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Abstract: Over the last twenty years, newly developed chemical sensor systems (so called 

“electronic noses”) have made odor analyses possible. These systems involve various types 

of electronic chemical gas sensors with partial specificity, as well as suitable statistical 

methods enabling the recognition of complex odors. As commercial instruments have 

become available, a substantial increase in research into the application of electronic noses 

in the evaluation of volatile compounds in food, cosmetic and other items of everyday life 

is observed. At present, the commercial gas sensor technologies comprise metal oxide 

semiconductors, metal oxide semiconductor field effect transistors, organic conducting 

polymers, and piezoelectric crystal sensors. Further sensors based on fibreoptic, 

electrochemical and bi-metal principles are still in the developmental stage. Statistical 

analysis techniques range from simple graphical evaluation to multivariate analysis such as 

artificial neural network and radial basis function. The introduction of electronic noses into 

the area of food is envisaged for quality control, process monitoring, freshness evaluation, 

shelf-life investigation and authenticity assessment. Considerable work has already been 

carried out on meat, grains, coffee, mushrooms, cheese, sugar, fish, beer and other 
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beverages, as well as on the odor quality evaluation of food packaging material. This paper 

describes the applications of these systems for meat quality assessment, where fast 

detection methods are essential for appropriate product management. The results suggest 

the possibility of using this new technology in meat handling. 

Keywords: meat; spoilage; electronic nose; sensor; quality control; machine olfaction; 

neural network 

 

1. Introduction 

 

The main sensory system used by humans to sense flavor is olfaction; therefore if the flavor of a 

particular substance is to be characterized, the use of smell can often provide us with suitable 

information [1]. In order to understand the operation of an “electronic nose” we must first analyse 

what is involved in “smelling” and therefore what constitutes a “smell”, i.e., an odor. Odorant 

molecules have some basic characteristics, the primary ones being that they are light (relative 

molecular masses up to approximately 300 Da), small and polar and that they are often hydrophobic. A 

simple odor, for example an alcohol, contains only one chemical component. A complex odor is a 

mixture of many different odorant molecules each in varying concentration; for example, the 

headspace of coffee is made up of hundreds or even thousands of different molecules. 

Significant progress has been made in the objective electronic registration and processing of 

information which is gathered subjectively by the human eye, ear, or touch senses. However, the 

present state of the art to record or to mimic electronically human olfaction and taste senses is 

characterized by completely inadequate and very preliminary approaches [2,3]. Based on  

Ziegler et al. [4], there are a variety of reasons for this. As one example, all attempts to compose 

complex odors by well defined amounts of a limited number of standard primary odors failed so far. 

Other reasons are the lack of an 'odorant vector space' and of a direct correlation between chemical 

structure and odor perception. Genetic differences of an estimated 1,000 olfactory receptor genes in 

humans influence the individual variations in odor perception. Furthermore, every person has unique 

experience helping to determine how to react to specific chemosensory events. 

The general sensation of odors in biology not only includes human odor sensation but also the odor 

sensation of animals in air and in water with their completely different sensitivity and selectivity 

patterns to detect chemical species in the gas and liquid state. Since we do not know details of odor 

perception in the various animals, the most general definition of a nose is a detection system to sense 

any molecule in the gas or liquid state. The odor patterns generated by such odorant detector systems 

evidently depend on their biological and biochemical architecture (see schematic Figure 1). These also 

depend on the individual training, learning, and preconditioning of the systems, on the  

environment, etc. 
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Figure 1. Human nose: schematic representation of ten different components in the signal 

cascade of the human nose to recognize odor molecules (indicated as “analytes”). The 

input from odorant binding proteins on the overall molecular recognition process is an 

active area of current research. As shown on the below of this figure, different stages is 

followed to determine an analyte, e.g., in number 2, sampling in human olfactory system is  

done by nose. 

 
 

The perception of volatile compounds by the human nose is of great importance in evaluating the 

quality of foods, cosmetics and numerous other items of everyday life. Therefore, it is not surprising 

that repeated efforts have been made over the years to introduce instruments operating on a similar 

principle as the human nose. These systems would in most cases not replace but complete conventional 

analyses of volatile compounds by sensory methods and by traditional analytical techniques. 

