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* Correspondence: ozden.ozkanlisoy@std.yeditepe.edu.tr; Tel.: +90-532-496-6907

Abstract: The concept of disruptive technology has been in our lives for many years, and it is essential
to measure their utilization levels to survive in the global competitive environment, to benefit from
their contributions to supply chains, to examine their relations with supply chain operations and to
compare them with average state of the industry. The aim of this study is to develop and validate a
measurement instrument for supply chain management practices in the disruptive technology field.
Accordingly, the study was carried out in five steps and the sample size consists of 47 companies
as pilot data and 426 companies for the main data. These steps consist of item generation and
purification, pilot test, initial identification of dimensionality, dimensionality confirmation and
convergent validity assessment. As a result of the study, a new scale with a single factor structure was
developed. The study ends with the evaluation of the findings. Correcting the lack of a measurement
tool developed in this field in the literature is the theoretical contribution of the study. Furthermore,
this study enables supply chain leaders to compare their utilization level of disruptive technology
with the industries in which they operate, to associate it with operations and to enhance technology
investments in practice.

Keywords: disruptive technologies; scale development; supply chain technologies; validation;
using disruptive technology scale (UDTS)

1. Introduction

Technology is a concept as old as the history of humanity and continues to maintain its
existence and significance throughout our lives [1]. The birth and utilization of technology
caused a revolution in businesses [2]. Thereafter, it has provided and continues to provide
revolutionary contributions to businesses [3]. Nowadays, the concept of “disruptive
technology (DT)” has become a widely accepted scientific term based on the commercial
world and is used to describe the effect of technology on decision-making processes. The
word “disruptive” refers to the interruption or disruption of the orderly progress of an
event, process or activity, but also may mean a major change in structure [4].

DTs were given the title of “disruptive” because they are technologies that replace
existing technologies after they are put into practice. They do this by initially outperforming
technology already established in serving the mainstream market. However, they replace
existing technologies over time [5]. Which technologies are disruptive have changed since
the day they were introduced as a concept. DTs are typically widely focused on new
and revolutionary technologies in the literature [6]. Therefore, technologies that have a
disruptive effect in every period of life differ according to their era [7].

The revolutionary technologies of the current era are provided by the industrial revo-
lutions of that era [8]. Consequently, the technologies offered by the industrial revolutions
should be evaluated within the scope of DTs [9]. In the journey of industrial revolutions,
which started with production using steam machines, the third industrial revolution took
place with the transition of production systems from analog systems to digital systems, and
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the processes of companies became more complex, consumer demands and expectations
changed, and the need for interdisciplinary work brought about the need for connection
and communication of all objects via the internet. The need for a new industrial revolution
in which the internet interacts has emerged. This need has created The Fourth Industrial
Revolution (4IR) [10].

With the realization of the 4IR, new technologies and business models emerged and
transformed the societies and economies in which they lived [11]. In addition to being very
crucial for the modern economy, the concept of 4IR includes innovation and technological
progress; it has dramatically transformed products, services, operations, and production
processes [12,13]. In this context, the technologies offered by this industrial revolution,
which is also called 4IR, are accepted as today’s DTs, as they eliminate existing systems
and provide more efficient systems to replace them [9]. This industrial revolution, unlike
the other three industrial revolutions, is not a continuation of the previous one (third
industrial revolution). It has been developed mainly on the basis of velocity, width/depth
and system effect [14].

The supply chain (SC) is an integrated structure that includes forward and backward
activities, in which many units and operations are intertwined [15]. Supply chain manage-
ment (SCM) ensures the coordination of all activities in the SC by connecting suppliers,
shippers, internal departments, and businesses. SCM includes coordination in SC. This
coordination is the movement of products from suppliers to end users. The sharing of
information such as sales forecasts, sales dates and promotional campaigns among whole
members of the chain is realized through SCM [16]. 4IR is a new level of company and
administration of the SC throughout the life cycle of products [17]. 4IR dramatically affects
SC activities, business processes and models [18].

4IR enhances integration in the SC. It enables collaborative production and allows
businesses to focus on their core competencies. In this way, businesses can develop more
value-added products and complementary assets or services [19]. With this industrial
revolution, SCs have become more flexible. Correspondingly, it is easier to react to changes
in the market [20]. 4IR provides an unprecedented increase in operational efficiency and
productivity in SCs. It enables this with production ecosystems driven by intelligent
systems with autonomous features. In addition, it enables new kinds of advanced man-
ufacturing and industrial operations to emerge [21]. Additionally, 4IR also enables mass
customization. Mass customization allows businesses to address customer demands and
consistently introduce new goods and services to the market in SCs. 4IR has the effect of
enhancing the transparency of whole stages, from the sending of the order to the end of the
product’s utilization life. Furthermore, the cost, quality and competitive advantages of 4IR
are some of the principal benefits of this industrial revolution [22–24].

4IR enables many competitive advantages with the dynamic structure it provides
in business processes. It reduces SC risks. Besides the benefits of time and price, it is
also environmentally friendly. In all these respects, it enhances economic, social, and
environmental sustainability. It eliminates malfunctions. It optimizes decision making
thanks to the end-to-end visibility it provides [25]. It improves the working conditions of
employees with the cooperation of technology and workforce [24].

As a whole these contributions point out that 4IR is the transformation of economies
and industries, and thus SCs, through a combination of technological, social, and business
disruptive forces [11]. The disruptive forces that bring about the transformation referred to
are DTs [26]. Consequently, the technologies with disruptive effects have emerged with
4IR in SCM. These technologies have made and continue to make dramatic contributions
to SCs [27–29]. Understanding the latest trends in using DTs to shape the world is es-
sential [30]. Nowadays, consumer habits have changed rapidly, and businesses and SCs
must cope with the adversities revealed by this dynamic new environment and adapt to
this change [11]. The COVID-19 pandemic has once again highlighted how significant the
utilization of new DTs is to enhance SC visibility, take better action in case of SC disruptions,
and build more resilient SCs [31]. For companies to benefit from the above-mentioned
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contributions and carry on existing in a global competitive environment, they must pursue
current technological developments, current trends, innovations and research, and invest
in these technologies [32].

In order to understand to what extent these facts exist in the external world and to
what extent they interact, it is necessary to measure them concretely. Measuring is defined
as assigning numbers to objects [33]. Scale development studies are very significant to
embody the abstract and to quantify qualitative findings [34,35]. To measure the level of
DT use of a company, to compare it with the average of the industry in which it operates,
or to measure the level of DT use of a SC is only possible with a measurement instrument
developed in this field. Measuring the level of DT use is significant and necessary both
to see to what extent the company benefits from them and to compare the company with
the industry in which it operates, both locally and globally. A scale developed in this field
also allows the relationship of utilizing these technologies for different operations and the
effect of these operations to be analyzed quantitatively in SCs, in addition to measuring the
utilization level of the DTs.

