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Abstract—Restructuring electricity markets has enabled wholesalers to
exercise market power. Using a common method to measure competition,
several studies have found substantial inefficiencies. This method over-
states actual welfare loss by ignoring production constraints that result in
non-convex costs. I develop an alternative method that accounts for these
constraints and apply it to the Pennsylvania, New Jersey, and Maryland
market. For the summer following restructuring, the common method
implies that market imperfections resulted in considerable welfare loss,
with actual production costs exceeding the competitive model’s estimates
by 13%–21%. In contrast, my method finds that actual costs were only
between 3% and 8% above the competitive levels.

I. Introduction

RESTRUCTURING electricity markets has enabled
wholesalers to exercise market power. Using a com-

mon method of measuring competitive behavior in these
markets, several studies have found substantial inefficien-
cies.1 This paper argues that this method overstates actual
welfare loss. I develop an alternative method that accounts
for firms’ production constraints that result in cost non-
convexities. The paper then applies the method to the
Pennsylvania, New Jersey, and Maryland (PJM) wholesale
electricity market.

In general, welfare loss may occur because of allocative
and production inefficiencies. However, wholesale electric-
ity markets do not have allocative inefficiencies, in the short
run, because derived demand is nearly completely inelastic.
There are two reasons for this. First, consumers have no
incentive to reduce quantity demanded at higher wholesale
prices because the regulatory structure of electricity retail
markets has kept consumers’ rates constant.2 Second, the
firms that procure customers’ electricity in the wholesale
market are mandated to provide the power at any cost.

Therefore, the only short-run welfare effects in electricity
markets result from inefficient production. Strategic firms
with asymmetric costs, or firms with asymmetric strategies,
distort production decisions from the competitive equilib-
rium (Borenstein & Farrell, 2000). This causes cross-firm
production inefficiencies. Individually, a firm will achieve a

given output level by minimizing its own production costs.
However, in aggregate, the output level is not produced
using the least costly technology.3 This paper measures
these production distortions.

The standard method, which is referred to as the compet-
itive benchmark analysis, has been developed to simulate
wholesale electricity prices that are consistent with a com-
petitive market.4 This “static” method ignores production
constraints and has primarily been used to measure market
transfers. In addition, Borenstein, Bushnell, and Wolak
(henceforth BBW, 2002) use this method to quantify wel-
fare loss. In this paper, I predict output decisions for a
similar “static” competitive benchmark analysis counterfac-
tual for the PJM market. I then compare the static model’s
total variable costs with actual variable costs. For the first
summer after PJM restructured, in 1999, the actual costs
substantially exceeded these static simulations of competi-
tive costs.

However, by ignoring certain types of production con-
straints, this method overstates production inefficiencies
from restructuring. This static technique assumes that power
plants operate following an on-off strategy of producing at
full capacity if and only if price exceeds (or equals) mar-
ginal costs of production. Yet, the process of producing
electricity efficiently requires that firms consider several
non-convexities in costs. For example, when a firm starts a
“generating unit” in order to produce electricity, it incurs
start-up costs that typically range between $100 and
$7,000.5 These costs impose intertemporal constraints on
production decisions.

With start-up costs, it may be more efficient to continue
operating a generating unit with a relatively high marginal
cost than to fire up a unit with lower marginal costs (but
which would have to incur start-up costs). This tradeoff
between higher marginal costs and start-up costs is of great
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1 This method has been used primarily to measure markups (for exam-
ple, see Wolfram, 1999; Joskow & Kahn, 2002; and Mansur, 2007).
However, it has also been used to quantify welfare loss (for example, see
Borenstein, Bushnell, & Wolak, 2002).

2 A few customers have “interruptible” contracts that are exercised when
the quantity demanded approaches the capacity of supply, causing cus-
tomers to curtail the quantity of electricity demanded. As this does not
depend on price, demand shifts but remains completely inelastic.

3 Furthermore, an individual oligopolist will not necessarily produce less
than it would have in a perfectly competitive market. Levin (1985) shows
that, in an oligopoly with asymmetric costs, some producers may increase
production relative to competitive levels. Note that firms can potentially
exercise market power without distorting production; if all firms uni-
formly increase bids, the optimal order of production will not be distorted.

4 Wolfram (1999) uses this technique to examine pricing in the England
and Wales electricity market. Since then, the technique has been used in
studies of many other markets, including California (Borenstein, Bushnell,
& Wolak, 2002; Joskow & Kahn, 2002); New England (Bushnell &
Saravia, 2002); and PJM (Mansur, 2007). Other studies have made similar
assumptions about intertemporal constraints in determining marginal
costs. These include Wolfram (1998), Wolak (2000, 2003), Hortaçsu and
Puller (forthcoming), Fabra and Toro (2005), and Puller (2007).

5 Power plants consist of several independently operating “generating
units,” each composed of a boiler, a generator, and a smokestack. This
range represents the 5th and 95th percentile of start-up costs for coal, oil,
and natural gas generating units in the eastern U.S. transmission grid using
output data from the PROSYM model (Kahn, 2000).
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practical importance. With large within-day variation in
demand and no economically feasible method of storing
electricity, demand is met with a variety of current genera-
tion technologies.6 This practical reality makes the exercise
of this paper particularly relevant.

Harvey and Hogan (2001a, 2001b) and others have noted
the ramifications of ignoring production constraints in sim-
ulating equilibrium prices.7 Electrical engineers have stud-
ied this “unit commitment” problem extensively. Using
many methods, they solve the cost-minimization problem
subject to production constraints and an equilibrium condi-
tion.8

In contrast to the engineering literature, this paper uses a
revealed preferences argument to determine how cost-
minimizing firms behave. I provide an ex post analysis of
firms’ production behavior assuming that they have solved
the unit commitment problem. It is not the intention of this
paper to solve the difficult optimization problem in order to
construct a counterfactual benchmark. The purpose is to ask
whether, by ignoring production constraints, the static
method common to the literature is likely to result in
substantial biases in measuring welfare. I do this by using a
reduced-form representation of firm behavior.

With data from the summer of 1998, prior to restructur-
ing, this paper examines the factors involved in firms’ actual
production decisions. I model production as a function of
prices and costs, allowing the coefficients to differ by
generating unit. First, I use these coefficient estimates to
predict production levels for the pre-restructuring period.
For this period, my “intertemporal” model fits actual pro-
duction decisions substantially better than the static model.
Then, using the coefficient estimates, I extrapolate how
firms would have behaved in 1999 had restructuring not
occurred.

For the initial summer of restructuring, I compare actual
variable costs with estimates of variable costs from my
intertemporal model. First, I estimate variable costs using
the actual prices. That summer, firms did set prices above
those that would have occurred in a competitive market
(Mansur, 2007). If post-restructuring prices exceeded those
clearing a competitive market, then estimates based on
observed prices will overstate production and costs. In turn,

this will understate the welfare loss, for both the intertem-
poral and static models. To address this, I also develop a
counterfactual set of prices that are consistent with pre-
restructuring behavior.

For the static and intertemporal models, the paper calcu-
lates bounds on the welfare losses associated with restruc-
turing the PJM market. As a lower bound, the welfare
estimates based on observed prices imply that actual costs
exceeded the intertemporal model’s estimates by only 3%.
This is substantially less than the predictions generated
using the static competitive benchmark analysis technique
(13%).

As discussed below, the welfare estimates based on con-
servative estimates of competitive prices provide upper
bounds of the deadweight loss. Using these predicted prices,
I estimate greater welfare loss for both the intertemporal
(8% of production costs) and static (21%) models. With
either set of prices, I find that the static model overstates
welfare effects.

The paper then examines whether these welfare effects
are consistent with firms’ incentives. Two firms in PJM had
incentives to increase prices in the summer of 1999 (Man-
sur, 2007). I find that, relative to the output decisions
predicted with the intertemporal model for the post-
restructuring period, these oligopolists produced less while
the other pricetaking “fringe” firms produced more. The
welfare effects are similarly distributed. Namely, for the
strategic firms, actual production costs were $17–37 mil-
lion, or 5% to 10%, less than those predicted by the
intertemporal model. In contrast, actual production costs
were $79–121 million, or 7% to 11%, greater for the fringe
firms.

I conclude that restructuring the PJM market did result in
welfare loss, most likely owing to wholesalers’ exercising
market power. Using my intertemporal model, I estimate
that these losses were between 3% and 8% of total variable
costs during the first summer after the market was restruc-
tured. In contrast, the static model overstates welfare loss by
about threefold. That model predicts losses between 13%
and 21%.

Section II briefly outlines the PJM wholesale electricity
market. Section III defines the optimization problem of
competitive firms while accounting for intertemporal con-
straints. Section IV explains the econometric technique and
data used in estimating the intertemporal model. Then,
section V discusses the static model. In section VI, 1
compare how well the models predict observed behavior
prior to restructuring. Section VII examines the welfare
impacts of market imperfections due to restructuring. The
section compares actual production costs with those com-
puted with the intertemporal and static models. Section VIII
discusses the consistency of the welfare effects with firms’
incentives and section IX concludes.

6 The amount of within-day variation in hourly demand can be quite
significant. For example, the average coefficient of variation, within a day,
in the United States is approximately 0.15 (Holland & Mansur, forthcom-
ing).

7 Harvey and Hogan (2001a) note, “It is a straightforward result of unit
commitment logic that when [start-up costs, minimum-load costs, and
operating parameters such as minimum down times and run times] exist,
it will at times be more efficient to meet load with high incremental cost
output from a unit that is already on-line or a high-cost but quick-start
unit, than to meet that load by starting a unit with low incremental energy
costs but a long start-up time or high start-up costs.”