  

2. The Concept of Electronic Nose (E-nose) 

 

The term Electronic Nose is understood to describe an array of chemical gas sensors with a broad 

and partly overlapping selectivity for measurement of volatile compounds within the headspace over a 

sample combined with computerised multivariate statistical data processing tools [5]. The electronic 

nose has derived its name because it in several aspects tries to resemble the human nose. Human 

olfactory perception is based on chemical interaction between volatile odor compounds and the 

olfactory receptors (primary neurons) in the nasal cavity. The signals generated are transferred to the 

brain through synapses and secondary neurons and further led to the limbic system in the cortex where 

identification of odor takes place based on neural network pattern recognition. In principle, the primary 
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neurons correspond to the chemical sensors of the electronic nose with different sensitivity to different 

odors. By chemical interaction between odor compounds and the gas sensors the chemical state of the 

sensors is altered giving rise to electrical signals which are registered by the instrument analogue with 

the secondary neurones. In this way the signals from the individual sensors represent a pattern which is 

unique for the gas mixture measured and is interpreted by multivariate pattern recognition techniques 

like artificial neural network, the brain of the instrument. Samples with similar odors generally give 

rise to similar sensor response patterns and samples with different odors show differences in their 

patterns. When the sensor patterns for a series samples are compared, differences can be correlated 

with the perceived sample odor. 

As demonstrated in a paper by Haugen and Kvaal [6], the sensor array of an electronic nose has a 

very large information potential and will give a unique overall pattern of the volatiles. In principle, 

both the electronic and the human nose operate by sensing simultaneously a high number of 

components giving rise to a specific response pattern. However, there are two basic differences 

between the human and the electronic nose that should be kept in mind. The electronic nose has both 

large differences in sensitivity and selectivity from the human nose. The sensors of an electronic nose 

respond to both odorous and odorless volatile compounds. Taking these constraints into consideration 

in the choice of sensors used for these instruments it is possible to design an electronic nose with a 

response similar to the human nose for specific compounds. Still, the mechanisms involved will be 

fundamentally different. In principle, the electronic nose can be applied to any product that gives off 

volatiles with or without smell provided that this occurs within the sensitivity range of the sensors. As 

sensor technology plays a crucial role in reaching the desired analytical qualities, the following review 

concentrates on discussing the present status of sensor technology and statistical data analysis. 

Particular reference is then made to applications of electronic nose systems to meat. 

 

3. Sensor Array Technology 

 

An electronic nose comprises a sensor array using several “chemosensors” and a computer. The 

different types of chemosensors, especially odor sensors which have been employed within an e-nose 

are described in this section. 

A chemosensor is a device that is capable of converting a chemical quantity into an electrical signal 

and thus respond to the concentration of specific particles such as atoms, molecules, or ions in gases or 

liquids by providing an electrical signal. Chemosensors are very different from physical sensors. 

Although approximately 100 physical measurands can be detected using physical sensors, in the case 

of chemosensors this number is higher by several orders of magnitude. The types of chemosensors that 

can be used in an e-nose need to respond to odorous molecules in the gas phase, which are typically 

volatile organic molecules with different relative molar masses [3]. 

The ideal sensors to be integrated in an electronic nose should fulfill the following criteria [7]: high 

sensitivity towards chemical compounds, that is, similar to that of the human nose (down to  

10–12 g/mL); low sensitivity towards humidity and temperature; medium selectivity, they must respond 

to different compounds present in the headspace of the sample; high stability; high reproducibility and 

reliability; short reaction and recovery time; robust and durable; easy calibration; easily processable 

data output; small dimensions. 
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As the sensors are designed for industrial purposes, especially as on-line systems, a minimal 

working temperature with low power consumption, a high safety level, and low manufacturing costs 

present valuable advantages. Most manufacturers are looking for highly selective sensors. In the case 

of an electronic nose, every compound present in the gaseous phase should be detected by at least one 

sensor. If a new compound is added to a mixture, at least one sensor must detect this addition. The use 

of too many sensors leads to an over complex system with a large amount of unnecessary data. Various 

kinds of gas sensors are available, but only four technologies are currently used in commercialized 

electronic noses (Figure 2): metal oxide semiconductors (MOS); metal oxide semiconductor field 

effect transistors (MOSFET); conducting organic polymers (CP); piezoelectric crystals (bulk acoustic 

wave = BAW). 

