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Abstract—The generalized entropies of Rényi inspire new tion of autocomponents, and the property that the time-varying
measures for estimating signal information and complexity in  spectral analysis of TFRs separates signal components, such as
the time—frequency plane. When applied to a time—frequency narqiie| chirps, that overlap in both time and frequency. More-

representation (TFR) from Cohen’s class or the affine class, the - . . .
Rényi entropies conform closely to the notion of complexity that over, the quality of particular TFRs is very often judged based on

we use when Visua"y inspecting time_frequency images_ Thesesubjective Criteria related to the ComponentS Of the Signal being
measures possess several additional interesting and useful proper-analyzed.

ties, such as accounting and cross-component and transformation  |n this paper, rather than address the question “what is a
invariances, that make them natural for time—frequency analysis. component?” directly, we will investigate a class of quantitative

This paper comprises a detailed study of the properties and several f det inistic sianabmuolexitvand inf i
potential applications of the Rényi entropies, with emphasis on measures oI deterministic: sighedmpiexityand information

the mathematical foundations for quadratic TFRs. In particular, ~contentt While they do not yield direct answers regarding
for the Wigner distribution, we establish that there exist signals the locations and shapes of components, these measures are

for which the measures are not well defined. intimately related to the concept of a signal component, the
|ndexTerms_Comp|exity‘ Rény| entropy’ time_frequencyana|_ Connection being the |ntu|t|Ve|y reasonable SuppOSition that
ysis, Wigner distribution. signals of high complexity (and therefore high information
content) must be constructed from large numbers of elementary
components.

| INTRODUCTION Moment-based measures, such as the time-bandwidth

HE termcomponenis ubiquitous in the signal processingproduct and its generalizations to second-order time—frequency
literature. Intuitively, a component is a concentration ahoments [4]-[6], [8], [9] have found wide application, but un-
energy in some domain, but this notion is difficult to transfortunately measure neither signal complexity nor information
late into a quantitative concept [1]-[3]. In fact, the concept @fontent [1], [2]. To demonstrate, consider a signal comprised
a signal component may never be clearly defined. of two components of compact support, and note that while
The use and abuse of this term is particularly severe in the lite time—bandwidth product increases without bound with
erature on time—frequency analysis. Time—frequency represesparation, signal complexity clearly does not increase once
tations (TFRs) generalize the concept of the time and frequenhyg components become disjoint.
domains to a joint time—frequency functi@h(¢, f) that indi- A more promising approach to complexity basedentropy
cates how the frequency content of a signahanges over time functiorals exploits the analogy between signal energy densities
[4]-[6]. Common themes in the literature include the suppreand probability densities [1]. Just as the instantaneous and spec-
sion of TFR cross-components, the concentration and resaital amplitudes s(t)|? and|S(f)|? behave as unidimensional
densities of signal energy in time and frequency, TFRs try very
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of a kernel function? with the Wigner distributiori?’, of the
signal
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classical Shannon entropy [10] (given here for unit-energy sig- ~ a
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as a natural candidate for measuring the complexity of a signal  _g» 0.05?,

through its TFR. The peaky TFRs of signals comprised of E
small numbers of elementary components would yield small ~ -04; 05 p s 0

entropy values, while the diffuse TFRs of more complicated
signals would yield large entropy values. Unfortunately, how-
ever, the negative values taken on by most TFRs (including ﬁlé

L1

displacement

Solid curve and axis on left. The third-order Rényi entréfy( 1)

fixed-kernel Cohen’s class TFRs satisfying (1)) prohibit the agrthe wigner distribution of the sum(t) := g(t — At) + g(t + At) of two
plication of the Shannon entropy due to the logarithm in (5). Gaussian components plotted versus the displacement paraivtetsee (32)

In [1], Williams, Brown, and Hero sidestepped the negativitg‘;ection 111-B for the exact signal definition). (The asymptaiig( 1V, ) levels

issue by employing the generalized entropies of Rényi [1
(again for unit-energy signals)
1
Ha(C) = = low, [[ €zt parar. ©)
—

Parameterized by > 0, this class of information measures

is obtained simply by relaxing the mean value property of ”}:%

EVer,

e—1log, 3 =~ —0.208 and 1 log, 3 ~ 0.792 bits.) Dotted curve and axis
rigfn. Time—bandwidth product of

is not universally applicable to time—frequency analysis. Coun-
terexample signals are easily constructed for largecgdubw-

ourae = 3 counterexamples are quite contrived. This is

nsistent with the ample numerical evidence [1], [8], [9], [12],

Shannon entropy from an arithmetic to an exponential meemg] indicating that the third-order entropy is defined for a broad

(Shannon entropy appears as— 1.) In several empirical
studies, Williams, Brown, and Hero found that in addition t
appearing immune to the negative TFR values that invalid
the Shannon approach, the third-order Rényi entropy seeme
to measure signal complexity. Fig. 1 repeats the principal ex- 1)
periment of [1]. The third-order Rényi entrogys (W) of the
Wigner distribution of the suma(t) : = g(t — At)+ g(t + At) 2)
of two Gaussian pulses is plotted versus the separation distance
2At. (At At = 0, the two pulses coincide and, therefore, be-
cause of the assumed energy renormalization, have the sam )
information content as a solitary pulse.) The time—bandwidth
product ofs is also plotted. It is clear from the figure that, un-
like the time—bandwidth product, which grows without bound
with At, the Rényi entropy saturates exactly one bit above the
value H3(W,) = —3log, 3 ~ —0.208.3 Similar results hold
for n separated copies ¢ft) (log, » bits information gain). To
summarize, independent of the definition of signal component,
the Rényi entropy indicates a “doubling of complexity”dras
the separation moves from0 to oc. 5)
This paper comprises a detailed study of the properties and
some potential applications of the Rényi time—frequency infor-
mation measures (6), with emphasis on the mathematical foun-
dations for quadratic TFRs. In Section I, after reviewing the
development of these measures, we examine their existence and
show that for each odd > 3 there exist signals for which (6)
is not defined (due tof [ C(t, f)dtdf < 0). This unprece-
dented result surprises, for it indicates that the Rényi formalism

class of signals and TFRs, including even those distributions
?aking locally negative values. When defined, these measures
Xe some striking properties that we investigate in Section III.

H,(C;) counts the “number of components” in a multi-
component signal.

Forodd ordera > 1, H,(C;) is asymptotically invariant
to TFR cross-components and, therefore, does not count
them.

H,(C;) exhibits extreme sensitivity to phase differences

between closely spaced components. This sensitivity can
be reduced through smoothing in time—frequency. We
provide analytical results for the sum of two Gaussian

signals.

) The range of{,,(C;) values is bounded from below. For

the Wigner distribution, a single Gaussian pulse attains
the lower bound.

The values of{,, (C) are invariant to time and frequency
shifts of the signal. Certain TFRs provide an additional in-
variance to scale changes, while the Wigner distribution
boasts complete invariance to symplectic transformations
on the time—frequency plane. For more general invari-
ances, the Rényi theory extends easily to encompass not
only the TFRs of the affine class [14] but also the gener-
alized representations of the unitarily equivalent Cohen’s
and affine classes [15]-[17].

2Note that the complexity measure (Shannon entropy here) is applied nolfbSection 1V, we discuss the application of these measures as
a signal or process, but to a TFR that plays a role analogous to a probabiiijjective functions in optimized time—frequency analysis and

density function.

3Readers should not be alarmed by negative Rényi entropy values. Even the

introduce the notion of Rényi dimension. We close with a dis-

Shannon entropy takes on negative values for certain distributions in the confiiSSIon and conclusions. Proofs of the various results are con-

uous-variable case.

tained in the appendixes.
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[I. THE RENYI ENTROPIES determine the properties of the corresponding TFR. For ex-
ample, a fixed-kernel TFR possesses the energy preservation
o _ _ ) ~ property (2) provided)(0, 0) = 1 and the marginal properties

In [11] Rényi introduced an alternative axiomatic derivatiofy ) providedg(6, 0) = ¢(0, 7) =1V 6, . Besides the Wigner
of entropy based omcompleteprobability mass distributions gistribution, examples of Cohen’s class TFRs include the

A. Rényi Entropy of a Probability Density

p ={p1, p2, ... pn} Whose total probabilities sum t0(p) :=  gpectrogram ¢ = ambiguity function of the time-reversed
>_i pi < 1. He observed that the Shannon entropy window function) and the smoothed pseudo-Wigner distribu-
-1 T tions(p(, 7) = hi(6)ho(7)) [4]-[6].
Hp) = w(p) zi:pz log, pi The analogy between TFRs and bidimensional probability

lensities discussed in the Introduction breaks down at at
ization, additivity, and, in addition, the mean value condition east two key pomts. First, becausg of th_e free_dom of gh0|ce
of kernel function, the TFR of a given signal is nonunique,
H(pUq) = w(p)H(p) + w(Q)H(Q). (7) with many different distributions “explaining” the same data.
w(p) + w(q) Second, and more pertinent to the present discussion, most
Here p and ¢ are any two incomplete densities such thatohen’s class TFRs are nonpositive and, therefore, cannot be
w(p) + w(q) < 1, andp U ¢ signifies the composite densityinterpreted strictly as densities of signal energhese locally
{p1sp2, oo Doy @1 @25 - G ) negative values will clearly play havoc with the logarithm in
Extending the arithmetic mean in (7) to a generalized megte Shannon entropy (5).
yields generalized entropies closely resembling Shannon’swhile the Rényi entropies (6) appear intriguing and encour-
Considering the generalized mean value condition aging for time—frequency application [1], [8], [9], [12], [13], it

