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Abstract—The generalized entropies of Rényi inspire new
measures for estimating signal information and complexity in
the time–frequency plane. When applied to a time–frequency
representation (TFR) from Cohen’s class or the affine class, the
Rényi entropies conform closely to the notion of complexity that
we use when visually inspecting time–frequency images. These
measures possess several additional interesting and useful proper-
ties, such as accounting and cross-component and transformation
invariances, that make them natural for time–frequency analysis.
This paper comprises a detailed study of the properties and several
potential applications of the Rényi entropies, with emphasis on
the mathematical foundations for quadratic TFRs. In particular,
for the Wigner distribution, we establish that there exist signals
for which the measures are not well defined.

Index Terms—Complexity, Rényi entropy, time–frequency anal-
ysis, Wigner distribution.

I. INTRODUCTION

T HE termcomponentis ubiquitous in the signal processing
literature. Intuitively, a component is a concentration of

energy in some domain, but this notion is difficult to trans-
late into a quantitative concept [1]–[3]. In fact, the concept of
a signal component may never be clearly defined.

The use and abuse of this term is particularly severe in the lit-
erature on time–frequency analysis. Time–frequency represen-
tations (TFRs) generalize the concept of the time and frequency
domains to a joint time–frequency function that indi-
cates how the frequency content of a signalchanges over time
[4]–[6]. Common themes in the literature include the suppres-
sion of TFR cross-components, the concentration and resolu-
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tion of autocomponents, and the property that the time-varying
spectral analysis of TFRs separates signal components, such as
parallel chirps, that overlap in both time and frequency. More-
over, the quality of particular TFRs is very often judged based on
subjective criteria related to the components of the signal being
analyzed.

In this paper, rather than address the question “what is a
component?” directly, we will investigate a class of quantitative
measures of deterministic signalcomplexityand information
content.1 While they do not yield direct answers regarding
the locations and shapes of components, these measures are
intimately related to the concept of a signal component, the
connection being the intuitively reasonable supposition that
signals of high complexity (and therefore high information
content) must be constructed from large numbers of elementary
components.

Moment-based measures, such as the time–bandwidth
product and its generalizations to second-order time–frequency
moments [4]–[6], [8], [9] have found wide application, but un-
fortunately measure neither signal complexity nor information
content [1], [2]. To demonstrate, consider a signal comprised
of two components of compact support, and note that while
the time–bandwidth product increases without bound with
separation, signal complexity clearly does not increase once
the components become disjoint.

A more promising approach to complexity based onentropy
functionals exploits the analogy between signal energy densities
and probability densities [1]. Just as the instantaneous and spec-
tral amplitudes and behave as unidimensional
densities of signal energy in time and frequency, TFRs try very
hard to act as bidimensional energy densities in time–frequency.
In particular, there exist TFRs whose marginal properties par-
allel those of probability densities

(1)

(2)

The quadratic TFRs of the large and useful Cohen’s class can
be obtained as the convolution [4]–[6]

(3)

1Many alternative measures of complexity exist (such as Kolmogorov’s [7]).
These measures lie beyond the scope of this paper, however, since they are typ-
ically applied tosignals, whereas our analysis is based onTFRs, considered as
pseudo probability densities.
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of a kernel function with the Wigner distribution of the
signal

(4)

The probabilistic analogy evoked by (1) and (2) suggests the
classical Shannon entropy [10] (given here for unit-energy sig-
nals)

(5)

as a natural candidate for measuring the complexity of a signal
through its TFR.2 The peaky TFRs of signals comprised of
small numbers of elementary components would yield small
entropy values, while the diffuse TFRs of more complicated
signals would yield large entropy values. Unfortunately, how-
ever, the negative values taken on by most TFRs (including all
fixed-kernel Cohen’s class TFRs satisfying (1)) prohibit the ap-
plication of the Shannon entropy due to the logarithm in (5).

In [1], Williams, Brown, and Hero sidestepped the negativity
issue by employing the generalized entropies of Rényi [11]
(again for unit-energy signals)

(6)

Parameterized by , this class of information measures
is obtained simply by relaxing the mean value property of the
Shannon entropy from an arithmetic to an exponential mean.
(Shannon entropy appears as .) In several empirical
studies, Williams, Brown, and Hero found that in addition to
appearing immune to the negative TFR values that invalidate
the Shannon approach, the third-order Rényi entropy seemed
to measure signal complexity. Fig. 1 repeats the principal ex-
periment of [1]. The third-order Rényi entropy of the
Wigner distribution of the sum
of two Gaussian pulses is plotted versus the separation distance

. (At , the two pulses coincide and, therefore, be-
cause of the assumed energy renormalization, have the same
information content as a solitary pulse.) The time–bandwidth
product of is also plotted. It is clear from the figure that, un-
like the time–bandwidth product, which grows without bound
with , the Rényi entropy saturates exactly one bit above the
value .3 Similar results hold
for separated copies of ( bits information gain). To
summarize, independent of the definition of signal component,
the Rényi entropy indicates a “doubling of complexity” inas
the separation moves from to .

This paper comprises a detailed study of the properties and
some potential applications of the Rényi time–frequency infor-
mation measures (6), with emphasis on the mathematical foun-
dations for quadratic TFRs. In Section II, after reviewing the
development of these measures, we examine their existence and
show that for each odd there exist signals for which (6)
is not defined (due to ). This unprece-
dented result surprises, for it indicates that the Rényi formalism

2Note that the complexity measure (Shannon entropy here) is applied not to
a signal or process, but to a TFR that plays a rôle analogous to a probability
density function.

3Readers should not be alarmed by negative Rényi entropy values. Even the
Shannon entropy takes on negative values for certain distributions in the contin-
uous-variable case.

Fig. 1. Solid curve and axis on left. The third-order Rényi entropyH (W )
of the Wigner distribution of the sums(t) := g(t ��t) + g(t +�t) of two
Gaussian components plotted versus the displacement parameter�t (see (32)
in Section III-B for the exact signal definition). (The asymptoticH (W ) levels
are� log � �0:208 and log 3 � 0:792 bits.) Dotted curve and axis
on right. Time–bandwidth product ofs.

is not universally applicable to time–frequency analysis. Coun-
terexample signals are easily constructed for large odd; how-
ever, our counterexamples are quite contrived. This is
consistent with the ample numerical evidence [1], [8], [9], [12],
[13] indicating that the third-order entropy is defined for a broad
class of signals and TFRs, including even those distributions
taking locally negative values. When defined, these measures
have some striking properties that we investigate in Section III.

1) counts the “number of components” in a multi-
component signal.

