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Abstract: Dempster–Shafer evidence theory is widely used in modeling and reasoning uncertain
information in real applications. Recently, a new perspective of modeling uncertain information with
the negation of evidence was proposed and has attracted a lot of attention. Both the basic probability
assignment (BPA) and the negation of BPA in the evidence theory framework can model and reason
uncertain information. However, how to address the uncertainty in the negation information modeled
as the negation of BPA is still an open issue. Inspired by the uncertainty measures in Dempster–Shafer
evidence theory, a method of measuring the uncertainty in the negation evidence is proposed. The
belief entropy named Deng entropy, which has attracted a lot of attention among researchers, is
adopted and improved for measuring the uncertainty of negation evidence. The proposed measure is
defined based on the negation function of BPA and can quantify the uncertainty of the negation evi-
dence. In addition, an improved method of multi-source information fusion considering uncertainty
quantification in the negation evidence with the new measure is proposed. Experimental results on
a numerical example and a fault diagnosis problem verify the rationality and effectiveness of the
proposed method in measuring and fusing uncertain information.

Keywords: Dempster–Shafer evidence theory; uncertainty measure; negation evidence; belief en-
tropy; multi-source information fusion

1. Introduction

Uncertain information exists widely in practical applications [1,2]. One of the effective
methods for uncertain information modeling, reasoning and fusion is Dempster–Shafer
evidence theory [3,4]. It has been widely used in real applications, such as pattern recogni-
tion [5], classification [6–8], clustering [9–11], decision making under uncertainty [12–15],
risk analysis in complicated systems with knowledge [16,17], human reliability analysis
considering dependence information [18,19], supplier selection [20], failure mode and
effects analysis in [21,22] and so on [23,24]. Although Dempster–Shafer evidence theory has
some advantages and is widely used in uncertain information modeling and reasoning, it
has some open issues in the theory itself. First, the classical Dempster’s rule of combination
cannot be directly used for high conflict evidence fusion because it may cause counter-
intuitive fusion results [25–27]. Second, the modeling of uncertain information with the
basic probability assignment (BPA) is still mainly based on empirical methods [28,29].
Third, how to measure the BPA uncertainty degree still requires further research [30,31]. In
this paper, we extend the uncertainty measure for a BPA to the the negation of a BPA and
propose an improved multi-source information fusion method.

Shannon entropy is a well-known theory for uncertainty measure in the probabilistic
framework, which has attracted much attention in real applications [32–34]. However, due
to the reason that a mass function is the generalized probability assigned on the power set
of the frame of discernment (FOD), Shannon entropy cannot be used directly among mass
functions in the framework of Dempster–Shafer evidence theory. To address this open
issue, many uncertainty measures in the Dempster–Shafer framework are defined, e.g., the
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conflict measure [35], the measure of interval belief functions [36], the Deng entropy [37],
the soft likelihood function [38], the correlation coefficient [39], the fractal-based belief
entropy [40] and so on [30]. The uncertainty quantification of evidence itself is still an open
issue [31]. Among these uncertainty measures, the Deng entropy is widely used in many
applications [41]. This work will adopt the Deng entropy to measure the uncertainty in the
negation evidence.

The negation of BPA is used for modeling the uncertain information in the frame of
Dempster–Shafer evidence theory [42–44]. How to measure the uncertainty for the negation
of BPA is helpful for uncertain information management and should be addressed. Based
on Deng entropy and the negation of mass function, this paper proposes an improved belief
entropy of negation BPA to handle the uncertain measure of BPA. The improved belief
entropy of negation BPA provides a novel view to measure the uncertainty of BPA. After
that, an improved data fusion method considering the belief entropy of negation evidence
is presented. In the presented method, the improved belief entropy of negation evidence
is used to pre-process the conflict data by measuring the BPA uncertainty degree in each
body of evidence (BOE). Then, the final weight for each BOE is presented based on the
measure results. Finally, the multi-source data is fused by Dempster’s rule of combination.
Several numerical examples are illustrated to analyze the performance of the improve belief
entropy of negation evidence. Moreover, the new data fusion method is applied on an
application of fault diagnosis to test and verify the effectiveness of the new method.