8 The methods include exhaustive enumeration, dynamic programming,
mixed-integer programming, Lagrangian relaxation, and artificial neural
networks. See Sheble and Fahd (1994) for an overview of the literature.
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II. The PJM Electricity Market

A. Market Rules

In the late 1990s, the PJM Interconnection LLC consisted
of most or all of Pennsylvania, New Jersey, Maryland,
Delaware, and the District of Columbia, as well as some of
Virginia. While integrated with the eastern U.S. transmis-
sion grid, the market has been regulated as a single entity
based on transmission reliability concerns. In 1997, PJM
began facilitating trades among regulated utilities and inde-
pendent producers by establishing a spot market. The mar-
ket uses a uniform-price sealed-bid auction for the right to
supply power. Firms offer flexible bid curves on a day-
ahead basis. This study focuses on the summers of 1998 and
1999. During this period, firms had no obligation either to
produce or to otherwise cover a bid if they made offers to
supply electricity.9 In 1998, PJM adopted what is known as
a “nodal” pricing system to account for transmission capac-
ity constraints.10

When the nodal market first opened, suppliers were
required to make “cost-based” bids for each generating unit.
In other words, the producers had to bid their marginal costs
of production that had been determined by years of regula-
tory rate hearings. A notable step in restructuring PJM
occurred in April 1999, when the requirement on the energy
bid component was relaxed. The Federal Energy Regulatory
Commission granted firms the right to change generating
units from making cost-based bids to offering a more
flexible type of bid. These “market-based” bids were subject
to a price cap of $1,000 per megawatt-hour (MWh).

B. Market Structure

While most utilities obtained the right to bid units as
market based, many of the generating units continued to be
offered as cost-based bids during most of the summer of
1999. Firms may have opted not to switch if they had little
incentive to exercise market power. In particular, those firms
that either purchased electricity in the market or supplied
their own generation may have less of an incentive to
increase wholesale prices. The degree of vertical integration
of PJM firms helps explain their incentives and behavior.11

The large PJM firms are vertically integrated; they gen-
erate electricity and have obligations to provide power to

retail customers. These firms had to provide exogenously
determined quantities of retail obligations (or “native load”)
at fixed rates. The greater the retail obligation, the less
incentive a firm has to set high prices. The objective
function (assuming quantity-setting behavior) for vertically
integrated firm i can be written

max
qi

Pi�qi� � �qi � qi
d� � ri

dqi
d � Ci�qi�, (1)

where Pi(qi) is the inverse residual demand function that
firm i faces in the spot market, qi is its production, ri

d and qi
d

are the retail price and native load, and Ci(qi) is total
production costs. The resulting first-order condition implies

Pi � Pi� � �qi � qi
d� � Ci�, (2)

where firms have incentives to increase prices only if they
are net sellers: qi � qi

d.
While most firms remained nearly completely integrated

after restructuring, two firms, PECO and PPL, were large
net sellers and thus had incentives to exercise oligopoly
power by raising wholesale prices. The reason for this
variation in firms’ net positions is due, in part, to differences
in state policies. PECO and PPL are located in Pennsylva-
nia, where regulators enacted an aggressive retail choice
policy that rewarded customers for leaving their historic
providers. These firms were no longer completely integrated
and, because of regulatory action, were large net sellers in
the wholesale market. In other states in the PJM region,
which did not follow such a policy, customers stayed with
their incumbent utilities.

For each of the eight major utilities in PJM, panel A of
table 1 shows the shares of capacity, generation, peak
generation, and demand served. For both PECO and PPL,
the share of peak generation is about double their shares of
retail customers’ demand served. In contrast, Public Service
Electric & Gas (PSE&G) had a slightly larger share of
demand than of generation, on average. Thus, PSE&G
benefits from lower prices and would exercise its oligop-
sony power by producing from units with marginal costs
above price. This behavior would lower the market price.
The other firms, including the largest producer, GPU, had
similar market shares of peak generation and demand
served. For these firms, the first-order condition is close to
that of a pricetaking firm (Pi � Ci�).

Using a difference-in-differences method, Mansur (2007)
tests the importance of vertical integration in understanding
firm behavior in the PJM market. The study finds that PECO
and PPL did produce significantly less than other firms after
restructuring.12 In section VIII, I compare actual production

9 The PJM Market Monitoring Unit (2000) wrote the following about
PJM in 1999: “During the time period covered by this report, unit offers
and PJM’s day-ahead scheduling did not constitute or create binding
financial commitments to provide a defined amount of energy at a defined
price.”

10 Each node is a point where energy is supplied, demanded, or trans-
mitted. When congestion occurs, the PJM energy market can have over
2,000 prices. For more on nodal pricing, see Schweppe et al. (1988). In the
summers of 1998 and 1999, the transmission system was constrained
about 15% and 18% of the hours, respectively.

11 Mansur (2007) discusses this issue in greater detail. The discussion
below summarizes the market structure and firms’ incentives that are
outlined in that paper.

12 In a news article, Smith and Fialka (1999) corroborate this finding.
They describe the bidding behavior of PECO and PPL as making “the
most of steamy conditions.”
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decisions with those of the intertemporal model to test
whether behavior is consistent with the incentives of firms.

C. Electricity Prices and Restructuring

Prices increased substantially from the summer of 1998
to the summer of 1999. From April through September
1998, the average of the actual prices was $26.04 per MWh.
The following summer, the average price was $37.97 per
MWh.13

These higher wholesale electricity prices are partially
explained by higher input prices in the summer of 1999 than
in the previous summer. Average natural gas prices in-
creased from $2.33 to $2.60 per mmBTU.14 Average oil
prices went from $16.30 to $20.56 per barrel.15 Tradable
permits for sulfur dioxide emissions increased from $172.44

per ton in the summer of 1998 to $202.71 per ton in the
following summer.16

In addition, environmental regulation of nitrogen oxides
began in the summer of 1999. Tradable permits for the
Ozone Transport Commission regulation started near
$5,000 per ton but fell dramatically to under $1,000 per ton
by the end of the summer. For each ton emitted from May
through September, firms were required to have an offset-
ting permit by the end of the year.

Increases in input costs, which were also accompanied by
greater demand for electricity, will result in higher prices in
a competitive market. Using a method similar to BBW,
Mansur (2007) simulates competitive prices during the
summers of 1998 and 1999. During the summer of 1998, the
simulations of the competitive prices were quite similar to
the observed prices. The mean of the simulated competitive
prices was $25.93 per MWh, or 11 cents below the observed
average price. In contrast, the predicted competitive prices
averaged $32.33 per MWh in the summer following restruc-13 Electricity price data are from PJM Interconnection. See http://www.

pjm.com.
14 Data on natural gas prices at Transco Zone 6 non–New York are from

the Natural Gas Intelligence.
15 No. 2 heating oil sold at New York Harbor data are from the U.S.

Energy Information Administration (EIA).

16 EPA reports monthly average trades of sulfur dioxide permits at two
brokerage firms: Cantor Fitzgerald and Fieldston. I report the mean of the
monthly prices.

TABLE 1.—PJM FIRM CHARACTERISTICS

Panel A: Market Shares of Capacity, Generation, and Demand by Firm in Summer of 1999a

Firm Capacity Generationb Peak Generationc
Demand
Servedd

Public Service Electric 18.1% 14.0% 16.8% 17.3%
PECO 16.7% 17.8% 19.9% 8.8%
GPU, Inc. 16.7% 19.8% 16.4% 14.7%
PPL, Inc. 15.1% 15.9% 16.1% 9.9%
Potomac Electric Power 11.5% 10.1% 10.2% 10.4%
Baltimore Gas & Electric 10.2% 12.5% 11.3% 11.2%
Delmarva Power & Light 4.3% 3.2% 3.3% 6.0%
Atlantic City Electric 2.3% 1.1% 1.3% 4.3%
Other 5.1% 5.6% 4.7% 17.4%

Panel B: Generation Capacity by Firm and Fuel Type in 1999e

Firm Coal Oil Gas Water Nuclear Total

Public Service Electricf 1,607 1,842 3,311 — 3,510 10,269
PECO 895 2,476 311 1,274 4,534 9,490
GPU, Inc. 5,459 1,816 203 454 1,513 9,445
PPL, Inc. 3,923 478 1,701 148 2,304 8,554
Potomac Electric Power 3,082 2,549 876 — — 6,507
Baltimore Gas & Electric 2,265 925 755 — 1,829 5,773
Delmarva Power & Light 1,259 888 311 — — 2,458
Atlantic City Electric 391 436 482 — — 1,309
Otherg 2,087 353 — 439 — 2,880
Total 20,967 11,762 7,949 2,316 13,690 56,685
Market share 37% 21% 14% 4% 24%

Notes:
(a) Summer is defined as April 1 to September 30.
(b) Source: Energy Information Administration (EIA) form 759, 1999. I aggregate monthly generation for April through September.
(c) Source: EPA Continuous Emissions Monitoring System, 1999. Peak generation share is share during hours with demand above 40,000 MW.
(d) Demand served is share summer peak demand less direct access customers. On July 6, 1999, the systemwide demand reached a peak of 51,700 MW. Source: EIA form 861, 1999. In 1999, many Pennsylvania

customers switched to alternative providers, leaving GPU (3.4% of total market demand), PECO (5.6%), and PPL (2.5%). “Other” demand includes direct access customers. Source: http://www.oca.state.pa.us.
(e) In 1999, the GPU parent company owned Jersey Central, GPU Nuclear, Metropolitan Edison, and Pennsylvania Electric.
(f) “Other” includes the following utilities: Safe Harbor Water Power, Easton Utilities, UGI Development, Allegheny Electric Co-op, A&N Electric Co-op, and the cities of Berlin, Dover, Lewes, Seaford, and

Vineland. I also include Edison, which purchased Homer City from GPU in March 1999.
(g) Capacity, in megawatts (MW), is listed by primary fuel type used in each generating unit at a power plant, as determined by the EIA. Coal includes anthracite, bituminous coal, and petroleum coke. Oil includes

nos. 2, 4, and 6 fuel oil and kerosene. The other categories are natural gas, hydroelectric, and nuclear. Source: EIA form 860, 1999.
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turing. While greater than the competitive price in the
summer of 1998, this is approximately $5.64 per MWh
below the actual average price during the summer of 1999.
Hence, Mansur finds evidence of market imperfections after
restructuring but not before restructuring.