2) For odd orders , is asymptotically invariant
to TFR cross-components and, therefore, does not count
them.

3) exhibits extreme sensitivity to phase differences
between closely spaced components. This sensitivity can
be reduced through smoothing in time–frequency. We
provide analytical results for the sum of two Gaussian
signals.

4) The range of values is bounded from below. For
the Wigner distribution, a single Gaussian pulse attains
the lower bound.

5) The values of are invariant to time and frequency
shifts of the signal. Certain TFRs provide an additional in-
variance to scale changes, while the Wigner distribution
boasts complete invariance to symplectic transformations
on the time–frequency plane. For more general invari-
ances, the Rényi theory extends easily to encompass not
only the TFRs of the affine class [14] but also the gener-
alized representations of the unitarily equivalent Cohen’s
and affine classes [15]–[17].

In Section IV, we discuss the application of these measures as
objective functions in optimized time–frequency analysis and
introduce the notion of Rényi dimension. We close with a dis-
cussion and conclusions. Proofs of the various results are con-
tained in the appendixes.
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II. THE RÉNYI ENTROPIES

A. Rényi Entropy of a Probability Density

In [11] Rényi introduced an alternative axiomatic derivation
of entropy based onincompleteprobability mass distributions

whose total probabilities sum to
. He observed that the Shannon entropy

uniquely satisfies the axioms of symmetry, continuity, normal-
ization, additivity, and, in addition, the mean value condition

(7)

Here and are any two incomplete densities such that
, and signifies the composite density

.
Extending the arithmetic mean in (7) to a generalized mean

yields generalized entropies closely resembling Shannon’s.
Considering the generalized mean value condition

(8)

with a continuous monotone function, Rényi demonstrated
that just two types of functions are compatible with the other
four axioms. The first, , yields the arithmetic
mean (7) and the Shannon entropy. The second

(9)

yields the functional

(10)

now known as the Rényi entropy of order. The Shannon
entropy can be recovered as . Extension of

to continuous-valued bivariate densities is
straightforward

(11)

We emphasize that since the passage from the Shannon entropy
to the class of Rényi entropies involves only the relaxation of
the mean value property from an arithmetic to an exponential
mean, behaves much like [11].

B. Rényi Entropy of a TFR

The central theme of this paper is the application of entropy
measures to TFRs to measure the complexity and information
content of nonstationary signals indirectly via the time–fre-
quency plane. Our primary TFR tools of choice lie in Cohen’s
class [4]–[6], which can be expressed as in (3) as the convolu-
tion between the Wigner distribution and a real-valued kernel

.4 The kernel and its inverse Fourier transformcompletely

4To avoid cumbersome machinations, we will restrict our attention to the
Wigner distribution and all TFRs obtained from (3) with� 2 L ( ). Since
we will be interested in odd powers of TFRs (see (6)), we furthermore assume
that kernel is a real-valued function.

determine the properties of the corresponding TFR. For ex-
ample, a fixed-kernel TFR possesses the energy preservation
property (2) provided and the marginal properties
(1) provided . Besides the Wigner
distribution, examples of Cohen’s class TFRs include the
spectrogram ( ambiguity function of the time-reversed
window function) and the smoothed pseudo-Wigner distribu-
tions [4]–[6].

The analogy between TFRs and bidimensional probability
densities discussed in the Introduction breaks down at at
least two key points. First, because of the freedom of choice
of kernel function, the TFR of a given signal is nonunique,
with many different distributions “explaining” the same data.
Second, and more pertinent to the present discussion, most
Cohen’s class TFRs are nonpositive and, therefore, cannot be
interpreted strictly as densities of signal energy.5 These locally
negative values will clearly play havoc with the logarithm in
the Shannon entropy (5).

While the Rényi entropies (6) appear intriguing and encour-
aging for time–frequency application [1], [8], [9], [12], [13], it
has remained an open question whether, in general, these mea-
sures can cope with the locally negative values of Cohen’s class
TFRs. In order for (6) to be defined for a signal, we clearly
need to be real and such that

(12)

Noninteger orders yield complex values and so ap-
pear of limited utility. Integer orders that are even pose no such
hazards, since the integral of the positive function re-
mains positive.

Unfortunately, odd integer orders are not so robust. For each
odd , there exist signals in and TFRs such that
(12) fails, leaving (6) undefined. In Appendix I, we develop the
following counterexamples for the Wigner distribution .6

1) For sufficiently large odd , (12) fails for any smooth,
rapidly decaying, odd signal.

2) For odd integers , (12) fails for the first-order Her-
mite function.

3) For , (12) fails for a particular linear combination of
the third- and nineth-order Hermite functions (see Fig. 2).

As noted in the Introduction, these surprising results suggest that
we must proceed with caution when applying TFR-based Rényi
entropies.

Negative results aside, a preponderance of numerical evi-
dence [1], [8], [9], [12] indicates that the third-order entropies
are well-defined for large classes of signals and TFRs (our
counterexamples only apply to the Wigner distribution). In
Appendix I, we spend a considerable effort to find a signal for
which (12) fails for . Also, a small amount of Gaussian
smoothing of is generally enough for (12) to hold. This
indicates that the examples for which (12) fails for are
rather exceptional.

5While there do exist nonquadratic classes of positive TFRs that satisfy (2)
and (1) [4], we will consider only quadratic TFRs in this paper.

6Clearly, these counterexamples invalidate the “proofs” of existence sketched
in [8], [9].
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Fig. 2. Example of a signal for which the third-order Rényi entropyH (W ) of the Wigner distribution is not defined. (a) The signals consists of a special
combination of two odd-order Hermite functions (see Appendix I-C). Its Wigner distribution (b) as an image and (c) in three dimensions (note the largenegative
peak).

Throughout the balance of this paper, we will assume that
all signals under consideration are such that the formula (6) is
well-defined.

We close this section with some important notes on normal-
ization. In their experiments, Williams, Brown, and Hero actu-
ally employed not from (11), but a prenormalized version
equivalent to normalizing the signal energybeforeraising the
TFR to the power

(13)

The two measures are related by

(14)

and thus varies with the signal energy. Since an infor-
mation measure should be invariant to the energy of the signal
being analyzed, we will adhere strictly to the definition (13) for
the duration of this paper. Discretization of this measure (by
setting , with ) for use with com-
puter-generated, discrete TFRs yields

(15)

The frequency step constant is computed as , given
uniform frequency samples spanning the frequency range of
hertz per sample. For both continuous and discrete TFRs,

operation in coordinates, with radial frequency
rad/s, introduces an offset

. Sang and Williams explore an alternative magnitude
normalization of the Rényi entropy in [13].