T w(p)ym[HB(p)]+w(q) m[HE(q)] has remained an open question Whe'ther, in general, these mea-
(pUg)=m w(p)+w(q) sures can cope with the locally negative values of Cohen'’s class

with m a continuous monotone function, Rényi dem0nstrate-rc!:Rdsc'wlyntordetr f(t))r ) tlo bz def'?]etg f;)r a signalwe clearly
that just two types of functions are compatible with the other "€€4¢s (¢, f) to be real and such tha

uniquely satisfies the axioms of symmetry, continuity, norm

four axioms. The firstin; (z) = ax + b, yields the arithmetic // Ot P dtdf > 0 12
mean (7) and the Shannon entropy. The second 2t f)dtdf > 0. (12)
ma(z) = 2D a>0, a#l (9) Noninteger orders: yield complexC¢ (¢, f) values and so ap-

pear of limited utility. Integer orders that are even pose no such
o hazards, since the integral of the positive funciefz, ) re-
n 1 ZZ: pi mains positive.
H,(p) := 1-a log, E—P (10) Unfortunately, odd integer orders are not so robust. For each

T

i odd o > 3, there exist signals ih.?(R) and TFRs such that
now known as the Rényi entropy of ordetr The Shannon (12) fails, leaving (6) undefined. In Appendix I, we develop the
entropy can be recovered s, _.; H? = H. Extension of following counterexamples for the Wigner distributitir, .6
HZE(p) to continuous-valued bivariate densitid¥z, y) is

yields the functional

1) For sufficiently large oddy, (12) fails for any smooth,

straightforward rapidly decaying, odd signal.
/ P*(z, y)dx dy 2) For odd integers > 5, (12) fails for the first-order Her-
HY(P) .= T log, (11) mite function.
// P(z, y) dz dy 3) Fora = 3, (12) fails for a particular linear combination of

We emphasize that since the passage from the Shannon entropy the third- and nineth-order Hermite functions (see Fig. 2).

to the class of Rényi entropies involves only the relaxation @fs noted in the Introduction, these surprising results suggest that
the mean value property from an arithmetic to an exponentigé must proceed with caution when applying TFR-based Rényi

mean,H? behaves much likéf [11]. entropies.
o Negative results aside, a preponderance of numerical evi-
B. Reényi Entropy of a TFR dence [1], [8], [9], [12] indicates that the third-order entropies

The central theme of this paper is the application of entrogje Well-defined for large classes of signals and TFRs (our
measures to TFRs to measure the complexity and informatié@unterexamples only apply to the Wigner distribution). In
content of nonstationary signals indirectly via the time—freédppendix |, we spend a considerable effort to find a signal for
quency plane. Our primary TFR tools of choice lie in CohenWhich (12) fails fora = 3. Also, a small amount of Gaussian
class [4]-[6], which can be expressed as in (3) as the convofimoothing ofW, is generally enough for (12) to hold. This
tion between the Wigner distribution and a real-valued kerniidicates that the examples for which (12) fails for= 3 are
®.4 The kernel and its inverse Fourier transfogntompletely rather exceptional.

“To avoid cumbersome machinations, we will restrict our attention to the *While there do exist nonquadratic classes of positive TFRs that satisfy (2)
Wigner distribution and all TFRs obtained from (3) withe L*(R?). Since and (1) [4], we will consider only quadratic TFRs in this paper.
we will be interested in odd powers of TFRs (see (6)), we furthermore assuméClearly, these counterexamples invalidate the “proofs” of existence sketched
that kernel is a real-valued function. in [8], [9].
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Fig. 2. Example of a signal for which the third-order Rényi entrépy(W,) of the Wigner distribution is not defined. (a) The sigratonsists of a special
combination of two odd-order Hermite functions (see Appendix I-C). Its Wigner distribution (b) as an image and (c) in three dimensions (notedyatame
peak).

Throughout the balance of this paper, we will assume that Component Counting and Cross-Component Invariance
all signals under consideration are such that the formula (6) i TErs were squasi-linear'—such that each signal compo-
well-defined. o _ nent contributed essentially separately to the overall TFR with
We close this section with some important notes on normaJ; intervening cross-components—then the analogy between

ization. In their exp%riments, Williams, Brown, and Hero acturgrg and probability density functions would predict an addi-
ally employed not?,,;” from (11), but a prenormalized versionge or counting behavior from the Rényi entropy. This is rea-

equivalent to normalizing the signal energgforeraising the  gqnape; since a (nonoverlapping) combination of basic signal

TFR to thea power | components is more “complex” than the individual components.
Ho(CL) e 1 log Ci(t, [) ¢ dt df To gain more intuition into this most fundamental property
al\bs) = T, 08 JJCs(u, v) dudv ) of H,, imagine applying this measure first to a compactly sup-

(13) portedsignak using anideal, quasi-linear TER(¢, f). Denote
the length of the supporting intervd]. of s by ¢ and assume
that7,(¢, f) = 0forall t ¢ J, and for all f.

H2(C,) = H,(C,) — log, ||s||3 (14) Form the two-component signak 7 s, where(7 s)(t) =
and thusH2(C, ) varies with the signal energy. Since an infors(f — At) represents translation by timat. Assuming that
mation measure should be invariant to the energy of the sigreli > @+ the distribution is given by
being analyzed, we will adhere strictly to the definition (13) for I

. . . . . st+71s(t, f) = Is(t, I(t — At, f). 16

the duration of this paper. Discretization of this measure (by s+75(% f) (& f)+ 1 /) (16)

settingt = néy, f = kéy with n, k € Z) for use with com-  gincer,(t, f) is compactly supported in the time direction, we

The two measures are related by

puter-generated, discrete TFRs yields can appeal to the analogy between the right-hand side of (16)
Ho(Cy[n, k]) and the composite probability distributignJ ¢ in (8) to com-
o pute H,(I;+ 7). In particular, substituting (14) into (8) with
1 Csln, K] m(z) = 2(>~D* and employing the facttl,,(I7,) = Ha(l,)
= log —_— log, 6:6¢. . o\l Ts) s
1—a %2 En: zk: S G, K 1082 00y and||s 4+ 7's||3 = 2||s||3, some simple algebra yields
n/ k/
(15) Ho(Iyrs) = Ho(IL) + 1. (17)
The frequency step constant is computedd as= % given

; . In,words, the two-component signal+ 7 s contains exactly
K uniform frequency samples spanning the frequency range %fe bit more information than the one-component sigrialhe
F hertz per sample. For both continuous and discrete TFRS b s

operation in(¢, w) coordinates, with radial frequenay= 27 f fﬁ’;ugaet;](;r:/ilg;/els of the entropy curve in Fig. 1 display precisely
rad/s, introduces an offséd,(C;(t, w)) = H.(Cs(t, f)) + )

i . ; . While this simple analysis provides considerable insight into
log, 2. Sang and Williams explore an alternative magnltuq%e counting behavior off,,, it does not take into account the
normalization of the Rényi entropy in [13]. *

nonideal, nonlinear behavior of the quadratic TFRs of Cohen’s
class. In particular, we have ignored the presence of cross-com-
ponents in these distributions [4]-[6], which violate the linearity
assumption underlying (16). We will broaden our analysis to en-

We now conduct a detailed analysis of the properties of tkempass actual TFRs in two stages.
Renyi entropy (when it exists) that make it a fascinating and, _ - o

ful tool for studvina the information content of ime-varvin Note that the post-norr_nallzed entroﬁ_yf‘ from (11) exhlbl_ts the invariance

useiul ool 1or studying YINGyx(r . ,.) = H(I,), since the energies ofands + 7 s differ by a factor
deterministic signals. of two.

Ill. PROPERTIES OF THERENY!I TIME—FREQUENCY
INFORMATION MEASURE
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First, consider the Wigner distribution (4) of the compactlare supported on a strip of arbitrary orientation in the time—fre-
supported, two-component sigrsah 7 s quency plane.
We can extend these counting results to include most Cohen’s
Wirrs(t, ) = Wik, )+ X 750 f) + Wrs(t, ). (18)  1uss TERs and finite energy signals. For noncompactly sup-
The termX; 7s(¢, f), called thecross-componeritetweens ported signals, the auto- and cross-components in the Cohen’s
and7 s, is derived from the cross-Wigner distribution [4]-[6].class analog to (21) will always overlap to some degree, so we

[18] should expect only asymptotic expressions. Define the time—fre-
quency displacement operator
X 7s(t, ) := 2Re W, 14(t, 19 :
Tolts f) 7ot f) (19) (Ds)(t) i= P22 (¢ — AY) 23)
\f/ivr:tehdtrgi cross-Wigner distribution between signaksnd s de- that translates signals by the distance
: D] == V/(At/to)? + (Af/ fo)?
W s(t, f) = / r(thg)s (b= 5) e a0 _
2 2 in the time—frequency plane (witly := 1 s andf, := 1 Hz).
In general, the Rényi entropy The following is the key result of this section [8], [9].
Ha(Woyr,) = 1 log, 1 Theorem 2 (Component Counting)Let C, (¢, f) be either
11—« Ils + 7 s||3* the Wigner distribution or a Cohen’s class TFR defined as in

o 3) with ® € L1(R?). Then, for anys € L2(R) and oddx > 3
x [t s Xamite pe e plad @ S T e have.

involves a complicated polynomial i, X, 75, and Wr,. lim Ha(Coyps) = Ha(Cy) + 1. (24)
However, due to the compact supportsaind thusv, [4]-[6], ID|—o0

for separationat > 2¢, these terms lie disjoint in the time—fre-
quency plane, and a tremendous simplification results

H(Y(W?-i—TS)

Theorem 2 implies also that the “information” in the cross-
components of’, . p, must decay to zero asymptotically.

1 1 Corollary 3 (Asymptotic Cross-Component Invariancéet

=1 4 log, RIS Cs(t, f) be either the Wigner distribution or a Cohen'’s class
2 TFR defined as in (3) withlb € L'(R?). Then, for anys €

X //[Wf(t, )+ X2 7.t f)+We(t, f)ldtdf  L*(R) and odda > 3 such thatC, andC,,p, obey (12), we

have
_ log !
T—a %2 3a]ls[3" dim [ [1C50,¢. 1) = 02 1) - O3t Platar =0,
< | [[wee parar+ [[ wie para] (25)
= Hao(W;) +1 Proposition 1 extends t@ components anlbg,, n bits of in-
provided formation gain, provided that the auto- and cross-components
become sulfficiently disjoint in the time—frequency plane. The
/ X (t, f)dtdf = 0. (22) counting property doesothold generally when the signal cross-
e components overlap with the auto-components or other cross-

components, however.