In the current age, using technologies offered by the period is not a necessity, but a
compulsion, for businesses to continue their operations, enhance their performance and
gain a competitive advantage [36]. 4IR has many new DTs to offer [37]. The purpose
of this study is to develop and validate a measurement instrument for SCM practices
in the technology field. In this study, the technologies offered by 4IR within the scope
of DTs within the scope of the scale development study, based specifically on those that
are frequently utilized in SCs in the existing literature. The remainder of this article is
developed as follows: Section 2 reviews the conceptualization of DTs, the theoretical
background of the study, and explains their characteristics, opportunities and threats.
Section 3 presents the empirical findings on which the scale development study is based.
This scale was developed as the “Using Disruptive Technology Scale (UDTS)”. In the study,
the scale development steps are given separately, and the scale has validity and reliability
criteria. The consequences are presented in Section 4, and it ends with the final section
in Section 5.

2. Theoretical Background
2.1. Conceptualizing Disruptive Technology

The concept of “disruptive technology (DT)”, which emerged with the study of Clayton
Christensen and his colleagues on this subject, was not only a popular study of that period,
but has continued to maintain its significance. The authors introduced the concept of DT
with their book Innovator’s Dilemma (1997) [5], which examines five key issues related to
the impact of technological transformation on companies and industries, and were met as
“gurus” in the field at that time [38,39]. DTs are technologies that dramatically change the
way consumers, industry and businesses operate. A DT destroys the systems or habits it
replaces. It can achieve this thanks to its recognizable superior features [40].

The condition for a technology to be called “disruptive” is not that it replaces the pre-
vious technology. For a technology to be considered disruptive, it must operate through a
certain mechanism. At the same time, using this technology needs to achieve certain results.
From all these perspectives, there is a technological transformation. These technologies are
those that initially spread to small markets and eventually spread to the mass market. The
markets where it has the most disruptive effect are the mass markets. Products produced
with DTs enhance the existing product market and additionally offer new product market
opportunities. They have a proactive high risk–high payoff but enable significant long-term
benefits. They enable revolutionary alteration in the conduct of operations [41].

DTs have some characteristic features. Since these technologies have superior features
than traditional methods, the product and service structures produced with these technolo-
gies are positively differentiated [42]. These technologies manufacture products that focus
on the demands of leading utilizers [43]. They are technologies that alter the established
behavior of utilizers. They enhance social welfare level, while minimizing the possibility
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of social harm [44]. Therefore, power and prosperity will shift in favor of SCs that can
integrate and utilize them in an innovative manner [45].

DTs are technologies that affect market leaders, end users and the infrastructure used.
The effects in these three fields are considered as three disruptive effects. It is through these
effects that technologies can be compared amongst themselves in terms of disruptiveness.
Technologies that affect market leaders, end users and infrastructure are characterized
as the technologies with the highest disruptive effect [46]. This is a crucial point to be
considered for companies and SCs so that managers can choose the right technology and
make the right decisions. Prices are slightly higher than existing technologies for initial
utilization. However, their price decreases as they spread to mass markets over time. They
enable some activities to become easier to do. They are also adopted by customers because
of these contributions [47].

DTs bring some opportunities and threats to companies and their SCs. While the use
of DTs is increasing rapidly both on a local and global scale, it is necessary to evaluate the
opportunities and threats presented by DTs while addressing the wide-ranging effects of
4IR [48]. These opportunities and challenges are given below in Section 2.2.

2.2. Opportunities and Challenges

There are many opportunities that DTs offer both to companies and their SCs. When
DTs are successful, they lessen the market share and profits of large, settled companies
in the upper segment. It takes several years for them to take over the market. The main
advantages can be put in order as enabling a vying advantage [49], enhancing the success
of the company in the industry in which it operates, improving processes and operations,
contributing to the growth of the industry, creating new industries, improving the delivery
of goods and services and ensuring the participation of the non-technologically advanced
workforce [41]. Furthermore, it encourages disruptive innovations [50]. In other words,
disruptive innovation takes place utilizing these technologies. Although the concepts of
DT and disruptive innovation are considered synonymous by some researchers in the
literature, they are different concepts [51].

In addition to the opportunities offered by DTs, they also bring some challenges for
companies that utilize them and those that do not. Selection of these technology is a crucial
challenge. They may consist of a combination of different technologies or may emerge as
a completely new technology [52]. Determining the mix of technologies is complicated
in terms of planning processes and performance targets. The technologies to be selected
should be evaluated in terms of long-term profitability, low risk/return balance of long-
term projects and their contribution to sustainability, and existing strategic planning and
management processes during the selection of technology process [41]. Moreover, DTs
are a threat to companies that do not utilize them because companies that adopt these
technologies tend to replace established companies that do not adopt them [5]. For this
reason, companies should follow the level of technologies that dominate the era utilized in
the industries they are in and should bring themselves closer to this utilization level [53].
This is possible with a measurement instrument developed in this field.

Before DTs are implemented, they must be addressed in terms of legal aspects, li-
abilities, insurance and ethics [24]. Moreover, these technologies should be assessed in
terms of security vulnerabilities and cyber risks before they are implemented. Cyber risks
are risks that compromise the data records of customers, suppliers and employees, and
lead to data breaches related to management and operations [54]. Additionally, cyber
security precautions should be taken [21], as failure to do so leads to fraud, intellectual
property theft, failure of information technology and infrastructure and unavailability of
critical services [55].

While DTs promise significant opportunities for early and strong entry into existing
and new markets, they can face resistance from customers. This resistance also brings with
it the risk of failure that may be encountered during the implementation of technology.
It should be adapted to the requirements of customers to utilize them [56]. Employee
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resistance poses a similar challenge. For this reason, the necessary cultural and mental
transformation should be provided for the employees. The utilization of DTs should be
made an integral part of company strategies. Budgeting appropriately for these technolo-
gies is another challenge. This requires a good analysis of the return-on-investment costs.
Furthermore, it is crucial to be at the same technological maturity level with other SC
members, as this situation leads to challenges in establishing a systemic infrastructure.
Lastly, it is crucial to build a roadmap of the opportunities and challenges they enable,
before implementing these technologies [57].