Figure 2. Schematic diagrams of 5 different kinds of sensors. Caption: MOS = Metal oxide 

semiconductor; CP = Conducting polymer; BAW = Bulk acoustic wave; SAW = Surface 

acoustic wave; MOSFET = Metal oxide semiconductor field effect transistor.  

 
 

4. Analysis Techniques 

 

As can be deduced, a huge amount of data is generated at the input level of biological as well as 

biohybrid or artificial sensor systems. This requires complex data evaluation methods which will be 

characterized briefly in the following. 

In electronic noses pattern recognition methods are required for the qualitative analysis of odors or 

of different compounds present in a certain mixture and multicomponent analysis methods are required 

for the quantitative determination of one or more compounds in a mixture. In all chemometric 
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approaches experimental data are evaluated by a qualitative or quantitative link between output signals 

of an instrument and the chemical information (composition or concentration of analytes). This 

requires a comparison of the sensor outputs with previously recorded calibration data. These 

calibration data consist of measurements in which concentrations of pure analytes or mixtures of 

analytes are correlated with the corresponding sensor signals. This correlation is described by a 

calibration function which should make it possible to analyze unknown samples (containing only 

components included in the calibration) with sufficient accuracy (with small systematic errors) and 

reproducibility (with small standard deviations) concerning corresponding predictions. 

Multivariate data analysis, as demonstrated in Figure 3 generally involves data reduction, it reduces 

high dimensionality in a multivariate problem where variables are partly correlated (e.g., sensors with 

overlapping sensitivities), allowing the information to be displayed in a smaller dimension (typically 

two or three). Some information on the items and abbreviations shown are presented as follows.  

Figure 3. Classification scheme of the multivariate pattern analysis techniques applied to 

EN data. MLR (Multiple linear regression), PLS (Partial Least Square), PCA (Principles 

Component Analysis), CA (Cluster Analysis), DFA (Discrimination Functional Analysis), 

PCR (Principles Component Regression), SOM (Self Organizing Maps), MLP (Multilayer 

Perceptron), RBF (Radial Basis Function),… for more abbreviations, the reader is referred 

to Pearce et al. [3]. 

 
 

There are many multivariate techniques to choose from. A subset called pattern recognition (PARC) 

techniques is routinely used in electronic nose data analysis. The responses generated by an array of 

odor sensors may be processed using a variety of techniques. In Figure 4, where the basic data-

processing structure of an EN is presented, the array formed from the sensor outputs is pre-processed 

and normalized so that the modified response matrix can be fed into a PARC engine. 
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Figure 4. Basic architecture of a data processing system for an EN. 

 
 

The nature of a PARC engine is usually classified in terms of being parametric or nonparametric, 

and supervised or unsupervised. 

Parametric: A parametric technique, commonly referred to as a statistical approach, is based on the 

assumption that the spread of the sensor data can be described by a probability density function (PDF). 

In most cases, the assumption made is that the data follow a normal distribution with a constant mean 

and variance. These techniques try to find an underlying mathematically formulated relationship 

between system inputs, odor vectors and its outputs, classes or descriptors. 

Non-parametric: Non-parametric methods do not assume any specific PDF for the sensor data and 

thus apply more generally. This approach to multivariate data analysis has led to the fields of artificial 

neural networks (ANNS) and expert systems. 

Supervised: In a supervised learning PARC method, a set of known odors are systematically 

introduced to the EN, which then classifies them according to known descriptors or classes held in a 

knowledge base. Then, in a second stage for identification, an unknown odor is tested against the 

knowledge base, now containing the learnt relationship, and then the class membership is predicted. 