The rest of this work is organized as follows. Section 2 is the preliminaries on
Dempster–Shafer evidence theory, the negation evidence, and the belief entropy. In
Section 3, the improved belief entropy for negation evidence is proposed as well as a
new approach of multi-source information fusion using the improved belief entropy for
uncertainty quantification. Experiments of the proposed method on artificial data and a
case study in fault diagnosis are given in Section 4. Section 5 is the conclusion.

2. Preliminaries
2.1. Dempster–Shafer Evidence Theory

Define that Ω={θ1, θ2, . . . , θi, . . . , θN} is a finite nonempty set with N mutually exclu-
sive and exhaustive events, and Ω is called the frame of discernment (FOD). The power set
of Ω denoted as 2Ω has 2N elements [3,4]:

2Ω = {∅, {θ1}, {θ2}, . . . , {θN}, {θ1, θ2}, . . . , {θ1, θ2, . . . , θi}, . . . , Ω}. (1)

A mass function m, also named the basic belief assignment (BBA) or basic probability
assignment (BPA), is defined as a mapping function from the power set of FOD 2Ω to the
interval [0, 1]. It satisfies [3,4]:

m(∅)=0, ∑
A∈Ω

m(A)=1. (2)

If m(A) > 0, then A is defined as a focal element.
A body of evidence (BOE) means the focal sets and the associated belief value that can

be denoted as follows:

(<, m) =
{
〈A, m(A)〉 : A ∈ 2Ω, m(A) > 0

}
. (3)

where < is a subset of the power set 2Ω. For each A ∈ <, there is a nonzero BPA value m(A).
Two independent mass functions m1 and m2 can be combined with Dempster’s rule of

combination defined as [3,4]:

m(A)=(m1 ⊕m2)(A)=
1

1− k ∑
B∩C=A

m1(B)m2(C), (4)
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where k can be regarded as a normalization factor defined as [3,4]:

k= ∑
B∩C=∅

m1(B)m2(C). (5)

2.2. The Negation Evidence

The negation information represents a kind of uncertain information in probability
framework [42]. In Dempster–Shafer evidence theory, Yin et al. [43] proposed a new method
to calculate the negation of the BPA for uncertain information modeling and processing.

In the BOE, ei means the ith focal element. For each focal element ei, m(ei) is the belief
value of the ith focal element, and the negation of m(ei) is denoted as m̄(ei). The general
formula of the negation evidence can be derived as [43]:

m̄(ei) =
1−m(ei)

n− 1
, (6)

where n is the number of focal elements in the BOE. It is obvious that if the belief value
is one for only one focal element, there is no uncertain information in this case and it is a
certain event.

2.3. Belief Entropy

Belief entropy is proposed for the uncertainty measure in the framework of Dempster–
Shafer evidence theory. As a belief entropy, Deng entropy [37] is regarded as a generaliza-
tion of Shannon entropy in the Dempster–Shafer framework, and it has been widely used
in applications [41]. Deng entropy, denoted as Ed, is defined as follows [37]:

Ed(m) = − ∑
A⊆X

m(A)log2
m(A)

2|A| − 1
, (7)

where |A| denotes the cardinality of the proposition A, and X is the FOD.

3. An Improved Multi-Source Information Fusion Method Based on Measuring the
Uncertainty of Negation Evidence
3.1. Improved Belief Entropy of Negation Evidence

Base on the belief entropy of belief functions in Equation (7), an improved belief
entropy of negation evidence is defined as follows:

En(m) = − ∑
A⊆X

m̄(A)log2
m̄(A)

2|A| − 1
, (8)

where A is the focal element of BOE, |A| is the cardinality of A, and m̄ is the negation
evidence of the mass function m; m̄ can be calculated as follows based on the negation
evidence defined in Equation (6):

m̄(A) =
1−m(A)

n− 1
, (9)

where n is the number of focal elements in the BOE.
The belief entropy of negation evidence addresses the uncertainty measure of the

negation of BPA. Two numerical examples are given to explain how to calculate the belief
entropy of negation evidence.