III. PROPERTIES OF THERÉNYI TIME–FREQUENCY

INFORMATION MEASURE

We now conduct a detailed analysis of the properties of the
Rényi entropy (when it exists) that make it a fascinating and
useful tool for studying the information content of time-varying
deterministic signals.

A. Component Counting and Cross-Component Invariance

If TFRs were “quasi-linear”—such that each signal compo-
nent contributed essentially separately to the overall TFR with
no intervening cross-components—then the analogy between
TFRs and probability density functions would predict an addi-
tive or counting behavior from the Rényi entropy. This is rea-
sonable, since a (nonoverlapping) combination of basic signal
components is more “complex” than the individual components.

To gain more intuition into this most fundamental property
of , imagine applying this measure first to a compactly sup-
ported signal using an ideal, quasi-linear TFR . Denote
the length of the supporting interval of by and assume
that for all and for all .

Form the two-component signal , where
represents translation by time . Assuming that

, the distribution is given by

(16)

Since is compactly supported in the time direction, we
can appeal to the analogy between the right-hand side of (16)
and the composite probability distribution in (8) to com-
pute . In particular, substituting (14) into (8) with

and employing the facts
and , some simple algebra yields

(17)

In words, the two-component signal contains exactly
one bit more information than the one-component signal.7 The
saturation levels of the entropy curve in Fig. 1 display precisely
this behavior.

While this simple analysis provides considerable insight into
the counting behavior of , it does not take into account the
nonideal, nonlinear behavior of the quadratic TFRs of Cohen’s
class. In particular, we have ignored the presence of cross-com-
ponents in these distributions [4]–[6], which violate the linearity
assumption underlying (16). We will broaden our analysis to en-
compass actual TFRs in two stages.

7Note that the post-normalized entropyH from (11) exhibits the invariance
H (I ) = H (I ), since the energies ofs ands+ T s differ by a factor
of two.



BARANIUK et al.: MEASURING TIME-FREQUENCY INFORMATION CONTENT 1395

First, consider the Wigner distribution (4) of the compactly
supported, two-component signal

(18)

The term , called thecross-componentbetween
and , is derived from the cross-Wigner distribution [4]–[6],
[18]

(19)

with the cross-Wigner distribution between signalsand de-
fined by

(20)

In general, the Rényi entropy

(21)

involves a complicated polynomial in , , and .
However, due to the compact support ofand thus [4]–[6],
for separations , these terms lie disjoint in the time–fre-
quency plane, and a tremendous simplification results

provided

(22)

While this is obviously not the case foreven, the oscillatory
structure of [4]–[6] cancels under integration with odd
powers for sufficiently large. We prove the following in Ap-
pendix II-A as a special case of Theorem 2.

Proposition 1: Fix odd and let be a signal of
compact support such that and obey (12). Denoting
the length of the supporting interval by, set .
Then (22) holds and thus .

The linear growth of the separation condition
recommends the first of the odd integers , namely,

, as the best order for information analysis with the
Wigner distribution. Problems with (12) and numerical consid-
erations (stability in the face of quantization errors) also jus-
tify small values. Using the symplectic transformation prop-
erties of the Wigner distribution (see Appendix III-A and [5],
[6], [19]), Proposition 1 can be easily extended from signals
of compact time support to signals whose Wigner distributions

are supported on a strip of arbitrary orientation in the time–fre-
quency plane.

We can extend these counting results to include most Cohen’s
class TFRs and finite energy signals. For noncompactly sup-
ported signals, the auto- and cross-components in the Cohen’s
class analog to (21) will always overlap to some degree, so we
should expect only asymptotic expressions. Define the time–fre-
quency displacement operator

(23)

that translates signals by the distance

in the time–frequency plane (with 1 s and 1 Hz).
The following is the key result of this section [8], [9].

Theorem 2 (Component Counting):Let be either
the Wigner distribution or a Cohen’s class TFR defined as in
(3) with . Then, for any and odd
such that and obey (12), we have

(24)

Theorem 2 implies also that the “information” in the cross-
components of must decay to zero asymptotically.

Corollary 3 (Asymptotic Cross-Component Invariance):Let
be either the Wigner distribution or a Cohen’s class

TFR defined as in (3) with . Then, for any
and odd such that and obey (12), we

have

(25)

Proposition 1 extends to components and bits of in-
formation gain, provided that the auto- and cross-components
become sufficiently disjoint in the time–frequency plane. The
counting property doesnothold generally when the signal cross-
components overlap with the auto-components or other cross-
components, however.

A simple example of such a signal is

where the cross-component lies upon the
auto-component . For supported on and

, we compute

(26)

The first term on the right side arises from the auto-components
of ; the second term arises from the (overlapping)
auto-component of and cross-component between
and (see (100)). Note that

(27)
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for integer , which follows from the conditions on and
. Now using arguments as in Appendix II-A and expanding

the second term on the right side of (26), we find that

(28)

Here denotes the coefficient of in . Thus,
we have

(29)

For instance, yields rather than for the
second term on the right side of (29).

As a second example, consider

with the support of and as above. Here, the cross-com-
ponent overlaps the cross-component

. As above, we obtain

(30)

with the coefficient of in . For instance,
yields rather than for the second term on

the right side of (30).
These examples show that large intercomponent spacing

is not enough for correct component counting.
Notice that the spacings between the signals in these examples
are regular; with signals of fixed supports and random spacings
that tend to infinity, chances are much better that the component
counting property will hold true.

B. Amplitude and Phase Sensitivity

The results of the experiment illustrated in Fig. 1 and ana-
lyzed in the previous section are very appealing, but also incom-
plete, because we introduced no amplitude or phase differences
between the two signal components.

First consider amplitude differences. Consider the signal
consisting of weighted components that are

time–frequency shifted versions of some basic component. If
the are pulled apart such that the asymptotic overlap of the
auto- and cross-components of their TFR decays to zero, then
an analysis similar to that of Section III-A yields [20]

(31)

with a vector with entries

and the discrete Rényi entropy of (10). is a contin-
uous function of the bounded by and and maximized with
all equal. Thus, amplitude discrepancies alter the asymptotic
saturation levels of the Rényi entropy.

We will see that phase offsets induce strong oscillations be-
tween the saturation levels. To shed further light on this matter,
we will derive an analytic expression for the third-order entropy
of the Wigner distribution of the sum of two Gaussian pulses

(32)

with the Gaussian

(33)

and , , . We consider

(34)

with

(35)

Using symplectic transformations, we show in Appendix
III-A that the complete can be computed
from the values of

(36)

with

(37)

related to the time displacement, phase change, and ampli-
tude disparity between the two components, respectively. In
Appendix III-B we derive the following.

