
the proposed method is more appropriate in an online setting (e.g.,
web search), in which we must quickly compute relational similar-
ity for unseen word pairs.

The definition of relational similarity, as given in Formula 1 can
be viewed as a general framework into which all existing relational
similarity measures can be integrated. The existing approaches dif-
fer in their definition of matrix A. For example, in VSM, A is the
identity matrix, and in LRA it is computed via SVD. The proposed
method learns a Mahalanobis distance matrix as A using training
data. The task of designing relational similarity measures can be
modeled as searching for a matrix A that best reflects the notion of
relational similarity possessed by humans.

5. CONCLUSION
We proposed a method to compute the similarity between im-

plicit semantic relations in two word pairs. Given two word pairs,
the proposed relational similarity measure first finds contexts in
which the two words in each word pair cooccur on the Web. We
used text snippets returned by a Web search engine as contexts, and
proposed a shallow lexical pattern extraction algorithm to represent
the various semantic relations that exist between two words. The
proposed pattern extraction algorithm requires no language specific
preprocessing techniques such as part-of-speech taggers or depen-
dency parsers. We then cluster the extracted patterns to identify the
different lexical patterns that convey a particular semantic relation.
We proposed a sequential clustering algorithm that scales linearly
with the number of patterns to cluster a larger number of patterns
efficiently. We create a feature vector using the formed pattern clus-
ters, and compute the relational similarity between two word pairs
as the Mahalanobis distance between the two feature vectors. Ex-
perimental results on a relation classification task and SAT word-
analogy task, showed that the proposed method markedly outper-
forms various baselines and reduces the processing time of pre-
viously proposed latent relational analysis. In future studies, we

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

659

intend to employ the proposed relational similarity measure to re-
trieve a set of word pairs for a given implicit relation from the Web.

6. REFERENCES

[1] K. Barker and S. Szpakowicz. Semi-automatic recognition of
noun modifier relationships. In Proc. of COLING’98, pages
96–102, 1998.

[2] M. Berland and E. Charniak. Finding parts in very large
corpora. In Proc. of ACL’99, pages 57–64, 1999.

[3] R. Bhagat and D. Ravichandran. Large scale acquisition of
paraphrases for learning surface patterns. In Proc. of

ACL’08: HLT, pages 674–682, 2008.

[4] E. Bicici and D. Yuret. Clustering word pairs to answer
analogy questions. In Proc. of TAINN’06, 2006.

[5] D. Bollegala, Y. Matsuo, and M. Ishizuka. Www sits the sat:
Measuring relational similarity on the web. In Proc. of

ECAI’08, pages 333–337, 2008.

[6] R. C. Bunescu and R. Mooney. Learning to extract relations
from the web using minimal supervision. In Proc. of ACL’07,
pages 576–583, 2007.

[7] P. Cimiano and J. Wenderoth. Automatic acquisition of
ranked qualia structures from the web. In Proc. of ACL’07,
pages 888–895, 2007.

[8] A. Culotta and J. Sorensen. Dependency tree kernels for
relation extraction. In Proc. of ACL’04, pages 423–429,
2004.

[9] D. Davidov and A. Rappoport. Classification of semantic
relationships between nominals using pattern clusters. In
Proc. of the ACL’08, 2008.

[10] D. Davidov and A. Rappoport. Unsupervised discovery of
generic relationships using pattern clusters and its evaluation
by automatically generated sat analogy questions. In Proc. of

ACL’08-HLT, pages 692–700, 2008.

[11] J. V. Davis and I. S. Dhillon. Differential entropic clustering
of multivariate gaussians. In Proc. of NIPS’06, pages
337–344, 2006.

[12] J. V. Davis and I. S. Dhillon. Structured metric learning for
high dimensional problems. In Proc. of KDD ’08, pages
195–203, 2008.

[13] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon.
Information-theoretic metric learning. In IProc. of CML’07,
pages 209–216, 2007.

[14] O. Etzioni, M. Cafarella, D. Downey, A. Popescu, T. Shaked,
S. Soderl, D. S. Weld, and E. Yates. Unsupervised
named-entity extraction from the web: An experimental
study. Artificial Intelligence, 165:91–134, 2005.