Unknown odor vectors are analyzed using relationships found a priori from a set of known odor 

vectors used in an initial calibration, learning, or training stage. The idea of testing a method using 

unclassified response vectors is well established and is often referred to as cross-validation. 

Unsupervised: For unsupervised learning, PARC methods learn to separate the different classes 

from the response vectors routinely, discriminating between unknown odor vectors without being 

presented with the corresponding descriptors. These methods are closer to the way that the human 

olfactory system works using intuitive associations with no, or little, prior knowledge.  

Linear/non-linear: The above multivariate analyses are all linear PARC methods where a model is 

calculated using linear combinations of input data [8]. Most sensors have a non-linear response versus 

concentration; however, these techniques work well if a low concentration of volatiles ensures an 
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approximately linear response. In addition, the use of pre-processing algorithms, such as averaging, 

linearization or normalization, improves the performance of these analytical techniques [9]. When high 

concentrations of volatile are measured, a non-linear PARC technique, such as ANN or RBF, would be 

more appropriate. Non-linear models usually need more parameters, since some of them are used to 

describe the shape of the non-linearity (more input data than linear models). The main advantage of 

such a method is flexibility, i.e. the ability to adjust to more complex data variations. However, caution 

is necessary when choosing model flexibility; this can be achieved by selecting the number of 

parameters. If too many parameters are taken into account, the calculated model will be over-flexible, 

fitting to all relevant data variations and unwanted sensor noise. The best method to avoid an over-

fitted model is to use training data to build a non-linear model, and validation data to test this model 

(cross-validation).  

 

4.1. Artificial Neural Network 

 

As shown in Figure 5, a neural network consists of a set of interconnected processing algorithms 

functioning in parallel. On a very simplified and abstract level, ANN is based on the cognitive process 

of the human brain. Mathematical functions, or neurons, link together to build a network which mimics 

the human nervous system [10].  

Figure 5. ANN architecture of e-nose. The first layer is called as gas sensor layer; the 

second, hidden layer; the last, output concentration layer. Signals are transferred from layer 

to layer and their values are decided by both the transfer function used by each neuron and 

the connection weights between two different neurons. 

 
 

A weight is randomly assigned to each neuron and then adjusted by means of an iterative or 

“learning” process, for example, error back-propagation, until the desired outputs are obtained. The 

resultant set of weights and functions is then saved as a “neural network”. Like CDA, ANN is a 

supervised method and so needs a minimum of known data to correctly train the system. If the number 

of available data is not sufficient an erratic result will be obtained [11]. Unlike other PARC methods, a 

neural network is a dynamic, self-adapting system that can modify its response to external forces using 

previous experience, offering a more flexible and, due to the parallelism, faster method of analysis. In 
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addition, it may more closely mimic mammalian neuron processing of odor stimuli. A well trained 

ANN is very efficient in comparing unknown samples to a number of known references.  

Referring to [4], the reason ANNs have become so attractive in a number of scientific disciplines 

seems to be twofold: First, they are an attractive approach to modeling parts of the biological nervous 

system, although ongoing research shows that this modeling is much too simplistic. But more 

important, ANNs are a powerful and relatively simple method for data driven pattern analysis, high 

dimensional function interpolation and time series prediction, which by different network design and 

different raining algorithms may be adapted for a large number of tasks. 

The main advantages of ANNs are: 

Trainability: ANNs may be trained from training patterns (examples) by automated learning 

procedures to fulfill their task, thus they can easily be adapted to new data. Parallelism: ANNs are 

inherently parallel and may be implemented on parallel hardware, from workstation clusters over 

MIMD and SIMD computers up to neurocomputers. 

Simplicity: The network structure and learning algorithms of the most popular ANNs may easily be 

described and understood. Many rival methods require a deeper knowledge of the underlying 

mathematics to apply them properly. 

Noise tolerance: if trained to this aim (but only then!), ANNs may show a large degree of 

robustness against noise or corrupted input data. 

Automatic generalization: ANNs may extract the typical characteristics of the input data, thus 

supplying missing features with default values and offering automatic generalization to  

common features. 

