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Abstract:We report a study on the measurement of the SUSY breaking scale
√
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in the framework of gauge-mediated supersymmetry breaking (GMSB) models at the

LHC. The work is focused on the GMSB scenario where a stau is the next-to-lightest

SUSY particle (NLSP) and decays into a gravitino with lifetime cτNLSP in the range

0.5m to 1 km. We study the identification of long-lived sleptons using the momentum

and time of flight measurements in the muon chambers of the ATLAS experiment. A

realistic evaluation of the statistical and systematic uncertainties on the measurement

of the slepton mass and lifetime is performed, based on a detailed simulation of the

detector response. Accessible range and precision on
√
F achievable with a counting

method are assessed. Many features of our analysis can be extended to the study of

different theoretical frameworks with similar signatures at the LHC.
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1. Introduction

Since no superpartner has been detected at collider experiments so far, supersym-

metry (SUSY) cannot be an exact symmetry of Nature. The requirement of “soft”

supersymmetry breaking (SSB) [1] alone gives rise to a large number of free pa-

rameters. Hence, motivated theoretical hypotheses on the nature of SSB and the

mechanism through which it is transmitted to the visible sector of the theory —

here assumed to be the one predicted by the minimal SUSY extension of the Stan-

dard Model (MSSM) — are vital. If SUSY is broken at energies of the order of

the Planck mass and the SSB sector communicates with the MSSM sector through

gravitational interactions only, one falls in the supergravity (SUGRA) scheme. The
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most promising alternative to SUGRA is based instead on the hypothesis that the

SSB occurs at relatively low energy scales and it is mediated mainly by gauge in-

teractions (GMSB) [2, 3, 4]. This scheme provides a natural, automatic suppression

of the SUSY contributions to flavour-changing and CP-violating processes. Further-

more, in the simplest versions of GMSB the MSSM spectrum and other observables

depend on just a handful of parameters, usually chosen to be

Mmess , Nmess , Λ , tanβ , sign(µ) , (1.1)

where Mmess is the overall messenger scale; Nmess is the so-called messenger index,

parameterising the structure of the messenger sector; Λ is the universal soft SUSY

breaking scale felt by the low-energy sector; tan β is the ratio of the vacuum expec-

tation values of the two Higgs doublets; sign(µ) (we use the convention of ref. [1]) is

the ambiguity left for the SUSY higgsino mass after imposing the conditions for a

correct electroweak symmetry breaking (EWSB) (see e.g., refs. [5]–[8]).

The phenomenology of GMSB (and more in general of any theory with low-energy

SSB) is characterised by the presence of a very light gravitino G̃ with mass [9]

m3/2 = mG̃ =
F√
3M ′P

≃
( √

F

100TeV

)2

2.37 eV, (1.2)

where
√
F is the fundamental scale of SSB andM ′P = 2.44×1018GeV is the reduced

Planck mass. Since
√
F is typically of order 100TeV, the G̃ is always the lightest

SUSY particle (LSP) in these theories. Hence, if R-parity is conserved, any MSSM

particle will decay into the gravitino. Depending on
√
F , the interactions of the

gravitino, although much weaker than gauge and Yukawa interactions, can still be

strong enough to be of relevance for collider physics. In most cases the last step of

any SUSY decay chain is the decay of the next-to-lightest SUSY particle (NLSP),

which can occur either outside or inside a typical detector, possibly close to the

interaction point. For particular ranges of lifetimes and assumptions on the NLSP

nature, the signature can be spectacular.

The typical NLSP lifetime for decaying into G̃ is

cτNLSP
cm

≃ 1

100B

( √
F

100TeV

)4
( mNLSP
100GeV

)−5

, (1.3)

where B is a number of order unity depending mainly on the nature of the NLSP.
The nature of the NLSP — or, better, of the sparticle(s) having a large branch-

ing ratio (BR) for decaying into the gravitino and the relevant Standard Model (SM)

partner — determines four main scenarios giving rise to qualitatively different phe-

nomenology:
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Neutralino NLSP scenario: occurs whenever mÑ1 < (mτ̃1−mτ ). Here typically a
decay Ñ1 → G̃γ is the final step of decay chains following any SUSY production
process. As a consequence, the main inclusive signature at colliders is prompt

or displaced photon pairs + X + missing energy, depending on the Ñ1 lifetime.

Ñ1 → G̃Z0 and other minor channels may also be relevant at TeV colliders.

Stau NLSP scenario: realised if mτ̃1 < min[mÑ1 , mℓ̃R] − mτ , features τ̃1 → G̃τ
decays, producing τ pairs (if τ̃1 decays promptly) or charged semi-stable τ̃1
tracks or decay kinks + X + missing energy (for larger τ̃1 lifetimes). Here ℓ

stands for e or µ.

Slepton co-NLSP scenario: when mℓ̃R < min[mÑ1 , mτ̃1 + mτ ], ℓ̃R → G̃ℓ decays
are also open with large BR, since ℓ̃R → ℓτ̃±1 τ∓ decays are kinematically for-
bidden. In addition to the signatures of the stau NLSP scenario, one also gets

ℓ+ℓ− pairs or ℓ̃R tracks or decay kinks.

Neutralino-stau co-NLSP scenario: if |mτ̃1 −mÑ1 | < mτ and mÑ1 < mℓ̃R , both
signatures of the neutralino NLSP and stau NLSP scenario are present at the

same time, since Ñ1 ↔ τ̃1 decays are not allowed by phase space.

Note that in the GMSB parameters space mℓ̃R > mτ̃1 always. Also, one should

keep in mind that the classification above is an indicative scheme valid in the limitme,

mµ → 0, neglecting also those cases where a fine-tuned choice of
√
F and the sparticle

masses may give rise to competition between phase-space suppressed decay channels

from one ordinary sparticle to another and sparticle decays to the gravitino [10].

The fundamental scale of SUSY breaking
√
F is a crucial parameter for the

phenomenology of a SUSY theory. In the SUGRA framework, the gravitino mass sets

the scale of the soft SUSY breaking masses (∼ 0.1–1TeV), so that
√
F is typically

as large as ∼ 1010−11GeV (cfr. eq. (1.2)). As a consequence, the interactions of
the G̃ with the other MSSM particles (∼ F−1) are too weak to be of relevance in
collider physics and there is no direct way to access

√
F experimentally. In GMSB

theories the situation is different. The soft SUSY breaking scale of the MSSM and

the sparticle masses are set by gauge interactions between the messenger and the low

energy sectors to be ∼ αSMΛ (cfr. eq. (2.1), next section), so that typical Λ values
are ∼ 10–100TeV. On the other hand,

√
F is only subject to a lower bound (cfr.

eq. (2.2), next section), for which values well below 1010GeV and even as low as

several tens of TeV are reasonable. G̃ is in this case the LSP, and its interactions

are strong enough to allow NLSP decays into G̃ inside the typical detector size. The

latter circumstance gives us a chance for extracting
√
F experimentally through a

measurement of the NLSP mass and lifetime, according to eq. (1.3).