[15] B. Falkenhainer, K. Forbus, and D. Gentner. Structure
mapping engine: Algorithm and examples. Artificial

Intelligence, 41:1–63, 1989.

[16] Z. Harris. Distributional structure. Word, 10:146–162, 1954.

[17] M. Hearst. Automatic acquisition of hyponyms from large
text corpora. In Proc. of 14th COLING, pages 539–545,
1992.

[18] D. Lin. Automatic retrieval and clustering of similar words.
In Proc. of COLING-ACL’98, pages 768–774, 1998.

[19] D. Lin and P. Pantel. Dirt: Discovery of inference rules from
text. In Proc. of ACM SIGKDD’01, pages 323–328, 2001.

[20] P. Mangalath, J. Quesada, and W. Kintsch. Analogy-making
as predictation using relational information and lsa vectors.
In Proc. of Int’l Conf. on Research in Computational

Linguistics, 2004.

[21] Z. Marx, D. Ido, B. Joachim, and S. Eli. Coupled clustering:
A method for detecting structural correspondance. Journal of

Machine Learning Research, 3:747–780, 2002.

[22] D. Medin, R. Goldstone, and D. Gentner. Respects for
similarity. Psychological Review, 6(1):1–28, 1991.

[23] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. Introducton to wordnet: An on-line lexical
database. International Journal of Lexicography, 3:238–244,
1990.

[24] P. Nakov and M. Hearst. Solving relational similarity
problems using the web as a corpus. In Proc. of

ACL’08-HLT, pages 452–460, 2008.

[25] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
Organizing and searching the world wide web of facts - step
one: the one-million fact extraction challenge. In Proc. of

AAAI’06, pages 1400–1405, 2006.

[26] J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Mining sequential patterns by
pattern-growth: the prefixspan approach. IEEE Transactions

on Knowledge and Data Engineering, 16(11):1424–1440,
2004.

[27] J. Platt. Probabilistic outputs for support vector machines
and comparison to regularized likelihood methods. Advances

in Large Margin Classifiers, pages 61–74, 2000.

[28] D. Ravichandran and E. Hovy. Learning surface text patterns
for a question answering system. In Proc. of ACL ’02, pages
41–47, 2001.

[29] G. Salton and C. Buckley. Introduction to Modern

Information Retreival. McGraw-Hill Book Company, 1983.

[30] R. Snow, D. Jurafsky, and A. Ng. Learning syntactic patterns
for automatic hypernym discovery. In Proc. of Advances in

Neural Information Processing Systems (NIPS) 17, pages
1297–1304, 2005.

[31] P. Turney. Measuring semantic similarity by latent relational
analysis. In Proc. of IJCAI’05, pages 1136–1141, 2005.

[32] P. Turney. Expressing implicit semantic relations without
supervision. In Proc. of Coling/ACL’06, pages 313–320,
2006.

[33] P. Turney. Similarity of semantic relations. Computational

Linguistics, 32(3):379–416, 2006.

[34] P. Turney and M. Littman. Corpus-based learning of
analogies and semantic relations. Machine Learning,
60:251–278, 2005.

[35] P. Turney, M. Littman, J. Bigham, and V. Shnayder.
Combining independent modules to solve multiple-choice
synonym and analogy problems. In Proc. of RANLP’03,
pages 482–486, 2003.

[36] A. Tversky. Features of similarity. Psychological Review,
84(4):327–352, 1997.

[37] T. Veale. The analogical thesaurus. In Proc. of 15th

Innovative Applications of Artificial Intelligence Conference

(IAAI’03), pages 137–142, 2003.

[38] T. Veale. Wordnet sits the sat: A knowledge-based approach
to lexical analogy. In Proc. of ECAI’04, pages 606–612,
2004.

[39] T. Veale and M. T. Keane. The competence of structure
mapping on hard analogies. In Proc. of IJCAI’03, 2003.

[40] D. Zelenko, C. Aone, and A. Richardella. Kernel methods
for relation extraction. Journal of Machine Learning

Research, 3:1083–1106, 2003.

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Mining for Semantics

660