High performance: for pattern recognition tasks, ANNs rival and often surpass the best known 

conventional (e.g., statistical) techniques, especially for problems with a large number of training data.  

However, ANNs also possess a number of inherent disadvantages: 

Dependence on learning: NN knowledge may not easily be augmented or exchanged, except by 

learning algorithms. There is no exchangeable or extendible knowledge base as in expert systems. 

Black box characteristics: Despite the theoretical analyses in the last years, which yielded capability 

results for networks classes, a trained neural network of moderate size is still not as easily analyzed as 

other representations (rules, frames, logic, and fuzzy rules). 

Problems with sequential reasoning: Logical reasoning can be done in principle with ANNs, but 

here other, symbolic AI approaches, are much better suited. 

Time-consuming learning: Many NN learning algorithms are very time-consuming, especially if the 

network size and the number of training patterns is large.  

 

4.2. Graphical Methods for Exploratory Analysis 

 

Sensor arrays may generate a large volume of high dimensional data; it is often a challenge to 

extract useful information from the data to solve the problem under investigation. Graphical methods 

are a simple exploratory way of analysing data, some methods may plot the high-dimensions produced, 

whilst others reduce the data to two or three dimensions for visual analysis.  



Sensors 2009, 9             
 

6067

Bar charts: These are a simple and useful way of visualizing the sensor response patterns that are 

produced by a sensor array. The sensor responses are plotted as a height value with a small width, next 

to each other. 

Individual or the mean of several samples are plotted for each analyte. An estimation of the 

effectiveness and composition of the array may then be made based on the patterns produced. 

Walmsley et al. [12] used bar charts of the response of 4 MOS sensor array to show that the patterns 

produced were different for each of 6 analytes. McAlernon et al. [13] used 3D bar charts, PCA and 

multivariate analysis of variance (MANOVA) to interpret the frequency change patterns of an array of 

8 TSM sensors for o-xylene, toluene, dodecane and tetradecane. Park and Zellers [14] used bar charts 

to show the relative response patterns of polymer coated SAW sensors to toluene and 

trichloroethylene. Groves and Zellers [15] analysed solvent vapours in breath and ambient air with an 

array of four polymer coated SAW sensors. Time response curves and bar charts were used to show 

the relative response patterns for 16 solvents. The bar charts provided a visual indication of the 

discriminating capability of the array to the various solvents. 

Polar plots: Polar plots or radar plots a.k.a Star plots [16] display multivariate dimensional data in 

two dimensions for exploratory analysis. Axes for each feature radiate from the origin at equal angles 

with the magnitudes of the features joined by straight lines. Figure 6 shows a typical plot for a 6 sensor 

array. Some pre-processing of the data may exaggerate small difference in shapes so that they may be 

more easily seen.  

Figure 6. A polar plot of sensor response data. 

 
 

For example a reference data set may be subtracted from the feature vectors and rescaled to 

emphasis the differences. Brezmes et al. [17] used polar plots to compare both the difference between 

repeated measurements and measurements of different aromatic species; cinnamon, red pepper, thyme, 

pepper and nutmeg. The method showed large differences in the shapes for different species, and 

possible poor reproducibility by smaller differences between repeated runs of the same groups. 

Jonsdottir et al. [18] characterised the flavors of ripened cod roe by polar plots utilising the results of a 

sensory panel. From this an array of 4 EC sensors were used to examine the same cod roe samples. 

Gan et al. [19] characterised responses to palm olein and vegetable oils from a virtual array of SAW 
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sensors, based on a single sensor responding to the analyte being desorbed from a GC column trap, 

plotting the raw frequency shift as amplitude and the time as the angle. PCA scores were plotted to 

demonstrate the separation achieved but no classification algorithm was tried.  

Hierarchical cluster analysis (HCA): These techniques attempt to separate data into specific  

groups [20], based on a similarity measure. Initially each data point represents its own cluster, then the 

threshold for the decision when to declare two or more objects to be members of the same cluster is 

lowered incrementally. As a result more and more objects are linked together and aggregated into 

larger and larger clusters of increasingly dissimilar elements. Finally, all objects are joined together. 