Furthermore, the possibility of determining
√
F with good precision opens a

window on the physics of the SUSY breaking sector (the so-called “secluded” sector)
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and the way this SUSY breaking is transmitted to the messenger sector. Indeed,

the characteristic scale of SUSY breaking felt by the messengers (and hence by the

MSSM sector) given by
√
Fmess in eq. (2.2), next section, can be also determined once

the MSSM spectrum is known. By comparing the measured values of
√
F and

√
Fmess

it might well be possible to get information on the way the secluded and messenger

sector communicate to each other. For instance, if it turns out that
√
Fmess ≪√

F , then it is very likely that the communication occurs radiatively and the ratio
√

Fmess/F is given by some loop factor. On the contrary, if the communication occurs

via a direct interaction, this ratio is just given by a Yukawa-type coupling constant,

with values . 1, see refs. [4, 7].

An experimental method to determine
√
F at a TeV scale e+e− collider through

the measurement of the NLSP mass and lifetime was presented in ref. [8], in the

neutralino NLSP scenario. Here, we are concerned with a similar problem at a

hadron collider, the LHC, and in the stau NLSP or slepton co-NLSP scenarios.

These scenarios are very promising at the LHC, providing signatures of semi-stable

charged tracks coming from massive sleptons, therefore with β significantly smaller

than 1. In particular, we perform our simulations in the ATLAS muon detector,

whose large size and excellent time resolution [11] allow a precision measurement

of the slepton time of flight from the production vertex out to the muon chambers,

and hence of the slepton velocity. Moreover, in the stau NLSP or slepton co-NLSP

scenarios, the knowledge of the NLSP mass and lifetime is sufficient to determine√
F , since the factor B in eq. (1.3) is exactly equal to 1. This is not the case in
the neutralino NLSP scenario, where B depends at least on the neutralino physical
composition, and more information and measurements are needed to extract a precise

value of
√
F .

For this purpose, we generated about 30000 GMSB models under well defined

hypotheses, using a home-made program called SUSYFIRE [12], as described in the

following section.

2. GMSB models

In the GMSB framework, the pattern of the MSSM spectrum is simple, as all sparticle

masses originate in the same way and scale approximately with a single parameter Λ,

which sets the amount of soft SUSY breaking felt by the visible sector. As a conse-

quence, scalar and gaugino masses are related to each other at a high energy scale,

which is not the case in other SUSY frameworks, e.g. SUGRA. Also, it is possible

to impose other conditions at a lower scale to achieve correct EWSB, and further

reduce the dimension of the parameter space.

To build our GMSB models, we adopted the usual phenomenological approach,

following ref. [8]. We do not specify the origin of µ, nor do we assume Bµ = 0 at

the messenger scale. Instead, we impose correct EWSB to trade µ and Bµ for MZ
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and tanβ, leaving the sign of µ undetermined. However, we recall that, to build

a satisfactory GMSB model, one should also solve the latter problem in a more

fundamental way, perhaps providing a dynamical mechanism to generate µ and Bµ,

reasonably with values of the same order of magnitude. This might be accomplished

radiatively through some new interaction. However, in this case, the other soft terms

in the Higgs potential, namely m2H1,2 , will be also affected and this will in turn change

the values of |µ| and Bµ coming from EWSB conditions.
To determine the MSSM spectrum and low-energy parameters, we solve the

renormalisation group equation evolution with boundary conditions at the Mmess
scale, where

Ma = NmessΛg

(

Λ

Mmess

)

αa , (a = 1, 2, 3)

m̃2 = 2NmessΛ
2f

(

Λ

Mmess

)

∑

a

(αa
4π

)2

Ca , (2.1)

respectively for the gaugino and the scalar masses. The exact expressions for g and f

at the one and two-loop level can be found, e.g., in ref. [7], and Ca are the quadratic

Casimir invariants for the scalar fields. As usual, the scalar trilinear couplings Af are

assumed to vanish at the messenger scale, as suggested by the fact that they (and

not their square) are generated via gauge interactions with the messenger fields at

the two loop-level only.

To single out the interesting region of the GMSB parameter space, we proceed

as follows. Barring the case where a neutralino is the NLSP and decays outside

the detector (large
√
F ), the GMSB signatures are very spectacular and the SM

background is generally negligible or easily subtractable. With this in mind and being

interested in GMSB phenomenology at the LHC, we consider only models where the

NLSP mass is larger than 100GeV, assuming that searches at LEP and Tevatron,

if unsuccessful, will at the end exclude a softer spectrum in most cases. We require

thatMmess > 1.01Λ, to prevent an excess of fine-tuning of the messenger masses, and

that the mass of the lightest messenger scalar be at least 10TeV. We also impose

Mmess > MGUT exp(−125/Nmess), to ensure the perturbativity of gauge interactions
up to the GUT scale. Further, we do not consider models with Mmess & 10

5Λ. As a

result of this and other constraints, the messenger index Nmess, which we assume to be

an integer independent of the gauge group, cannot be larger than 8. To prevent the

top Yukawa coupling from blowing up below the GUT scale, we require tanβ > 1.2

(this also takes partly into account the bounds from SUSY Higgs searches at LEP2).

Models with tan β & 55 (with a mild dependence on Λ) are forbidden by the EWSB

requirement and typically fail to give m2A > 0.

The NLSP lifetime is controlled by the fundamental SSB scale
√
F value on a

model-by-model basis. Using perturbativity arguments, for each given set of GMSB
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parameters it is possible to determine a lower bound according to [7]
√
F >

√

Fmess =
√

ΛMmess > Λ . (2.2)

On the contrary, no solid arguments can be used to set an upper limit of relevance for

collider physics, although some semi-qualitative cosmological arguments are some-

times evoked.