D. Power Plant Characteristics

For each of the major firms, panel B of table 1 reports
1999 generation capacity categorized by primary fuel type.
Firms produce electricity using a variety of technologies,
which is in part due to the longevity of outdated power
plants. Furthermore, because of current technological limits
on the storage and production of electricity, even a new
generation system would require a mix of technologies.
“Baseload” generating units operate at low marginal costs
most hours. More flexible “peaking” units operate at high
marginal costs just a few hours a day.

In 1999, the market consisted of approximately 57,000
megawatts (MW) of capacity, including nuclear, hydroelec-
tric, coal, natural gas, and oil energy sources (see figure 1).
Nuclear and coal plants provide baseload generation capa-
ble of covering most of the demand. Nuclear power com-
prises 45% of generation but only 24% of capacity. In
contrast, natural gas and oil burning units provide over a
third of the market’s capacity, yet they operate only during
peak demand times. These differences in utilization result
from heterogeneous cost structures. Baseload units have
low marginal costs and significant intertemporal constraints,

like large start-up costs, while the relatively flexible peaking
units are more expensive to operate. The next section
discusses how these constraints enter into a competitive
firm’s optimization problem.

III. Intertemporal Model of Competitive Production

Pricetaking firms obtain profit maximization by optimiz-
ing each unit’s production separately. In contrast, a strategic
firm will consider how much is being produced at other
plants. The more that is being produced at other plants, the
more a strategic firm will profit by reducing output from the
competitive level in order to increase prices (Wolfram,
1998). In addition, a strategic firm will consider the quantity
that it committed to sell under long-term financial contracts
with fixed rates (Wolak, 2000). For a firm taking prices as
given, neither a firm’s production at other plants nor its
contractual agreements affect optimization. This section
examines the optimization problem for a firm that takes
prices as given and faces non-convexities in costs.

Several technologically induced intertemporal constraints
limit a firm’s ability to produce electricity. As previously
mentioned, after unit i shuts down, in order to resume
operation at hour t, the firm incurs “start-up” costs (STARTi).
Ramping rates (Ri) limit the speed at which units change
hourly production, that is, how much output can be changed
in one hour. Constraints on minimum load (MINi) limit how
little a unit can generate without shutting down. These
intertemporal constraints create non-convexities in firms’

FIGURE 1.—PJM SUPPLY CURVE (APRIL 1, 1999)
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production cost functions.17 To fix ideas, I begin with a
simplified unit commitment problem.

I model the firm operating unit i as solving a determin-
istic, discrete-time dynamic program.18 The state variable,
Sit, equals the level of production going into period t. The
choice variable, xit, equals the change in the level of pro-
duction in period t. The law of motion of Sit is similar to the
literature on extraction of nonrenewable resources where xit

represents the change in the state variable: Sit � xit � St�1.
The value function, V (Sit), depends on several parame-

ters. I assume that firms take price, Pt, as given. Variable
costs are assumed to be linear such that cit is a constant
marginal cost of production. Capacity, CAPi, restricts unit
i’s maximum range of operation. The discount factor is �.
Given these parameters and the intertemporal constraints
STARTi, Ri, and MINi, the Bellman equation equals

V�Sit� � max
xit��	Ri,Ri


�Pt � cit� � �xit � Sit�

� f� xit, Sit� � STARTi � �V� xit � Sit�

s.t. : xit � Sit � g� xit, Sit� � MINi,
(3)

and xit � Sit � CAPi,

where f(xit, Sit) indicates starting and g(xit, Sit) indicates
continuing to operate:

f� xit, Sit� � �1 if xit � 0 and Sit � 0
and

0 else,
(4)

g� xit, Sit� � �1 if xit � Sit � 0 and Sit � 0
0 else . (5)

Intertemporal constraints may reduce a unit’s true mar-
ginal cost; for example, postponing shutting down at low
prices may improve overall profits since the firm avoids
restarting the unit later on when prices rise. Intertemporal
constraints may also increase marginal costs. Again, using
the case of start-up costs, a firm will not operate even when
prices exceed marginal costs of production if rents are not
substantial enough to cover the cost of starting.

If intertemporal constraints are inconsequential, then the
optimization problem for pricetaking firms can be further
simplified. As the optimization problem is no longer state

dependent, I define the choice variable qit � xit � Sit. For
each period t, the optimization problem is

max
qit��0,CAPi


�Pt � cit�qit. (6)

With no intertemporal constraints, these firms operate units
at full capacity when price exceeds (or equals) marginal
cost. Otherwise, they do not produce. This is referred to as
the static competitive benchmark analysis model and is
explored in section V. Given this description of competitive
firms’ optimization problem, the following section explains
the method used to account for intertemporal constraints in
order to determine a competitive counterfactual market
outcome.

IV. Method for Estimating Intertemporal Model

A. Econometric Model

In this section, I develop a method for estimating com-
petitive behavior for the post-restructuring period while
accounting for intertemporal constraints. First, I estimate
the firms’ production decisions using data from a period
before restructuring. The coefficient estimates from the
regression are used to predict production both in the pre-
restructuring period of 1998 and for the post-restructuring
period of 1999. A key identifying assumption is that, before
restructuring, firms behaved competitively by taking prices
as given and minimizing costs.

I argue that, while power plants were regulated in 1998,
their short-run operations were consistent with competitive
behavior. Surely this regulated market did not exemplify
perfect competition. Firms invested inefficiently and prob-
ably distorted marginal costs of production by making
inefficient decisions regarding maintenance, labor, and cap-
ital allocation including pollution abatement technologies.
However, given these costs, operators likely dispatched
units in a least-cost manner.19 As previously mentioned,
Mansur (2007) finds simulated prices that are close to actual
prices, on average, for the summer of 1998. These findings
support the claim made in this paper: in 1998, firm behavior
was consistent with that of a competitive market.

17 There are other intertemporal constraints as well. For example, a unit
may have to remain operating for some time once it starts before it can be
shut down. Conversely, a unit may have to remain off a certain amount of
time before restarting. There may be some costs that the firm incurs
regardless of the amount produced (for example, operating fans and
conveyor belts).

18 This model differs from engineering models. Here, I take prices as
exogenous. Typically, engineers solve for the least cost manner to meet the
quantity demanded and solve for the price, or “system lambda.”

19 Under regulation, some argue that firms had incentives to minimize
effort rather than costs and therefore did not operate efficiently. Firms may
have let units operate during low-demand times instead of stopping and
restarting them. If restructuring improved efficiency then, conditional on
market conditions, more starts would be expected in the summer of 1999
than in that of 1998. Without controlling for market conditions, the
number of starts for the units in my sample decreased from 3,970 to 3,846.

Furthermore, even in 1998, firms could have withheld production from
units that would have operated in a competitive market. However, as
cost-based bids determined prices, the ability to move prices may have
been limited. In contrast, in 1999, the flexibility of using bids as well as
quantity may have facilitated exercising market power to the degree that
firms circumvented constraints, such as regulatory surveillance. In addi-
tion, these historically regulated utilities may have undergone a learning
process about how to exercise market power.
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Unlike production models that estimate the optimal mix
of inputs, production costs are known in this case. Rather, I
estimate how constraints affect the firm’s dynamic optimi-
zation problem. An alternative approach would be to make
a direct calculation of the dynamically optimal solution.
However, this would require information on the exact
method the system operators use to dispatch units and on the
ways firms form expectations about future prices. This
paper proposes an approach that econometrically estimates
the relationship between output decisions and firm and
industry characteristics.20

Based on equation (3), I assert that a pricetaking firm will
choose current output as a function of historic, current, and
future price-cost markups, as well as intertemporal con-
straints. I estimate a descriptive model of output (qit) at unit
i during hour t. A firm produces more given greater current
price-cost markups (pcmit � Pt 	 cit). My model incorpo-
rates the static model by including an indicator variable of
positive markups (pcm_ posit). If the static model is correct,
this variable should fully explain production decisions. In
addition, I include a linear term of pcmit.

If the firm expects prices to increase in the near future, it
may also increase production now. Therefore, I include
markups for the following hour: pcmi,t�1. Also, if a firm is
slow to adjust, it may consider average markups (pcmit) for
today and tomorrow. Furthermore, if markups were recently
high, the firm may have chosen a high value of Sit and is
more likely to be operating. Therefore, greater markups in
the recent past will also be important in determining current
production, so the model includes hourly-lagged markups,
pcmi,t	1, and yesterday’s average markup, pcmi,t	24.

Other characteristics (like start-up costs, ramping rates,
minimum load, and unit capacity) do not vary by time. They
cannot be separately identified from an idiosyncratic unit
fixed effect.21 Furthermore, these characteristics are likely
to impact how firms respond to the series of price-cost
markups. Therefore, I allow the coefficients on the price-
cost markups to differ by unit as well as include unit fixed
effects (�i).

Recall that this is a model of a competitive market and is
based on observed behavior in the pre-restructuring period
of 1998 (qit

pre). Therefore, I do not take into consideration
strategic variables, such as output at other plants. For the
pre-restructuring period, I define Xit as the set of indepen-
dent variables, namely the seven measures of price-cost

markups mentioned above. The resulting econometric
model is

qit
pre � �i

pre � �i
pre � Xit

pre � εit
pre. (7)

More explicitly, I model output in the pre-restructuring
period as

qit � �i � �1,ipcm_posit � �2,ipcmit � �3,ipcmi,t	1

� �4,ipcmi,t�1 � �5,ipcmit � �6,ipcmi,t	24 (8)

� �7,ipcmi,t�24 � εit.

To allow for a flexible form, all variables (except the fixed
effects and pcm_ posit indicators) are estimated as fifth-order
polynomial functions. This data-fitting method is designed
for predictive power. For each of the 130 units, I separately
estimate ordinary-least-squares coefficients and Newey-
West (1987) heteroskedasticity and autocorrelation consis-
tent standard errors (assuming a 24-hour lag structure).