The result of hierarchical clustering methods may be displayed as a dendrogram, as shown in Figure 7; 

the vertical axis denotes the similarity. With classification set at a similarity level of 50%, the data has 

been classified into 3 groups. There are many types of similarity linkage, the three most common are 

single linkage (nearest neighbour), the distance between two clusters is determined by the distance of 

the two closest objects in the clusters. 

Figure 7. Dendogram illustrating HCA data clustering. 

 
 

Complete linkage (furthest neighbor), the distances between clusters is determined by the greatest 

distance between any two objects in the different clusters. Group average, the distances between 

clusters is determined by the mean distance of objects in different clusters. 

Sammon mapping: This is a nonlinear mapping (NLM) technique [21] that attempts to preserve the 

structure of the data in the projected space from the original high dimensional space by maintaining the 

distances between points under projection [22]. The distance metric usually employed is the Euclidean, 

although others have been used [23]. If the distance between two points i and j in the input space of 
vector x is ),(*

jiij xxdd  and the distance between the points in projected space of vector y is 

).,( jiij yydd   Sammon suggested looking for values of y to minimize an error function called the 

mapping stress E: 
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Sammon used a method of steepest descent for (approximate) minimisation of E but there are many 

local minima on the error surface and it is unavoidable for the algorithm to become stuck. The 

algorithm is usually run several times with different initial con- figurations and the outcome with the 

lowest stress chosen. There is a high computational load, which is O(n2). At every iteration n(n-1)/2 

distances and error derivatives must be calculated. As n the number of patterns increases the 

computational requirements increase quadratically. 

 
5. Applications to Meat 

 

Meat, especially beef, reaches an acceptable state for consumption after a long period of storage at 

low temperature, a storage procedure known as aging. During storage, not only aging but also bacterial 

spoilage can occur. Consequently, to obtain appropriately aged meat, it is desirable to monitor the 

progress of aging and bacterial spoilage simultaneously. For this purpose, a work entitled ''direct 

evaluation of meat spoilage and the progress of aging using biosensors" was planned by  

Yano et al. [24]. They developed a direct sensing method for monitoring meat quality. The sensor is 

composed of an Ag/AgCl electrode and a platinum electrode on which putrescine oxidase or xanthine 

oxidase were immobilized to estimate bacterial spoilage or the progress of aging, respectively. A 

potential-step chronoamperometric method was applied in which the potential was stepped from  

300 mV to 600 mV. A linear relationship was obtained between 5 and 60 nmol g-1 for putrescine (Put) 

and 0.05 and 1.0 μmol g-1 for hypoxanthine (Hx). The coefficient of variation was 0.75% for 

20 nmol mL-1 Put solution and 2.2 for a meat sample using the putrescine sensor, and 1.09% for  

0.25 μmol mL-1 Hx solution and 2.6% for a meat sample using the xanthine sensor. The pH 

requirements and substrate selectivity were suitable for the direct measurement of substrates on the 

surface of meat. From the results of practical experiments, the direct sensing method was indicated to 

be useful with some modifications for the estimation of meat quality during aging. This method is 

capable of comparison with the electronic nose method (gas-sensor array). In principle, the results 

obtained from a gas-sensor array represent qualitative and quantitative information of the composition 

of the headspace gas mixture of a sample. The technique should therefore have a great potential in a 

number of applications related to meat. Quality control is of great importance within the meat industry 

and with this technique it would be possible to monitor the meat from the raw material throughout the 

process and to the final product by analysing volatile compounds released from the meat matrix. There 

are several aspects of quality control that may be the issue in the context of meat; Sensory quality, 

shelf life, spoilage, off-flavor and taints and authenticity. In addition, the electronic nose may have a 

potential in product development when it comes to the design of a product with certain flavor 

characteristics.  