3. Materials and Methods

In this study, a five-step study was organized to measure, validate, and constitute
the structure and predictability of using DTs. Study 1 focuses on item generation and
purification. In Study 2, a draft questionnaire was prepared, the pilot study was conducted
and the questionnaire was finalized. Initial identification of dimensionality was carried
out in Study 3, while dimensionality confirmation was performed in Study 4. Convergent
validity assessment was realized in Study 5. The micro view of the research process is given
in Figure 1 below.

Figure 1. The micro view of research process.

In this study, data were acquired face-to-face and by e-mail, and necessary ethics
committee permissions were obtained. The sample of the study consists of the data of
47 companies for the pilot study and 426 companies for the main study. SPSS V.21 for
exploratory factor analysis (EFA) and controlling of bias effect, LISREL 8.51 for confirmatory
factor analysis (CFA) and relationships between variables and MS Office 365 Excel for
convergent validity were used. The questionnaire was generated utilizing a five-point
Likert scale ranging from 1 (I totally disagree) to 5 (I totally agree).

3.1. Study 1: Item Generation and Purification

The literature review was executed by taking into account the existing academic
literature in item generation and an item pool was created considering the disruptive
effects of the technologies offered by 4IR. In order to negotiate the intelligibility of the
items and whether there were any missing or DTs to be added, a list of expert groups to
be interviewed was determined. A total of nine experts were determined, five of whom
are industry professionals working in this field, and four who are previous academicians
from Turkey who continue their academic studies in this field. Professionals from the
industry were selected from the companies’ digital transformation and SC departments.
Academicians have continued to work as faculty members in these fields, and are experts
in the fields of management information systems and SCM. The interviewed expert group
list is given in the Appendix A of this study, Table A1. The interviews were conducted
face-to-face or online by Zoom platform. In this way, the content validity of the study was
performed with expert group interviews. The items generated are given in the Appendix A
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of this study, Table A2. In the next part of this study, the conclusions of the pilot study
carried out before proceeding to the results of main study are given.

3.2. Study 2: Pilot Test

Pilot tests are studies that draw a roadmap for the study before starting the main study.
A pilot study is suggested to handle the issue and predict the response rate and explore the
feasibility of the study [58]. The sample size required for the pilot study in the literature
differs according to the researchers. While it is accepted by a group of researchers that a
sample with N’s between 10 and 30 is favorable in terms of simple, easy calculation and
testing ability [59], it was emphasized by another group of researchers that a pilot study
should be performed with a sample of 10% of the required sample in the main study [60].
In this study, a pilot test was conducted with the data of 47 different companies, the sample
size of which corresponds to approximately 10% of the targeted main sample. Internal
consistency and exploratory factor analyses (EFA) of alternative models were performed in
the pilot test. The conclusions of reliability analysis are given in Table 1 and conclusions of
subscales and factor analysis are given in Table 2 below.

Table 1. Reliability analyses results of the pilot study.

Subscales Number
of Items

Cronbach’s
Alpha (α)

Inter-Item Means Scale Statistics

Correlation Covariance Mean Variance Std.
Deviation

UDT 16 0.944 0.516 1.117 46.96591 302.928 17.40482
UDT 10 0.901 0.478 1.016 30.30 112.752 10.61849
UDT 8 0.867 0.452 0.977 24.9574 72.085 8.49029

Note: Maximum iteration: 50.

Table 2. Subscales and factor analyses results of the pilot study.

Number
of Items

Number
of

Factors
KMO

Bartlett’s Test of Sphericity Extraction Sums of
Squared Loadings

Approx.
Chi-Square df Sig. (p) Total Cumulative

%

16 items 1 factor * 0.886 563.517 120 0.000 8.964 56.027
10 items

** 1 factor * 0.892 367.347273 66 0.000 6.700 55.833096

8 items
*** 2 factors

0.887 311.436 45 0.000
10.238 70.577

8 items
*** 1 factor * 6.034 60.340

Note: KMO: Kaiser–Meyer–Olkin, Measure of sampling adequacy. * These structures are compressed into a
factor. ** These 10 items consist of blockchain, autonomous robots, 3D printers, 5G, Cloud Computing, Horizontal
and Vertical System Software Integrations, Cyber Security, Big Data Analytics, simulation and virtual reality
technologies. *** These 8 items consist of blockchain, autonomous robots, 3D printers, 5G, Cloud Computing,
Horizontal and Vertical System Software Integrations, Cyber Security and Big Data Analytics technologies.

KMO and Bartlett’s Test of Sphericity values are values that show how convenient
the data are for factor analysis. Since the KMO values for the pilot study were above 0.60
and the Barlett’s Test value was found to be statistically significant (p < 0.05), the data were
convenient for factor analysis [61,62].

When Figure 2 is examined, the eigenvalue for a single factor structure is approx-
imately 9. Since the graph started to flatten after the second factor, it can be said that
the most appropriate factor structure for the data was formed by the two-factor structure,
according to the results of the pilot study. The eigenvalue for this structure is approximately
1.70. Additionally, when the structure is single factor, single factor explains 56.027% of the
total variance as seen in Table 2.
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Figure 2. Scree Plot Graph for Pilot Study.

Reaching the first definition of factors with structure sub-dimensions is provided
by EFA [63,64]. Varimax rotation is a type of orthogonal rotation that forces factors to
be uncorrelated [65–67]. In this study, varimax rotation was used because most of the
relationships between the items were below 0.30.

According to the results of EFA, the items and their factor loadings for both the single-
factor structure and the two-factor structure for the pilot study are given in Tables 3 and 4
below. The factor loadings for the two-factor structure consist of 8 items ranged from 0.68 to
0.84, while the factor loadings for the single-factor structure consist of 16 items ranged
from 0.60 to 0.87. DTs may fall under this grouping because technologies are grouped
into hardware and software generally [68]. Hence, the factors are named as hardware and
software in Table 3.

Table 3. Factor Loadings for Pilot Test.

Subscales (Factors)
and Items

Factor Loadings of
Items

Subscales (Factors)
And Items

Factor Loadings of
Items

Hardware Technologies Software Technologies

Blockchain 0.841 Cloud Computing 0.835

Autonomous Robots 0.840
Horizontal and
Vertical System

Software Integrations
0.806

3D Printers 0.830 Cyber Security 0.775
5G 0.757 Big Data Analytics 0.682

Note: 8 items, 2 factors, Extraction Method: Principal Component Analysis, Rotation Method: Varimax with
Kaiser Normalization. Rotation converged in 3 iterations.