While this is obviously not the case fareven, the oscillatory _ . .
A simple example of such a signal is

structure of.X, 7, [4]-[6] cancels under integration with odd
powers forAt sufficiently large. We prove the following in Ap- u(t) := s(t — At) + s(t) + s(t + At)

pendix II-A as a special case of Theorem 2. )
where the cross-componeit,;_a¢), s(t+ar) lies upon the

Proposition 1: Fix odd« > 3 and lets € L?(R) be a signal of auto-component,,,. For s supported on[—3, 1] and
compact support such thlt, andW .y, obey (12). Denoting A > 1(1 + «), we compute
the length of the supporting interval by setAt > L (a+1)o. -2
Then (22) holds and thuF,, (W 7s) = Ho (W) +1. // We(t, f)dtdf = 2/ W(t, f) dtdf

The linear growth of the separation conditist > % (a + e ra e pAa
1)o recommends the first of the odd integers> 3, namely, +/ W f) (14 e4mIA0 4 o=H=fAN gt gr - (26)
« = 3, as the best order for information analysis with the

Wigner distribution. Problems with (12) and numerical consid-ne first term on the right side arises from the auto-components

erations (stability in the face of quantization errors) also juéf s(t + Af); the second term arises from the (overlapping)
tify small « values. Using the symplectic transformation progUto-component of(#) and cross-component betwegh—At)

erties of the Wigner distribution (see Appendix IlI-A and [5]2nds(t + At) (see (100)). Note that

[6], [19]), Proposition 1 can be easily extended from signals o jamrfAL
of compact time support to signals whose Wigner distributions / Wt f)e dt df =0 @7)



1396 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 4, MAY 2001

for integerr # 0, which follows from the conditions omand with g.(z, £) the Gaussian

At. Now using arguments as in Appendix II-A and expanding /4y (t—1)?j2rEt

the second term on the right side of (26), we find that gy (v, E)(t) := (27)Fe™™ Jamet teR (33)
andy > 0,a, b, ¢, d, £ €R, z, w € C\ {0}. We consider

/ / Wet, f)ydtdf = (2+ N) / We(t, f)dtdf. (28)
H3(WS) = _% 10g2 Q"/(av b7 w; ¢, d7 Z) (34)

Here N denotes the coefficient of* in (1 + » + %?)<. Thus,

we have with

TW3(t, f)dtd
) = HaW) + 1o, M2 ey Qb e d )i AL IEE g

1 3@ C(JI Wt fatds)®

For instanceq = 3 yields § log, 3 rather tharlog, 3 for the  Using symplectic transformations, we show in Appendix

second term on the right side of (29). III-A that the complete., (a, b, w; ¢, d, z) can be computed
As a second example, consider from the values of
w(t) = s(t — 2At) + s(t — At) + s(t + At) + s(t + 2A¢) Qz, y, v) := Q1(a, 0, 1;—a, 0, re/?) (36)

with the support ofs and At as above. Here, the cross-comy,i,
ponent W, _oay), s(t+2a1) Overlaps the cross-component

2
Wot—av), s(e+ar) - As above, we obtain ri=c 37 ¢ (0, 1]
1 M+4 y:=cosp € [~1, 1]
HL(W.) = Hu(W.) + - log, ( ~ ) (30) D veblogr) o 1 an

with M the coefficient of/2~ in [(1+y)(1+%*)]*. Forinstance, related to the time displacement, phase change, and ampli-
o = 3yields: log, 22 rather tharog, 4 for the second term on tude disparity between the two components, respectively. In
the right side of (30). Appendix IlI-B we derive the following.

These examples show that large intercomponent spacin . ) . .
(At — oo) is not enough for correct component counting. %roposmon 4. For the S|gnal/'(ﬁ32) W'tr(C.L’ b, w; ¢, d, 2)
Notice that the spacings between the signals in these exam%zogamd by(@’ 0, L; % 0, 7¢’7) and with Hs(W,) and
are regular; with signals of fixed supports and random spacings™’ ¥’ v) defined as in (34)~(37), we have
that tend to infinity, chances are much better that the component 1 4
counting property will hold true. Hy(W,) = — logy lg - (-2’1 +2?)

B. Amplitude and Phase Sensitivity 3 3
. . — x(v—axy)(v+zy)"°|. (38)
The results of the experiment illustrated in Fig. 1 and ana-

lyzed in the previous section are very appealing, but also incom-

plete, because we introduced no amplitude or phase difference$his expression is very convenient for studying the effects of

between the two signal components. component time, phase, and amplitude differences on the third-
First consider amplitude differences. Consider the signatder Wigner entropy. For example, in Appendix IlI-C, we find

>, kis; consisting of weighted components; that are the bounds

time—frequency shifted versions of some basic composdiit 1 1

the s; are pulled apart such that the asymptotic overlap of the 2 logy 3 — 1 < Hy(W,) < 2 log, 27 — 1. (39)

auto- and.crqss'-components of their TFR Qecays to zero, the o (38), we can compute the effect of component ampli-

an analysis similar to that of Section IlI-A yields [20] tude disparity on Hs(W,) by fixing y and varying the separa-

H, (CE- kisf) — H,(C,) + HE(p) (31) tiondistance viar. For the asymptotic saturation level, we have
with p a vector with entries lim H3(W,) = —% log, <§ - %) , v>1. (40)
a—00 v
ki|?
Di = Z|:|/J‘|2 The obvious conclusion that equal amplitudes= 1) maxi-
5 ‘ mize the complexity of signals composed of multiple identical

. L . . components appears quite reasonable, for smaller components
and HE the discrete Rényi entropy of (10 £ (p) is a contin- . .

a = @ -~ ... are dominated by larger ones and therefore carry less informa-
uous function of thé; bounded by and1 and maximized with . ylarg y

: . . ion.
all &; equal. Thus, amplltu,de _dlscrepanues alter the asympto Y the region between saturation levels (where the TFR com-
saturation levels of the Rényi entropy.

We will see that phase offsets induce strong oscillations tﬁgnents overlap and the assumptions of Section lil-A fail to

Lp ng . old), the relative phase between components controls the value
tween the saturation levels. To shed further light on this matt%'f’the Rényi entropy. Fig. 3 extends the experiment of Fig. 1 by
we will derive an analytic expression for the third-order entrop | e :

. 7 . otting the Hs (W) surface as a function of both inter-compo-
of the Wigner distribution of the sum of two Gaussian pulsesnent displacement and phasep. It is apparent from the curves

s = wgy(a, b) + zg+(c, d) (32) thatwhile phase changes do not affect the saturation levels of the
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The choicep = 1 results in the matched-window spectrogfam
as in Fig. 5, and we obtain from (174)

1 1 (1-2%)?2
H3(C)=—=logy | = — ———— 2
(Ce) = =5 logx |5 = 5,0

D
s
0 @@gﬁ%\\
e
TR :
*@\@&‘“@‘\% iy with = andy as in (37). For gener 0, 1), the upper satu-
\@\\\%&%\QW\ ; . y (37). For general € (0, 1), pp
N

S A ration level(z = 0) is given by
1.5

1
0 0.5 : _ - . . 2
phase 0 displacement iurb H;(Cs) 5 log, 3 + log, (1 + p°). (43)

S

x(22% + 14 (2% +2)2%y)|  (42)

To illustrate, we repeat in Fig. 5 the experiment of Fig. 3
Fig. 3. The third-order Rényi entropifs (W, ) of the Wigner distribution of P Y P 9

the two-component Gaussian signal (32) plottedversusdisplacementparan*é%pg a matqheQ'WindOW_ spectrogram TFR rather than_ the
a and phasep (in rads). We use (38) wite = 1. Comparison with Fig. 1 Wigner distribution. While the spectrogram information

(which coincides With the> = 0 slice of the s'urface) illustrates the sensitivityastimate remains somewhat phase-sensitive, it climbs more
of H3(W;) to relative phase. (The asymptotic levels here are the same as those. . .
in Fig. 1; the (overestimation) peak valuelisog, 27 — 1 ~ 1.377 bits.) swiftly to the saturation Ieyel_anq with a reduced overshoot
compared to the Wigner distribution estimate. In general, the
ascent to saturation accelerates with increasing ardence
information measure, they allow many possible trajectories bgg cross-components are smoothed to the same peak level
tween the two levels, including even trajectories where an “ovefs the auto-components. (The opposite holds for the Wigner
estimation” [noted numerically in [1] and confirmed in (39)] ofgjstribution, because Wigner cross-components can tower over
information content occurs. Furthermore, if the phase of eaW]gner auto-components by up to a factor of two.)
component is fixed relative to the center of its envelope (so thatpe price paid for the more robust information estimates de-
the components do not change shape as they are shifted abgyg from smoothed TFRs is a signal-dependent bias of en-
then the correspondings(W) versusa curve will be a slice opy |evels compared to those derived from the Wigner distri-
of the H3 (W) surface along an oblique trajectory in tfie )  pytion, with the amount of bias increasing with the amount of
plane. Curves of this form can be multimodal (see [8, Fig. 2mqothing. This bias is difficult to quantify, since the convolu-
[9]). tion in (3) and the power and integral in (6) do not permute in
The phase sensitivity of thélz(W,) measure for closely any simple fashion. In the special case of the matched-window
spaced components is quite reasonable, given the sensitivitygéctrogram applied to a sum of Gaussian signal components,
the signals themselves to relative phase. For example, Figa fdlirect computation finds a 1-bit bias in asymptotic informa-
shows the composite signals and their respective Wign@sn compared to that estimated using the Wigner distribution
distributions for a fixed offset and relative phases = 5 and  (compare Fig. 1 with Fig. 5). Despite the introduction of sys-
¢ = 2. The difference in appearance is striking; clearly, th@matic bias, smoothing is essential when measuring entropies
components in the signal in Fig. 4 (b) are more separated thgfcomplicated multicomponent signals with overlapping auto-
those in Fig. 4 (a). Accordingly, th&;(W¥) entropies for the and cross-components.
two signals differ widely: from 2.741 to 3.857 bits, respectively. Although it may be intuitively clear that smoothing attenuates
Since the interference pattern generated by cross-componghés\igner distribution’s negative values, it is by no means an
encodes intercomponent phase information, signals with low ié'asy matter to get pertinent results on the existendé.,gf’, )
formation content (“almost mono-component signals”) must efgr odd «. Even for the case of Hermite functiohs (as con-
hibit mainly constructive interferencin the sense of [5], [6]. sidered in Appendix I) and Gaussian smoothing (see (41)), this
Relative phase fades from importance after all components ez hard problem. It can be shown that the well-definedness of

come disjoint. H3(W),, +®,)foralln=0,1,...and allo < p < 1 requires
a Debbi—Gillis type result [21] in which th%in the exponential
C. Effects of Smoothing of (73) is replaced by = 2(1 — p?). We can summarize our

(partial) results on Hermite signals as follows.
TFRs based on low-pass kernels lead to more robust Rényi

information estimates, since smoothing suppresses the Wignef = 1 In this case(Ws,, * ®,)(t, f) > 0 [22]

cross-components that carry the intercomponent phase informa- and existence off; is not an issue.

tion. %\/3 < p<1: Itwas kindly observed to us by Prof. R.
In Appendix 111-D, we calculateds(C;) for the two-compo- Askey that a Debbi-Gillis result is easily

nent Gaussian signas from (32) withw = z = v = 1), with established fof) < p < 1, which implies

C, the Wigner distribution smoothed by the Gaussian kernel thatH3 (W, =@ ,,) is well-defined for this

range of smoothing.