Example 1: Assume the FOD is {a, b, c}. The mass functions are m(a) = 0.2, m(b) = 0
and m(c) = 0.1. The belief entropy of negation evidence can be calculated with the
following steps. First, calculating the negation of mass functions:

m̄(a) =
1−m(a)

n− 1
= 0.4, m̄(b) =

1−m(b)
n− 1

= 0.15, m̄(c) =
1−m(c)

n− 1
= 0.45.
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Then, the belief entropy of negation evidence can be calculated as follows:

En(m) = −0.4× log2
0.4

21−1
−0.15× log2

0.15
21−1

−0.45× log2
0.45

21−1
=1.4577.

Example 2: Assume the FOD is {a, b}. The mass functions are m(a) = 0.1, m(b) = 0.4
and m(a, b) = 0.5. The belief entropy of negation evidence can be calculated with the
following steps. First, calculating the negation of mass functions:

m̄(a) =
1−m(a)

n− 1
= 0.45, m̄(b) =

1−m(b)
n− 1

= 0.3, m̄(a, b) =
1−m(a, b)

n− 1
= 0.25.

Then, the belief entropy of negation evidence can be calculated as follows:

En(m) = −0.45× log2
0.45

21−1
−0.3× log2

0.3
21−1

−0.25× log2
0.25

22−1
=1.5395.

3.2. Multi-Source Information Fusion Considering the Uncertainty of Negation Evidence

A new method of multi-source information fusion using the improved belief entropy
of negation evidence is proposed in this section, as shown in Figure 1. The steps are
presented as follows.

Figure 1. The flowchart of multi-source information fusion based on the belief entropy of negation ev-
idence.

Step 1 Modeling uncertain information with the original BPA in Dempster–Shafer evi-
dence theory.
In real applications, due to the diversity styles of information, many methods for
generation of BPAs are proposed [28,45]. Currently, a method of generating BPA
automatically for different sceneries in practical applications is not available and
there are many choices.
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Step 2 Calculating the negation of BPAs and using the proposed belief entropy of negation
evidence for the uncertainty measure in the negation evidence.
For the ith BOE (i = 1, 2, · · · ), the corresponding uncertain degree with the belief
entropy of negation evidence En is calculated as follows:

En(mi) = − ∑
A⊆X

m̄i(A)log2
m̄i(A)

2|A| − 1
, (10)

m̄i(A) =
1−mi(A)

n− 1
. (11)

Step 3 Construct the weight factor of each BOE based on the uncertainty measure results.
There may be conflict among different sources of evidence. The weight factor is
based on the uncertainty measure and for balancing different information sources.
The relative weight factor for the ith BOE (i = 1, 2, · · · , m) among all the available
number of BOEs, denoted as wi, is defined as follows:

wi =
En(mi)

m
∑

i=1
En(mi)

. (12)

Step 4 Evidence modification based on the weight factor with the belief entropy of nega-
tion evidence.
Based on the weight factor of each BOE, the weighted mass function of each propo-
sition is calculated for final data fusion. For each proposition A in the BOE, the
weighted mass function can be calculated as follows:

mw(A) =
n

∑
i=1

wimi(A). (13)

Step 5 Evidence fusion with Dempster’s rule of combination.
The BPAs of multi-source information have been measured and modified based on
the proposed measure and now are ready for information fusion with Dempster’s
rule of combination. For each proposition A in the BOE, the combination result of
modified evidence can be calculated by calculating Dempster’s rule of combination
with (m− 1) (m ≥ 2) times:

m(A)=((((mw ⊕mw)1 ⊕mw)2...⊕mw)(m−2) ⊕mw)(m−1)(A). (14)

4. Experiment and Discussion
4.1. Experiment with Artificial Data

An experiment with artificial data in [27,46] is adopted to demonstrate the effectiveness
and rationality of the proposed multi-source information fusion method. It is assumed that
there are five independent information sources. Each information source can be modeled
as an independent body of evidence. Since the traditional Dempster combination rule can
be directly used for evidence fusion if there is no conflict, for the artificial data in [46] it is
assumed that there is conflict evidence and the conflict is caused by an unreliable sensor or
other unknown reasons. Thus, similar to [27], the artificial data with unreliable evidence
in [46] is adopted to verify the effectiveness of the proposed method for multi-source
information fusion with conflict data.