Proposition 4: For the signal (32) with
replaced by and with and

defined as in (34)–(37), we have

(38)

This expression is very convenient for studying the effects of
component time, phase, and amplitude differences on the third-
order Wigner entropy. For example, in Appendix III-C, we find
the bounds

(39)

From (38), we can compute the effect of component ampli-
tude disparity on by fixing and varying the separa-
tion distance via . For the asymptotic saturation level, we have

(40)

The obvious conclusion that equal amplitudes maxi-
mize the complexity of signals composed of multiple identical
components appears quite reasonable, for smaller components
are dominated by larger ones and therefore carry less informa-
tion.

In the region between saturation levels (where the TFR com-
ponents overlap and the assumptions of Section III-A fail to
hold), the relative phase between components controls the value
of the Rényi entropy. Fig. 3 extends the experiment of Fig. 1 by
plotting the surface as a function of both inter-compo-
nent displacement and phase . It is apparent from the curves
that while phase changes do not affect the saturation levels of the
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Fig. 3. The third-order Rényi entropyH (W ) of the Wigner distribution of
the two-component Gaussian signal (32) plotted versus displacement parameter
a and phase' (in rads). We use (38) withv = 1. Comparison with Fig. 1
(which coincides with the' = 0 slice of the surface) illustrates the sensitivity
ofH (W ) to relative phase. (The asymptotic levels here are the same as those
in Fig. 1; the (overestimation) peak value islog 27� 1 � 1.377 bits.)

information measure, they allow many possible trajectories be-
tween the two levels, including even trajectories where an “over-
estimation” [noted numerically in [1] and confirmed in (39)] of
information content occurs. Furthermore, if the phase of each
component is fixed relative to the center of its envelope (so that
the components do not change shape as they are shifted about),
then the corresponding versus curve will be a slice
of the surface along an oblique trajectory in the
plane. Curves of this form can be multimodal (see [8, Fig. 2],
[9]).

The phase sensitivity of the measure for closely
spaced components is quite reasonable, given the sensitivity of
the signals themselves to relative phase. For example, Fig. 4
shows the composite signals and their respective Wigner
distributions for a fixed offset and relative phases and

. The difference in appearance is striking; clearly, the
components in the signal in Fig. 4 (b) are more separated than
those in Fig. 4 (a). Accordingly, the entropies for the
two signals differ widely: from 2.741 to 3.857 bits, respectively.

Since the interference pattern generated by cross-components
encodes intercomponent phase information, signals with low in-
formation content (“almost mono-component signals”) must ex-
hibit mainly constructive interferencein the sense of [5], [6].
Relative phase fades from importance after all components be-
come disjoint.

C. Effects of Smoothing

TFRs based on low-pass kernels lead to more robust Rényi
information estimates, since smoothing suppresses the Wigner
cross-components that carry the intercomponent phase informa-
tion.

In Appendix III-D, we calculate for the two-compo-
nent Gaussian signal (from (32) with ), with

the Wigner distribution smoothed by the Gaussian kernel

(41)

The choice results in the matched-window spectrogram8

as in Fig. 5, and we obtain from (174)

(42)

with and as in (37). For general , the upper satu-
ration level is given by

(43)

To illustrate, we repeat in Fig. 5 the experiment of Fig. 3
using a matched-window spectrogram TFR rather than the
Wigner distribution. While the spectrogram information
estimate remains somewhat phase-sensitive, it climbs more
swiftly to the saturation level and with a reduced overshoot
compared to the Wigner distribution estimate. In general, the
ascent to saturation accelerates with increasing orderonce
the cross-components are smoothed to the same peak level
as the auto-components. (The opposite holds for the Wigner
distribution, because Wigner cross-components can tower over
Wigner auto-components by up to a factor of two.)

The price paid for the more robust information estimates de-
rived from smoothed TFRs is a signal-dependent bias of en-
tropy levels compared to those derived from the Wigner distri-
bution, with the amount of bias increasing with the amount of
smoothing. This bias is difficult to quantify, since the convolu-
tion in (3) and the power and integral in (6) do not permute in
any simple fashion. In the special case of the matched-window
spectrogram applied to a sum of Gaussian signal components,
a direct computation finds a 1-bit bias in asymptotic informa-
tion compared to that estimated using the Wigner distribution
(compare Fig. 1 with Fig. 5). Despite the introduction of sys-
tematic bias, smoothing is essential when measuring entropies
for complicated multicomponent signals with overlapping auto-
and cross-components.

Although it may be intuitively clear that smoothing attenuates
the Wigner distribution’s negative values, it is by no means an
easy matter to get pertinent results on the existence of
for odd . Even for the case of Hermite functions (as con-
sidered in Appendix I) and Gaussian smoothing (see (41)), this
is a hard problem. It can be shown that the well-definedness of

for all and all requires
a Debbi–Gillis type result [21] in which thein the exponential
of (73) is replaced by . We can summarize our
(partial) results on Hermite signals as follows.

: In this case, [22]
and existence of is not an issue.

: It was kindly observed to us by Prof. R.
Askey that a Debbi–Gillis result is easily
established for , which implies
that is well-defined for this
range of smoothing.

8A spectrogram computed using the time-reversed signal as the window.
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Fig. 4. Signals and positive parts of the Wigner distributions from the experiment illustrated in Fig. 3 corresponding to a single fixed separationa and two different
phases'. (a) Signal (left) and Wigner distribution (right) for' = ; H (W ) = 2.741 bits. (b) Signal and Wigner distribution for' = ; H (W ) = 3.857
bits.

Fig. 5. The third-order Rényi entropyH (C ) of the matched-window
spectrogram plotted versus displacement parameter�t and phase' (in rads)
for the same signal utilized in Fig. 3 (see (42)). The reduced sensitivity of
the spectrogram to relative phase results in swifter saturation with reduced
overshoot. Furthermore, for small' and �t, H (C ) actually responds
sooner thanH (W ) to small increases in�t. Note also the 1-bit bias in the
asymptotic levels ofH (C ) versus those ofH (W ). (The asymptotic levels
here are log 3 � 0:792 and log 3 + 1 � 1:792.)

: We have been unable to prove results for
the case .

: This is the Debbi–Gillis result [21] that
shows that is well-defined.

D. Lower Bound on Signal Information Content

Simple to derive from Lieb’s inequality [23] (see Appendix
IV-A), a lower bound on the Rényi entropy corresponds to the
“peakiest” Cohen’s class TFR.