—2742 2
<I>p(t, f) = 2p_26_2’”’ 47, (42) 8A spectrogram computed using the time-reversed signal as the window.
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Fig. 4. Signals and positive parts of the Wigner distributions from the experiment illustrated in Fig. 3 corresponding to a single fixed sepaditiondifferent
phasesy. (a) Signal (left) and Wigner distribution (right) fgr = Z; Hs(W,) = 2.741 bits. (b) Signal and Wigner distribution fpr= 37"; Hi(W,) = 3.857
bits.

with equality if and only ifs is a Gaussian. For the spectrogram
CS=pect with Gaussian windovy

log
Ha(OSGsDect) 2 23_2 ;)‘ (46)

with equality if and only ifs is a Gaussian of the same form as

g
Compare the lower saturation level in Fig. 1 with the theoret-
ical bound
' 1 3
1 1.5 H3;(W,) = - log, <—> ~ —0.208
phase 0 2 4

displacement

for the Gaussian. Of course, this value also coincides with the

Fig. 5. The third-order Rényi entropfls(C.) of the matched-window |ower bound (39).

spectrogram plotted versus displacement paramiteand phasey (in rads) — Thegrem 5 can be interpreted as an alternative version of the
for the same signal utlllz_ed in Fig. 3 (see _(42)).‘ The reducgd sensitivity of -k . f . inciole I2

the spectrogram to relative phase results in swifter saturation with redud¥§ll-known time— requency uncertainty principie [24], [4]-]6]
overshoot. Furthermore, for smali and At, H5(C,) actually responds that takes the entire time—frequency plane into account rather
sooner thari;(W,) to small increases ifht. Note also the 1-bit bias in the ; ; oty ; 2 2 |ti

asymptotic levels off5(C.) versus those off;(W,). (The asymptotic levels than IJUSt th.e marglﬂal _dIStI’IbL:_tIOITISS]St)L anhd|5(f)|h -1t |s|also h
here arel log, 3 ~ 0.792 and 1 log, 3 + 1 & 1.792.) an alternative to the inequality of Hirschman that relates the

classical principle to the Shannon entropy of the marginals, as
0<p< %x/ﬁz We have been unable to prove results fo[|25]

< =3
mecasa sp <y Hy(|sP) + H(|SP) > logy e — 1 7)
p=0: This is the Debbi—Gillis result [21] that
shows thatd3(1},, ) is well-defined. with equality if and only ifs is Gaussian. Note that Theorem 5

. . marks the third breakdown of the analogy between probability
D. Lower Bound on Signal Information Content density functions and TFRs (the first two being nonpositivity
Simple to derive from Lieb’s inequality [23] (see AppendiXand nonuniqueness), since the Dirac delta function probability
IV-A), a lower bound on the Rényi entropy corresponds to thensity minimizes the Rényi entropies of all orders.
“peakiest” Cohen’s class TFR.

Theorem 5 (Lower Bound on Information Content fo'tE' Information-Invariant Signal Transformations and the

Cohen's Class):For any Cohen's class TFR, (¢, f) with “\1ine Class
® € L*(R?) and [[ ®(t, f)dtdf = 1,anye > 1,and any  Aninformation invariansignal transformatiorM leaves the

s € L3(R) Rényi entropy measure unchanged, With(Cats) = Ho(Cs)
[1]. Distributions information invariant to such a transformation
HA(C,) > logo v 1. ¢ log, || @] (44) M, provided it displaces the center of gravity of the signal in
Ta-1 a—1 time—frequency, admit a useful generalization of Theorem 2 to
For the Wigner distribution Mﬂm Ho(Cospis) = Ha(Cy) +1.
log, & o
H‘Y(W*) z a—1 -1 (45) 9In this case’*P°<t is the matched-window spectrogram of a Gaussian.
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The transformations leaving the Rényi entropy invariant cor- For information invariances different from time and fre-
respond to those that do not change the value of the integrabimency shifts, scale changes, and chirp modulations and
(13). For Cohen's class TFRs, the invariance properties of thre@nvolutions, we must look beyond Cohen’s class and the
nested kernel classes are simple to quantify. All fixed-kernaffine class. Fortunately, all the above results extend easily
TFRs are information-invariant to time and frequency shiftso the recently developed unitarily equivalent Cohen’s and
Product-kernel TFRs, having kernels of the foini¢t, f/) = affine classes [15]-[17]. The TFRs in these new classes are
#(tf) with ~ a one-dimensional function, are in addition ininformation-invariant to generalized time—frequency shifts and
variant to scale changes of the fosit) — |k|~'/2s(t/k). The time-scale changes.

Wigner distribution is the lone fixed-kernel TFR fully informa-
tion-invariant to time and frequency shifts, scale changes, and IV. SELECTED APPLICATIONS
the modulation and convolution by linear chirp functions that . . o . .
. . ; : The foregoing properties of the Rényi entropies (when it is
realize shears in the time—frequency plane (the symplectic traas-. : . .
. . L efined) make these new information and complexity measures
formations of (131), (132)). Itis not coincidental that these samg . . . ; :
. . . ; . .~ particularly appropriate for time—frequency analysis. In this sec-
five operations leave invariant the form of the (minimum-infor, g : . :
. . . tion, we briefly discuss two areas of past and potential applica-
mation) Gaussian signal [19]. tion

The affine classprovides additional TFRs information-in- "~

variant to time shifts and scale changes [5], [6], [14], [261A

! . ) . Information-Based Performance Measures
Affine class TFRs are obtained from the affine smoothing

o The Rényi entropies make excellent measures of the infor-
Q.(t, f) = // W (u, V)II(f(t —w), v/f) dudv mation extraction performance of TFRs. By analogy to prob-
= (W, QII)(t, f) (48) ability density functions, minimizing the complexity or infor-

) o . . . mation in a particular TFR is equivalent to maximizing its con-
of the Wigner distribution of the signal with a kernel function . part q . g 11s col

. L centration, peakiness, and, therefore, resolution [27]. Optimiza-
I1.10 Given proper normalization of the kernel, we have

tion of a TFR (through its kernel) with respect to an information
// Q.(t, f)dtdf =|s||3. measure yields a high-performance “information-optimal” TFR

LY ) . that changes its form to best match the signal at hand [13], [28].
Hence, the Renyi entropy of an affine class TFR can be defmeéll\/lany of the optimal-kernel TFRs in the literature have been

exactly as in (13) (of course, with the requirement (12)). Trl)eased either implicitly or explicitly on information measures. As

tne properties discussed above i the contex of Conents il by Willams and Sang [13), (28], the performance index
prop common to thel /0 [29], radially Gaussian [30], and adaptive

(counting, cross-component invariance, amplitude and IOhaSGfimal kernel [31] optimization formulations can be rewritten

sensitivity, bounds, etc.), except with time and frequency shiﬁ) . ;
: . . using Parseval’s theorem as
replaced by time shifts and scale changes. In particular, we

have the following. // (W, + @)t, P)2dtdf =2 H0Vo®) (51)
Theorem 6 (Lower Bound on Information Content for th

Affine Class): Let Q,(¢t, f) be an affine class TFR with kernel

such thafll € L'(R*) and ;I1(¢, f) € L'(R?). Then, for all

integersa > 1 and for alls € L2(R)

log, «

a—1

Since the second-order Rényi entropy squares the TFR, it re-
mains sensitive to cross-components and hence can be consid-
ered as a measure of their information content [1]. Thus, max-
imizing (51) over a class of low-pass smoothing kerrilsi-

lH(t, 1) (49) multaneously minimizes the information in the cross-compo-
S 1 nents of the optimal-kernel TFR. Maximizing thé€s||$/|Cs |3

For the proof, see Appendix IV-B. The conditiéﬂﬂ(t, fe concentration ratio of [32], [33] can also be viewed in informa-

L(R?) impliesTI(t, 0) — 0 V¢ for continuous kernels and en_tlc_)n—theqretlc terms, since this is equivalent to minimizing the
. . . . . differential entropy3H4(C,) — 2H>(CY).

sures that the affine smoothing (48) is defined. Since the kerne ifferential performance measures formed with odd- and

generating the scalogram (the squared magnitude of the ConctaiOén—order entropies also prove interesting [28]. For example

uous wavelet transform) corresponds to the Wigner distributi%le differential measure ' '