Table 4. Factor Loadings for Pilot Test.

Subscales (Factors) and Items Factor Loadings of Items Subscales (Factors) and Items Factor Loadings of Items

Using Disruptive Technology (UDT)

Autonomous Robots 0.874 Augmented Reality (AR) 0.722
Artificial Intelligence 0.829 Digital Twin 0.716

Cyber Physical Systems (CPS) 0.824 Big Data Analytics 0.711
Blockchain 0.817 5G 0.705

Autonomous Driverless Vehicles 0.812 Cyber Security 0.675
Internet of Things (IoT) 0.810 Cloud Computing 0.643

Virtual Reality (VR) 0.794 3D Printers 0.632

Simulation 0.749 Horizontal and Vertical System
Software Integrations 0.597

Note: 16 items, 1 factor, Extraction Method: Principal Component Analysis; 1 component extracted.
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As a result of the pilot study, no items were removed from the item pool, but augmen-
tative reality and virtual reality items were combined into a single item. Therefore, the
number of items decreased from 16 in the pilot study to 15 in the main study. Accordingly,
the item pool utilized in the main study, along with its references, is given in Table 5 below.

Table 5. Item Pool for the Main Study.

Item Number Item References

Q1 The company has used cyber physical systems
(CPS) in its operations actively. [69]

Q2 The company has used internet of things (IoT) in
its operations actively. [70]

Q3 The company has used artifical intelligence in its
operations actively. [71]

Q4 The company has used autonomous robots in its
operations actively. [72]

Q5 The company actively has used big data analitics
in its operations. [73]

Q6 The company has used blockchain technology in
its operations actively. [74,75]

Q7 The company has used cloud computing
technology in its operations actively. [76]

Q8 The company has used 3D printers (additive
manufacturing) in its operations actively. [77,78]

Q9 The company has used augmented reality (AR)
and virtual reality (VR) in its operations actively. [79,80]

Q10 The company has used autonomous (driverless)
vehicles in its operations actively. [81,82]

Q11 The company has used digital twin technology
in its operations actively. [83]

Q12 The company has used horizontal and vertical
software integrations actively. [84]

Q13 The company has used simulation technology in
its operations actively. [85,86]

Q14
The company has used cyber security (smart
networks/network security) technology in its

operations actively.
[84,87]

Q15 The company has used 5G technology in its
operations actively. [88]

3.3. Study 3: Initial Identification of Dimensionality

Before the initial identification of dimensionality was made, the demographic charac-
teristics of the 426 samples collected for the main study were examined. The results are
given in Table 6 below:

Table 6. Demographic characteristics of the participants.

Industry of Company N Percent
(%) Position in Company N Percent

(%)
Retail and FMCG 73 17.1 Supply Chain Responsible 42 9.9

E-Trade 24 5.6 Supply Chain Executive 32 7.5
Transportation,

Distribution,
Warehousing

92 21.6 Supply Chain Manager 150 35.2

Import-Export 20 4.7 Digital Transformation
Responsible 21 4.9

Manufacturing 151 35.4 Digital Transformation
Executive 24 5.6



J. Theor. Appl. Electron. Commer. Res. 2022, 17 1344

Table 6. Cont.

Service 66 15.5
Digital Transformation

Manager 51 12.0

Other 106 24.9
Total 426 100.0 Total 426 100.0

Number of Employees
in Company N Percent

(%)
Annual Turnover for

Company N Percent
(%)

Less than 250 118 27.7 Less than USD 1,000,000 118 27.7
251–999 102 23.9 USD 1,000,000–4,999,999 102 23.9

1000–1999 46 10.8 USD 5,000,000–19,999,999 46 10.8
2000–3999 43 10.1 USD 20,000,000–99,999,999 43 10.1

4000 and above 117 27.5 USD 100,000,000 and
above 117 27.5

Total 426 100.0 Total 426 100.0
Activity Period of

Company N Percent
(%)

Time to Use Disruptive
Technologies N Percent

(%)
Less than 1 year 8 1.9 0–6 months 61 14.3

1–5 years 41 9.6 6 months–1 year 40 9.4
6–10 years 43 10.1 1 year–5 years 11 2.6
11–15 years 41 9.6

5 years and above 187 43.916–20 years 29 6.8
20 years and above 264 61.9

Total 426 100.0 Total 426 100.0
Field of Activity of the

Company N Percent
(%)

Status of Starting Digital
Transformation N Percent

(%)
National 77 18.1 Yes 389 91.3

International 349 81.9 No 37 8.7
Total 426 100.0 Total 426 100.0

Working with a Digital
Transformation Leader N Percent

(%)
Yes 267 62.7
No 159 37.3

Total 426 100.0

EFA was performed for the initial identification of dimensionality. In this part of
the study, 3 different models were tested. These are the two-factor structure obtained
by removing the 3 items caused by crossloading (EFA Model 1), the structure formed by
compressing the remaining 12 items into a single factor (EFA Model 2), and the 15-item
structure obtained by compressing into a single factor without removing the item (EFA
Model 3). Reliability analyses and factor analysis results for these 3 constructs are given in
Tables 7 and 8 below.

Table 7. Reliability analyses results.

Subscales Number
of Items

Cronbach’s
Alpha (α)

Inter-Item Means Scale Statistics

Correlation Covariance Mean Variance Std. De-
viation

UDT 12 0.896 0.420977 0.766253 35.605566 123.115817 11.095757
UDT 15 0.914 0.416523 0.756146 44.465892 186.096933 13.641735

Varimax with Kaiser Normalization was used as the rotation method since there was
not a high level of relationship between the variables in the EFAs [89].
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Table 8. Subscales and factor analyses results.

Number
of Items

Number
of Factors KMO

Bartlett’s Test of Sphericity Extraction Sums of
Squared Loadings

Approx.
Chi-Square df Sig. (p) Total Cumulative

%

12 items 2 factors
0.922 2095.989806 66 0.000

1.125999 56.458075
12 items 1 factor * 5.648970 47.074746
14 items 1 factor * 0.934 2877.906203 105 0.000 6.883 45.888865

* It is compressed into a single factor.

Principal Component Analysis (PCA) is a statistical instrument utilized to extract
dominant properties, that is, principal components, from a set of multivariate data, and it
was utilized as a extraction method in this study [90]. Items with a factor loading below
0.60 should be excluded from the scale [91]. Since the factor loadings of 3D Printers tech-
nology was below 0.60, compression into a single factor was carried out on 14 items. Since
the KMO values were above 0.70 and Bartlett’s Test of Sphericity values were statistically
significant (p < 0.05), the data was convenient for factor analysis.