Theorem 5 (Lower Bound on Information Content for
Cohen’s Class):For any Cohen’s class TFR with

and , any , and any

(44)

For the Wigner distribution

(45)

with equality if and only if is a Gaussian. For the spectrogram
with Gaussian window

(46)

with equality if and only if is a Gaussian of the same form as
.9

Compare the lower saturation level in Fig. 1 with the theoret-
ical bound

for the Gaussian. Of course, this value also coincides with the
lower bound (39).

Theorem 5 can be interpreted as an alternative version of the
well-known time–frequency uncertainty principle [24], [4]–[6]
that takes the entire time–frequency plane into account rather
than just the marginal distributions and . It is also
an alternative to the inequality of Hirschman that relates the
classical principle to the Shannon entropy of the marginals, as
[25]

(47)

with equality if and only if is Gaussian. Note that Theorem 5
marks the third breakdown of the analogy between probability
density functions and TFRs (the first two being nonpositivity
and nonuniqueness), since the Dirac delta function probability
density minimizes the Rényi entropies of all orders.

E. Information-Invariant Signal Transformations and the
Affine Class

An information invariantsignal transformation leaves the
Rényi entropy measure unchanged, with
[1]. Distributions information invariant to such a transformation

, provided it displaces the center of gravity of the signal in
time–frequency, admit a useful generalization of Theorem 2 to

9In this case,C is the matched-window spectrogram of a Gaussian.
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The transformations leaving the Rényi entropy invariant cor-
respond to those that do not change the value of the integral in
(13). For Cohen’s class TFRs, the invariance properties of three
nested kernel classes are simple to quantify. All fixed-kernel
TFRs are information-invariant to time and frequency shifts.
Product-kernel TFRs, having kernels of the form

with a one-dimensional function, are in addition in-
variant to scale changes of the form . The
Wigner distribution is the lone fixed-kernel TFR fully informa-
tion-invariant to time and frequency shifts, scale changes, and
the modulation and convolution by linear chirp functions that
realize shears in the time–frequency plane (the symplectic trans-
formations of (131), (132)). It is not coincidental that these same
five operations leave invariant the form of the (minimum-infor-
mation) Gaussian signal [19].

The affine classprovides additional TFRs information-in-
variant to time shifts and scale changes [5], [6], [14], [26].
Affine class TFRs are obtained from the affine smoothing

(48)

of the Wigner distribution of the signal with a kernel function
.10 Given proper normalization of the kernel, we have

Hence, the Rényi entropy of an affine class TFR can be defined
exactly as in (13) (of course, with the requirement (12)). The
resulting time-scale information measure shares all of
the properties discussed above in the context of Cohen’s class
(counting, cross-component invariance, amplitude and phase
sensitivity, bounds, etc.), except with time and frequency shifts
replaced by time shifts and scale changes. In particular, we
have the following.

Theorem 6 (Lower Bound on Information Content for the
Affine Class): Let be an affine class TFR with kernel
such that and . Then, for all
integers and for all

(49)

For the proof, see Appendix IV-B. The condition
implies for continuous kernels and en-

sures that the affine smoothing (48) is defined. Since the kernel
generating the scalogram (the squared magnitude of the contin-
uous wavelet transform) corresponds to the Wigner distribution

of the wavelet function , this condition also generalizes
the now classical “wavelet admissibility condition” [5], [6]. In
particular, we have

(50)

10In order to emphasize the similarity of (48) to (3), we have reparameterized
the original time-scale formulation of (48) from [14] in terms of time–frequency
coordinates by setting scalea = f =f , with f = 1 Hz.

For information invariances different from time and fre-
quency shifts, scale changes, and chirp modulations and
convolutions, we must look beyond Cohen’s class and the
affine class. Fortunately, all the above results extend easily
to the recently developed unitarily equivalent Cohen’s and
affine classes [15]–[17]. The TFRs in these new classes are
information-invariant to generalized time–frequency shifts and
time-scale changes.

IV. SELECTED APPLICATIONS

The foregoing properties of the Rényi entropies (when it is
defined) make these new information and complexity measures
particularly appropriate for time–frequency analysis. In this sec-
tion, we briefly discuss two areas of past and potential applica-
tion.

A. Information-Based Performance Measures

The Rényi entropies make excellent measures of the infor-
mation extraction performance of TFRs. By analogy to prob-
ability density functions, minimizing the complexity or infor-
mation in a particular TFR is equivalent to maximizing its con-
centration, peakiness, and, therefore, resolution [27]. Optimiza-
tion of a TFR (through its kernel) with respect to an information
measure yields a high-performance “information-optimal” TFR
that changes its form to best match the signal at hand [13], [28].

Many of the optimal-kernel TFRs in the literature have been
based either implicitly or explicitly on information measures. As
noted by Williams and Sang [13], [28], the performance index
common to the [29], radially Gaussian [30], and adaptive
optimal kernel [31] optimization formulations can be rewritten
using Parseval’s theorem as

(51)

Since the second-order Rényi entropy squares the TFR, it re-
mains sensitive to cross-components and hence can be consid-
ered as a measure of their information content [1]. Thus, max-
imizing (51) over a class of low-pass smoothing kernelssi-
multaneously minimizes the information in the cross-compo-
nents of the optimal-kernel TFR. Maximizing the
concentration ratio of [32], [33] can also be viewed in informa-
tion-theoretic terms, since this is equivalent to minimizing the
differential entropy .

Differential performance measures formed with odd- and
even-order entropies also prove interesting [28]. For example,
the differential measure

(52)

exploits the fact that odd- and even-order entropies decouple to
some degree the information content in the auto- and cross-com-
ponents in a TFR. Minimizing this measure balances i) max-
imizing the information in the auto-components (by keeping
them peaky through less smoothing) with ii) minimizing the in-
formation in the cross-components (by flattening them through
more smoothing). For positive TFRs, the special choice ,
minimizing (52) is equivalent to maximizing the concentration
ratio , making it an interesting alternative to the

measure used in [32], [33].
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Fig. 6. The effect of time–frequency smoothing on (52) as a function of the
parameter�. For a signal consisting of two well-separated Gaussian pulses
(a > 2 in (37)), we form the TFRC = W � � , with � from (41). The
parameter� controls the degree of time–frequency smoothing:� = 0 generates
the Wigner distribution;� = 1 generates the matched-window spectrogram.
We plotH (C )� �H (C ) versus the smoothing parameter� for the eleven
values� = 0; 0:1; . . . ; 1. (The upper curve corresponds to� = 0, while the
lower curve corresponds to� = 1.) The minimum point of each curve, marked
by a circle, corresponds to an “information-optimal TFR.” Data obtained by
numerical simulation; results from the analytical approximation (53) correspond
closely.