W, of the wavelet functiony, this condition also generalizes

the now classical “wavelet admissibility condition” [5], [6]. In H3(Cs) — BH2(Cy), 0<8<1 (52)

particular, we have

(0%
HQ(QS) 2 — mlOgQ

exploits the fact that odd- and even-order entropies decouple to

// ‘l II(t, f)‘ dtdf = // ‘l W (t, f)‘ dt df some degree the information content in the auto- and cross-com-

f f ponents in a TFR. Minimizing this measure balances i) max-
> //Wx(t f)dt_df imizing the information in the auto-components (by keeping
- v |7 them peaky through less smoothing) with ii) minimizing the in-
_ /|‘If(f)|2ﬁ (50) formation in the cross-components (by flattening them through
- Ifl more smoothing). For positive TFRs, the special chgice 2,

. o _minimizing (52) is equivalent to maximizing the concentration
10in order to emphasize the similarity of (48) to (3), we have reparameterized

) G 6 o ) ) .
the original time-scale formulation of (48) from [14] in terms of time—frequencyati0 ICs[13/11C5 |3, making 't_an interesting alternative to the
coordinates by setting scate= fo/ f, with fo = 1 Hz. ICs113/11Cs 115 measure used in [32], [33].
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2 ' ' ' ' B. Rényi Dimensions
Based on the counting property of the Rényi entropy (Sec-
15 B=0 tion 11I-A), we can define &ényi dimensio®,, (C;) of a signal
Q” s in terms of its TFRC, and a basic building block functioin
1 81, [9]
@ "7
B8 ' Do(C,) i= 2Ha(C)—Ha (o) (54)
o005
;?0 - This dimension attempts to indicate—in terms of a highly over-
o o complete set of building blocks obtained franby all possible
” translations and modulations—the number of blocks required
o5 p=1 ‘ . . . to “cover” the TFR ofs. For the Wigner TFR, a Gaussian is
“o 02 0.4 0.6 0.8 1 the natural choice for the building block function, since it has

smoothing parameter p minimum intrinsic information (in the sense of Theorem 5) and

leads to an always-positive dimension. A similar dimension can
Fig. 6. The effect of time—frequency smoothing on (52) as a function of t2€ defined for affine class TFRs.
parameter3. For a signal consisting of tvyvo well-separated Gaussian pulses By permitting redundant time—frequency building blocks, the
e T e et ol b RENYi tme-frequency dmension generalizes the conceps of
the Wigner distributionp = 1 generates the matched-window spectrogranth€ number of “independent degrees of freedom” and number of
We plotH;(C') — 8H:(C') versus the smoothing paramegefor the eleven  “independent coherent states” that have proved useful in signal
?’a'“esg =0, 0.1, ..., 1. (The upper curve correspondsfo= 0, while the o, 91ysis and quantum physics [34, p. 23]. Desirable invariance
ower curve corresponds f» = 1.) The minimum point of each curve, marked B . L
by a circle, corresponds to an “information-optimal TFR.” Data obtained Hgroperties result from this redundancy: Cohen’s class Reényi di-
numerical simulation; results from the analytical approximation (53) correspopdension estimates remain invariant under time and frequency
closely. shifts in the signal, while affine class estimates remain invariant

under time and scale changes. Alternative dimensions that mea-

Fig. 6 explores the effect of time—frequency smoothing dsire signal complexity with respect to an orthonormal basis of

(52) as a function of the paramet@r Forming a signak from (wavelet or Gabor) functions (see [35], for example) cannot
two well-separated Gaussian pulses, we smooth the Wigner @iBare these invariances without carrying out an optimization
tribution of s with a Gaussian kernel (41) of increasing volumever all “nice” bases [2].
p to generate a series of smoothed TRRs In the figure, the ~ For the simplest signals, composed of disjoint, equal-ampli-
smoothing parameter corresponds to the normalized degretide copies of one basic function, the Rényi dimension simply
of smoothing, withp = 0 leaving the Wigner distribution un- counts the number of components. As the relative amplitudes of
touched ang = 1 generating the matched-window spectrothese components change, however, the dimension estimate will
gram. We plotHs(C, ) — 3H,(C,) versus the smoothing param-2lso change, as some components begin to dominate others.
eter for several values @f ranging betwee and1. From the
figure, itis clear thats controls the tradeoff between measuring V. CONCLUSION

auto-component concentration and measuring cross-ComponeRiing off where Williams, Brown, and Hero left off in [1]
suppression. Smafi favors auto-component concentration, anghis paper has studied a new class of signal analysis tools—the
(52) is minimized by very little smoothing—no smoothing atalgeny; entropies. Users must proceed with caution, for as we
for the extreme = 0 case. On the other hand, largéavors - ave shown, the higher order entropies are not defined for large
cross-component suppression, and (52) is minimized only affggsses of signals. Counterexamples are much harder to find
considerable smoothing. for the third-order entropy, however, especially for suitably
In Appendix I1I-D, we computeH(C;) and Hx(C;) for - gmoothed TFRs (we have encountered none). This finding

this case analytically. Some additional approximations Val%pports the numerous numerical studies [1], [8], [9], [12] that
for large component separatiariead us to the simple formula ,5ve indicated these measures’ general utility.

When well-defined, the accounting, and cross-component
H3(Cy) — BH2(Cy) = —0.208 + (1 — 3) log,[2(1 + p?)] and transformation invariance properties of the Rényi entropies
) Cdma? p?(14p2) 1 make them natural for estimating the complexity of determin-
+ilog, [1 te o } - (59) istic signals through TFRs. Simple to apply, these measures also
provide new insights into the structure of the time—frequency
The second term on the right side increases genilydn0, 1], plane. For instance, a lower bound on the entropy of the Wigner
while the third term decreases sharplyfand is flat for larger distribution yields a new time—frequency uncertainty principle
values ofp? (but still decreasing). Among other things, it fol-(Theorems 5 and 6) based on the entire time—frequency plane
lows that the minimum of (53) decreases whikimcreases and as a whole rather than on the time and frequency domains
that the minimum poinp.,in(3) shifts very slowly toward as separately.
3 approaches. For 3 extremely close td, we have that (53) The explorations of Section IV into TFR performance mea-
decreases ip, whencep,,;,(3) = 1 for theses. More compli- sures and Rényi dimensions merely scratch the surface of po-
cated signals will exhibit local minima. tential applications of the Rényi entropies in time—frequency
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analysis. Worthy of pursuit seems the extension of our resu#teay from the origin but inside a circle around the origin of ra-
to TFRs outside the quadratic Cohen’s and affine classes. Tes somewhat larger thain + %)/w)l/Q, and iii) negligibly
positive TFRs of the Cohen—Posch class [4], for example, woudchall outside that circle. Therefore, the odd-order Hermite func-
allow the unrestricted use of the Shannon entropy. Moreover, ions are natural candidates for yielding negative values in (56).
axiomatic derivation of the “ideal” time—frequency complexity

measure along the lines of Rényi’'s work in probability theorf. Examples for Large Odd

[11] could yield other entropies meriting investigation. Throughout this appendix, let be a smooth, rapidly de-

In information theory, entropies form the basis for distancgaying,oddsignal of unit energy. TheW,(t, f) is smooth and
and divergence measures between probability densities. jipidly decaying as? + 2 — oc and

time—frequency analysis, analogous measures between TFRs
would find immediate application in detection and classifica- |W(¢, f)| <2 = —W,(0, 0), (t, ) #£(0,0) (60)

tion problems. Unfortunately, the Rényi entropy complicates

the formation of distances, because it is neither a concave néS"€ eaQSin sees from the Cauchy—Schwarz inequality (the fact
convex function forx # 1. Although the bulk of the work lies thats € L*(R) causes the inequality to be strict). It thus follows

ahead, some progress has been made in this direction. Conlat the asymptotic behavior of (56)@s— oo, « integer, is de-
ering only positive TFRs (smoothed spectrograms in Coherf@Mined by the behavior &V, (¢, ) at(¢, f) = (0, 0). Since

class), we defined i_n [20]_ a distance measure petween two oW, oW, 0 92w, B 92w, 61)
TFRsC; andCs that is reminiscent of the Jensen divergence ot~ af " atof _ ajor
H,(C1)+ H,(C 0?W, O*W,
Jo(C1, Cs) = H, (\/0102) _ Ha(@) (@) 55) = —g|ls|1%, 2 = 3r2|ts(t))> (62)
2 ot af
(Here, VC1Oa(t, f) := /CL(t, f)Ca(t, f).) Currently, we at(t, f) = (0, 0), we have
are evaluating the potential of this measure for problems in non- .
parametric and blind transient detection. log <—§ W,(t, f))
APPENDIX | = —28||s'||* — 872 f2||ts()||” + o(t* + f*)  (63)
SIGNALS WITH UNDEFINED WIGNER DISTRIBUTION-BASED o
RENYI ENTROPY ast? + f2 — 0. Therefore, we have explicitly
_ In this appendix, we display for any odd integer> 3 a / W, f)dtdf
signals such that
o ) 1
[ wee paca (56) = 2" [few{aton (3wt )
(=2)~
i i . Anvi =——2<_(1+0(1)) (64)
is negative. Hence, for such an the «-order Rényi entropy da[s'|[|[£s@)]]

H,(W,)is notdefined. All of our example signals are variations _ _ _
on a theme: peaked, odd functions that create a large negafife — oo, « integer. Hence (56) is negative fany smooth,

spike in the Wigner distribution. rapidly decaying, odd signaland large odd integet. O
First, some background on Hermite functions. Title-order _
Hermite function [19, Ch. 1, Sec.7] B. Example forv = 5, 7, ...
a\" Let s be the first-order Hermite function
hn ) = (=1 n21/4 n! —-1/2 An —n,/?eﬂ'tz <_> —2mt? i} )
( ) ( ) ( ) ( ) dt S(t) _ hl(t) — 20/47r1/2t6—7rt , teR (65)

(57)
with Wigner distribution
has a Wigner distribution that can be written in terms of a La-

guerre polynomial. That is [19, p. 66], Wit f) = =272+ (1 — dn (8 + f2)). (66)
Wo(t, [) =W (¢, [) = 2(—1)"(3—2’”‘2 L,(4nr?) (58) Using polar coordinates, we have for integep 1
with L,, thenth-order Laguerre polynomial / Wt f)dtdf = ga—1 (—1)° /oo - <1 B 2_“7)&0{3;_
n - 67 0 «
n\ (—z)? 67
Ly(z):= ) — (59) (67)
) Jz::o <J> J!