I use the coefficient estimates from pre-restructuring
(�i

pre, �̂i
pre) to determine a competitive counterfactual of

production (q̂it) both in sample, for 1998:

q̂it
pre � �̂i

pre � �̂i
pre � Xit

pre, (9)

and also out of sample for the post-restructuring period of
1999:

q̂it
post � �̂i

pre � �̂i
pre � Xit

post. (10)

Some of the predicted output levels, q̂it, are not plausible
and are truncated. For example, if the predicted value is
below 0, then I truncate the prediction at 0 because this is a
physical constraint. As discussed in the data section below,
I define capacity as the maximum observed amount of
production in either 1998 or 1999. If the predicted value is
greater than capacity, then I truncate at this amount.

B. Caveats on the Estimation Method

First, regressing output on price-cost markups will result
in biased coefficients if either prices or marginal costs are
endogenous. However, recall that the coefficients are esti-
mated for 1998 only, before the market was restructured. As
mentioned above, during this period, firms’ behavior is
assumed to be consistent with that of a competitive market:
I assume firms cannot change the price. Furthermore, as
discussed below, the marginal cost of production is assumed
to be constant for a given unit and a given day. Increasing
output may increase a firm’s marginal cost as it operates
more expensive units, but the marginal cost of production
for a given unit will not change. For these reasons, I can
estimate equation (8) using ordinary least squares.

Second, I assume that the relationship between output and
markups would not have changed had restructuring not

20 Unlike a dynamic model, the method I use does not make assumptions
on how firms make forecasts of future prices. Rather, I test whether there
is a correlation between future prices and production behavior.

21 Note that the other unit commitment issues mentioned in footnotes 7
and 17 (such as minimum up times, minimum down times, no load costs)
are also unit specific and will be captured by the unit fixed effect in a
similar manner. Thus, this method addresses all unit commitment prob-
lems that either do not vary over time or are correlated with price-cost
markups.
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occurred. Furthermore, I place bounds on the welfare esti-
mates. For the lower bound, I assume that the price-cost
markups (Xit

post) would not have changed from the observed
levels had restructuring not occurred. In other words, the
null hypothesis, in this case, is that restructuring did not
result in market power. If firms did set high prices in 1999,
these estimates will overstate production and therefore over-
state costs. This places a lower bound on the welfare effects
of a given model but will not necessarily bias the relative
welfare effects of the intertemporal and static models. I
define the upper bound by constructing conservative esti-
mates of prices that are consistent with competition.

Third, this reduced-form method requires a common
support of the exogenous variables. In both summers, actual
prices ranged from $0 to $999 per MWh. While the high
prices were more frequent after restructuring, there were
some times when prices were extremely high before restruc-
turing, potentially reflecting scarcity rents. The range of
hourly price-cost markups were quite similar pre- and post-
restructuring.22

C. Data

The intertemporal model requires data on hourly prices,
actual hourly unit-level production, and daily unit-level
marginal costs. PJM reports quantity-weighted average
nodal hourly prices. The EPA’s Continuous Emissions Mon-
itoring System (CEMS) provides actual hourly gross gen-
eration for most fossil fuel–burning units.23 Gross genera-
tion includes the electricity generated for sales (net
generation) as well as the electricity produced to operate
that power plant. Typically, net generation is 90% to 95% of
gross generation. CEMS data are highly accurate and com-
prehensive for most types of fossil units (Joskow & Kahn,
2002). Throughout this analysis, I define my sample to be a
panel of the 130 units in the CEMS data that operated
during both summers. These units account for approxi-
mately 92% of the fossil generation in PJM.24

I calculate marginal costs using a typical engineering
formula based on years of regulation. A unit’s marginal cost
of production up to capacity (cit) is independent of produc-
tion:

cit � VOMi � HRi � �W it
fuel � Wit

SO2ri
SO2 � Wit

NOxri
NOx�,

(11)

where VOMi is variable operating and maintenance cost and
HR is an efficiency measure called heat rate.25 W it

fuel, Wit
SO2,

and Wit
NOx are daily prices for unit i’s fuel usage, sulfur

dioxide emissions, and nitrogen oxides emissions, respec-
tively. ri

SO2 and r i
NOx are emissions rates. I merge production

data with data on unit characteristics and input prices.26 I
define capacity (CAPi) as the maximum observed gross
production over the summers of 1998 and 1999.

V. Static Competitive Benchmark Analysis

The static competitive benchmark analysis counterfactual
assumes no intertemporal constraints. As with section IV,
the null hypothesis in this section is that, post-restructuring,
firms continued to take prices as given. Thus, I assume that
the N units in my sample would have produced the same

22 In my sample, the markups faced by all generating units (regardless of
whether they operated or not) ranged from 	$114 to $986 per MWh in the
pre-restructuring summer. They averaged 	$1.92 per MWh. After restruc-
turing, the markups ranged from 	$134 to $984 per MWh and averaged
$4.79 per MWh. Conditional on operating, the pre-restructuring markups
ranged from 	$87 to $986 per MWh (and averaged $7.09 per MWh). The
post-restructuring markups ranged from 	$121 to $984 per MWh (and
averaged $21.16 per MWh).

23 CEMS records hourly gross production of electricity, heat input, and
three pollutants—sulfur dioxide, nitrogen oxides, and carbon dioxide—for
most fossil units in the country. During the summers of 1998 and 1999,
CEMS monitored 234 units that accounted for over 97% of PJM’s fossil
fuel capacity. In order to comply with the 1990 Clean Air Act, fossil
fuel–generating electric producers are required to report hourly emissions
and electricity production by unit. Regulation affects units of 25 MW
capacity plus new units under 25 MW that use fuel with a sulfur content
greater than 0.05% by weight.

24 During the summer of 1998, the units in the sample produced on
average 16,653 gross MWh per hour (or approximately 15,820 net MWh
per hour). According to the EPA’s eGRID database, fossil units produced
an average of 17,237 net MWh per hour in 1998.

25 Constant marginal costs is an assumption. As power plants increase
output, they run more efficiently and the heat rate falls, thereby reducing
the marginal cost. To test the importance of this assumption, I look at the
variation in hourly heat rates reported in the CEMS data. For the PJM
generating units during the summers of 1998 and 1999, I regress hourly
heat rates on unit fixed effects. Overall, the fixed effects explain only 8%
of the variation. However, this is primarily due to some extreme outliers.
Dropping the lowest and highest 1% (5%) of the heat rates, the fixed
effects explain about 60% (70%) of the variation. Similarly, because of
locational marginal pricing, the price a firm would earn may differ slightly
from the load-weighted average price that I use in the study. As mentioned
in footnote 10, about a sixth of the hours in my sample exhibit congestion.
However, during this time period, congestion did not result in large price
differences, on average, within PJM (see http://www.pjm.com). I conclude
that the errors-in-variables problem from incorrectly measuring price-cost
markups is likely to be small.

26 PROSYM (Kahn, 2000) provides data on heat rate, coal costs, sulfur
dioxide emissions rates, nitrogen oxides emissions rates, and variable
operating and maintenance costs. I measure fuel prices using spot prices
of oil and natural gas while assuming constant coal costs. The Energy
Information Administration (EIA) provides data on the daily spot price of
New York Harbor no. 2 heating oil and BTU/gallon conversion rates.
Natural Gas Intelligence provided daily natural gas spot prices for Transco
Zone 6 non–New York. For oil and natural gas units, I add fuel distribution
costs that I approximate as the difference between the average spot price
in the region and the price PJM firms report for delivered fuel over the
summers of 1998 and 1999 (EIA form 423, 1998 and 1999). Unit-specific
coal prices are from Kahn (2000). To calculate SO2 regulation costs, I use
the mean of two monthly price indices of SO2 permit prices that brokerage
firms Cantor Fitzgerald and Fieldston report to the EPA. The EPA lists
which units had to comply with the Acid Rain program during Phase I
(including “substituting” units). Few firms traded in the new NOx permits
when it first opened. In fact, they had until the end of the year to “true up”
their allowances with actual emissions. About once a month, Cantor
Fitzgerald reports data on NOx prices, which started near $5,000/ton in
May and ended around $1,000/ton in September. By November, the price
had fallen to $723/ton. I define the NOx price to be $2,000/ton, which is
approximately the average of the NOx prices from May until December
1999. Plants in Pennsylvania, New Jersey, and Delaware had NOx regu-
latory compliance obligations in 1999.
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amount, in aggregate, under the static model as they actu-
ally generated each hour:

Qt � �
i�1

N

qit � �
i�1

N

q*it, (12)

where, for unit i at hour t, qit is actual production and q*it is
the static competitive counterfactual of production.

Figure 2 depicts the measure of welfare loss for the static
model. The figure includes two marginal-cost curves: the
marginal-cost curve where strategic firms actually produce
and the marginal costs of competitive supply. Residual
demand equals the market demand, which is nearly per-
fectly inelastic, less the response from fringe units.

The fringe is composed of some PJM units that are not in
the balanced panel. The EPA does not monitor units that are
small or that do not emit air pollution. In addition, some
plants did not operate in one of the summers and, therefore,
were not in the balanced sample. The fringe also includes
plants in areas bordering PJM that export power to PJM.
The fringe firms are assumed to be competitive. When firms
in the sample exercise market power, the marginal costs are
greater because of inefficient production. The welfare loss is
(at a minimum) the gray area between the strategic and
competitive marginal-cost curves.

Note that if firms exercise market power, then the total
amount produced by all strategic firms, Qt, will be less than
the competitive equilibrium, Q*t. By assuming that the com-
petitive output equals the observed level, the gray area
ignores the changes in imports and other units not in the
sample. This assumption implies that calculations of dead-
weight loss will be understated. The hashed area in figure 2

accounts for the additional economic gains from competi-
tion. In the next section, I measure both the gray and hashed
areas: the gray area is measured by using actual prices,
while the additional welfare loss is captured using an
alternative set of prices that are consistent with a competi-
tive market.

The static technique assumes that the units would be
dispatched in order of marginal cost and produce at full
capacity. However, whenever a firm attempts to generate
using unit i, there is some probability, fi, that the unit will
not be able to operate. As with BBW, this model accounts
for these “forced outages” by using Monte Carlo simula-
tions. For each hour in the sample, outages are simulated by
drawing it from a [0, 1] uniform distribution. If it is less
than fi, the unit cannot operate. For every hour and Monte
Carlo simulation, each unit’s output is calculated. A unit’s
hourly production, q*it, equals the mean of 100 simulation
draws. See Mansur (2007) for a discussion of the additional
data used for this method.