Fig. 6 explores the effect of time–frequency smoothing on
(52) as a function of the parameter. Forming a signal from
two well-separated Gaussian pulses, we smooth the Wigner dis-
tribution of with a Gaussian kernel (41) of increasing volume

to generate a series of smoothed TFRs. In the figure, the
smoothing parameter corresponds to the normalized degree
of smoothing, with leaving the Wigner distribution un-
touched and generating the matched-window spectro-
gram. We plot versus the smoothing param-
eter for several values of ranging between and . From the
figure, it is clear that controls the tradeoff between measuring
auto-component concentration and measuring cross-component
suppression. Small favors auto-component concentration, and
(52) is minimized by very little smoothing—no smoothing at all
for the extreme case. On the other hand, largefavors
cross-component suppression, and (52) is minimized only after
considerable smoothing.

In Appendix III-D, we compute and for
this case analytically. Some additional approximations valid
for large component separationlead us to the simple formula

(53)

The second term on the right side increases gently in ,
while the third term decreases sharply inand is flat for larger
values of (but still decreasing). Among other things, it fol-
lows that the minimum of (53) decreases whenincreases and
that the minimum point shifts very slowly toward as

approaches. For extremely close to , we have that (53)
decreases in, whence for these . More compli-
cated signals will exhibit local minima.

B. Rényi Dimensions

Based on the counting property of the Rényi entropy (Sec-
tion III-A), we can define aRényi dimension of a signal

in terms of its TFR and a basic building block function
[8], [9]

(54)

This dimension attempts to indicate—in terms of a highly over-
complete set of building blocks obtained fromby all possible
translations and modulations—the number of blocks required
to “cover” the TFR of . For the Wigner TFR, a Gaussian is
the natural choice for the building block function, since it has
minimum intrinsic information (in the sense of Theorem 5) and
leads to an always-positive dimension. A similar dimension can
be defined for affine class TFRs.

By permitting redundant time–frequency building blocks, the
Rényi time–frequency dimension generalizes the concepts of
the number of “independent degrees of freedom” and number of
“independent coherent states” that have proved useful in signal
analysis and quantum physics [34, p. 23]. Desirable invariance
properties result from this redundancy: Cohen’s class Rényi di-
mension estimates remain invariant under time and frequency
shifts in the signal, while affine class estimates remain invariant
under time and scale changes. Alternative dimensions that mea-
sure signal complexity with respect to an orthonormal basis of
(wavelet or Gabor) functions (see [35], for example) cannot
share these invariances without carrying out an optimization
over all “nice” bases [2].

For the simplest signals, composed of disjoint, equal-ampli-
tude copies of one basic function, the Rényi dimension simply
counts the number of components. As the relative amplitudes of
these components change, however, the dimension estimate will
also change, as some components begin to dominate others.

V. CONCLUSION

Taking off where Williams, Brown, and Hero left off in [1],
this paper has studied a new class of signal analysis tools—the
Rényi entropies. Users must proceed with caution, for as we
have shown, the higher order entropies are not defined for large
classes of signals. Counterexamples are much harder to find
for the third-order entropy, however, especially for suitably
smoothed TFRs (we have encountered none). This finding
supports the numerous numerical studies [1], [8], [9], [12] that
have indicated these measures’ general utility.

When well-defined, the accounting, and cross-component
and transformation invariance properties of the Rényi entropies
make them natural for estimating the complexity of determin-
istic signals through TFRs. Simple to apply, these measures also
provide new insights into the structure of the time–frequency
plane. For instance, a lower bound on the entropy of the Wigner
distribution yields a new time–frequency uncertainty principle
(Theorems 5 and 6) based on the entire time–frequency plane
as a whole rather than on the time and frequency domains
separately.

The explorations of Section IV into TFR performance mea-
sures and Rényi dimensions merely scratch the surface of po-
tential applications of the Rényi entropies in time–frequency
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analysis. Worthy of pursuit seems the extension of our results
to TFRs outside the quadratic Cohen’s and affine classes. The
positive TFRs of the Cohen–Posch class [4], for example, would
allow the unrestricted use of the Shannon entropy. Moreover, an
axiomatic derivation of the “ideal” time–frequency complexity
measure along the lines of Rényi’s work in probability theory
[11] could yield other entropies meriting investigation.

In information theory, entropies form the basis for distance
and divergence measures between probability densities. In
time–frequency analysis, analogous measures between TFRs
would find immediate application in detection and classifica-
tion problems. Unfortunately, the Rényi entropy complicates
the formation of distances, because it is neither a concave nor a
convex function for . Although the bulk of the work lies
ahead, some progress has been made in this direction. Consid-
ering only positive TFRs (smoothed spectrograms in Cohen’s
class), we defined in [20] a distance measure between two
TFRs and that is reminiscent of the Jensen divergence

(55)

(Here, .) Currently, we
are evaluating the potential of this measure for problems in non-
parametric and blind transient detection.

APPENDIX I
SIGNALS WITH UNDEFINED WIGNER DISTRIBUTION-BASED

RÉNYI ENTROPY

In this appendix, we display for any odd integer a
signal such that

(56)

is negative. Hence, for such an, the -order Rényi entropy
is not defined. All of our example signals are variations

on a theme: peaked, odd functions that create a large negative
spike in the Wigner distribution.

First, some background on Hermite functions. Theth-order
Hermite function [19, Ch. 1, Sec.7]

(57)

has a Wigner distribution that can be written in terms of a La-
guerre polynomial. That is [19, p. 66],

(58)

with the th-order Laguerre polynomial

(59)

and with 1 s and 1 Hz (we
assume this normalization ofand for the remainder of the
paper). As is well known, the Hermite functions have Wigner
distributions that are i) strongly peaked at the origin, with a neg-
ative sign when the order is odd, ii) small but nonnegligible

away from the origin but inside a circle around the origin of ra-
dius somewhat larger than , and iii) negligibly
small outside that circle. Therefore, the odd-order Hermite func-
tions are natural candidates for yielding negative values in (56).

A. Examples for Large Odd

Throughout this appendix, let be a smooth, rapidly de-
caying,oddsignal of unit energy. Then is smooth and
rapidly decaying as and

(60)

as one easily sees from the Cauchy–Schwarz inequality (the fact
that causes the inequality to be strict). It thus follows
that the asymptotic behavior of (56) as , integer, is de-
termined by the behavior of at . Since

(61)

(62)

at , we have

(63)

as . Therefore, we have explicitly

(64)

as , integer. Hence (56) is negative forany smooth,
rapidly decaying, odd signaland large odd integer.