For odder > 1 we have
andr? := (t/to)? + (f/fo)? with to := 1 sandfy := 1 Hz (we 9\ o2 9\ @
assume this normalization ¢fand f for the remainder of theeé e <1 — _x> de = e <1 _ _x> do
paper). As is well known, the Hermite functions have Wign 0 N
distributions that are i) strongly peaked at the origin, with a neg- T L2

) : . . - — e dz. (68)
ative sign when the ordet is odd, ii) small but nonnegligible o
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The first integral on the right-hand side of (68) increases ere, =t +:f, and theLEj’) are the Laguerre polynomials
«a > 1, since the (honnegative) integrand and integration range . ,
increase inx > 1. The second integral can be evaluated as @\ (k +p)! (=)

NMp+a)t gt

oo a a/2 —0
/ e—w<2_”5_1) dx:@) © o (69) e roduc -
a2 o e a® Now, expandingW? using (76), introducing polar coordi-
natesz = re' in [ W2dtdf, and retaining only the triple
products of (cross) Wigner distributions that are independent of
f# (the others cancel upon integration), we obtain

(76)

and this decreases i > 1. Hence the left-hand side of (68)
increases inv > 1, « odd integer. Since

1 —-22)dr =-1
JARRCEESEE ] wee pyaear
< 22\ ° 1
e (1-%) =3 70 = [ [alW3 + 3laallasPWEWo + 3laa o Wb
and i + [ag| WS + 6las| | a|* W[ Wao|?
o0 2z\° 127
/ o <1_i) dr — (71) + 6las |2 |ao|*Wo| Wso|2) dt df (77)
o 5 625

where we also have used th&t, = Wys. Inserting the explicit

we see that (67) is negative for all odd> 5. = form (75) into the right-hand side of (77), we obtain
C. Example forx = 3 // W3, f) dtdf
We will have to spend considerable effort to find arior o
which (56) is negative forr = 3. Also, a small amount of = —2(|as|*Css3 + 3|as|*|ag|*Ca30
Gaussian smoothing d¥, is generally enough to make (56) + 3las|?|ao|*Coos + |as|® Cogo)
positive for our offending signal. This indicates that the exam- 3! a2 oA6) o1 a6)
ples for which (56) fails to be positive far = 3 are rather ex- — 125 (las[*|as|"Cs33 + |as|“|as|"Cs39)  (78)

9!
ceptional. Moreover, the results of Appendix Il show that theh h ¢
third-order Rényi entropy is well-defined for the sum of twgVnere we jve se
Gaussians, irrespective of their mutual phases. See also the c&sp) o / 6—% P (Lgf’)(s))QLl(s) ds.  Ch = c©

cussion on Hermite functions above. L Kkt
We shall show that (56) is negative far= 3 and (79)
s = asha + aghg (72) Thus, we have
with suitably chosems, ag € R andh,, thenth-order Hermite ! = / W3(t, f)dtdf = Mo+ My 4+ Moz? + Msa®,
function. |as]
Using polar coordinates, we obtain (see (58)) - |ag| (80)
. . as?
// W2(t, fdtdf = 2(—1)"/0 e 2% L3 (x)dx =: 2T,,. where
(73)

!
MO = —26’3337 Ml = —60339 - 12% Cég%
It is a quite nontrivial result from Debbi and Gillis [21] that 3 o) )
T, > 0foralln =0, 1, .... Hence, we cannot produce nega- Mz :=—6Cy93 — 125 Cs39, M3 := —2Cq99.  (81)
tive values in (56) with a single Hermite function. )

We now elaborate (56) for thein (72) anda = 3. We have The computation of thé?,gi)l can be done according to

W, = |az|?Wa 4 |ag|* Wy + azagWag + ahagWos  (74) oW _ <(p+k)!)2 <g)ﬁ+1
kki — |
with W,,,,, the cross Wigner distributioh betweenh,,, A, kk' c 3
i i S\
m (mI\Y2 ol \—m (p+J1+J2+J3)
21" () e P 2y/me) 22D G+

71=0 j2=0 j3=0

Wit £) x L™ (4x|2[?) n>m 75) ) <k> <k> < l) <_2>j1+j2+j3 @

2(—1)" (22)Y2 =27l (24 /)™ " YACVYAVIANE

><L§,m_") (47r|z|2) n < m. For this we have used the explicit forms (59), (76) for the La-

guerre polynomials and carried out the integration (see also [37,
HFormula (75) is due to Groenewold (see [36, eq. (5.16)]), except that GreGec, 2.a]). It follows that
newold has incorrectly g—1)™**(""- ™} instead of —1)™»(™ ™) and calls the
L Legendre polynomials. Formula (75) can also be found in [19, p. 66, eq. My =0.107504, M, = 0.198739
(1.105)], except that there is a complex conjugate missing in thescasen
(note thativ’,,,,, = W ; a similar error occurs in [19, p. 64, eq. (1.104)]. My = —0.364632, M3 = 0.067079. (83)
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The right-hand side of (80) is extremal for

9 1/2
M21<<M2>—M1> . (84

r=—

3M; 3M; 3M;

Taking the+ sign in (84) so that = 3.327073, we obtain
Mo + Mz + Mya® + Msz® = —0.797104.  (85)
This completes the construction of the example. O

Fig. 2 illustrates the signal (72) and its Wigner distribution

for az = 1 andag = 1.824026.

APPENDIX I
PrROOFS ONCOMPONENT COUNTING

A. Proof of Proposition 1

Let s € L?(R) be supported on the intervil, o], and let
u € L?(R) be supported ofAt, o + At]. We will show that

1403

We Wr:te: tf}s/ai/_.\kl \/_v—//

e*jQWf(‘f‘l-f—"'-l—‘f‘k+7'k+1+"'+7'a)

o+ -3)
(t — —) dry -+ - dru (t + Tk;1>

(A o2 ()

X dTpy1 - - drg dt df. (90)

Integrating overf, a Diracé( + - - -+ 7o) term appears. Using
thisé(r +- - -+ 7, ) to cancel the mtegra‘uon ovey,, we obtain

ISR N

(+3)

(22) holds T\ o« T Tht1
e [[xeienmrce oo (2 3)0 (- B)a22)
= = * _ TRy Ta—1
X s (t 5 ) U (t + )
when At > %(a + 1)o. Here X, ,, is the cross-component & (t _ Ta—l) ule_ ™ 4+ Ta1
betweens andw (see (19) and (20)). We shall initially assume 2 2
that s and« are smooth, so that the manipulations below are LA Ty
o etifi xs'|[t+ —m—
justified. < 5 )
We have by binomial exp()yansion that X dry -+ dry dTgn - dTan d. (91)
r= Z <Z) I (87) Now suppose that we haveta& R and
i k=0 Tl?"'?Tk7Tk+1?"'?TG—1€R
with N . such that the integrand in (91) is not zero. Sinds supported
Ly = Wt W@, fdtdf, k=0,1,...,a. on[0, o], andu is supported odAt, o + At], we have (92)
(88) at the bottom of the page. Adding the figsitems in (92) and
. . 1 subtracting the last — & items, we obtain
We will show that eacli’y, vanishes whel\t > 5(« + 1)o.
We first consider the case whén# 0, «. We have by defi- (2k — @)t €[=(a = kK)o, ko] (93)
nition . 2k — a)(t — At) € [ (o — K)o, kol (94)
T, — // </ 2T (t n I) (t B _) dr) Subtracting (94) from (93) yields
2 (2k — a)At € [~lo, o] (95)
a—k .
—jonfr I T with
><</e u(t+2) (t )m) dt df. 1
(89) I =max(a—k, k)= §(a+|2k—a|).
t+ €0, o, t—At—%e[O,a]
t—i—%e[O,a], t—At—%e[o,a]
t Tk;l € [0, o], t— At + = Tk+1 €10, q]. (92)
t— 2=l e 0, o], t— —L ¢ [0, o]
t+T1+”'2+Ta_1€[0,0]7 t—At—TlJr"';T“‘le[O,o—]
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Since« is odd, we havé2k — «| > 1. Thus, we finally obtain For the definition of H,(W,), we should also say what
1 a 1 Jf W, f)dtdf means in the case tha¥, € L?*(R?),
At< s <m + 1) o< glatlo (96) J, ¢ LY(R?). Naturally, we define

Hence, whem\¢ > 3(« + 1)o, the integrand in (91) vanishes
identically, sol';, = 0, as required.
Next, consider the case = «. Here, the items with index

/ Wi(t, f) dtdf = |53 (102)

k+1, ..., a—1are absent from (92), but the above argumeré?r such cases. (Whe#, does belong td."(R?), the identity
still yields thatAt < o < %(a + 1) whenever the integrand in 102) also holds.) Then it follows that
(91) is nonzero for some e R, 71, ..., 7o_1 € R. A similar f 9
result holds for the caske = 1. // Wora(t, ) dtdf = |s +ullz
We shall now remove the assumption thand« are smooth. )
To this end, we give the following Lemma, which will also be — 2[|sllz = 2/ Ws(t, f)dedf (103)
used in the proof of Theorem 2 below. We omit the (elementary)
proof. when|D|? = (At)? 4+ (Af)? — oc. Here we have used the last

. item in Lemma 7 and the fact that the inner product
Lemma 7:Let s, u, v, w € L*(R), not necessarily com-

pactly supported. Then, for & f € R, we have (s, u) = exp I ™M Y, | <1At, 1Af)
(Ws u(t, £) = W w(t, P < 2[ullalls — vfl2

+2||v|2||w — wl||2.  (97) with v(t) = s(—t). Furthermore, we have by shift-invariance
Also, W, ,, andW, ,, are inL?(R?), and that

Wi, = W wlla < llullalls = vll2 + [[vlla]lu — w]l>. (98) / / W, f)dtdf = / / Wot, fydtdf  (104)
Finally, W, , € Co(R?); that is, W, , is continuous and
bounded WIthW57 «(t f) — 0ast? + f2 — oc. these two numbers being supposed positive. Hence

To complete the proof of Proposition 1, we take smoaeth 1 Lo JIWa (¢, f)dtdf
supported o0, o], and smoothy, supported ofAt, o+ At], T— o o2 (ff Wapult, £) dtdf)”
such that||s — v||» and ||z — w]||> are small. Then (97) and _

(98) show that¥, ,, is approximated byv,, ,,, both uniformly when|D| — oo, provided we can show that
and inL?(R?) sense. HencéV, ., is approxmated byV., . in

H (W,)+1 (105)

L*(R?) sense, since < « < co. Now the result follows easily // X7 (¢, fdtdf — 0 (106)
from the fact thatff X3 ,(t, f)dtdf vanishes for smooth

andw whenAt > L(a + 1)o. O / / WL, )Xt WS, f)dtdf —0  (107)
B. Proof of Theorem 2 as|D| — oo for the relevant set of;, aa, a3).