VI. Comparisons of Models

A. Comparing Predictive Power of Models

For the pre-restructuring period, table 2 summarizes the
results of estimating equation (8). For each variable, I
compute the mean of the 130 unit-specific coefficients and
their standard errors. As expected, the coefficients on the
price-cost margins tend to be positive. The static model
variable, pcm_ pos, is significant and positive. However, the
other variables do have predictive power. I report the num-
ber of units for which each coefficient is significant at the

FIGURE 2.—MEASURING WELFARE LOSS FOR STATIC MODEL
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5% level. The hourly lead pcm variables are significant for
most units, whereas the daily lag pcm variables are signif-
icant for about a third of the units. For each observation, I
calculated the marginal effect for each of the six markup
variables. The table shows the average of these marginal
effects. The average of the marginal effects for the hourly
markups are similar to the average of the linear coefficients.
However, for the three sets of daily markup measures, the
marginal effects differ from the linear coefficients. The
hourly and daily lead pcm terms have large marginal effects,
suggesting that firms are considering what future prices are
likely to be when making decisions on how much to pro-
duce. The model has an R-squared of 0.81.

Next, I compare whether the intertemporal or static model
is a better predictor of actual generation in 1998. If inter-
temporal constraints were unimportant, then the flexible
econometric model would not necessarily be better. I nor-
malize generation by capacity to give equal weight to all
observations. The ratio of generation to capacity is called
the utilization rate. The correlation of actual utilization rates
to static utilization rate estimates is 0.61. In contrast, the

correlation of actual utilization rates with intertemporal
utilization rate estimates is 0.79.27

For the summer before PJM restructured, figure 3 plots a
kernel regression of markups ranging from 	$30 to $30/
MWh on actual utilization rates (black line).28 As markups

27 A more formal test requires the use of some non-nested test, since
there does not exist a mapping of one utilization rate estimate to the other.
I follow the method of an encompassing test, as described in Davidson and
MacKinnon (1993). This is done by testing one hypothesis and including
the variables from the second hypothesis that are not already in the model.
In this case, I regress actual utilization rates on the intertemporal model
estimates, and also include the static model’s estimates. If one model’s
predicted values are significant and the other is not, then that model is
determined to be the better predictor. As above, I estimate the Newey-
West (1987) standard errors with a 24-hour lag structure. As the indepen-
dent variables are estimated, I correct the errors using the method
suggested by Murphy and Topel (1985). The coefficient on the intertem-
poral model’s estimate is 0.92 (s.e. of 0.01). The static model’s coefficient
is 0.09 (0.01). While this is smaller in magnitude, it is still significant.
Therefore, neither model can be rejected.

28 These are the 5th and 95th percentiles of the distribution of price-cost
markups in the summer of 1998. All units in my sample are included in the
analysis. I estimate the kernel regression with Stata’s kernregl command.
The command computes the Nadaraya-Watson nonparametric regression.

TABLE 2.—SUMMARY OF INTERTEMPORAL COMPETITIVE MODEL ESTIMATION

DEPENDENT VARIABLE: ELECTRICITY OUTPUT BY UNIT AND HOUR

AVERAGE OF THE COEFFICIENTS, STANDARD ERRORS, AND MARGINAL EFFECTS OVER 130 UNITS

Variable
Average of
Coefficients

Average of
Std. Errors

# of Coefs.
Significant

Marginal
Effects

fixed effect 122.83 2.40 126
pcm positive 26.76 3.45 101
pcm 	0.06 0.27 47 	0.05
pcm2 (times 1,000) 	0.60 3.21 37
pcm3 (times 1,000) 0.00 0.01 33
pcm4 (times 106) 	0.01 0.02 30
pcm5 (times 109) 0.00 0.01 28
pcmlag 0.44 0.19 96 0.46
pcmlag2 (times 1,000) 	4.02 2.44 80
pcmlag3 (times 1,000) 0.01 0.01 64
pcmlag4 (times 106) 	0.02 0.01 63
pcmlag5 (times 109) 0.01 0.01 59
pcmlead 1.23 0.19 121 1.27
pcmlead2 (times 1,000) 	11.90 2.41 114
pcmlead3 (times 1,000) 0.04 0.01 109
pcmlead4 (times 106) 	0.05 0.01 106
pcmlead5 (times 109) 0.02 0.01 102
avepcm 	0.04 0.34 21 1.41
avepcm2 (times 1,000) 	14.19 18.34 31
avepcm3 (times 1,000) 0.47 0.42 30
avepcm4 (times 106) 	3.98 3.63 43
avepcm5 (times 109) 10.00 10.09 45
avepcmlag 0.76 0.29 44 0.42
avepcmlag2 (times 1,000) 	13.99 17.18 27
avepcmlag3 (times 1,000) 0.11 0.40 25
avepcmlag4 (times 106) 	0.21 3.46 24
avepcmlag5 (times 109) 	0.50 9.53 25
avepcmlead 0.19 0.29 18 1.34
avepcmlead2 (times 1,000) 	17.49 17.14 21
avepcmlead3 (times 1,000) 0.38 0.40 20
avepcmlead4 (times 106) 	2.88 3.40 27
avepcmlead5 (times 109) 7.31 9.36 31

Notes: Each unit-specific regression includes a constant and an indicator variable of positive current price-cost markups (pcm). The other variables are estimated as fifth-order polynomials. pcmlag is last hour’s
pcm, and pcmlead is next hour’s pcm. avepcm is the daily average pcm. avepcmlag is yesterday’s average pcm, and avepcmlead is tomorrow’s average pcm. The unit fixed effect is also shown. The model’s R-squared
is 0.81.
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increase, the average utilization rate rises slowly from 0.2 to
0.8. The intertemporal model (the dashed, dark gray line)
closely fits observed behavior. In contrast, the static com-
petitive benchmark analysis model assumes that units do not
operate if markups are negative and operate at capacity
when price exceeds marginal costs. This static model is
depicted with the light gray line. This figure suggests that
intertemporal constraints do matter in firms’ production
decisions. By failing to account for these constraints, the
static model is a poor predictor, on average, of actual
production.

The intertemporal model also is a better predictor of
when power plants start up. Pre-restructuring, the average
number of times a unit in my sample started each month was
5.09.29 Over this period, the intertemporal model predicts
4.78 starts per month, while the static model predicts ap-
proximately twice as many (11.76 per month). To address
the implied start-up costs of these models, I use a revealed
preferences argument. If a firm opts to shut down and restart
a unit, it must be the case that the unit’s start-up costs are no
larger than the profits earned (in expectation) when running.
Using the predicted and actual output decisions for the N
units in my sample over the T hours of the pre-restructuring
period, I calculate the average producer surplus per start:

�
i�1

N �
t�1

T
�Pt � cit� � � xit � Sit�

�
i�1

N �
t�1

T f� xit � Sit�
, (13)

using the notation from equations (3) and (4). The average
surplus is an upper bound on the implied start-up costs. For

the units in my sample, an engineering model (Kahn, 2000)
assumes an (unweighted) average start-up cost of $1,821.
For the pre-restructured period, the average surplus per start
is $1,666 using actual production data; $1,740 using the
intertemporal model; and $820 using the static model. The
actual average surplus is double that of the static model,
while the intertemporal model is a close proxy.

B. Comparing Output Predictions by Fuel Type

Another interesting comparison examines which types of
power plants operate under these alternative models. Coal
units, which are primarily used for baseload and “shoulder”
hour production, typically have larger start-up costs than oil
and natural gas fired units. Seeing differences in types of
generating units could provide further evidence of the im-
portance of intertemporal constraints. Furthermore, from an
environmental perspective, there may be significant conse-
quences as to whether coal, oil, or natural gas plants are
operating.

By fuel type, I compare actual production with the pro-
duction estimates of both models for the pre-restructuring
period. In aggregate, production levels are similar.30 By fuel
type, the intertemporal model predicts output levels similar
to actual production levels: coal (	0.1%) is used slightly
less, while oil (2.5%) and natural gas (2.7%) are used
slightly more. In contrast, the static model overstates the use
of coal (9.4%), and vastly understates the use of oil
(	46.1%) and natural gas (	64.2%).31

VII. Measuring Aggregate Welfare Effects

Intertemporal constraints may substantially affect output
decisions and lead the static model to overestimate welfare
loss. Here, I measure welfare loss based on direct produc-
tion costs, namely the variable costs excluding start-up
costs. During peak hours, intertemporal constraints will lead
to units with moderate marginal cost of production not
starting. This will require units with high marginal costs of
production to operate, increasing the direct production
costs. In contrast, during the middle of the night, intertem-
poral constraints will lead to moderate cost units operating
at a loss but avoiding start-up costs the next morning.

In measuring price-cost margins, BBW argue that these
intertemporal biases are potentially offsetting. Some hours
intertemporal constraints increase marginal costs, while in
other hours these constraints decrease the costs. However, in
the case of measuring welfare, the static model will always
overstate welfare losses in competitive markets. If firms

I define the number of equally spaced points to be 30 and use an
Epanechnikov weight function.

29 A start is defined as zero production in the previous hour and
production of at least one MWh both in the current hour and in the
following hour.

30 This is not surprising given the methods used to estimate the inter-
temporal model and to construct the static model.

31 For both models, coal is used even more after restructuring, while oil
and gas are used even less. See Mansur (forthcoming) for an analysis of
the environmental consequences of firms’ exercising market power in the
PJM market after restructuring.

FIGURE 3.—GOODNESS-OF-FIT COMPARISON OF UTILIZATION

RATES ACROSS PRICE-COST MARKUP
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deviate from the static model’s least-cost dispatch in any
way, then variable production costs will necessarily in-
crease.