Within food, the majority of publications refer to meat products. Most of the studies were carried 

out by Berdague at the Station de Recherches sur la Viande at INRA Theix, Clermont-Ferrand 

(France). Berdague’s studies used instruments based on MOS sensors, starting in 1993 with the 

Alabaster-UV, one of the first commercially available instruments. This system consists of a stainless 

steel measurement chamber containing one semiconductor gas sensor, a UV-lamp, and air inputs and 

outputs connected to a fan. The signal obtained is shown as desorption curves in “Alabaster” units. The 

first study was carried out in collaboration with Talou of the Ecole Nationale Superieure de Chimie de 
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Toulouse (France). It was shown that this simple instrument could differentiate maxima in odor 

perception resulting from the maturation of dry nonspiced sausages and rapidly detect sex-linked 

differences in meat product composition [25]. This research group also initiated a study into the 

discrimination of micro-organisms using a multi-sensor MOS instrument [26]. Analysing a headspace 

generated by bacteria grown on agar medium, the FOX 2,000 correctly classified 90.5% of the 

analysed bacteria species [27]. Bacterial strains commonly used for curing, or pathogenic strains 

sometimes found in meat products were also detected and correctly classified. Six types of French dry-

sausages and 16 Iberian hams, both with and without off-flavor were also correctly identified [28]. 

Another study, conducted over three days, demonstrated that non-controlled ambient air, which 

simulated an on-line quality control, could be used in the rapid discrimination of food products. 

Research was carried out on sausages and the data obtained subjected to modeling by the Gompertz 

sigmoidal function, and discriminant analysis with backward variable selection. In both cases 

satisfactory results were achieved, with 100% and 97% product recognition respectively [29]. 

Winquist et al. [30] also studied the performance of an electronic nose with meat products. Using an 

NST 3210 Emission Analyser, samples of ground beef and pork that had been stored in a refrigerator 

between analyses were studied using ANN and an algorithm based on an abductory induction 

mechanism. Both types of pattern recognition software could predict the type of meat, but storage time 

was more problematic. Neural networks based on unsupervised training methods could be used for a 

storage time prediction of ground beef. Conversely, Shiers et al. [31] did not succeed in monitoring the 

spoilage of beef mince using a CP system. This failure was explained by a high sensitivity of CP 

sensors to moisture and a low sensitivity to the small quantity of volatile species generated during meat 

spoilage. 

Braggins and Frost [32] looked at the odor and flavor of raw and cooked minced meat of lamb of 

extended chilled storage in CO2 atmosphere and frozen vacuum packed storage by using a sensory 

panel and a commercial electronic nose (Alpha MOS Fox 4000). The sensor array consisted of 18 

different MOS sensors. By using canonical discriminant analysis they could reliably distinguish 

between lamb mince samples of different storage conditions over a period from 4 to 14 weeks.  

Eklov et al. [33] made a comparison between sensory analysis and electronic nose of fermented 

sausages. The gas sensor array used consisted of 10 MOSFET and four Taguchi (MOS) gas-sensors. 

Both techniques were sensitive to small quality differences between batches of sausages and there was 

a good agreement in discrimination capability between the two techniques. These examples 

demonstrate that the electronic nose may have the ability to describe and predict sensory properties of 

meat characteristics. However, it should be emphasized that the result from the sensory analysis 

always will be the ultimate answer when it comes to characterize flavor of a food product. Provided 

that the instrument has been calibrated against sensory analysis and performs according to the required 

sensory properties, accuracy and reproducibility, it could be applied to partly replace a sensory panel 

in the industry [6]. 

Electronic noses have been widely used to distinguish between "spoiled" and "unspoiled" meat 

products. Spoilage of meat can be considered as an ecological phenomenon that encompasses the 

changes of the available substrata (e.g., low molecular compounds) during the proliferation of bacteria 

that consists the microbial association of the stored meat. The prevailing of a particular microbial 

association, of meat depends on factors that persist during processing, transportation and storage in the 