The artificial data in [27,46] are as follows. Consider a target recognition problem.
Three potential targets are, respectively, denoted as A, B and C in the FOD denoted as
X = {A, B, C}. As presented in Table 1, the multi-source information is modeled as BPAs
denoted as m1, m2, m3, m4 and m5. Intuitively, the evidence from the second information
source (m2) is contrary to the other four pieces of evidence, and A will be the recognized
target according to the highest belief value on A in the other four sources of information.
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Table 1. BPAs of multi-source information in the experiment with artificial data.

BPA m(A) m(B) m(C) m(A,C)

m1(·) 0.41 0.29 0.3 0
m2(·) 0 0.9 0.1 0
m3(·) 0.58 0.07 0 0.35
m4(·) 0.55 0.1 0 0.35
m5(·) 0.6 0.1 0 0.3

The steps of the proposed method of multi-source information fusion considering the
uncertainty of negation evidence in the experiment are as follows.

For the first step, the BPAs are adopted from [27,46], and the result is shown in Table 1.
For the second step, with Equations (10) and (11), the belief entropy of negation

evidence of m1 is calculated as follows:

m̄1(A) =
1−m1(A)

n− 1
= 0.295,

m̄1(B) =
1−m1(B)

n− 1
= 0.355,

m̄1(C) =
1−m1(C)

n− 1
= 0.35,

En(m1) = − ∑
A⊆X

|A|m̄1(A)

|X| log2
m̄1(A)

2|A| − 1
=1.5801.

Similarly, the belief entropy of negation evidence of m2 to m5 can be calculated, and
the results are as follows: En(m2) = 0.7345, En(m3) = 2.0286, En(m4) = 2.0447 and
En(m5) = 2.06762.

For the third step, with Equation (12), the weight of each body of evidence is calculated
as follows:

w1 = En(m1)
5
∑

i=1
En(mi)

= 0.1869, w2 = En(m2)
5
∑

i=1
En(mi)

= 0.0869, w3 = En(m3)
5
∑

i=1
En(mi)

= 0.2399,

w4 = En(m4)
5
∑

i=1
En(mi)

= 0.2418, w5 = En(m5)
5
∑

i=1
En(mi)

= 0.2445.

For the fourth step, the mass function of each proposition after modification in Table 1
can be calculated with Equation (13). The calculation results are as follows:

mw(A) =
5

∑
i=1

wimi(A) = 0.4955, mw(B) =
5

∑
i=1

wimi(B) = 0.1978,

mw(C) =
5

∑
i=1

wimi(C) = 0.0647, mw(A, C) =
5

∑
i=1

wimi(A, C) = 0.2420.

Finally, for the fifth step, there are five original pieces of evidence; thus, with Demp-
ster’s rule of combination and Equation (14), the modified evidence is fused four times.
The information fusion process and results are listed as follows:

m(A)=((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(A) = 0.9863,

m(B)=((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(B) = 0.0013,

m(C)=((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(C) = 0.0086,

m(A, C)=((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(A, C) = 0.0038.

The multi-source information fusion results with the proposed method and other
methods in the experiment are presented in Table 2. With the proposed method, it can
be inferred that target A is the recognized target, which is consistent with other methods
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in [27,46–48]. Compared to the fusion results based on the other methods in [46,47], the
proposed method has the highest belief (98.63%) on the recognized target A. By considering
the uncertainty of negation evidence, the proposed method contributes to a higher belief
degree on the expected target than the methods in [46,47]. The methods in [27,48] have
higher belief degree on target A than the proposed method. However, it should be noted
that both Yuan et al.’s method in [48] and Xiao’s method in [27] use the distance-based
measure and the belief entropy-based measure simultaneously in the flowchart of the
method. Since both the distance-based measure and the belief entropy-based measure are
based on BPA functions, there may exist coupling weight factors. Thus, these two methods
should be used cautiously in some cases.