In this market, short-run welfare loss only results from
production inefficiencies. I compare the total variable costs
of actual production (qit) with the total variable costs of the
competitive counterfactual estimates using both the static
(q̂*it) and intertemporal (q̂it) models. As in section III, I
assume variable costs to be a linear function: citqit. For a
sample of T hours and N units in PJM, I measure the welfare
effects (�W*, �Ŵ) to be

�W* � �
t�1

T �
i�1

N

cit � �qit � q*it�, and (14)

�Ŵ � �
t�1

T �
i�1

N

cit � �qit � q̂it�. (15)

Note that this measure of welfare does not directly
account for any changes in start-up costs or other intertem-
poral constraints.

In order to place bounds on the amount of deadweight
loss associated with exercising market power in this restruc-
tured electricity market, I estimate welfare loss using both
actual prices and counterfactual competitive price estimates.
Actual prices exceeding those of a competitive equilibrium
result in too much production and therefore higher produc-
tion costs, placing a lower bound on the welfare loss.
Conservative estimates of competitive prices result in low
prices, resulting in too little production. This places an
upper bound on the welfare loss estimate.

A. Welfare Effects Given Actual Prices

First, I measure lower bounds of the welfare estimates
using actual prices. Table 3 examines both the welfare

implications of restructuring and the importance of inter-
temporal constraints in measuring these welfare effects. The
generating units in my sample actually produced 72 million
MWh in the summer of 1998 and 68 million MWh in the
following summer. In 1998, the actual production costs
totaled $1.33 billion. In 1999, these costs increased by 13%
to $1.50 billion. These costs are compared with those of
both the static and intertemporal models.

The predictions of q*it that are based on the static competitive
benchmark analysis method imply substantial welfare loss
from restructuring. In the summer of 1999, the static model’s
predicted costs equaled $1.33 billion, implying that production
inefficiencies (�W*) totaled $173 million. Welfare losses were
13% of the competitive production cost estimates. However,
this method also predicts losses even before restructuring. For
1998, this static model’s predictions of variable production
costs were only $1.21 billion. This is $118 million, or 10%, less
than actual production costs. This model is simulated and
therefore, conditional its assumptions, there are no standard
errors for these calculations.

One way to account for intertemporal constraints is to treat
the pre-restructuring static model estimates as a control group.
Assuming that the welfare loss estimates in 1998 resulted
solely from the bias of ignoring these constraints, the welfare
effects from restructuring-related market imperfections equal
the change in total welfare losses from 1998 to 1999, or $55
million. Note that this calculation provides an accurate mea-
sure of the welfare effects only if the bias is constant over time.
However, in most cases, demand and cost shocks will impact
this bias. Furthermore, this method requires a control period
when prices are assumed to be determined competitively.

The second method of predicting competitive production,
q̂it, is based on the intertemporal model. Recall that this
reduced-form method does not impose an equilibrium con-
straint. Nevertheless, the predicted output is similar to
actual output given the observed price-cost markups.

TABLE 3.—WELFARE IMPLICATIONS OF PRODUCTION INEFFICIENCIES, PRE- AND POST-RESTRUCTURING USING ACTUAL PRICES

Type Pre- Post- Change Percentage

Actual Outcomes
Output 71.8 67.7 	4.1 	6%
Average variable costs 18.46 22.15 3.70 20%
Total variable costs 1,325 1,499 173.4 13%

Static Model
Output 71.8 67.7 	4.1 	6%
Average variable costs 16.82 19.60 2.78 17%
Total variable costs 1,207 1,326 118.5 10%
Deadweight loss 117.8 172.8 54.9 47%
DWL share of comp. costs (9.8%) (13.0%)

Intertemporal Model
Output 72.0 67.7 	4.3 	6%
Average variable costs 18.49 21.50 3.01 16%
Total variable costs 1,331 1,456 124.9 9%
Deadweight loss 	6.0 42.6 48.6
(Standard errors) (0.2) (11.2) (11.2)
DWL share of comp. costs (	0.4%) (2.9%)
DWL ratio (intertemp./static) 	5% 25%

Notes: Output is reported in millions of MWh. Average variable costs are in $/MWh. Total variable costs and deadweight loss are reported in millions of dollars.
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In the summer of 1998, the intertemporal model’s total
variable cost estimates equaled $1.33 billion, just $6 million
above actual costs. Note that this is not surprising given that
the coefficients are estimated using these pre-restructuring
data. However, in 1999, the intertemporal production esti-
mates were $1.46 billion. These cost differences imply
production inefficiencies ���Ŵ) of $43 million, or 3%, after
restructuring. I compute standard errors on this welfare loss
measure based on the errors from section VI.32 The standard
error on the production inefficiencies in 1999 is $11 million.
In each year, the intertemporal model predicts less welfare
loss than the static model.

Relative to wealth transfers, the intertemporal model’s
estimates of deadweight loss are small. Mansur (2007)
estimates that the costs of procuring electricity from the
PJM spot market during the summer of 1999 exceeded the
estimated procurement costs of a perfectly competitive
market by $182 million. The spot market accounts for only
10% to 15% of all sales. An additional 30% of electricity is
sold through bilateral contracts.33 If these contracts reflect
markups similar to those in the spot market, then the total
procurement costs increase by $676 million.

I assert that firms behaved competitively before restruc-
turing in 1998. Therefore, I attribute most of the welfare

loss that the static model predicts for 1998 to be actual
production costs that result from intertemporal constraints.
Of these $118 million in variable costs, at most 17% can be
attributed to start-up costs. As noted by BBW, an upper
bound on the share of these variable costs that may be
attributed to start-up costs is the amount that firms actually
spent starting up. The sampled units’ actual number of starts
fell from 4,213 (in the summer of 1998) to 4,081 (in the
summer of 1999). Using data on start-up costs from Kahn
(2000), the cost of these observed starts totaled $21.6
million in 1998 and $20.4 million in 1999. These findings
suggest that other intertemporal constraints, like ramping
rates and minimum run times, also affect firms’ production
decisions.

B. Welfare Effects Given Competitive Prices

If firms did set high prices, then a competitive counter-
factual requires price estimates from a competitive model.
Furthermore, the higher observed prices will result in
greater predicted production post-restructuring than would
have occurred under competitive prices. Appendix A de-
scribes how I construct counterfactual competitive prices
that are likely to provide an upper bound on these costs.

Table 4 exhibits the welfare results using these predicted
prices. The predicted prices after restructuring average $32/
MWh in contrast to the $38/MWh average of observed
prices. These lower prices resulted in less production by all
firms. The predicted output totals 65.4 million MWh over
the summer of 1999, 2.3 million less than observed. This
reduction in output means that firms incurred fewer variable
costs. These costs total only $1,394 million using the inter-
temporal model, or $105 million below the actual costs.

32 First, I compute the errors on the predicted output for each unit and
hour. I multiply these standard errors by the marginal cost of production
and square the product. This is the measure of variance for the variable
costs of each unit and hour. Finally, I sum across these variances for all
units and hours in a summer. The square root of this sum equals the
standard error of the total variable costs. For 1998, the standard errors are
0.2 million.

33 In a personal communication, Joe Bowring of the Market Monitoring
Unit estimated this level of contracts. In addition, 10% to 15% of supply
comes from spot market purchases, 1% to 2% from imports, and the
remaining 53% to 59% is self-supplied by firms.

TABLE 4.—WELFARE IMPLICATIONS WITH PREDICTED PRICES, PRE- AND POST-RESTRUCTURING USING COUNTERFACTUAL COMPETITIVE PRICE ESTIMATES

Type Pre- Post- Change Percentage

Wholesale Prices
Actual 26.05 37.97 11.93 46%
(standard deviation) (43.47) (101.00) (57.53) 132%
Estimated 26.05 31.53 5.48 21%
(standard deviation) (43.47) (56.98) (13.51) 31%

Actual Outcomes
Output 71.8 67.7 	4.1 	6%
Average variable costs 18.46 22.15 3.70 20%
Total variable costs 1,325 1,499 173.4 13%

Static Model
Output 72.0 65.4 	6.6 	9%
Average variable costs 16.60 19.01 2.42 15%
Total variable costs 1,195 1,243 48.8 4%
Deadweight loss 130.6 255.2 124.6 95%
DWL share of comp. costs (10.9%) (20.5%)

Intertemporal Model
Output 72.0 65.4 	6.6 	9%
Average variable costs 18.49 21.31 2.82 15%
Total variable costs ($ millions) 1,331 1,394 62.6 5%
Deadweight loss 	6.0 104.8 110.8
DWL share of comp. costs (	0.4%) (7.5%)
DWL ratio (intertemp./static) 	5% 41%

Notes: Prices are in dollars per MWh. Output is reported in millions of MWh. Average variable costs are in $/MWh. Total variable costs and deadweight loss are reported in millions of dollars.
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This is 7.5% of the predicted costs, more than double the
estimates in section VIIA.

Note that the 2.3 million MWh output shortfall must be
produced somehow. In other words, the excess demand
implies that the competitive prices, in equilibrium, must be
greater than these predicted ones. Therefore, the $105 mil-
lion provides an upper bound on the welfare loss.

Similarly, the static model shows increases in welfare
losses. For comparison purposes, I solved the static model
such that the aggregate amount produced equals the amount
produced in the intertemporal model (versus actual produc-
tion). The total variable costs of $1,243 million in 1999 are
$256 million less than the observed costs. The same caveat
as with the intertemporal model applies here. That said, the
upper bound of welfare losses using the static model is 21%
of estimated costs after restructuring.

I conclude that the welfare losses are greater with the
predicted prices than with actual prices. However, the in-
tertemporal model’s losses are still $100 million less than
those of the static model. In other words, the static model
continues to exhibit substantial biases. I find qualitatively
similar results using several other measures of price.34

C. Response of Nonmodeled Firms

Next, I examine how other firms that are not directly
modeled would change behavior given the alternative pre-

34 These alternative prices include the p� t price estimates described in
appendix A without the additional error terms, the price estimates multi-
plied by a mean-preserving variable that increases the variance by a
uniform amount, price estimates from a GARCH model, and competitive
price estimates based on the static model from Mansur (2007).