For the proof we will need, in addition to Lemma 7, the Rie- As to (106), we write
mann-Lebesgue Lemma.

o, jkx
Lemma 8 (Riemann—Lebesguéor g € L*(R") andn = 1, cos- L= Z bre? (108)
2, ..., we have h=—a
S where we note thdiy = 0, since« is odd. Then, using (100
[o@e==1ae — o0, gl —oo. 69 waonan 9 (100)
Furthermore, with: := Ds (see (23)), we have the useful // X (t, fdtdf
formula [5, p. 240]

X, .t f) =2, <t—7, _7> _ Y bk//W < -

k=—a
X COS (271' (tAf — fAt —+ % AtAf)) . (100) % e]?Trk(tAf—fAt—l—§AtAf) dt df (109)
Wigner Distribution Case:We assume odd: > 3 and ex-
pand trinomially The substitutiort — $At — ¢, f — $Af — f, which leaves
W, = W+ W+ X%, the formtAf — fAt + %AtAf invariant, then yields integrals

of the form
+Zc a1, a, az)W X2 Woe (101)
@ / Wo(t, f)ed 2 REAS =AY gr gf (110)
where in the latter series we have collected the terms in the ex-
pansion witha; + a2 + a3 = « and at least two of the;; inthe right-hand side series in (109). From Lemma 7anel 3,
positive (thec(ay, ao, r3) in the series on the right-hand sideit follows thatWe € L'(R?), where by Lemma 8 we see that

are constants). the integrals (110) tend to zero whéR| — oo andk # 0.
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It follows then that the expression in (109) tends to zero wheiso, the analog of (104) holds by shift-invariance. We must,
|D| — oo, sinceby = 0. therefore, show that
For the expressions in (107), we argue as follows. By (100), //

we have “dtdf — 0 (118)

J = S0z // Wor(t, HX2,(t HWRE(E, f)dt df‘ //(WS * QYN o x O)2 (W, x @)™ dtdf — 0 (119)

i o At Af as|D| — oo for the set of relevantoy , a2, as).
< 1 2 - — [ — ) ; ) )
= // Wt D ‘WS <t 27 ! )‘ For (118), we first note thatX, , = ®)* € L'(R?), since

X |[Wes(t — At, f — Af)|dtdf. (111) « > 2. Next we use (100) to obtain

Assume thaty; > 0, oz > 0 (the other cases go in aS|m|Iar—// 5w * @), [)dedf
way). By Lemma 7, there is aA > 0 such that

]<A/ K(t, [)L(AE — ¢, Af — f)dtdf = M(At, Af) ://{// W5<u_%’v_%>¢(t_u’f_é)

(112) o (At — oA+ L APA dudo\ dtd
where we have set x cos[2r (u vAS Ty f))dudv f
K(t )= WO ), Ll f) = W2 (=, —f). / / US(t, f5 At, Af)dtdf (120)
(113)
By Lemma 7, we have that, L € L%(R?). Now lete > 0and Where we have set
take smooth, compactly supported @ € L*(R?) such that U(t, f; At, Af)
|K~Plla<e,  [[L-Ql2<e. (114) = / Wi (u, v) cos [27 (ult — vAf + SAtAS)]
Denote R := P x (@, so thatR is smooth and compactly X &t —u, f — v)dudv. (121)
supported as well. Then we have for ali¢, Af by the
Cauchy—Schwarz inequality The identity between the last two lines of (120) is obtained by

change of variables accordingio- %At — U,V — %Af — v
followed byt — $At — t, f — $At — f. Evidently,

Ut f5 At A < (Wl % |@)(t, f) € L2(R*) N LP(R?).
(122)

< A|K = Pll2||Ll2 + Al Pll2|lL — Q|2
< eA(|ILllz + I Pll2)- (115)

This shows thatV/ can be approximated uniformly and arbi-
trarily closely by functionsd R(A¢, Af) of compact support. And also, by Lemma 8, for any f € R
It follows that M (A¢, Af) — 0 as|D| — oo. Hence,J in Ult, f; At, Af) — 0 (123)
(111) tends to zero 49| — oo, and the proof for the Wigner
distribution case is complete.

Cohen’s Class TFR Caselext we consider TFRs of the
Cohen type with® € L'(R?) and [[ ®(¢, f)dtdf = 1. We / US(t, f; At, Af) — 0 (124)
require Young’s Inequality.

as|D| — oo. Sincea > 2, we conclude from (122), (123), and
Lebesgue’s theorem on dominated convergence that

as|D| — oo. This settles (118).

As to (119), we can literally repeat the argument used for the
Wigner distribution case (see just after Lemma 9). This proves
Theorem 2 for the case of Cohen TFRs with € L'(R?),

g # hlle < llgllpllRll,- (116) JS@( f)didf =1. O

Moreover, whery € L' (R") andh € Co(R™), we haveyx h € F_lnally, we note that the arguments to prove Theorem 2 re-
Co(R™). main valid whens+Ds = s+ is replaced by; +Ds2, where
s1, so € L?(R) are unrelated. In particular, for odd > 3, we
To prove Theorem 2 for the Cohen distributions, we replaggwe that

Lemma 9 (Young)Lletl/p+1/q=1/r+1with1<p, q, r<
o0. Wheng € LP(R™) andh € LY(R™), we havey = he L"(R")
and

all W and X in the expansion (101) by «® and X «®, thereby i
noting that the latter functions are in . // W3, (8 ) dtdf
2 /2 oo 2
LART) N L™(RT) 1 CGo(R7) // tfdtdf+// o (t, fydtdf. (125)
since the same holds fé¥ and X, and® € L'(R?) (see Lem-

mata 7 and 9). As in (103), we have (solving the problem of

undefinedness of [ (W, = ®)(¢, f)dtdf by the assumption APPENDIX Il
[ @, f)dtdf =1inthe same way as was done in (102)) THIRD-ORDER RENYI ENTROPY
FOR THE SUM OF TWO GAUSSIANS
//(WS+'“ * @), fdtdf — 2// (Ws + )(t, f) dt df- In this appendix, we consider the third-order Rényi entropy

(117) of the sum of two Gaussian pulses in (32), (33). The parameters
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~ and/or¢ in (33) will be suppressed in the case that= 1
and/oré = 0; that is,

9(¥) :=g4(v, 0)
g(’/v 5) ::gl(’/v 5)
g(v) :==aq1(v, 0). (126)

A. Simplification via Symplectic Transformation
We first note that it is sufficient to consider the case
v=1,a>0,0=0,w=1, c=—a,d=0, 2€ C\ {0}
(127)
To see this, writes as

s =27 mRy Tyl (=0)g(|a" + j0"]) + 2" g(—|a” + jb|)

(128)
where
=l 3O Dlate) b—i—d’ a - (a—l—c)\/_ (129)
27

S = ie—jﬂ—(b—d)(a-i—c)

w

. (a—c)/y . b—d S
" S , A BYaAPRT
a’ +jb" = 5 +J2ﬁ—|a + 50"e’”. (130)

The operator<y, R,, T, andl'(y) in (128) are given by
(Zxs)(t) == \/25(\t)
(Rys)(t) := 7™ s(t)
(Tps)(t) :=s(t — x) (131)

and

(L(p)s)(t)
1
'Sin<p>

:::|:<

J
x/exp(,_ (
Jsine

N

u? cos ¢ — 2ut + t* cos <p)> s(u) du

(132)

whensin ¢ # 0 and
[(p)s:==+s (133)
whensing = 0. In (132), (133), the operatdf(y) is given

apart from a sign that is irrelevant in the present context (j
like the number:’ in (128)). The operators in (131)—(133) ar

j / —67f% A3 dt df =
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Hences and the signad(|a” + jb"|) + 2" g(—|a” + jb"|) (see
(128)) yield the same value for the right-hand side of (35). That
is,

Q"/(av b7 w; ¢, d? Z)

= Ql(|a// +jb//|7 07 17 _|a// + jb//|7 07 ZN) (138)
with 2" anda” + jb” given in (130).
B. Proof of Proposition 4
In this case, the signal in (35) is given by
s(t) = g(a)(t) +rc g(—a)(t)
im0 byl e (130)
We first note that
W) (t, f) =2exp(—2n(t - a)? — 27 f?%) (140)

Woia), g—ay(t, ) =2exp(—jdmaf — 2rt? — 2m f?). (141)
Therefore,
Wi(t, ) =2¢727f (G_Q’T(t_“)2 + 22 (tta)? (142)
+ e 2 cos(dmaf + ¢))
=277 (A) + Ay + 244) (143)

with the obvious identifications forl;, 4,, and A3. We then
obtain

/ Wi(t, f)dtdf = ||s||> = 1+7"+2ra®y  (144)
with the definitions ofc andy from Proposition 4. Expanding

(A1 + Az +243)% = (A1 + A2)® + 6(A; + A2)* A3
+12(A1 + A2)A3 + 845 (145)

we note thatd; + A, depends on only. Calculating

/ / =071 (A} 1 Ay)3 dtdf——(l—H )+%(7‘2+7’4)x8

(146)
J] e (i tapagard = g rat et 12 cos g
(147)
] e Ga o) gy drf = 567+ (14 cos2)a?
(148)

< z° cos 3¢ + x cos <p> (149)

members of thenetaplectic group[19, Ch. 4], and their action and using

on signals is reflected by certain symplectic linear transforms of

the time—frequency plane. We have explicitly

Wt f) =Ws(At, A7) (134)

Wha,s(t, f) =Ws(t, f—v) (135)

WTa:S(t7 f) s(t_xv f) (136)
Wr(p)s(ts f) =Wi(tcosp — fsing, tsinp + fcosyp)

(137)

showing that integrals of functions dfV, over the entire

time—frequency plane are invariant under applicationdbany

of these operators. (See also [38, Secs. 27.3, 27.4.2, 27.12.2].)