UDTS has 12 items and two factors with loading ranged from 0.545 to 0.775 (Table 9).
UDTS has 12 items and one factor with loading ranged from 0.618 to 0.75 (Table 10). Since
the factor loading value of the item (Q8) measuring the companies using 3D printers
technology was below 0.60 (λ = 0.530), the remaining 14 items were excluded from the
scale items and the remaining 14 items were compressed into a single factor. Factor loading
values for this structure ranged from 0.611 to 0.754 (Table 11).

Table 9. Factor Loadings for EFA Model 1.

Subscales (Factors) and
Items

Factor Loadings
of Items

Subscales (Factors) and
Items

Factor Loadings
of Items

Hardware Technologies Software Technologies

Autonomous driverless
vehicles 0.775 Cloud computing 0.755

Digital twin 0.741 Cyber security 0.741

Augmented reality (AR),
Virtual reality (VR) 0.729

Horizontal and vertical
system software

integrations
0.694

Blockchain 0.679 Big data analytics 0.677

Autonomous robots 0.653 Cyber physical systems
(CPS) 0.651

Simulation 0.585
5G 0.545

Note: 12 items, 2 factors.

Table 10. Factor Loadings for EFA Model 2.

Items Factor Loadings
of Items Items Factor Loadings

of Items

Using Disruptive Technology (UDT)

Simulation 0.750 Augmented reality (AR), Virtual
reality (VR) 0.691

Digital twin 0.731 5G 0.676
Big data analytics 0.730 Cyber security 0.662

Autonomous robots 0.710 Autonomous driverless vehicles 0.632
Blockchain 0.696 Cyber physical systems (CPS) 0.628

Horizontal and
vertical system

software integrations
0.693 Cloud computing 0.618

Note: 12 items, 1 factor.
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Table 11. Factor Loadings for EFA Model 3.

Items Factor Loadings
of Items Items Factor Loadings

of Items

Using Disruptive Technology (UDT)

Big data analytics 0.754 Augmented reality (AR), Virtual
reality (VR) 0.686

Artificial intelligence 0.778 Internet of things (IoT) 0.684
Simulation 0.732 5G 0.659
Digital twin 0.720 Cyber security 0.641

Autonomous robots 0.712 Cyber physical systems (CPS) 0.630
Blockchain 0.699 Autonomous driverless vehicles 0.620

Horizontal and
vertical system

software integrations
0.687 Cloud computing 0.611

Note: 14 items, 1 factor.

When Figure 3 is examined, the eigenvalue for a single factor structure is approxi-
mately 7.00. Since the graph starts to flatten after the second factor, it is possible to say that
the most appropriate factor structure for the data is the two-factor structure, according to
the results of EFA of the main study. The eigenvalue for this structure is approximately 1.00.

Figure 3. Scree Plot Graph for Main Study.

3.4. Study 4: Dimensionality Confirmation

CFA was utilized to ensure confirmation of dimensionality. Four alternative models
were tested for construct validity. The first of these is Alternative Model 1, whose items
and factor loading values are given in Table 9, which we reached with EFA. This model
is given in Figure 4 below. The second tested alternative model is the single factor model.
Question number Q8, which measures the utilization of 3D Printer technology in CFA,
was excluded from the items because its factor loading was below 0.60 and analyzed the
remaining 14 items. The resulting structure is given in Figure 5 together with its loadings.
However, since the model fit values of this structure were not within the desired limits, the
modifications suggested by the LISREL 8.51 package program were carried out and the
alternative models given in Figures 6 and 7 were tested. Finally, the chi-square difference
test was performed for the 4 models. According to the test results, these 4 models differ
from each other in a statistically significant way. The most appropriate model is Alternative
Model 4, which has the lowest chi-square value among these models. The final model,
Alternative Model 4, is given in Figure 7 and the fit values for these models are given
in Table 12.
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Figure 4. Alternative Model 1.

Figure 5. Alternative Model 2.

Figure 6. Alternative Model 3.
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Figure 7. Alternative Model 4 (Final Model).

The existence of a relationship between the items in CFA has the effect of improving
the model fit indices. However, the related items should be related in theory according
to the existing literature. In Figure 4 above, Q5 and Q14, Q9 and Q11, and Q10 and Q11
are correlated in model. These relations were selected from the modification suggestions
section, as they were among the relations that caused the most chi-square value decrease
and based on the theoretical justification.

Big data technology requires data security [92]. Cyber security includes many dif-
ferent fields from information security to operational security and security of computer
systems [93]. Big data analytics utilizes in cyber security [94]. Therefore, big data analytics
and cyber security are related technologies, since cyber security includes data security. For
this reason, Q5 and Q14 were correlated in the model. The digital twin is a technology with
a virtual reality infrastructure created with simulations, which is seen as a useful tool that
can be used in decision making and redesigning the system depending on the decision,
supported by machine learning and artificial intelligence [95] and it can be utilized with
reality technologies [96]. Therefore, Q9 and Q10 were correlated in the model. Considering
the relationship between autonomous driverless vehicles and digital twin technology, for
instance, by creating a digital twin of highways, autonomous vehicles can safely test differ-
ent scenarios without going into traffic [97]. Therefore, Q10 and Q11 were correlated in the
model. Artificial intelligence (Q3) and big data analytics (Q5) technologies were correlated
with the models given in Figures 5–7 below. The reason for this is the utilization of artificial
intelligence and machine learning techniques in big data analytics [98].

According to the EFA and CFA results, different factor loading values were obtained
for the items. The reason for this situation is that different programs are used for these
two-factor analysis. Since the loadings of item Q7, which measures companies using Cloud
Computing, and Q10, which measures companies using autonomous (driverless) vehicles,
are below 0.60, these items were removed from the structure and retested according to
the alternative model 2 loadings for CFA. In addition, taking into account the modifica-
tion indices suggestions for this model, the items Q12, which measures the utilization of
horizontal and vertical system integrations, and Q14, which measures the utilization of
cyber security, were removed from the structure and the model was retested. As a result
of the test, the structure given has been reached in Figure 6 below. In order to improve
the model fit values, new modification suggestions were fulfilled and the structure was
retested by removing the items Q9, which measures the using augmented reality (AR) and
virtual reality (VR), and Q11, which measures the using digital twin, which cause reduction
of chi-square by removing them from the model. The model obtained is given with the
loadings in Figure 7.
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Table 12. The Comparison of Alternative Models.