TABLE 5.—OUTPUT PRODUCTION AND WELFARE IMPLICATIONS BY FIRM AND MODEL, PRE- VS. POST-RESTRUCTURING, USING ACTUAL PRICES

Panel A: Actual Outcomes

Firm

Output Total Variable Costs

Pre- Post- Change Percentage Pre- Post- Change Percentage

Public Service 3,791 4,213 422 11% 95 137 42.8 45%
PECO 3,047 2,728 	319 	10% 66 73 6.9 10%
GPU, Inc. 19,208 18,106 	1,102 	6% 295 349 54.7 19%
PPL, Inc. 13,344 10,752 	2,592 	19% 258 244 	14.3 	6%
Potomac 11,633 12,183 550 5% 244 287 43.0 18%
Baltimore 8,772 8,700 	72 	1% 157 158 1.8 1%
Delmarva 3,522 3,129 	393 	11% 77 87 9.8 13%
Atlantic City 1,152 1,235 83 7% 29 41 12.1 42%
Other 7,320 6,613 	707 	10% 106 122 16.7 16%
Total 71,789 67,659 	4,130 	6% 1,325 1,499 173.4 13%

Panel B: Intertemporal Model Estimates

Firm

Output Total Variable Costs

Pre- Post- Change Percentage Pre- Post- Change Percentage

Public Service 3,828 3,259 	569 	15% 96 104 8.7 9%
PECO 3,096 2,883 	213 	7% 67 74 6.8 10%
GPU, Inc. 19,213 18,033 	1,180 	6% 295 346 50.9 17%
PPL, Inc. 13,362 12,373 	989 	7% 259 280 20.9 8%
Potomac 11,701 11,331 	370 	3% 246 254 8.2 3%
Baltimore 8,780 8,785 5 0% 157 158 0.9 1%
Delmarva 3,529 3,131 	398 	11% 77 81 4.5 6%
Atlantic City 1,160 1,053 	107 	9% 29 35 5.6 19%
Other 7,319 6,811 	508 	7% 106 124 18.2 17%
Total 71,988 67,659 	4,329 	6% 1,331 1,456 124.7 9%

Panel C: Static Model Estimates

Firm

Output Total Variable Costs

Pre- Post- Change Percentage Pre- Post- Change Percentage

Public Service 2,650 2,030 	620 	23% 56 58 2.0 4%
PECO 3,653 2,699 	954 	26% 74 61 	12.9 	17%
GPU, Inc. 20,431 18,813 	1,618 	8% 301 349 47.9 16%
PPL, Inc. 13,697 11,679 	2,018 	15% 238 245 7.0 3%
Potomac 10,444 11,874 1,430 14% 197 233 36.4 18%
Baltimore 8,931 9,457 526 6% 148 160 12.2 8%
Delmarva 3,076 2,497 	579 	19% 62 61 	1.0 	2%
Atlantic City 657 411 	246 	37% 16 13 	2.6 	16%
Other 8,245 8,198 	47 	1% 116 145 29.4 25%
Total 71,784 67,658 	4,126 	6% 1,207 1,326 118.5 10%

Notes: Output is measured in GWh’s (1,000s of MWh) and total variable costs are measured in millions of dollars.
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dicted prices from section VII B. If actual prices exceed
those of a competitive market, then not only would the
modeled firms have produced less in a competitive regime,
but so would those power plants that are not directly
modeled, including imports. Appendix B discusses how I
estimate the supply function and variable costs for these
nonmodeled firms.

Both pre- and post-restructuring, the nonmodeled firms
are more price sensitive during peak hours. The implied
average elasticities pre-restructuring are 0.19, during peak
hours, and 0.13 off-peak (and only weakly significant).
Post-restructuring, the elasticities are even smaller: 0.08 on
peak and 0.06 off-peak (and insignificant).

The actual output of these firms increased by 7.7 million
MWh from the summer of 1998 to the summer of 1999.
However, even with the predicted prices, the firms increase
output by 7.2 million MWh. In other words, with inelastic
supply from these nonmodeled firms, there is not much
difference in their production decisions even when the
predicted prices are substantially lower than the actual ones.

Given the modest response by these firms, the additional
welfare effect is only $32 million. Note that these welfare
effects are the same for both the intertemporal and the static
model. With a more complex intertemporal model that
estimates equilibrium competitive prices, one could com-
pare that approach’s prices with the static model’s prices.
However, as BBW note, intertemporal constraints both bias
their price simulations upwards and downwards in different
situations. Therefore, it is not clear for which model the
welfare loss would be greater given my nonmodeled firms’
supply function.

VIII. Firm-Level Analysis

Next, I examine whether these welfare effects are con-
sistent with the incentives of firms. Table 5 compares the
actual and estimated production and welfare loss of each of
the major firms in PJM before and after restructuring. From
1998 to 1999, PECO and PPL reduced actual output at their
units in my sample by 10% and 19%, respectively. The
intertemporal model also predicts a reduction in output, but
only of 7% for each firm.

The observed output for most of the other firms was
similar to that predicted by the intertemporal model. How-
ever, PSE&G did increase production substantially. Rather
than reduce output by 15% as my model predicts, it in-
creased production by 11% from the summer of 1998 to the
summer of 1999. As discussed in section IIB, this is also
consistent with the firm’s incentives.

For the oligopolists, PECO and PPL, figure 4 shows the
goodness-of-fit comparison of utilization rates across price-
cost markups. I smooth the data using the same kernel
regression method as the previous figure. Unlike figure 3,
this figure shows the relationship for both the pre- and
post-restructuring summers. In the pre-restructuring period,

the intertemporal model “supply” function is similar to the
observed. However, after restructuring, these firms pro-
duced less than predicted for a given markup.

In the bottom panel of table 5, note that the static model
predicts much larger reductions for some firms. For exam-
ple, based on the static model’s estimates post-restructuring,
one might conclude that GPU and Baltimore Gas & Electric,
as well as PPL, produced less than would be expected given
the observed prices. For either the static or intertemporal
model, PSE&G produced more after restructuring than
predicted.

Table 5 also reports the welfare effects of these produc-
tion distortions. As with production, PSE&G’s variable
costs were much greater in 1999 than predicted. In contrast,
PPL’s costs were substantially lower. Overall, the oligopo-
lists’ actual production costs were $37 million less than
those predicted by the intertemporal model. In contrast,
actual production costs were $79 million greater for the
other firms.

These firm-level effects are relatively robust to the coun-
terfactual competitive price estimates. Table 6 reports the
firm-level output and welfare effects for the intertemporal
and static models using the predicted prices. The compari-
son with actual behavior is more difficult to make as
aggregate production is less than the observed with these
predicted prices. Nevertheless, PPL produced less than even
that suggested by the intertemporal model using these coun-
terfactual prices. With these prices, the oligopolists’ actual
production costs were $17 million less than those predicted
by the intertemporal model, while they were $121 million
greater for the other firms.

IX. Conclusions

The competitive benchmark analysis method for measuring
competition in restructured wholesale electricity markets has

FIGURE 4.—FIT COMPARISON OF UTILIZATION RATES ACROSS PRICE-COST

MARKUP FOR STRATEGIC FIRMS (PECO AND PPL), PRE-RESTRUCTURING

(SUMMER 1998) AND POST-RESTRUCTURING (SUMMER 1999)
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identified market failures in many markets. This static method
ignores intertemporal constraints such as the cost of starting a
power plant. This may result in competitive price simulations
that are biased upwards in some hours and downwards in
others. While the measurement error of this simplification may
be partially offsetting in measuring price, it will overstate
actual welfare loss due to changes in production costs (which
ignore changes in start-up costs). In other words, if production
constraints bind, then these production costs will increase. For
example, I find that—even in the summer before restructur-
ing—the actual variable costs of production were 10% above
the competitive counterfactual costs. After restructuring, the
welfare loss is 13% to 21% of production cost estimates.

In this paper, I develop a measure of competitive produc-
tion decisions to estimate welfare while accounting for

production constraints. Relative to the static competitive
benchmark analysis technique, my model predicts produc-
tion behavior more accurately prior to restructuring. Given
that firms have exercised market power, I develop a coun-
terfactual set of prices that are consistent with competitive
behavior. Comparing actual production costs with these
competitive production cost estimates for the summer after
restructuring, I estimate that actual costs exceeded compet-
itive estimates by only 3% to 8%, substantially less than the
estimates using the static technique.

The paper also examines whether these welfare effects
are consistent with firms’ incentives. Two PJM firms had
incentives to increase prices in the summer of 1999. I find
that these strategic firms did produce less, while the other
pricetaking firms produced more. The welfare effects are

TABLE 6.—OUTPUT PRODUCTION AND WELFARE IMPLICATIONS BY FIRM AND MODEL, PRE- VS. POST-RESTRUCTURING, USING COUNTERFACTUAL COMPETITIVE

PRICE ESTIMATES

Panel A: Actual Outcomes

Firm

Output Total Variable Costs

Pre- Post- Change Percentage Pre- Post- Change Percentage

Public Service 3,791 4,213 422 11% 95 137 42.8 45%
PECO 3,047 2,728 	319 	10% 66 73 6.9 10%
GPU, Inc. 19,208 18,106 	1,102 	6% 295 349 54.7 19%
PPL, Inc. 13,344 10,752 	2,592 	19% 258 244 	14.3 	6%
Potomac 11,633 12,183 550 5% 244 287 43.0 18%
Baltimore 8,772 8,700 	72 	1% 157 158 1.8 1%
Delmarva 3,522 3,129 	393 	11% 77 87 9.8 13%
Atlantic City 1,152 1,235 83 7% 29 41 12.1 42%
Other 7,320 6,613 	707 	10% 106 122 16.7 16%
Total 71,789 67,659 	4,130 	6% 1,325 1,499 173.4 13%