To generate our model samples using SUSYFIRE, we used logarithmic steps for

Λ (between about 45TeV/Nmess and about 220TeV/
√
Nmess, which corresponds to

excluding models with sparticle masses above ∼ 4TeV), Mmess/Λ (between about
1.01 and 105) and tan β (between 1.2 and about 60), subject to the constraints

described above. SUSYFIRE starts from the values of particle masses and gauge

couplings at the weak scale and then evolves them up to the messenger scale through

RGE’s. At the messenger scale, it imposes the boundary conditions (2.1) for the soft

sparticle masses and then evolves the RGE’s back to the weak scale. The decoupling

of each sparticle at the proper threshold is taken into account. Two-loop RGE’s

are used for gauge couplings, third generation Yukawa couplings and gaugino soft

masses. The other RGE’s are taken at the one-loop level. At the scale
√
mt̃1mt̃2 ,

EWSB conditions are imposed by means of the one-loop effective potential approach,

including corrections from stops, sbottoms and staus. The program then evolves up

again to Mmess and so on. Three or four iterations are usually enough to get a good

approximation for the MSSM spectrum.

3. Setting the example points

The two main parameters affecting the experimental measurement at the LHC of the

slepton NLSP properties are the slepton mass and momentum distribution. Indeed,

at a hadron collider most of the NLSP’s come from squark and gluino production,

followed by cascade decays. Thus, the momentum distribution is in general a function

of the whole MSSM spectrum. However, one can approximately assume that most of

the information on the NLSP momentum distribution is provided by the squark mass

scale mq̃ only (in the stau NLSP scenario or slepton co-NLSP scenarios of GMSB, one

generally findsmg̃ & mq̃). To perform detailed simulations, we select a representative

set of GMSB models generated by SUSYFIRE. We limit ourselves to models with

mNLSP > 100GeV, motivated by the discussion in section 2, and mq̃ < 2TeV, in

order to yield an adequate event statistics after a three-year low-luminosity run

(corresponding to 30 fb−1) at the LHC. Within these ranges, we choose eight points

(four in the stau NLSP scenario and four in the slepton co-NLSP scenario), most

of which representing extreme cases allowed by GMSB in the (mNLSP, mq̃) plane in

order to cover the various possibilities.

In table 1, we list the input GMSB parameters we used to generate these eight

points, while in table 2 we report the corresponding values of the stau mass, the aver-
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ID Mmess (TeV) Nmess Λ (TeV) tanβ sign(µ)

1 1.79×104 3 26.6 7.22 −
2 5.28×104 3 26.0 2.28 −
3 4.36×102 5 41.9 53.7 +

4 1.51×102 4 28.3 1.27 −
5 3.88×104 6 58.6 41.9 +

6 2.31×105 3 65.2 1.83 −
7 7.57×105 3 104 8.54 −
8 4.79×102 5 71.9 3.27 −

Table 1: Input parameters of the example GMSB models chosen for our study.

ID mτ̃1 (GeV) “NLSP” mq̃ (GeV) mg̃ (GeV) σ (pb)

1 100.1 τ̃1 577 631 42

2 100.4 ℓ̃ 563 617 50

3 101.0 τ̃1 1190 1480 0.59

4 103.4 ℓ̃ 721 859 10

5 251.2 τ̃1 1910 2370 0.023

6 245.3 ℓ̃ 1290 1410 0.36

7 399.2 τ̃1 2000 2170 0.017

8 302.9 ℓ̃ 1960 2430 0.022

Table 2: Features of the example GMSB model points studied (ℓ̃ = ẽR, µ̃R, τ̃1).

age squark mass mq̃ and the gluino mass. The “NLSP” column indicates whether the

model belongs to the stau NLSP or slepton co-NLSP scenario. The last column gives

the total cross section in pb for producing any pairs of SUSY particles at the LHC.

The scatter plots in figure 1 show our eight example points, together with all the

relevant GMSB models we generated, in the (mNLSP, mq̃) plane. In particular, all

models where the charged tracks come from semi-stable τ̃1’s only (i.e., stau NLSP or

neutralino-stau co-NLSP scenarios) are displayed in figure 1a, while models in the

slepton co-NLSP scenario are shown in figure 1b.

For each sample model point, the events were generated with the ISAJET Monte

Carlo [13] that incorporates the calculation of the SUSY mass spectrum and branch-

ing fraction using the GMSB parameters as input. We have checked that for the eight

model points considered the sparticle masses calculated with ISAJET are in good

agreement with the output of SUSYFIRE. The generated events were then passed

through ATLFAST [14], a fast particle-level simulation of the ATLAS detector. The

ATLFAST package, was only used to evaluate the efficiency of the calorimetric trigger

that selects the GMSB events and of the event selection cuts. The detailed response

of the detector to the slepton NLSP has been parametrised for this work using the

results of a full simulation study, as described in the next section.
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Figure 1: Scatter plots in the (mNLSP, mq̃) plane for all relevant GMSB models generated.

a) stau NLSP or neutralino-stau NLSP scenarios; b) slepton co-NLSP scenario. The eight

sample models of tables 1 and 2 are highlighted with their reference number.

4. Slepton detection

The experimental signatures of heavy long-lived charged particles have been discussed

both in the framework of GMSB and in more general scenarios [15, 16, 17]. The two

main observables which can be used to separate these particles from muons are the

high specific ionisation and the time of flight in the detector.

We concentrate here on the measurement of the time of flight which is made

possible by the timing precision (. 1 ns) and by the size of the ATLAS muon spec-

trometer. In the barrel part of the detector (|η| < 1) the precision muon system
consists of three multilayers of precision drift tubes immersed in a toroidal air-core

magnetic field. The three measuring stations are located at distances of approxi-

mately 5, 7.5 and 10 meters from the interaction point. A particle crossing a drift

chamber ionises the chamber gas along its path, and the electrons produced by the

ionisation drift to the anode wire under the influence of an electric field. The par-

ticle position is calculated from the measurement of the drift time of the ionisation

electrons to the anode wire. In order to perform this calculation a starting time

t0 for counting the drift time is needed, corresponding to the time of flight of the

particle from the production point to the measuring station. For a particle travelling

approximately at the speed of light, as a muon, the t0’s for the measuring stations are

parameters of the detector geometry and of the response of the front-end electron-

ics [19]. For a heavy particle the t0 is a free parameter, function of the β (= v/c) of

the particle. It was demonstrated with a full simulation of the ATLAS muon detec-

tor [20] that the β of a particle can be measured by adjusting the t0 for each station
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in such a way so as to minimise the χ2 of the reconstructed muon track. The resolu-

tion on β obtained in [20] can be approximately parametrised as: σ(β)/β2 = 0.028,

and the resolution on the transverse momentum measurement is comparable to the

one expected for muons. We have therefore simulated the detector response to NLSP

sleptons by smearing the slepton momentum and β according to the parametrisa-

tions in [20]. The full simulation has only been performed for particles produced

centrally in the detector (|η| ∼ 0). We conservatively use the parametrisation used
in those conditions for the full |η| coverage of the detector. In fact, for all other
pseudorapidities the flight path from the interaction point to the first station, and

the distance among measuring stations is larger than for η = 0, and therefore the

resolution on β is expected to improve.