Indices
Perfect Fit
Threshold

Value *

Acceptable
Fit Range *

Alternative
Model 1

Alternative
Model 2

Alternative
Model 3

Alternative
Model 4

x2/df 1 ≤ x2/df ≤ 3 2 ≤ x2/df ≤ 5
(122.24/50)

2.44
(384.64/76)

5.061
(124.21/34)

3.65
(47.28/19)

2.49

RMSEA ≤0.05 0.05 ≤ RMSEA
≤ 0.08 0.058 0.098 0.079 0.059

GFI ≥0.95 0.90 ≤ GFI ≤ 1 0.95 0.89 0.94 0.97

SRMR ≤0.05 0.05 ≤ SRMR
≤ 0.10 0.037 0.054 0.040 0.030

CFI ≥0.95 0.90 ≤ CFI ≤ 1 0.96 0.90 0.95 0.97

NFI ≥0.95 0.90 ≤ NFI ≤
1 0.94 0.88 0.94 0.97

AGFI ≥0.90 0.85 ≤ AGFI
≤ 1 0.93 0.84 0.91 0.95

* Reproduced from sources: [99,100].

Chi-square difference test was performed for the 4 alternative models. These structures
are different from each other, and this difference is significant statistically. The most
appropriate model is Alternative Model 4 with the lowest chi-square value statistically and
this model is the final model of the scale. It is the model representing the “Using Disruptive
Technology Scale (UDTS)”. As seen in Table 12 above, the final model has a perfect fit for
the indices of x2/df, GFI, SRMR, CFI, NFI and AGFI. The structure has an acceptable fit in
terms of the RMSEA index.

Factor loadings point out the amount of relationship between the items and the latent
structure [64,101]. The item with the highest loading of the scale is Q3, which measures
the utilization of Artificial Intelligence with a loading of 0.74. It is followed by Q4, which
measures utilizing autonomous robots, and Q13, which measures utilizing simulation
technology, with loadings of 0.70. These are standardized loading values. The item with the
lowest loading of the model is Q1, which measures the utilization of cyber physical systems
(CPS) with a loading of 0.61. T-values were examined for the significance of loadings.
T-values of the loadings are significant because they are above 1.96 at the 0.05-significance
level [101]. The relevant values are given in Table 13 below:

Table 13. Factor Loading, t-values and R2 for items.

Items/Variables Factor Loadings t-Values R2

Cyber physical systems (CPS) 0.64 13.89 0.40
Internet of things (IoT) 0.67 14.70 0.44

Artifical intelligence 0.77 17.58 0.66
Autonomous robots 0.71 15.90 0.48

Big data analitics 0.72 16.15 0.60
Blockchain 0.69 15.22 0.45
Simulation 0.66 14.47 0.42

5G 0.62 13.23 0.35

3.5. Study 5: Convergent Validity Assessment

Average variance extracted (AVE) and composite reliability (CR) values are considered
for convergent validity [102]. Some researchers agree that both AVE and CR values should
be within their expected limits. According to these limits, AVE should be 0.05 or higher
to enable adequate convergent validity [100]. For CR, it is desirable that this value be
close to 1.00 [103]. According to Fornell and Larcker (1981), in a case where AVE is
lower than 0.50 but CR is greater than 0.60, the convergent validity of the construct is
still adequate [104]. Therefore, this scale has provided convergent validity according to
these conditions (AVE = 0.471; CR = 0.877). The condition for the scale to have internal
consistency reliability is that the Cronbach’s Alpha value is above 0.70 [102,105,106]. Since
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the scale has a value above this, it has internal consistency. The relevant values are given in
Table 14 below.

Table 14. AVE, CR and Cronbach’s Alpha Values.

Items/Variables
Standardized

Factor
Loadings

Square of
Standard-

ized Factor
Loadings

Errors AVE CR Cronbach’s
Alpha (α)

Cyber physical
systems (CPS) 0.64 0.4096 0.5904

0.471 0.877 0.873

Internet of things
(IoT) 0.67 0.4489 0.5511

Artifical intelligence 0.77 0.5929 0.4071
Autonomous robots 0.71 0.5041 0.4959

Big data analitics 0.72 0.5184 0.4816
Blockchain 0.69 0.4761 0.5239
Simulation 0.66 0.4356 0.5644

5G 0.62 0.3844 0.6156

Discriminant validity is calculated separately for each latent variable [107]. Since the
most ideal structure in this scale is a single factor structure, there is only one latent variable.
Therefore, the discriminant validity could not be examined. The final form of the scale, of
which whole statistical analysis results are given above, is presented in Appendix A, Table A3.

3.6. Controlling of Bias Effect

In the data obtained through the questionnaire, an issue called “bias effect” or “com-
mon method bias” may arise depending on the perception of the participants who answered
the items [108]. Whether there was a response bias in the answers given by the employees
was tested utilizing the MANOVA test Wilks’ Lamp statistics. Wilks’ Lamp is a widely
utilized type of statistics that investigates whether groups differ in some way, regardless
of whether they alter in at least one linear combination of dependent variables [107]. It
expresses the ratio of error variance to total variance for each variable [108]. In this study,
there is only one item containing information about the employees as seen in Table 6. This
is the item of the position of the employees in the company. It was tested whether the eight
DTs obtained in the final model differentiated according to the positions of the employees
in the company, and it has been concluded that the answers given do not demonstrate a
significant difference (p = 0.734). Consequently, the data collected within the scope of scale
development does not have the bias effect. These findings are given in Table 15 below:

Table 15. Controlling of Bias Effect.

Effect Value F df1 df2 p Partial Eta
Squared

Wilks’ Lambda 0.918 0.854 42,000 1940.594 0.734 0.014
Note: Sig. value for Box’s Test of Equality of Covariance Matrices: 0.366.

3.7. Relationships between Variables

The ordinal variables were taken from the variables involving the demographic char-
acteristics of the participants given in Table 6, and the relations between the variables
were examined because structural equation modeling is a type of analysis that works with
categorical data [109]. First, EFA was performed for demographic variables by utilizing the
PCA as extraction method and varimax rotation. The results of the analysis demonstrated
that the variables of activity period, number of employees in company and annual turnover
for company related to company information form a single factor structure. Since the
structure obtained indicates the size of the company, this latent variable is named as CSIZE
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as an abbreviation of company size. The above-mentioned observed variables are named
Csize1, Csize2 and Csize3 respectively. Since the variable time to use DTs emerged as a
separate structure and points to the digitalization time, this latent variable was named
DTIME as an abbreviation of it. The observed variable of the related factor is named Dtime1.
The item numbers of the technologies obtained as a result of the developed UDTS were
utilized in the model without altering. The model, in which the demographic characteristics
of the participants are also reflected in the model and showing the relationships between
the relevant structures, is given in Figure 8 below.