Panel B: Intertemporal Model Estimates

Firm

Output Total Variable Costs

Pre- Post- Change Percentage Pre- Post- Change Percentage

Public Service 3,828 2,611 	1,217 	32% 96 87 	9.1 	9%
PECO 3,096 2,436 	660 	21% 67 63 	4.1 	6%
GPU, Inc. 19,213 18,370 	843 	4% 295 353 57.6 20%
PPL, Inc. 13,362 11,992 	1,370 	10% 259 271 11.9 5%
Potomac 11,701 11,126 	575 	5% 246 245 	0.9 0%
Baltimore 8,780 8,214 	566 	6% 157 146 	11.2 	7%
Delmarva 3,529 2,710 	819 	23% 77 71 	5.4 	7%
Atlantic City 1,160 965 	195 	17% 29 32 3.3 11%
Other 7,319 6,984 	335 	5% 106 126 20.6 19%
Total 71,988 65,408 	6,580 	9% 1,331 1,394 62.6 5%

Panel C: Static Model Estimates

Firm

Output Total Variable Costs

Pre- Post- Change Percentage Pre- Post- Change Percentage

Public Service 2,650 1,389 	1,261 	48% 56 39 	16.8 	30%
PECO 3,653 2,531 	1,122 	31% 74 54 	19.8 	27%
GPU, Inc. 20,431 19,081 	1,350 	7% 301 352 50.9 17%
PPL, Inc. 13,697 11,154 	2,543 	19% 238 227 	11.0 	5%
Potomac 10,444 11,393 949 9% 197 213 16.5 8%
Baltimore 8,931 9,380 449 5% 148 156 8.1 5%
Delmarva 3,076 2,026 	1,050 	34% 62 48 	13.7 	22%
Atlantic City 657 252 	405 	62% 16 8 	7.9 	49%
Other 8,245 8,196 	49 	1% 116 145 29.1 25%
Total 71,784 65,402 	6,382 	9% 1,207 1,243 36.3 3%

Notes: Output is measured in GWh’s (1,000s of MWh) and total variable costs are measured in millions of dollars.
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similarly distributed. Namely, for the oligopolists, actual
production costs were about 5% to 10% less than those
predicted by the intertemporal model. In contrast, actual
production costs were 7% to 11% greater for the pricetaking
firms. For these reasons, the welfare losses measured in this
paper are likely the result of firms’ exercising market power.

In conclusion, I find that intertemporal constraints result
in significant non-convexities in the costs of producing
electricity. This suggests that one should be cautious using
measures of welfare effects that ignore the firms’ dynamic
optimization problem. Finally, further research on modeling
strategic firms’ dynamic problem in these restructured mar-
kets may provide insight into firm behavior and help de-
velop better restructured markets.
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APPENDIX A

Predicted Prices

This appendix discusses how I predict prices that are consistent with
competitive behavior. I use an approach similar to the method that I use to
predict firms’ supply decisions (in section IV). Namely, I examine the
relationship between prices (pt) pre-restructuring and the quantity de-
manded. As in BBW, I focus on the demand for fossil supply by
subtracting the inframarginal production of hydroelectric and nuclear
power plants. Derived demand is perfectly inelastic and these nonfossil
generators are not likely to respond substantially to wholesale prices.
Thus, net demand (Dt

net) is assumed to be perfectly inelastic and the
quantity of net demand will not be correlated with the error term of prices.
Hence, ordinary-least-squares estimates are unbiased. I allow the coeffi-
cient on net demand to vary by hour-of-day i (as well as include
hour-of-day fixed effects) and use a ten-part piecewise linear spline
function (split by decile for each hour):

pt � �i � �
j�i��1

10

�i, j�i�Dt
net � et. (A1)

FIGURE A1.—ACTUAL PRICES AND FITTED VALUES FOR PRE- AND

POST-RESTRUCTURING

Notes: The fitted values are from a regression of price on demand (net of nuclear and hydroelectric
production) pre-restructuring, allowing the coefficient on demand to vary by hour and decile using a
piecewise linear function.
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The function is extremely flexible and fits the pre-restructuring data with
an R2 of 0.46.

I use these predicted coefficients to construct a second series of prices
for the post-restructuring period. As in section IV, this method requires a
common support. The range of net demand in the pre-restructuring
summer of 1998 was from 6,301 to 36,679 MW. The summer after
restructuring was quite hot. The net demand increased and the range was
6,997 to 39,841 MW. Thus, there are some predicted prices that are out of
sample.

Finally, the predicted prices are adjusted to reflect the actual variance
observed in 1998. Note from figure 3 that supply (the inverse of the
function shown) is highly nonlinear and, for positive price-cost markups,
the function is convex. Thus, by Jensen’s inequality, the supply at the
expected price will exceed the expected supply, particularly in high-
demand hours. In 1998, the variation of the unadjusted predicted prices
(p� t) is much lower than the variation of actual prices (29.5 and 43.5,
respectively).

In order to increase the variance, I use the residuals from the regression
(A1) based on the pre-restructuring data. First, I fit an AR(1) process for
the residuals:

êt � �êt	1 � ut, (A2)

and estimate �̂ of 0.72. Then I use a Monte Carlo simulation, drawing from
the sample distribution of ut and reconstruct a new series of ẽt, which I add
to p� t, to get the adjusted predicted prices for the post-restructuring period.
This is repeated hundred times. For each set of prices, I calculate the
welfare losses and report the mean. As with the main results, I use actual
prices for the pre-restructuring period.

For the summers of 1998 and 1999, figure A1 shows the actual and
predicted prices as a function of net demand. A kernel regression is used
to smooth over the thousands of prices. The largest difference between
actual and predicted prices is seen in the high-demand hours of 1999. It is
these hours when firms had the greatest ability to exercise market power
(Bushnell, Mansur, & Saravia, forthcoming).

My predicted prices provide an upper bound on the welfare effects for
both the intertemporal and static models. In addition to restructuring, the
summer of 1999 saw an increase in input prices for natural gas, fuel oil,
and sulfur dioxide. Furthermore, a new nitrogen oxides tradable permit
regulation began that year, which resulted in higher costs for many power
plants. The competitive pricing model focuses only on determining the
average supply function and, intentionally, does not include costs. This
will result in price estimates that are likely to be less than what a
competitive model would have observed because the cost increases are not
taken into account. Therefore, the actual prices and the predicted prices
provide bounds on the size of the production costs, and therefore welfare
effects, for both models.

APPENDIX B

Supply Response of Nonmodeled Firms

The quantity supplied by nonmodeled firms (qt
NM), including net im-

ports into PJM, will depend on price. I measure qt
NM as the amount of

demand not met by the firms in the sample:

qt
NM � Dt � �

i�1

130

qit. (B1)

To account for this price sensitivity, I use a method similar to that of
Bushnell, Mansur, and Saravia (forthcoming) and Mansur (2007). For a
given summer, I model net imports as a linear-log function of actual price
(P) in hour t:

qt
NM � �1ln�Pt� � Peakt � �2ln�Pt� � �1 � Peakt�

(B2)

� �
m�1

M

�mMonthmt � �Peakt � �
s�1

S

�sTempst � εt,

where Peakt indicates hours between 11 a.m. and 8 p.m. on weekdays,
Monthmt is an indicator variable for each summer month, and Tempst
measures temperature for bordering states.35 For hour t, the idiosyncratic
error term on net imports is εt. The data sources and model are further
described in Mansur (2007).

Prices are endogenous. I instrument using daily temperature variables
in states in PJM using the same functional form as described in footnote
35. Then, I interact each instrument with both Peakt and (1 	 Peakt). Note
that Mansur (2007) uses load as the instrument but—as I use load in my
definition of qt

NM—these alternative temperature instruments are used here.
Wald tests of joint significance suggest that these are strong instruments.
Separately for 1998 and 1999, table B1 reports the two-stage least squares
coefficient and standard error estimates for �1 and �2 that account for
serial correlation and heteroskedasticity.36 The elasticity at the average is
the coefficient divided by the average supply of nonmodeled firms. I
integrate the supply function and obtain variable-cost estimates in order to
measure welfare.

35 The temperature variables for bordering states are modeled as qua-
dratic functions for cooling degree days (degrees daily mean above 65°F)
and heating degree days (degrees daily mean below 65°F). As such, Tempst
has four variables for each of the four states. These data are state averages
from the National Oceanic and Atmospheric Administration (NOAA) Web
site’s daily temperature data.

36 First I estimate the IV coefficients assuming i.i.d. errors in order to
calculate an unbiased estimate of �, the first-degree autocorrelation pa-
rameter. After quasi-differencing the data, I reestimate the IV coefficients
while using the White technique to address heteroskedasticity.

TABLE B1.—NONMODELED FIRMS SUPPLY FUNCTION, PRE- AND POST-
RESTRUCTURING DEPENDENT VARIABLE: HOURLY NONMODELED FIRMS’

QUANTITY SUPPLIED INTO PJM BY YEAR

Variable Pre- Post-

In(Price) � Peak 2,851.8*** (773.3) 1,372.6*** (525.4)
In(Price) � Off-Peak 1,657.8* (904.9) 841.5 (723.3)
R-squared 0.08 0.19
AR(1) coef. (�) 0.84 0.83
Sample size 4,330 4,341

Notes: Table presents 2SLS coefficients. First I estimate 2SLS and use the errors to correct for serial
correlation by estimating an AR(1) coefficient (�). Then I quasi-difference the data by calculating �x �
x(t) 	 � � x(t	1) for all data. I reestimate the 2SLS results using these quasi-differenced data. Robust
standard errors are given in parentheses. Significance is marked with (***) at the 1% level, (**) at the
5% level, and (*) at the 10% level. Regression includes month fixed effects, peak indicator (between
11 a.m. and 8 p.m. weekdays) and weather variables for bordering states (New York, Ohio, Virginia, and
West Virginia), which are modeled as quadratic functions for cooling degree days (degrees daily mean
below 65°F) and heating degree days (degrees daily mean above 65°F). In the first stage, I regress PJM
In(price) on the exogenous variables and instruments of daily weather for the states in PJM (Delaware,
Maryland, New Jersey, and Pennsylvania) with the same flexible form as the weather for bordering states.
The sample is from April 1 to September 30 for each year: pre-restructuring (1998) and post-restructuring
(1999).
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