5. Triggering on GMSB events

In order to evaluate the available statistics for slepton mass and lifetime measure-

ments, we need to evaluate the trigger efficiency for the SUSY events.

The trigger system of the ATLAS experiment is described in detail in [11]. Three

levels of trigger are envisaged. The first level is exclusively hardware, and the infor-

mation from the muon detectors and from the calorimeters are treated separately.

The second level refines the first level by connecting the information from different

detectors. Finally the third level, also called ’event filter’, applies the full off line

reconstruction algorithm to the data.

The quasi-stable NLSP events can be selected in the ATLAS detector by using

either the muon or the calorimetric trigger.

The first option has been studied in a preliminary way in ref. [15]. An approxi-

mate evaluation for particles with pseudorapidity |η| < 1 gives an efficiency of 50%
for β = 0.5, increasing to basically full efficiency for β = 0.7 for the trigger coin-

cidence based on high PT muons (PT > 20GeV). No comparable study exists for

particles with |η| > 1. In this case, due to the larger distance of the trigger station,
the β threshold for the trigger to be sensitive to the heavy sleptons will be higher

than in the case of the particles produced centrally in the detector. In summary,

while it is sure that part of the heavy sleptons will be accepted by the ATLAS muon

trigger, at the present level of studies it is difficult to quote an efficiency for such a

trigger, especially in the region of low β, which is the one yielding the best resolution

for the slepton mass measurement.

In minimal GMSB models with slepton masses larger than 100GeV, the squark

masses are larger than 500GeV. Therefore the events with production of strongly in-

teracting sparticles will in general contain multiple high PT jets. As already observed

in [21], if the NLSP are visible, the PmissT is generated by the neutrinos in the cascade

decays, and its spectrum is relatively soft. If the PmissT is calculated only from the

energy deposit in the calorimeter, neglecting the NLSP’s and the muons, the spec-
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trum is much harder, and we recover the classical SUSY signature of PmissT +jets. The

first level PmissT trigger is based on the requirement of a jet with PT > 50GeV and

PmissT > 50GeV (both raised to 100GeV for the high luminosity running), where the

PmissT is calculated exclusively from the energy deposit in all the calorimeter cells, and

will therefore have a high efficiency for the models we are studying. Neglecting the

detector smearing of the trigger thresholds, the efficiency of the PmissT trigger for the

8 example points is of order 90%. A drawback of this purely calorimetric approach

is the fact that processes with low hadronic activity, such as direct slepton produc-

tion and direct gaugino production are not selected. This appears clearly from the

behaviour of the efficiency which is lower in the case of heavier squarks, when the

fraction of events with direct gaugino production is higher. A part of these events

will however be selected by the muon trigger.

It has been estimated [11] that the second level trigger will give an acceptable

rate even if the transverse momenta of triggering muons is not added to the miss-

ing transverse momentum calculation. Finally the full reconstruction at the event

filter level will be able to select the SUSY events by applying to the muon detec-

tor the slepton reconstruction algorithm described above. The most likely scenario

is that the SUSY events will be triggered by a combined use of the muon and the

calorimetric triggers, yielding an efficiency which is higher than the bare calorimeter

efficiency. In the following, we will conservatively calculate the statistical errors on

the measurements using the efficiencies of the calorimetric trigger.

6. Event selection

The SM backgrounds for the considered models are processes with muons in the final

state, such as the production of t̄t, b̄b,W+jets, Z+jets, where a muon is misidentified

as a slepton. In order to extract a clean GMSB signal from the SM background both

tight identification criteria on a slepton candidate and kinematical cuts on the event

structure are needed.

In order to select the heavy slepton, the key requirement is the presence of a track

in the muon detector with a measured β (βmeas) different from one. Since the resolu-

tion on the β measurement is ∼ 0.03, by requiring βmeas < 0.91 a rejection factor of ∼
1000 is obtained on background muons which have β = 1. The β distribution for slep-

tons is shown in figure 2 for model points 1 and 8. In all considered cases a significant

fraction of the events passes the βmeas < 0.91 cut. Additional background rejection is

obtained by comparing the momentum and the β of the track. A track in the muon

system is accepted as a slepton candidate if it satisfies the following requirements:

• |η| < 2.4, to ensure that the particle is in the acceptance of the muon trigger
chamber, and therefore both transverse and longitudinal component of the

momentum can be measured;
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Figure 2: Distribution of β for the NLSP sleptons at Points 1 and 8.

• PT > 10GeV after taking into account the energy loss in the calorimeters, to
ensure that the particle traverse all the muon stations.

• It is isolated, where the isolation consists in requiring a total energy < 10GeV
in the inner detector and in the calorimeter not associated with the candidate

track in a pseudorapidity-azimuth cone ∆R ≡ ∆η×∆φ = 0.2 around the track
direction.

• βmeas < 0.91, where βmeas is the β of the particle measured with the time-of-
flight in the precision chambers;

• The momentum Pmeas and βmeas should be compatible with the slepton mass
mℓ̃, corresponding to the cuts:

βmeas − 0.05
√

1− (βmeas − 0.05)2
<
Pmeas
mℓ̃

<
0.91 + 0.05

√

1− (0.91 + 0.05)2
.

The region in the (βmeas, Pmeas) plane defined by the last two cuts is shown for

Points 1 and 8 in figure 3. With these cuts, the loss in slepton candidates compared

to what one gets after the cut βmeas < 0.91 only is at the few percent level, with

a significant gain in muon rejection, as only muons within a restricted momentum

range can be misidentified as sleptons. For the lowest values of mℓ̃ considered, the

upper limit on Pmeas is essential to reject the background from W+jets and Z+jets

production. In fact, given the low jet multiplicity for this processes, the events

passing the kinematic selection described below typically contain muons with a few

hundred GeV momentum.
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Figure 3: Distribution of Pmeas versus measured βmeas for sleptons, for Points 1 and 8.