B. Example for

Let be the first-order Hermite function

(65)

with Wigner distribution

(66)

Using polar coordinates, we have for integer

(67)

For odd we have

(68)
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The first integral on the right-hand side of (68) increases in
, since the (nonnegative) integrand and integration range

increase in . The second integral can be evaluated as

(69)

and this decreases in . Hence the left-hand side of (68)
increases in , odd integer. Since

(70)

and

(71)

we see that (67) is negative for all odd .

C. Example for

We will have to spend considerable effort to find anfor
which (56) is negative for . Also, a small amount of
Gaussian smoothing of is generally enough to make (56)
positive for our offending signal. This indicates that the exam-
ples for which (56) fails to be positive for are rather ex-
ceptional. Moreover, the results of Appendix III show that the
third-order Rényi entropy is well-defined for the sum of two
Gaussians, irrespective of their mutual phases. See also the dis-
cussion on Hermite functions above.

We shall show that (56) is negative for and

(72)

with suitably chosen and the th-order Hermite
function.

Using polar coordinates, we obtain (see (58))

(73)

It is a quite nontrivial result from Debbi and Gillis [21] that
for all . Hence, we cannot produce nega-

tive values in (56) with a single Hermite function.
We now elaborate (56) for thein (72) and . We have

(74)

with the cross Wigner distribution11 between

(75)

11Formula (75) is due to Groenewold (see [36, eq. (5.16)]), except that Groe-
newold has incorrectly a(�1) instead of(�1) and calls the
L Legendre polynomials. Formula (75) can also be found in [19, p. 66, eq.
(1.105)], except that there is a complex conjugate missing in the casen � m

(note thatW =W ; a similar error occurs in [19, p. 64, eq. (1.104)].

Here, , and the are the Laguerre polynomials

(76)

Now, expanding using (76), introducing polar coordi-
nates in , and retaining only the triple
products of (cross) Wigner distributions that are independent of

(the others cancel upon integration), we obtain

(77)

where we also have used that . Inserting the explicit
form (75) into the right-hand side of (77), we obtain

(78)

where we have set

(79)

Thus, we have

(80)

where

(81)

The computation of the can be done according to

(82)

For this we have used the explicit forms (59), (76) for the La-
guerre polynomials and carried out the integration (see also [37,
Sec. 2.a]). It follows that

(83)
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The right-hand side of (80) is extremal for

(84)

Taking the sign in (84) so that , we obtain

(85)

This completes the construction of the example.

Fig. 2 illustrates the signal (72) and its Wigner distribution
for and .

APPENDIX II
PROOFS ONCOMPONENTCOUNTING

A. Proof of Proposition 1

Let be supported on the interval , and let
be supported on . We will show that

(22) holds

(86)

when . Here is the cross-component
between and (see (19) and (20)). We shall initially assume
that and are smooth, so that the manipulations below are
justified.

We have by binomial expansion that

(87)

with

(88)

We will show that each vanishes when .
We first consider the case when . We have by defi-

nition

(89)

We write this as

(90)

Integrating over , a Dirac term appears. Using
this to cancel the integration over , we obtain

(91)

Now suppose that we have a and

such that the integrand in (91) is not zero. Sinceis supported
on and is supported on , we have (92)
at the bottom of the page. Adding the firstitems in (92) and
subtracting the last items, we obtain

(93)

(94)

Subtracting (94) from (93) yields

(95)

with

...
...

...
...

(92)
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Since is odd, we have . Thus, we finally obtain

(96)

Hence, when , the integrand in (91) vanishes
identically, so , as required.

Next, consider the case . Here, the items with index
are absent from (92), but the above argument

still yields that whenever the integrand in
(91) is nonzero for some , . A similar
result holds for the case .

We shall now remove the assumption thatand are smooth.
To this end, we give the following Lemma, which will also be
used in the proof of Theorem 2 below. We omit the (elementary)
proof.

Lemma 7: Let , not necessarily com-
pactly supported. Then, for all , we have

(97)

Also, and are in , and

(98)

Finally, ; that is, is continuous and
bounded with as .

To complete the proof of Proposition 1, we take smooth,
supported on , and smooth , supported on ,
such that and are small. Then (97) and
(98) show that is approximated by , both uniformly
and in sense. Hence, is approximated by in

sense, since . Now the result follows easily
from the fact that vanishes for smooth
and when .

B. Proof of Theorem 2

For the proof we will need, in addition to Lemma 7, the Rie-
mann–Lebesgue Lemma.

Lemma 8 (Riemann–Lebesgue):For and
, we have

(99)

Furthermore, with (see (23)), we have the useful
formula [5, p. 240]

(100)

Wigner Distribution Case:We assume odd and ex-
pand trinomially

(101)

where in the latter series we have collected the terms in the ex-
pansion with and at least two of the
positive (the in the series on the right-hand side
are constants).

For the definition of , we should also say what
means in the case that ,

. Naturally, we define

(102)

for such cases. (When does belong to , the identity
(102) also holds.) Then it follows that

(103)

when . Here we have used the last
item in Lemma 7 and the fact that the inner product

with . Furthermore, we have by shift-invariance
that

(104)

these two numbers being supposed positive. Hence

(105)

when , provided we can show that

(106)

(107)

as for the relevant set of .
As to (106), we write

(108)

where we note that , since is odd. Then, using (100)
we obtain

(109)

The substitution , , which leaves
the form invariant, then yields integrals
of the form

(110)

in the right-hand side series in (109). From Lemma 7 and ,
it follows that , where by Lemma 8 we see that
the integrals (110) tend to zero when and .
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It follows then that the expression in (109) tends to zero when
, since .

For the expressions in (107), we argue as follows. By (100),
we have

(111)

Assume that , (the other cases go in a similar
way). By Lemma 7, there is an such that

(112)
where we have set

(113)
By Lemma 7, we have that . Now let and
take smooth, compactly supported such that

(114)

Denote , so that is smooth and compactly
supported as well. Then we have for all by the
Cauchy–Schwarz inequality

(115)

This shows that can be approximated uniformly and arbi-
trarily closely by functions of compact support.
It follows that as . Hence, in
(111) tends to zero as , and the proof for the Wigner
distribution case is complete.

Cohen’s Class TFR Case:Next we consider TFRs of the
Cohen type with and . We
require Young’s Inequality.

Lemma 9 (Young):Let with
. When and , we have

and

(116)

Moreover, when and , we have
.