Figure 8. Relationships between Variables.

There is a low correlation between the UDT structure constituted by using DT and
the CSIZE structure for company size (r = 0.11). Since the t-value of this relationship is
greater than 1.96, this relationship is statistically significant (t-value = 1.97). There is low
correlation between DTIME and UDT (r = 0.10), but this relationship is not statistically
significant (t-value = 1.92). There is a moderate correlation between CSIZE and DTIME and
this relationship is statistically significant (r = 0.37, t-value = 6.96). Therefore, it is possible
to say that larger size companies have been using DTs longer than other companies. The
item that best explains the company size (CSIZE) latent variable is the activity period of
the company with a factor loading of 0.80. It is followed by the number of employees
in the company (λ = 0.78) and company turnover (λ = 0.51). When the model fit indices
of the above model are investigated, the model has perfect model fit indices in terms of
whole kinds of them discussed in this study (x2/df = 77.22/51; RMSEA = 0.035; GFI = 0.97;
SRMR = 0.029; CFI = 0.98; NFI = 0.96; AGFI = 0.96).

4. Discussion

The measurement is a concept that has been the subject of discussion since ancient
times [110]. It is one of the most basic concepts that enables social sciences to approach
natural sciences [111]. In addition, it is the first stage encountered when a study tries
to break away from theoretical context and move to the empirical level. As well as the
purpose for which the measurement is made, the means by which it is made is one of the
indispensable elements of the measurement methods [112].

In the current era, SCs of which they are members, not businesses, compete, and
DTs have effects on SCs in many aspects, especially on SC performance [113]. In addition
to enhancing SC performance, DTs have a significant role in constructing more flexible,
more efficient, more visible and more resilient SCs. The COVID-19 pandemic has revealed
the need to reevaluate current SC approaches and restructure SCs in recent past. This
restructure requirement covers enhancing the utilization of DTs [30]. For these reasons, it
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is extremely critical and significant to investigate the extent to which DTs are utilized, to
measure the current utilization levels of these technologies, and to examine their effects
on operations in SCs. In order to determine these, it is essential to first measure their level
of utilization. This can only be possible with a measurement instrument developed in
this field.

Many technological changes have taken place from the past to the present [114] and
DTs change according to the current era [115]. In this study, 4IR technologies were taken
as DTs and current DTs that are widely used in SCs were preferred. With the inductive
method, we tried to obtain information about the SCs with questionnaires collected from
the companies operating in different industries. The technology that best explains the
single-factor structure obtained in the final model is artificial intelligence technology, with
the highest factor loading (λ = 0.77). This technology is frequently discussed today and
has an enhancing utilization level in SCM. It enables machines to carry out functions that
require intelligence, without humans, by offering machines the intelligence of humans [116].
It is estimated that the contribution of this technology to the global economy will be USD
15 trillion by 2030 [117].

Big data analytics is the second technology that best explains the structure (λ = 0.72).
Big data technology is critical in SCs. It enables in-depth information on SCs, supports right
decision making, predicts SC performance and positively affects performance [118,119].
The technology with the lowest factor loading and least explaining the structure is 5G
because it is a technology that has just started to spread around the world (λ = 0.72). It refers
to the fifth-generation wireless technology and has only been utilized for two years [120].

Since the scale items generated in the study focused on the level of UDT rather than
agreeing with an opinion or behavior, the factor loadings obtained for the items in the study
were lower than the scales in different fields. Moreover, 3D printers, a crucial technology
in SCs, were excluded from the study due to their low loading (λ = 0.530). Although 3D
printers are a technology that is a very high trend today and makes significant contributions
to SCs, the current level of utilization of this technology is lower when it is compared with
artificial intelligence and big data analytics technologies. According to a study conducted
in 2020, the utilization of 3D printers will approximately triple in the next five years [121].
In other words, the loading of this technology is lower because its current utilization level
is lower compared to other DTs.

The fact that the AVE value was below 0.50 in this study is due to the partially low
loading values. This is due to the same reason as the utilization of 3D printer technology.
Since the scale is not a measurement based on an opinion or behavior, it directly measures
the level of technology use, and since companies that never use the relevant technologies
answer the item as 1 (I totally disagree), it decreases the loading values of the related items.
Such a strict response in items based on opinion either does not exist at whole items or
is valid for very few items of the scale. It is a convergent validity value that gives results
depending on the AVE factor loading values [122]. However, the scale has convergent
validity when the CR value is above 0.60 according to the literature [104]. Since this scale
development study is a completely new scale introduced to the SC literature, the results
could not be compared with other studies.

4.1. Theoretical Contribution

The fact that a lot of study has been performed in a field so far does not mean that
a new contribution cannot be made to that field. The deepest and most fundamental
contribution that can be made to any field can be made in terms of measurement, because
that field cannot be fully assessed when measurements cannot be made in that field [123].
Despite the enhancing emphasis on the contribution of DTs to SCM, there is a gap in
enabling a measurement instrument that can evaluate their utilization. Correcting the lack
of a measurement instrument developed in this field in the literature is the most crucial
theoretical contribution of this study.



J. Theor. Appl. Electron. Commer. Res. 2022, 17 1353

4.2. Managerial Implication

4IR has brought with it new DTs and digital transformation. Digital transformation
is more than an essentialness; the DTs that 4IR enables are also an opportunity for coun-
tries to enhance their economic, social and environmental benefits [124]. Policy makers
should engage in practices that foster the UDT and the disruptive innovation that these
technologies stimulate [125].

By using the UDTS, SC managers or leaders can compare the UDT of the industries in
which they operate, and with this direction they can increase their investments in the DTs
in which they are behind compared to the industry. By examining the effects of DTs on SC
performance, they can enhance the level of using that technology by becoming aware of
which technology contributes more to SC performance. The effects of DTs on the entire SC
can be examined, as well as on the basis of a specific SC operation. Improvements can be
made after this study. Furthermore, UDT affects the way SC managers make strategic and
operational decisions [126]. Therefore, they can measure the level of utilization of these
technologies and benefit from this in their decision-making processes.