The region to the left of the thick lines in the (βmeas, Pmeas) plane defines the selected

slepton candidates.

The isolation requirement is necessary to reduce the background from semilep-

tonic decays of heavy quarks. A possible additional rejection on muons using the

ATLAS Transition Radiation Tracker is not considered in this analysis.

The trigger requirement and the presence of a slepton candidate already yield

a significant GMSB signal over the SM background from IVB + jets and top pro-

duction. An overwhelming background is however expected from QCD production

of b jets, given the very soft kinematic requirements. The squark mass scale for

the GMSB models considered ranges between 500GeV and 2TeV, giving a much

larger transverse energy deposition in the calorimeter than the QCD background.

To exploit this feature, we build an meff variable defined as:

meff =

min(4,Njet)
∑

i=1

P jet,iT +

min(2,Nµ)
∑

i=1

P µ,iT ,

where µ is a track reconstructed in the muon detector, including the slepton candi-

dates. This variable is similar to the one used for SUGRA inclusive studies in [11],

but also takes into account the presence of final state sleptons, and has a high effi-

ciency also for SUSY events with no squark/gluino production.

The final requirements for GMSB event selection are therefore:

• at least one hadronic jet with PT > 50GeV and a calorimetric EmissT > 50GeV

(trigger requirement);

• at least one slepton candidate as defined above;

• meff > 800GeV;
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Model Signal W+Jets Z+Jets t̄t QCD Total BKGD

1 452163 9.6 6.8 5.3 8.0 29.7

2 528420 9.6 6.9 5.3 8.0 29.9

3 7437 9.5 6.9 5.3 8.0 29.9

4 147354 9.5 7.1 5.6 7.4 29.6

5 365 2.4 11.1 6.2 3.1 22.8

6 6535 2.4 11.0 6.5 3.1 23.0

7 326 1.0 5.9 3.4 0.5 10.8

8 378 1.8 8.7 4.9 2.0 17.4

Table 3: Number of events expected after cuts for the eight example models and for the

major background sources. The assumed integrated luminosity is 30 fb−1.

For this indicative study, the cut on meff is set to a common value for all models, and

the choice is aimed at reducing the SM background to a few percent of the signal for

the models with lowest statistics.

In order to study the SM background, approximately 1 million events for each

of the following processes: t̄t, W+jets, Z+jets, WW , WZ, and ∼ 2 million QCD
events (in different bins of PT ) were generated with the PYTHIA Monte Carlo [22].

The number of expected events after cuts for the eight GMSB models and for the

main SM backgrounds for an integrated luminosity of 30 fb−1 are given in table 3.

A number of signal events ranging from a few hundred for the models with the

2TeV squark mass scale to a few hundred thousand for a 500GeV mass scale survive

these cuts. The corresponding background is of the order of a few tens of events,

yielding a very pure sample which can be used for measuring the NLSP properties.

The effect of a possible finite lifetime on the event statistics will be addressed in

detail when studying the NLSP lifetime.

7. Slepton mass measurement

In order to perform this measurement, the particle momentum is needed. The preci-

sion chambers only provide a measurement of the momentum components transverse

to the beam axis, so a measurement of the slepton pseudorapidity is needed. This can

be performed either by a match with a track in the inner detector, or using the infor-

mation from the muon trigger chambers. The first option requires a detailed study

of the matching procedure between detectors. This study was performed for muons

in [11], but the results can not be transferred automatically to the case of heavy par-

ticles for which the effect of multiple scattering in traversing the calorimetric system

is much more severe.

In the case of the trigger chambers, as already discussed above, a limited time

window around the beam crossing is read out, restricting the β range for which
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Figure 4: Distribution of the measured mass values for Points 1 and 8 as a function of β.

The number of events in the scatter plot is arbitrary.

the momentum can be measured. We therefore evaluated the statistical precision

achievable for the eight example models in two different β intervals: 0.6 < β < 0.91

and 0.8 < β < 0.91. For this measurement the sleptons are assumed to be stable.

From the measurements of the slepton momentum and of the particle β, the

mass can be measured using the standard relation m = p
√

1− β2/β. For each
value of β and momentum, the measurement error is known, and it is given by the

parametrisations in ref. [20]. Therefore, the most straightforward way to measure

the mass is just to use the weighted average of all the masses calculated with the

above formula. For two of the example points, we show in figure 4 the distribution

of the measured mass as a function of β. For values of β in the range (0.6,0.9) the

spread in the mass measurement goes from ∼ 5% to ∼ 15%, rising with β [20]. If
enough statistics at low β is available, the measurement precision will be dominated

by the events with a β value below ≈ 0.8.
In table 4, we show the numbers of the NLSP candidates for an integrated

luminosity of 30 fb−1 and the expected errors on the mass measurement. Only the

statistical errors are shown. The main systematic error on this measurement will be

the uncertainty on the NLSP momentum scale, as the systematic error on the time

measurement is already included in the parametrisation. We expect this uncertainty

to be of order 0.1% as for the muons, if the accuracy of the energy scale measurement

can be propagated to the high momentum scale considered in this analysis.

From the numbers in the table, one expects that if the NLSP is long lived, the

measurement error on the NLSP mass will be dominated by the systematic error for

models with a squark mass scale up to ∼ 1TeV.
In conclusion, the slepton mass can be measured with a precision of a few permille

for all the considered models with an integrated luminosity of 30 pb−1.
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Model mNLSP NNLSP σm (GeV) NNLSP σm (GeV)

(GeV) 0.6 < β < 0.91 0.8 < β < 0.91

1 100.1 365047 0.010 246809 0.017

2 100.4 425790 0.0093 289020 0.016

3 101.0 5933 0.084 3940 0.14

4 103.4 125220 0.018 81876 0.031

5 251.2 335 0.92 214 1.6

6 245.3 5595 0.22 3675 0.37

7 399.2 312 1.7 192 3.0

8 302.9 408 1.0 249 1.9

Table 4: Statistical errors on the NLSP mass measurement for the eight example models.

The assumed integrated luminosity is 30 fb−1.

8. Slepton lifetime measurement

The measurement of the NLSP lifetime was studied in detail in [8] for the case of

a Ñ1 NLSP at a high energy e
+e− collider. In that work a number of methods

were discussed in the framework of an idealised detector. By combining the different

approaches a wide range in NLSP lifetimes could be covered.