Table 2. Experimental results with different methods.

Methods m(A) m(B) m(C) m(A,C)

Deng et al’s method [46] 0.9820 0.0039 0.0107 0.0034
Zhang et al’s method [47] 0.9820 0.0033 0.0115 0.0032
Yuan et al’s method [48] 0.9886 0.0002 0.0072 0.0039

Xiao’s method [27] 0.9905 0.0002 0.0061 0.0043
Proposed method 0.9863 0.0013 0.0086 0.0038

4.2. Experiment in Fault Diagnosis

In this section, the proposed method is applied to an application in fault diagnosis
of a motor rotor. The practical data in [49] is adopted for the experiment. Suppose that
there are three types of faults in a motor rotor. F1 means {Rotor unbalance}, F2 means {Rotor
misalignment} and F3 means {Pedestal looseness}. The vibration signals are collected from
three vibration acceleration sensors which are placed in different installation positions. The
acceleration vibration frequency amplitudes at the frequencies of Freq1, Freq2 and Freq3
are taken as the fault feature variables. The data for fault diagnosis modeled as BPAs are
provided in Table 3: ms1(·), ms2(·) and ms3(·), respectively, denote the BOEs reported from
these three vibration acceleration sensors.

Table 3. Data for fault diagnosis modeled as BPAs.

Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} {F1, F2, F3} {F2} {F1, F2, F3} {F1} {F2} {F1, F2} {F1, F2, F3}
ms1 (·) 0.8176 0.0003 0.1553 0.0268 0.6229 0.3771 0.3666 0.4563 0.1185 0.0586
ms2 (·) 0.5658 0.0009 0.0646 0.3687 0.7660 0.2341 0.2793 0.4151 0.2652 0.0404
ms3 (·) 0.2403 0.0004 0.0141 0.7452 0.8598 0.1402 0.2897 0.4331 0.2470 0.0302

Apply the proposed method for multi-source information fusion in fault diagnosis.

Step 1 Modeling uncertain information with BPA in Dempster–Shafer evidence theory.

In this paper, BPAs of sensor reports are directly adopted from [49], as represented in
Table 3. For more details about generating BPAs of Table 3, please refer to [49].

Step 2 Using the proposed belief entropy of negation evidence for uncertainty measure of
the negation of BPAs.

In the proposed method, the uncertainty of sensor reports is measured based on the
belief entropy of negation evidence. With Equations (10) and (11), the negation evidence
and the belief entropy of negation evidence of each BOE under the vibration acceleration
frequency of Freq1 is calculated as follows:

m̄s1({F2}) = 1−ms1({F2})
n−1 = 0.0608, m̄s1({F3}) = 1−ms1({F3})

n−1 = 0.3332,

m̄s1({F1, F2}) = 1−ms1({F1,F2})
n−1 = 0.2816, m̄s1({F1, F2, F3}) = 1−ms1({F1,F2,F3})

n−1 = 0.3244,
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En(ms1) = − ∑
A⊆X

m̄s1(A)log2
m̄s1(A)

2|A| − 1
= 3.1726.

m̄s2({F2}) = 1−ms2({F2})
n−1 = 0.1447, m̄s2({F3}) = 1−ms2({F3})

n−1 = 0.3330,

m̄s2({F1, F2}) = 1−ms2({F1,F2})
n−1 = 0.3118, m̄s2({F1, F2, F3}) = 1−ms2({F1,F2,F3})

n−1 = 0.2104,

En(ms2) = − ∑
A⊆X

m̄s1(A)log2
m̄s2(A)

2|A| − 1
= 3.0142.

m̄s3({F2}) = 1−ms3({F2})
n−1 = 0.2532, m̄s3({F3}) = 1−ms3({F3})

n−1 = 0.3332,

m̄s3({F1, F2}) = 1−ms3({F1,F2})
n−1 = 0.3286, m̄s3({F1, F2, F3}) = 1−ms3({F1,F2,F3})

n−1 = 0.0849,

En(ms3) = − ∑
A⊆X

m̄s1(A)log3
m̄s1(A)

2|A| − 1
= 2.6191.