4y% — 3y = cos 3
(150)

= cos @, 2% — 1 = cos2¢p,

leads us to

/ W3(t, ) di df

=8 [é(l +79) + 1(7’2 + 7’4)378 + (r2 + ) (2? — 20)

+ (ra® + 02 + 20327 — 32 4 30)y

4
+2(r2 +rH)aby? + = 3 393 . (151)
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Therefore, from (144) and (151), we have Using (38) it is obvious thaf) increases for: € (0, 1] when
[TW3(t, £) dt df v > 1 andy € (0, 1] are fixed. However, from (38) and
2 3
([[W.lt, £)dtdf)® A vozy N 9T -8y e
\ . 3 do \ (v + a%y)? (v+ 279)°
A JIwE Hdtdf — 5 (JIWs(t f)dt df) . . : :
=3 + 3 it follows that () decreases in nearr = 0 and increases in
([fws(t, f) dt df) nearz = 1 wheny € (-1, 0) andv > 1 are fixed (see Fig. 3).
4 Finally, @ decreases or increasesdrfor x € (0, 1] and
= 2 (1222 1205 _ 23[4(+2 Ay _ Qe Y, x s
3 ( 2t AT ) = Sy y € [-1, 1] according to whether < or > Zay(z? + 3).
x (1+7% 4+ 2ra’y)—° Furthermore, we note that
4 2\3 N A 4 1
=3~ (=) A+27) -y QO yv)=5-—, -1<y<lLwx1l  (159)
v
rlar o o\ is the limiting value ofQ; in (38) asa — oc.
X Ty (152) For the cases that= 41, v = 1, we have the special results
and (38) follows from the definition af in (37) and from (34 Qz, 1,1) = 1+ 1 N 1 2_ 1 3
T3 dw? -3 \4uw? -3 4uw? — 3
C. Properties of(z, y, v) (160)
The form (38) is very convenient for finding the minimum 1 1 1 2 1 3
and maximum ofy); and for studying the behavior 6}, as a Qz, =1, 1) = 3 4uw? —1 duw? — 1 - dw? — 1
function of a, », andey. (161)
We have, for instance, tha(z, v, v) decreases foy € N
[—1, 1] for fixed z € (0, 1], v > 1. Hence the minimum of Where (see Proposition 4)
Q equals the minimum of v 1($1/2 +27Y/2) = cosh 1 a2 (162)
4 o3 9 Ut 2 3
Q(x, —1, U):g—(]_—]} ) (1+$ )m (153) S0 tha.t
1 2 : 1 2
overz € (0, 1], v > 1. The right-hand side of (153) is in- 1 _ coshgma 7 1 _ Slflhﬁm . (163)
creasing inv > 1 whenz € (0, 1] is fixed. Hence, the min-  4w®—3  coshma® dw?> =1 sinhma?
imum of @ equals the minimum of This shows, for instance, that when increases fronD to

A . N 1, Q(z, 1, 1) increases froml/3 to 4/3 and Q(x, —1, 1)
Qz, —1,1) = = — < -z ) (14+2°)(14+x) (154) decreases fror/3 to4/27.

3 1— 22
overz € (0, 1]. Since D. Effects of Gaussian Smoothing
90 ) 4 We next present formulas for the quantities
_ - 213
gp @ b == <1 = x) (1=27) (155) IOV, 5 ®,)"(t, f)dtdf Lo (es
we see that)(xz, —1, 1) decreases far € (0, 1], so that its (JJWe o @,)(8, 1) dt df)
minimum value occurs at = 1. Therefore, which are required in Sections IlI-C and IV-A. Here we take the
4 signals to be the sum of two Gaussians as in (32) with- » =
Qz, y,v) 2 52 = Q(1, -1, 1) (156) ~ = 1 and®, to be the two-dimensional Gaussian (41). Using

. symplectic transformations as in Appendix IlI-A and the radial

forz & (0, 1],y € [-1, 1], v = 1. Thus, the maximum value of symmetry of both the Wigner distribution gf0, 0) and®,,, it

1 4 can be shown that the quantities in (164) remain the same when

H3(s)=—zlogy | == ) = 1.377

2 27

(see Fig. 3). 07 —m(t=la"+iVD? | o ~rHa 4 )+ (165)
The maximum of clearly equalst/3 and occurs at = 1, ) . .

(=1,1) # (y, v) € [=1, 1] x [1, o). This bound and (156) With C;\”ﬂb" - %(‘%‘CTJ(b‘d)) andy = ¢ —m(a+c)(b=d).
combine to give (39). Thus, the minimum value of For the resulting signal (139) we compute

(Ws*®,)(t, f) = e’ (e—ﬁn(t—a)z + e~ mnlt+a)?

s is replaced by the signal

1 4
Hs(s) = —§log2 <—> ~ —0.208

3 + 2Re™™" cos(2naf + <p))
(see Fig. 3). (166)
The behavior ofp at (1, —1, 1) is somewhat irregular. We
have foré > 0 that with
. 4 32 1 2 2
\ = —Q. 157 - - — TP e
ot a1 A B = 5 - e (A8T) 1= R=emo (167)
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Next, with z andy as in (37) and For unit-energy and a kernel such thdf ®(¢, f) dtdf = 1,
we havef[ C,(t, f)dtdf = 1. Using first Lemma 9 and then
(168)  (175) from Lemma 10, we obtain
a—1

the same methods as those employed in Appendix I11-B yield a o @ a«_ 2 a
Pioy PP y Co(t, fdtdf < |Gl < [Wallzl@lly < =— |2

1
T =c 377770,

[favecene parar =20+ 5) (169) a7
Thus,
//WS*<I> VA(t, f)dtdf .
1 = o
=n(1+ 2%+ 4Ryx? + R2(1+ (2y° — D)%)  (170) Ha(Cs) = —a log, (R4l (178)
/ / (¢, f)dtdf (171) and (44) follows.
_q R2(02 _ 46 The bound (45) for the Wigner distribution follows from the
=40 [3 +af 3+ ‘ (3717_ wlg . same argument but omitting the kerdgel While Gaussian sig-
+ (2R} + 2Rai + R’z — Ray)y nals saturate the bound (45) for the Wigner distribution, the
+ 4R%25y” + $R%x0y°] (172) more general bound (44) may be unattainable for other Cohen’s
- S class TFRs.
A few additional simplifications lead to the forms The bound (46) for the Gaussian-windowed spectrogram fol-
Jfow. (¢, f) dt df lows from the same argument as the Wigner distribution but
(ff )¢, f) dt df) using (176) from Lemma 10. O
1
_ 577 |:1 _ 5(1 _ RQ)(l _ x(ls)(l + xgy)_2:| (173) B. Proof of Theorem 6
and Since the classical Young's theorem (Lemma 9) does not

s 3 apply to the affine smoothing of (48), we begin by stating an
JJ OV 2,)°(t, £) dt df3 analog matched to the affine convolution
(JT(W, 5 @,)(t, f) dt df) ;

21y (e, )= [[ota v (e, ) datt @79

B/ B e
T4 [3 (1 + 23y)3

defined on the affine group. The following was obtained by spe-
x (xf — 2R?2? +1 — («f — 2R %27 + 1)R®x1y)|. cializing the general results of [39, pp. 293-298] to the scalar
affine group having group operatior™ defined by (a, b) o
(174) (¢, d) := (a+¢/b, bd), b, d > 0, and left Haar measuié: db.
To obtain (42), we substitute= 1, R = #3/2, andz; = 2/2. Allintegrals and norms in the following can be interpreted to run
Finally, we turn to (53) in Section IV-A. The definitions of Over the upper half-plané := R x R,. to account fob > 0in
in (37) and ofz; in (168) show that we can ignoreandz; in (a, b).
(173), (174) whe.ra. is sufficiently large (in Fig.'6 we ha}VQ> Lemmall:Letl/p+1/qg=1/r+1withl <p, g, r < cc.
2., and this is sufficiently large). Hence, replacing the nght-har\ﬂ,heng € LP(U) andh € LY(U), we haveg#h € L7 (U) and
sides of (173) and (174) by;n* andin(1 + R), respectively,
and using (167), we obtain, to a good approximation, (53). llg#hllr < llgllpllPllq- (180)

While the affine smoothing (48) is not a group convolution
proper, the condition for existence and integrability of an affine
class TFR follows immediately from this lemma. Substituting
A. Proof of Theorem 5 Atf, 1/f) == II(¢, f) into (48) immediately yields the form

In addition to Young's Inequality (Lemma 9 in Appendix 11(179) and the conclusion that, N LrU), 1 < p < o0,
above), we will need a relatively recent result of Lieb [23]. ProvidedW, € LP(U) andA € L*(U). A change of variable
Recall thatCS=Pe<t denotes the spectrogram of the signal CONverts the constraint oh into a constraint on the original

APPENDIX IV
ENTROPY LOWER BOUNDS

computed using Gaussian windaw kernelll ,
Lemma 10 (Lieb):Givens € L2(R) andp > 2, then At, f) e L'(U) & 7 1I(t, f) € L*U). (181)
W15 < (2])71/]))”3”37) (175) Now, using first Lemma 11 and then Lemma 10, we have for

. _ - . - unit-energys
with equality if and only ifs is a Gaussian. In addition,

spec « t dtd < Q @ < W @

[P < sl we  ffeE e < < i e |

with equality if and only ifs is a Gaussian of the same form as 20— 111

g (see [23] for more details). < 7 1(t, f) . (182)

12 jeb sharpens Lemma 9 further in [23]. Taking logarithms yields the result. O
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