The aim of this study is to perform a realistic evaluation, including the most

important experimental effects, based on the detailed simulation of the response of

a real detector which is already in the construction phase. For this reason we do

not attempt to combine different methods, each of which would require a dedicated

detector study, but we concentrate on a statistical method, which is based on the

detailed study of the time of flight measurement capabilities of the ATLAS muon

detector described in the previous sections.

We exploit the fact the two NLSP are produced in each event. One can therefore

select events in which a slepton is detected through the time-of-flight measurement

described above, and count in how many of these a second slepton candidate is found.

The ratio of the number of events containing two slepton candidates to the number

of events with at least one candidate is a function of the slepton lifetime. This

measurement is in principle very simple, in practice it requires an excellent control

of the experimental sources of inefficiency for the detection of the second slepton.

The discussion in this section is therefore organised in a series of logical steps.

We first describe the principle of the method, calculating the dependence of the mea-

sured ratio on the slepton lifetime, without bothering how with real data it will be

possible to connect the two quantities. From this study we estimate the achievable

statistical error for the considered models, and we evaluate how a systematic un-

certainty on the measured ratio propagates to the lifetime measurement. We then

turn to analysing the main uncertainty sources, including the presence of background

from SUSY events, the incomplete knowledge of the underlying SUSY model and the
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uncertainty on the detector acceptance. As a result of this analysis we estimate the

range of systematic uncertainties for the experimental measurement of the lifetime.

Based on this estimate in the next section we determine the achievable precision on

the SUSY breaking scale
√
F after the first three years of data-taking at the LHC.

8.1 The statistical method

We define N1 the number of events passing the cuts discussed in section 6, with the

additional requirement that there be at least one candidate slepton at a distance

from the interaction vertex > 10m. For the events thus selected we define N2 as

the number of events where a second track with a transverse momentum in excess

of 10GeV is reconstructed in the muon system. The search for the second particle

should be as inclusive as possible, to minimise the corrections which should be applied

to the ratio. In particular no slepton isolation is required, and the tight cuts in the

(Pmeas, βmeas) plane shown in section 6 are replaced by the requirement:

Pmeas > mℓ̃
βmeas − 0.1

√

1− (βmeas − 0.1)2
, (8.1)

where mℓ̃ is the slepton mass.

The loss in signal for this cut is

0
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N
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Figure 5: The ratio R = N2/N1 defined in

the text as a function of the slepton lifetime cτ .

Only the curves corresponding to the model

points 1, 5, 6, 8 are shown.

less than 0.1%, thus introducing a neg-

ligible uncertainty in the measurement,

and the low momentum muons in the

SUSY sample are rejected. The sur-

viving background of high momentum

muons can be statistically subtracted

and it will be discussed in the following

section.

The ratio:

R =
N2
N1

is a function of the slepton lifetime. Its

dependence on the NLSP lifetime cτ

in metres is shown in figure 5 for four

of the eight model points. The curves

for the model points not shown are ei-

ther very similar to one of the curves

we show or lie between the external curves corresponding to models 1 and 8, thus

providing no additional information. Note that the curve for model 6 starts from

cτ = 2.5m and not from cτ = 50 cm, as for the other models. This is due to the

large value ofMmess (cfr. table 1), determining a minimum NLSP lifetime allowed by

theory which is macroscopic in this case (cfr. eqs. (1.3) and (2.2)).
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The probability P for a particle of mass m and momentum p and proper lifetime

τ to travel a distance L before decaying is given by the expression:

P (L) = e−mL/pcτ .

The value of N2 is therefore a function of the momentum distribution of the slepton,

which is determined by the details of the SUSY spectrum. One needs therefore to

simulate the full SUSY cascade decays in order to construct the cτ −R relationship.
The statistical error in the R measurement, can be evaluated as

σ(R) =

√

R (1−R)
N1

.

Relevant for the precision with which the SUSY breaking scale can be measured

is the error on the measured cτ , which can be extracted from the curves shown in

figure 5. This error can be evaluated as:

σ(cτ) =
σ(R)

[∂R(cτ)/∂cτ ]
.

The measurement precision calculated according to this formula is shown in figures 6

and 7 for the eight example points, always for an integrated luminosity of 30 fb−1.

The full line in the plots is the error on cτ if only the statistical error on R is

considered. The available statistics is a function of the mass scale of the strongly

interacting sparticles. For mass scales between 500 and 1200GeV, a statistical error

smaller than 10% can be achieved for cτ values ranging between 1m and several

hundreds of metres. For a mass scale of 2000GeV the statistical error is typically

10–20%. In the ideal case the details of the SUSY model are known and the R− cτ
relationship can be built from Monte Carlo, including the effect of the detector

acceptance. The subtraction of the background muons from the SUSY events is the

dominant contribution to the systematic error on the N2 measurement in this ideal

case, and will be treated in detail in the next section.

An additional uncertainty comes from the evaluation of the losses in N2 because

of sleptons produced outside of the η acceptance, or absorbed in the calorimeters,

or which escape the calorimeter with a transverse momentum below the cuts. This

contribution is however expected to be much more important for the realistic case in

which an imperfect knowledge of the SUSY model is assumed, and will be studied

in that framework in a later section.

Since the uncertainty on R is a consequence of the uncertainty on the evaluation

of N2, at this level we parametrise the systematic error on R as a term proportional

to R which is quadratically added to the statistical error. We choose two values,

1% R and 5% R, and we propagate the error to the cτ measurement. The results

are given as the dashed and the dotted lines in the plots in figures 6 and 7.
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Figure 6: Fractional error on the measurement of the slepton lifetime cτ , for model points

1 to 4. We assume an integrated luminosity of 30 fb−1. The curves are shown for three

different assumptions on the fractional systematic error on the R measurement: statistical

error only (full line), 1% systematic error (dashed line), 5% systematic error (dotted line).

For squark mass scales up to 1200GeV, assuming a 1% systematic error on the

measured ratio, a precision better than 10% on the cτ measurement can be obtained

for lifetime values between 0.5–1m and 50–80m. If the systematic uncertainty grows

to 5%, a 10% precision can only be achieved in the range 1–10m. If the mass scale

goes up to 2TeV, already at the level of pure statistical error a 10% precision is not

achievable. One can however achieve a 20% precision over cτ ranges between 5 and

100m, if a 1% systematic error is assumed.

8.2 Muon background from SUSY events

The definition of N2, as described in the previous section, relies on a very loose identi-

fication of the second slepton candidate in order to minimise acceptance corrections,

which are the dominant source of systematic uncertainties on the N2/N1 ratio.