Similarly, the belief entropy of negation evidence of sensor reports under Freq2 and
Freq3 can be calculated with the proposed method. The measuring results with the proposed
method are listed in Table 4.

Table 4. Belief entropy of negation evidence of sensor reports under different frequencies.

Evidence Freq1 Freq2 Freq3

En
(
ms1

)
3.1726 2.7405 3.3109

En(ms2 ) 3.0142 2.9352 3.2634
En(ms3 ) 2.6191 2.9985 3.2789

Step 3 Construct the weight factor of each BOE based on the uncertainty measure result.

With Equation (12), for the vibration acceleration frequency of Freq1, the weight of each
BOE for evidence modification is calculated as follows:

wS1 =
En(ms1)

3
∑

i=1
En(msi )

=
3.1726

3.1726 + 3.0142 + 2.6191
= 0.3603,

wS2 =
En(ms2)

3
∑

i=1
En(msi )

=
3.0142

3.1726 + 3.0142 + 2.6191
= 0.3423,

wS3 =
En(ms3)

3
∑

i=1
En(msi )

=
2.6191

3.1726 + 3.0142 + 2.6191
= 0.2974.

The weight of different sensor reports under Freq2 and Freq3 is shown in Table 5.

Table 5. The weight of different sensor reports under different frequencies.

Evidence Freq1 Freq2 Freq3

wS1 0.3603 0.3131 0.3360
wS2 0.3423 0.3398 0.3312
wS3 0.2974 0.3471 0.3328

Step 4 Evidence modification based on the weight factor with the belief entropy of nega-
tion evidence.
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With Equation (13), the modified mass function for each information source on fault
types with respect to Freq1 can be calculated as follows:

mw({F2}) =
3

∑
i=1

wsimi({F2})=0.5597,

mw({F3}) =
3

∑
i=1

wsimi({F3})=0.0005,

mw({F1, F2}) =
3

∑
i=1

wsimi({F1, F2})=0.0823,

mw({F1, F2, F3}) =
3

∑
i=1

wsimi({F1, F2, F3})=0.3575.

The modified mass function for Freq2 and Freq3 can also be calculated with Equation (13).
The result is shown in Table 6.

Table 6. Modified mass function.

Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} {F1, F2, F3} {F2} {F1, F2, F3} {F1} {F2} {F1, F2} {F1, F2, F3}
mw(·) 0.5597 0.0005 0.0823 0.3575 0.7538 0.2462 0.3121 0.4349 0.2098 0.0431

Step 5 Evidence fusion with Dempster’s rule of combination.

With Equation (14), for the vibration acceleration frequency of Freq1, there are three
information sources, and the modified mass function will be fused with Dempster’s rule of
combination by two times, shown as follows:

m({F2}) = ((mw ⊕mw)1 ⊕mw)2({F2}) = 0.9146,

m({F3}) = ((mw ⊕mw)1 ⊕mw)2({F3}) = 0.0002,

m({F1, F2}) = ((mw ⊕mw)1 ⊕mw)2({F1, F2}) = 0.0394,

m({F1, F2, F3}) = ((mw ⊕mw)1 ⊕mw)2({F1, F2, F3}) = 0.0458.

The fusion results for Freq2 and Freq3 are shown in Table 7.

Table 7. Sensor data fusion results for fault diagnosis.

Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} {F1, F2, F3} {F2} {F1, F2, F3} {F1} {F2} {F1, F2} {F1, F2, F3}
Fusion
result 0.9146 0.0002 0.0394 0.0458 0.9851 0.0149 0.3353 0.6316 0.0329 0.0002

According to the fusion results in Table 7, the diagnosis result after evidence fusion is
that F2 is the recognized target. The conflict of sensor reports in the application is overcome
with the proposed method, even though the belief degree on F2 under Freq1 is 0.8176,
0.5658 and 0.2403, respectively. Table 8 is a comparison between the proposed methods
and some other works. It shows that the diagnosis result of the proposed method is in
accordance with the methods in [49,50], and the fault type is F2. Moreover, the proposed
method has a higher belief degree on fault type F2 than the method in the literature under
different frequencies.
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Table 8. Sensor data fusion results of different methods.