To prove Theorem 2 for the Cohen distributions, we replace
all and in the expansion (101) by and , thereby
noting that the latter functions are in

since the same holds for and , and (see Lem-
mata 7 and 9). As in (103), we have (solving the problem of
undefinedness of by the assumption

in the same way as was done in (102))

(117)

Also, the analog of (104) holds by shift-invariance. We must,
therefore, show that

(118)

(119)

as for the set of relevant .
For (118), we first note that , since

. Next we use (100) to obtain

(120)

where we have set

(121)

The identity between the last two lines of (120) is obtained by
change of variables according to ,
followed by , . Evidently,

(122)

And also, by Lemma 8, for any

(123)

as . Since , we conclude from (122), (123), and
Lebesgue’s theorem on dominated convergence that

(124)

as . This settles (118).
As to (119), we can literally repeat the argument used for the

Wigner distribution case (see just after Lemma 9). This proves
Theorem 2 for the case of Cohen TFRs with ,

.

Finally, we note that the arguments to prove Theorem 2 re-
main valid when is replaced by , where

are unrelated. In particular, for odd , we
have that

(125)

APPENDIX III
THIRD-ORDER RÉNYI ENTROPY

FOR THESUM OF TWO GAUSSIANS

In this appendix, we consider the third-order Rényi entropy
of the sum of two Gaussian pulses in (32), (33). The parameters
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and/or in (33) will be suppressed in the case that
and/or ; that is,

(126)

A. Simplification via Symplectic Transformation

We first note that it is sufficient to consider the case

(127)

To see this, write as

(128)

where

(129)

(130)

The operators and in (128) are given by

(131)

and

(132)

when and

(133)

when . In (132), (133), the operator is given
apart from a sign that is irrelevant in the present context (just
like the number in (128)). The operators in (131)–(133) are
members of themetaplectic group, [19, Ch. 4], and their action
on signals is reflected by certain symplectic linear transforms of
the time–frequency plane. We have explicitly

(134)

(135)

(136)

(137)

showing that integrals of functions of over the entire
time–frequency plane are invariant under application toof any
of these operators. (See also [38, Secs. 27.3, 27.4.2, 27.12.2].)

Hence and the signal (see
(128)) yield the same value for the right-hand side of (35). That
is,

(138)

with and given in (130).

B. Proof of Proposition 4

In this case, the signal in (35) is given by

(139)

We first note that

(140)

(141)

Therefore,

(142)

(143)

with the obvious identifications for , , and . We then
obtain

(144)

with the definitions of and from Proposition 4. Expanding

(145)

we note that depends on only. Calculating

(146)

(147)

(148)

(149)

and using

(150)

leads us to

(151)
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Therefore, from (144) and (151), we have

(152)

and (38) follows from the definition of in (37) and from (34).

C. Properties of

The form (38) is very convenient for finding the minimum
and maximum of and for studying the behavior of as a
function of , , and .

We have, for instance, that decreases for
for fixed , . Hence the minimum of

equals the minimum of

(153)

over , . The right-hand side of (153) is in-
creasing in when is fixed. Hence, the min-
imum of equals the minimum of

(154)

over . Since

(155)

we see that decreases for , so that its
minimum value occurs at . Therefore,

(156)

for , , . Thus, the maximum value of

(see Fig. 3).
The maximum of clearly equals and occurs at ,

. This bound and (156)
combine to give (39). Thus, the minimum value of

(see Fig. 3).
The behavior of at is somewhat irregular. We

have for that

(157)

Using (38) it is obvious that increases for when
and are fixed. However, from (38) and

(158)

it follows that decreases in near and increases in
near when and are fixed (see Fig. 3).

Finally, decreases or increases infor and
according to whether or .

Furthermore, we note that

(159)

is the limiting value of in (38) as .
For the cases that , , we have the special results

(160)

(161)

where (see Proposition 4)

(162)

so that

(163)

This shows, for instance, that when increases from to
, increases from to and

decreases from to .

D. Effects of Gaussian Smoothing

We next present formulas for the quantities

(164)

which are required in Sections III-C and IV-A. Here we take the
signal to be the sum of two Gaussians as in (32) with

and to be the two-dimensional Gaussian (41). Using
symplectic transformations as in Appendix III-A and the radial
symmetry of both the Wigner distribution of and , it
can be shown that the quantities in (164) remain the same when

is replaced by the signal

(165)

with and .
For the resulting signal (139) we compute

(166)

with

(167)
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Next, with and as in (37) and

(168)

the same methods as those employed in Appendix III-B yield

(169)

(170)

(171)

(172)

A few additional simplifications lead to the forms

(173)

and

(174)

To obtain (42), we substitute , , and .
Finally, we turn to (53) in Section IV-A. The definitions of

in (37) and of in (168) show that we can ignoreand in
(173), (174) when is sufficiently large (in Fig. 6 we have
, and this is sufficiently large). Hence, replacing the right-hand

sides of (173) and (174) by and , respectively,
and using (167), we obtain, to a good approximation, (53).

APPENDIX IV
ENTROPY LOWER BOUNDS

A. Proof of Theorem 5

In addition to Young’s Inequality (Lemma 9 in Appendix II
above), we will need a relatively recent result of Lieb [23].12

Recall that denotes the spectrogram of the signal
computed using Gaussian window.

Lemma 10 (Lieb):Given and , then

(175)

with equality if and only if is a Gaussian. In addition,

(176)

with equality if and only if is a Gaussian of the same form as
(see [23] for more details).

12Lieb sharpens Lemma 9 further in [23].

For unit-energy and a kernel such that ,
we have . Using first Lemma 9 and then
(175) from Lemma 10, we obtain

(177)
Thus,

(178)

and (44) follows.
The bound (45) for the Wigner distribution follows from the

same argument but omitting the kernel. While Gaussian sig-
nals saturate the bound (45) for the Wigner distribution, the
more general bound (44) may be unattainable for other Cohen’s
class TFRs.

The bound (46) for the Gaussian-windowed spectrogram fol-
lows from the same argument as the Wigner distribution but
using (176) from Lemma 10.

B. Proof of Theorem 6

Since the classical Young’s theorem (Lemma 9) does not
apply to the affine smoothing of (48), we begin by stating an
analog matched to the affine convolution

(179)

defined on the affine group. The following was obtained by spe-
cializing the general results of [39, pp. 293–298] to the scalar
affine group having group operation “” defined by

, , and left Haar measure .
All integrals and norms in the following can be interpreted to run
over the upper half-plane to account for in

.

Lemma 11: Let with .
When and , we have and

(180)

While the affine smoothing (48) is not a group convolution
proper, the condition for existence and integrability of an affine
class TFR follows immediately from this lemma. Substituting

into (48) immediately yields the form
(179) and the conclusion that , ,
provided and . A change of variable
converts the constraint on into a constraint on the original
kernel

(181)

Now, using first Lemma 11 and then Lemma 10, we have for
unit-energy

(182)

Taking logarithms yields the result.
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