In the models considered for this study the charged sleptons are light, and are

mostly produced in the cascade decays of charginos and neutralinos through decays

of the type χ̃0 → ℓ̃ℓ and χ̃± → ℓ̃ν. Therefore in a significant fraction of the SUSY
events muons will be produced together with the sleptons. As can be seen from the
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Figure 7: The same as in figure 6, but for model points 5 to 8.

second and third column of table 5, at least one muon is produced in 60–80% of the

events for all considered models, and more than one muon in 30–40% of the cases

for most models.

Most of these muons are soft, in partic-
No cut Cut eq. (8.1)

ID 1 µ > 1µ 1 µ > 1µ

1 0.37 0.14 0.027 0.00094

2 0.40 0.25 0.041 0.0011

3 0.23 0.42 0.22 0.043

4 0.39 0.39 0.16 0.014

5 0.22 0.42 0.10 0.0068

6 0.40 0.37 0.031 0.0013

7 0.36 0.34 0.026 0.

8 0.38 0.31 0.088 0.0040

Table 5: Fraction of events with one or

more detected muons for the eight ex-

ample points.

ular in the case of τ̃1 NLSP, and are rejected

by the requirement in the (Pmeas, βmeas) plane

which roughly corresponds to requiring the

momentum of the candidate to be above twi-

ce the slepton mass. The number of muons

per events after this cut are given in columns

four and five of table 5. The background af-

ter cuts is a function of the mass difference

between the squarks and the NLSP, which

determines the lepton momentum spectrum,

and of the NLSP mass which determines the

minimum required momentum for a candi-

date. The fraction ranges between a few per-

cent and 20% of the events.
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Figure 8: β distributions for sleptons (full line histogram) and background muons (hatched

histogram) for model point 4. The distributions are given for four momentum bins: a)

250 < p < 300GeV, 300 < p < 400GeV, 400 < p < 500GeV, 500 < p < 600GeV. The

histogram limits exclude the peak at β = 1 for the background.

The background muons can be statistically subtracted using the observed β

distribution of the slepton candidates. For a fixed momentum P of the candidate

the β of the sleptons is peaked at the value β = P/
√
P 2 +m2 where m is the

slepton mass, whereas the distribution for the muons is peaked at β = 1 and is

essentially independent of the muon momentum. As an illustration we show in

figure 8 the β distribution of sleptons (full line histogram) and of background muons

(hatched histogram) for model point 4, which has a high background contribution.

The histogram limits are set to exclude the peak at β = 1 to enhance the readability.

The distributions are given for four momentum bins, from 250 to 600GeV, and the

clear difference in shape between signal and background can be observed. The shape

of the measured β distribution for a given momentum only depends on the mass of

the particle, and will be known for both signal and background both from detailed

simulation of the detector response and from the data themselves. It will therefore be

possible to measure bin by bin the relative contribution of signal and background with

a likelihood fit to the observed β distributions. The signal/background separation

obtained with this technique will be further validated by comparing the momentum

spectrum of the background from isolated muons with the corresponding spectrum

for electrons in SUSY events.
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Given the good control of the detector response expected in ATLAS and the

multiple experimental handles available, the dominant contribution to the uncer-

tainty on the measurement of R from this source will be the statistical error on the

background evaluation. This error will have a value of approximately
√

k/N1, where

k is the number in the fourth column of table 5. The contribution of this factor to

the total error is only significant for the model points 3, 4, 5 and 8. The main effect

is a 30–40% degradation of the statistical error for cτ below 10m for models 3 and

8. In all other cases, the effect on the cτ uncertainty from this source is smaller than

the curves labelled “1%” in figures 6 and 7.

8.3 Model independent lifetime measurement

Once the muon background has been subtracted, if the underlying SUSY model is

known, cτ can simply be measured from R and the curves shown in figure 5. Most of

the SUSY mass spectrum will be measured from explicit reconstruction of exclusive

decay chains, as shown in [21] and [11]. It is difficult however at this stage to evaluate

the uncertainty in the construction of the R-cτ calibration curve from an imperfect

knowledge of the SUSY model. As an alternative approach, the measurement can be

performed by deconvoluting the effect of the relativistic lifetime dilatation from the

measured momentum distribution of the slepton candidates. There are two cases to

consider for each event, depending on whether both slepton candidates pass the cuts

used to define N1 or only one does. If only one of the two slepton candidates passes

the N1 cuts, the basic equation is:

N1 = C
N2
∑

i=1

Wi , (8.2)

with

Wi = e
Lm
cτP2,i ,

where L is the distance of the outermost muon station, m is the slepton mass, P

its momentum, and the subscript 2 refers to the i-th slepton candidate which did

not pass the cuts used to define N1. The acceptance correction C is defined as the
reciprocal of the detector acceptance and the experimental efficiency in detecting the

second slepton candidate. Its value is strictly greater than 1.

The fraction of events in which both legs pass the criteria to define N1 varies

between ∼ 15% and 40%, increasing with the NLSP mass. In this case the expression
for the event weight Wi must be symmetrised to:

Wi =
e
− Lm
cτP1,i + e

− Lm
cτP2,i

e
−Lm
cτ
( 1
P1,i
+ 1
P2,i
)
− 1 .

By solving eq. (8.2), the value of cτ can be measured with no reference to the

underlying model. In order to evaluate the accuracy of the method, we measure
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cτ from the momentum distribution of the candidate sleptons for different input

cτ values, assuming no statistical error and no systematic uncertainty from muon

background subtraction, or from the evaluation of the acceptance correction C. The
fractional error on the measured cτ is shown in figure 9 as a function of cτ for all the

8 model points, under the above assumptions. For all the points and for the range

5–1000m the deviation of the calculated cτ from the real value is less than 1%. The

source of this small systematic deviation is the momentum smearing of the sleptons,

which causes a few sleptons to be lost because they fall below the analysis cuts,

and the fact that only an average correction is applied to compensate for ionisation

energy loss in the calorimeters.

The experimental sources of uncer-
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Figure 9: Fractional deviation of the cτ value

measured using the momentum distribution of

the candidates from the true value as a func-

tion of cτ . The different curves shown are for

the 8 example points considered. The statis-

tical error and the systematic uncertainty on

N2 are not included in the calculation.

tainty in eq. (8.2), except the p-scale,

can be parametrised as a deviation of

C from the true value. The propaga-
tion of the uncertainty on C to the cτ
measurement was explicitly studied by

calculating cτ with our simulated sam-

ples for all the accessible cτ range using

a value of C shifted by 1% with respect
to the true value. The resulting dis-

placement in the calculated cτ value is

accurately described by the curves la-

belled “1%” in figures 6 and 7.