4.3. Limitations and Future Research

This study has four main limitations. First, DTs differ according to the related eras.
This study deals with 4IR technologies, which are the DTs of current age. Nowadays, the
concept of Industry 5.0, which is the fifth industrial revolution, has begun to be handled and
discussed by many researchers [127–131]. However, before the fifth industrial revolution
can be evaluated, it is necessary to have a good understanding of 4IR technologies and to
reach the required level of technological maturity [132]. Measuring the 4IR maturity level
is possible with the “Using Disruptive Technology Scale (UDTS)”. Researchers can add
different technologies to these technologies and do a scale adaptation study for further
research. For instance, they can benefit from this study by adding the currently very popular
metaverse technology to the item pool of this study and performing a scale adaptation
study in the future. In this sense, this study will form the basis of future research.

The second limitation of the study is that it is based on perception like all other studies
based on questionnaire data. Whole studies in which data were collected through question-
naires suffer from the same limitation. Third, DTs are discussed in the context of the SC,
and this is a constraint. The number of these technologies used can be enhanced or lessened
in different contexts by specifying their theoretical justifications. It is recommended by the
authors that the scale name be altered according to that context. Finally, it involves only
one type of technology. In other words, this study only contains DTs utilized in the SC.
It makes a profound contribution to the literature in this respect, but for researchers and
managers who want to consider the technologies utilized in the SC as a whole, they can
actualize a scale adaptation study by including information systems utilized in SCs such as
enterprise software and enterprise resource planning (ERP) software. In this case, it would
be convenient to change the name of the scale to “using supply chain technology scale”.
Taking the relevant scale as a two-factor structure with information technologies and DTs
factors will enable a better explanation of the structure.

5. Conclusions

SCM is the planning and coordination of whole people, processes and technology
involved in constituting value. DTs have now become a part of modern SCs and make
enormous contributions to them. Implementing new DTs in SCs is critical to successful SC
processes. SC managers must have knowledge of these technologies and understand and
know how to utilize them [133]. They must persuade managers of companies to implement
these technologies or enhance their utilization level.

SC is a dynamic environment, and it has to adapt and react to the events and situations
going on around it. Nowadays, there are many significant issues that SCs need to adapt
to. The requirement of enhancing SC visibility and SC resilience due to the COVID-19
pandemic, and the requirement of enhancing SC sustainability performance to achieve
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sustainable development goals are just a few examples. DTs enable the most significant
contribution to the improvement of SCs related to these issues [18,134–137]. SCs need to be
improved in line with these strategic goals. Consequently, the necessity of current research
in SCs is a never-ending cycle. This developed and validated scale will contribute greatly
to future research and SC literature.

Explanatory and confirmatory factor analyzes show that the UDTS scale has only
one dimension which consists of cyber-physical systems (CPS), internet of things (IoT),
artificial intelligence, autonomous robots, big data analytics, blockchain, simulation and
5G technologies. The fact that 4IR technologies are gathered under a single roof in the
literature confirms that the scale has a one-dimensional structure reached in line with the
empirical results. Moreover, the technologies that explain this dimension as a result of
the study are the technologies that are widely utilized in SCM and are confirmed by the
theoretical background of the study. In both respects, the study is validated by the relevant
literature with the theoretical justifications stated [7,11,18,24,26,31,72,121,135].

As stated above, this scale has perfect model fit values in terms of x2/df, GFI, SRMR,
CFI, NFI and AGFI indices. It also has an acceptable level of model fit index value in terms
of the RMSEA. The scale also has convergent validity and data that does not have the bias
effect. This scale can be utilized with confidence in research in which DT will be a variable
in different fields of the social sciences in its current form. In addition, it can be utilized to
determine levels of UDT. Utilizing this scale, relationships and impacts can be examined
throughout the SC or within its specific operations.
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Appendix A

Table A1. List of Expert Group.

Number Name Surname Company, University, Position *

Experts from Professional Life

1 B. Mahir Yamakoğlu Doğuş Çay, Supply Chain Manager

2 Utku Genç Migros, Supply Chain Manager

3 Bora Tanyel Yıldız Holding, Supply Chain Director

4 Evren Ersoy
Siemens, Digital Transformation Specialist &

Business University of Costa Rica, PhD
Candidate

5 Erman Keskin Colgate-Palmolive, Supply Chain Leader (Africa
Eurasia Region)

Experts from Academia

6 Prof. Dr. Mehmet Tanyaş Maltepe University, Head of Logistics
Management

7 Asst. Prof. Mehmet Sıtkı Saygılı Bahçeşehir University, Faculty Member of
Logistics Management

8 Asst. Prof. Özlem Sanrı
Yeditepe University, Faculty Member of Logistics

Management

9 Prof. Dr. Batuhan Kocaoğlu Piri Reis University, Head of Management
Information Systems

* Consists of the knowledge of the expert group at the time of the interviews.

Table A2. Item Pool for the Pilot Study.

Item
Number Item References

1 The company has used cyber physical systems (CPS) in its operations
actively. [69]

2 The company has used internet of things (IoT) in its operations
actively. [70]

3 The company has used artifical intelligence in its operations actively. [71]
4 The company has used autonomous robots in its operations actively. [72]
5 The company actively has used big data analitics in its operations. [73]

6 The company has used blockchain technology in its operations
actively. [74,75]

7 The company has used cloud computing technology in its operations
actively. [76]

8 The company has used 3D printers (additive manufacturing) in its
operations actively. [77,78]

9 The company has used augmented reality (AR) in its operations
actively. [79,80]

10 The company has used virtual reality (VR) in its operations actively. [79,80]

11 The company has used autonomous (driverless) vehicles in its
operations actively. [81,82]

12 The company has used digital twin technology in its operations
actively. [83]

13 The company has used horizontal and vertical software integrations
actively. [84]

14 The company has used simulation technology in its operations
actively. [85,87]

15 The company has used cyber security (smart networks/network
security) technology in its operations actively. [84,87]

16 The company has used 5G technology in its operations actively. [88]
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Table A3. The Final Form of the Scale.

Using Disruptive Technology Scale (UDTS)

Item
Number Item 1: I Totally

Disagree 2: I Disagree 3: I Have No
Idea 4: I Agree 5: I Totally

Agree

1 The company has used cyber physical
systems (CPS) in its operations actively.

2 The company has used internet of things
(IoT) in its operations actively.

3 The company has used artifical
intelligence in its operations actively.

4 The company has used autonomous
robots in its operations actively.

5 The company actively has used big data
analitics in its operations.

6 The company has used blockchain
technology in its operations actively.

7 The company has used simulation
technology in its operations actively.

8 The company has used 5G technology in
its operations actively.
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