Method
Freq1 Freq2 Freq3

{F2} {F3} {F1, F2} {F1, F2, F3} {F2} {F1, F2, F3} {F1} {F2} {F1, F2} {F1, F2, F3}
Jiang et al’s
method [49] 0.8861 0.0002 0.0582 0.0555 0.9621 0.0371 0.3384 0.5904 0.0651 0.0061

Tang et al’s
method [50] 0.8891 0.0003 0.0427 0.0679 0.9784 0.0216 0.3318 0.6332 0.0349 0.0001

Proposed method 0.9146 0.0002 0.0394 0.0458 0.9852 0.0149 0.3353 0.6316 0.0329 0.0002

A few reasons contribute to the effectiveness of the proposed conflict evidence fusion
method. Firstly, the sensor data is preprocessed properly before applying the combination
rules, which is a very important step in combining conflict evidence. Secondly, the new
method is based on an improved belief entropy of negation evidence. The new measure
can measure the negation uncertainty information in the Dempster–Shafer evidence theory
framework, which contributes to a more accurate experiment result. Finally, the advantages
in Dempster’s combination rule, such as satisfying the commutativity and associativity,
guarantee the rationality of the fusion result.

4.3. Discussion and Limitation

A new method of measuring uncertainty in the negation evidence and its application
in multi-source information fusion is proposed in this work. The contribution of the work
can be summarized as follows. (1) An improved belief entropy is proposed to measure the
uncertainty of negation evidence. Currently, all the measures in the framework of Dempster–
Shafer evidence theory are designed for the original evidence, and there is no uncertainty
measure for the negation evidence [31,41]. The improved belief entropy of the negation
BPA function provides a new perspective to quantify the uncertainty degree of uncertain
information. (2) An improved multi-source information fusion method considering the
uncertainty in the negation information is proposed. Both the original evidence and the
negation evidence can model uncertain information [42,44]. The negation evidence should
be regarded as an important source of uncertain information and handled cautiously. The
proposed method introduces a new method of addressing the uncertainty degree and fusion
method of negation evidence simultaneously. The experimental results of experiments
with artificial data and in fault diagnosis verify the rationality and effectiveness of the
proposed methods.

It should be noted that there are limitations in the work. First, many new measures in
Dempster–Shafer evidence theory framework are not taken into consideration in address-
ing the uncertain degree of negation evidence. Second, how to measure the uncertainty
among dependent bodies of evidence is ignored in the proposed method. Third, other
improved combination rules can be taken into consideration for evidence fusion. Last but
not least, only two data sets are adopted to illustrate and verify the effectiveness of the
proposed method. The method limitation is not clear for many other data sets and cases in
artificial intelligence.

According to the aforementioned limitations, possible future research work is as
follows. On the one hand, there is still no uncertainty measure that is accepted by all
researchers in the evidence theory. A general uncertainty measure for negation evidence
needs further study. On the other hand, although uncertainty measure-based weighted
BPA has been widely used in multi-source information fusion, it cannot address the issue of
dependent evidence fusion. How to address conflict and dependent evidence considering
the uncertainty measure is a promising topic in multi-source information fusion.

5. Conclusions

In this paper, in Dempster–Shafer evidence theory framework, the belief entropy of
negation evidence is proposed based on the belief entropy for the negation of BPAs. The
measure for negation evidence is a new perspective on uncertain information modeling and
measuring. Based on the belief entropy of negation evidence, a novel method considering
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BPA uncertainty degree in the negation information of multi-source information fusion
is proposed. An experiment on artificial data and an application on fault diagnosis are
designed to demonstrate the availability and effectiveness of the proposed measure and
information fusion method. Both experimental results indicate that the belief entropy
of negation evidence is effective in uncertainty measuring of negation evidence, and it
contributes to an accurate evidence fusion result.
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