At this point, to complete the eval-

uation of the systematic uncertainty on

cτ , we need to discuss how the accep-

tance correction C can be estimated in
the ATLAS detector, and the expected

uncertainty on its value.

8.4 Systematic uncertainties on acceptance

The main experimental effects causing the loss of a slepton produced in a GMSB

event are:

• the low energy sleptons which due to the ionisation energy loss in the calorime-
ters fall below the energy and transverse momentum requirements of the anal-

ysis;

• the |η| acceptance of the detector.
An additional ∼ 5% loss, coming from the reconstruction efficiency will be measured
with high precision exploiting the redundancy of the various ATLAS subdetectors,

and will not be further considered.
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The loss of low momentum sleptons can be estimated by studying the spectrum

of the sleptons which range out in the hadronic calorimeter. These particles should

present the characteristic signature of a stiff isolated highly ionising track in the inner

detector depositing a small amount of energy in the electromagnetic calorimeter and

all of its kinetic energy in a single tower of the hadronic calorimeter. A detailed

study with full simulation of the ATLAS detector is needed to assess how well the

acceptance loss can be evaluated with this technique.

For the study of the |η| acceptance no such clear handle exists, but it should be
possible to extract some indications from the observed η distribution, and by studying

the tracks up to a pseudorapidity |η| < 2.7 which is the limit of the acceptance of
the precision muon chambers.

The acceptance correction can also
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Figure 10: Acceptance correction factor cal-

culated for 50 different GMSB models. The

effects of the loss of low momentum sleptons

and of the η acceptance are included. The ac-

ceptance is given as a function of the squark

mass.

be evaluated through a Monte Carlo

simulation of all the SUSY processes.

The SUSY events are dominated by the

production of squarks and gluinos, and

the η distribution of the sparticles pro-

duced in the hard scattering is a func-

tion of their mass. In the considered

models the significant mass difference

between squarks and gluinos and their

decay products produces rather colli-

mated decays, and the η distribution

of the NLSP’s is mostly determined by

the mass scale of squarks and gluinos.

On the other side, the lower end of the

NLSP momentum spectrum is domina-

ted by the direct production of sleptons

charginos and neutralinos.

In order to evaluate the spread in

the value of the acceptance for different

model assumptions, we have analysed 50 models with NLSP masses of 100, 200,

300, or 400GeV, and a spread as large as possible in squark mass scale. We show

in figure 10 the acceptance correction C for the 50 models as a function of the
squark mass scale, calculated as the average of the masses of all the six squark

flavours, both left and right handed. The correction varies between 4% and 1% with

increasing squark mass levelling at 1% for squark masses higher than 1500GeV. The

spread in the correction factor for a fixed squark mass is below 1%. For a general

SUSY model, the squark mass will be known, from the inclusive study of the ET
distribution in SUSY events to 5–10% [11]. The situation is even better in the

GMSB scenario addressed in this study, for which it will be possible to perform the
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Figure 11: Fractional error on the measurement of the SUSY breaking scale
√
F for model

points 1 to 4. We assume an integrated luminosity of 30 fb−1. The curves are shown for

the three different assumptions on the fractional systematic error used in figures 6 and 7.

full reconstruction of the decay chains of squarks [21], yielding an error on squark

masses at the percent level. From these considerations, even if we conservatively

assume only the constraints from inclusive studies, it should be possible to keep the

uncertainty on the acceptance correction C well below the 1% mark.

9. Determining the SUSY breaking scale
√
F

Using the measured values of cτ and the NLSP mass, the SUSY breaking scale√
F can be calculated from eq. (1.3), where B = 1 for the case where the NLSP
is a slepton. From simple error propagation, the fractional uncertainty on the

√
F

measurement can be obtained from the experimental uncertainties on cτ on the

slepton mass.

In figures 11 and 12, we show the fractional error on the
√
F measurement as a

function of
√
F for our three different assumptions on the cτ error. The uncertainty

is dominated by cτ for the higher part of the
√
F range and grows quickly when

approaching the lower limit on
√
F . This is because very few sleptons survive and

the statistical error on both mℓ̃ and cτ gets very large. If we assume a 1% systematic
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Figure 12: The same as in figure 11, but for model points 5 to 8.

error on the ratio R from which cτ is measured (dashed lines in figures 11 and 12),

the error on
√
F is better than 10% for 1000 .

√
F . 4000TeV for model points

1–4 with higher statistics. For points 5–8, in general one can explore a range of

higher
√
F values with a small relative error, essentially due to the large NLSP mass

in these models. Note also that the theoretical lower limit (2.2) on
√
F is equal to

about 1200, 1500, 3900, 8900TeV respectively in model points 2, 5, 6, 7, while it

stays well below 1000TeV for the other models.

10. Conclusions

We have discussed a simple method to measure at the LHC with the ATLAS de-

tector the fundamental SUSY breaking scale
√
F in the GMSB scenarios where a

slepton is the NLSP and decays to the gravitino with a lifetime in the range 0.5m

. cτNLSP . 1 km. This method requires the measurement of the time of flight of

long lived sleptons and is based on counting events with one or two identified NL-

SP’s. The achievable measurement precision critically depends on the uncertainties

in evaluating the experimental inefficiencies in the NLSP detection. We have per-

formed a particle level simulations for eight representative GMSB models, some of

them being particularly hard due to low statistics. The experimental study is based
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on a parametrisation of the ATLAS muon detector response to sleptons, based on a

detailed full simulation study. The careful consideration of the possible sources of un-

certainty allows us to conclude that the systematic uncertainty affecting the measure-

ment will be at the percent level. In this framework, a level of precision of a few 10’s

% on the SUSY breaking scale measurement can be achieved in significant parts of the

1000 .
√
F . 30000TeV range, for all models considered. The range of the measure-

ment could be extended through the direct detection of NLSP decays either inside the

inner detector cavity or inside the muon spectrometer. A detailed detector simulation

for these signatures would be needed in order to assess the possible gain in sensitivity.

We stress that the results of the present analysis cover larger classes of theoretical

frameworks. In particular, any model implying the presence of long-lived particles

decaying into leptonic final states through the production of primary heavy particles

with mass of order 1TeV (parameter that guarantees a crucial suppression of the SM

background) can be analysed according to similar strategies.
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