Sensors 2009, 9             
 

6071

market. It is well established that in any food ecosystem includes five categories of ecological 

determinants (e.g., intrinsic, processing, extrinsic, implicit, and the emergent effects). These influence 

the establishment of the particular microbial association and determine the rate of attainment of a 

climax population so called (by the) ‘‘Ephemeral/specific spoilage micro-organisms -E(S)SO’’, i.e., 

those which are able to adopt various ecological strategies [34,35]. These ecological strategies, 

developed by the ESO, are the consequence of environmental determinants (e.g., stresses, destructive 

or enrichment disturbance of the ecosystem, the availability of energy or oxygen competitors), and 

allow them to proliferate in all available niches. In fact, all of the determinants mentioned above 

constitute a virtual ecological niche or in other words an n-dimensional hypervolume or hyperspace 

cloud (HSC) in which an organism influence in (micro) space and time [36]. Indeed the ecosystem 

approach is pertinent in an analysis of changes occurring in fresh meat during the distribution chain. 

Therefore, in practice, scientists and technologists involved in meat industries attempt to control  

(e.g., temperature) or modify some or all of the parameters noted above in order either to extend the 

shelf life of meat or to create new products with acceptable shelf life [37]. 

Electronic nose techniques have also been used on several applications concerned with 

classification of meat samples. Balasubramanian et al. [38] demonstrated the use of linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA) techniques on principal component 

analysis (PCA)-reduced data sets for discriminating spoiled beef samples from unspoiled ones. They 

reported the highest classification accuracies of 97.4% and 98.5% for meat samples stored at 10 °C and 

4 °C, respectively, when QDA and bootstrapping techniques were used for the classification. The 

incidence of pathogenic microorganisms, including Salmonella in meat products, is a serious threat to 

consumer safety, and hence, needs to be detected early. For this purpose, a research work was 

undertaken by Balasubramanian et al. [39] to evaluate the performance of a commercially available 

electronic nose system to discriminate between Salmonella-contaminated beef meat samples and 

uncontaminated ones. In their work, A commercially available Cyranose-320TM (Cyrano Sciences, 

Pasadena, CA) conducting polymer–based electronic nose system was used to analyze the volatile 

organic compounds emanating from vacuum-packaged beef strip loins (Longissimus lamborum ) that 

were repackaged simulating retail store conditions and stored at 4 °C and 10 °C after inoculating them 

with Salmonella typhimurium. Two statistical techniques, i.e., linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA), were used to develop classification models from the collected 

sensor signals (Figure 8).  

The results obtained prove that the electronic nose system could identify meat samples 

contaminated with Salnonella typhimurium at a population concentration level of 0.7–2.6 log10 cfu/g. 

Siegmund and Pfannhauser [40] used an electronic nose to study the changes of the volatile fraction of 

heat-treated chicken meat during storage. They compared the results obtained in this study with those 

obtained with a GC-MS and GC olfactometry. The smell patterns obtained using the electronic nose 

was analyzed using cluster analysis. Their results showed high correlation between the results obtained 

with the electronic nose with that obtained using the GC-MS and GC olfactometry. For their 

experiments, Siegmund and Pfannhauser [40] used an electronic nose consisting of a sensor array 

having 32 conducting polymer sensors. The sensor temperature was 35 °C. However, the authors 

reported that a principal component analysis did not differentiate cooked chicken meat samples, which, 

were stored for 24–48 hours at 4 °C, and the samples, which were not stored to a good extent. They 
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therefore performed a PCA analysis of the discriminant factors between the different data classes. This 

procedure minimized the variances between the datasets and maximized the Euclidean distances 

between the datasets, effecting a better separation. By this mathematical procedure, Siegmund and 

Pfannhauser [40] achieved better differentiation between samples stored at different times. 

Figure 8. PCA, principal component analysis; LDA, linear discriminant analysis; QDA, 

quadratic discriminant analysis were used to develop classification models in order to 

determine beef quality [39]. 
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Annor-Frempong et al., [41] studied the response of an electronic nose to various intensities of 

“boar taint”. They validated their results from the electronic nose with that obtained from a sensory 

panel and a GC. While analyzing their data, they first used a Canonical correlation approach to 

visualize the relationship between the GC measurements of two indicator odor compounds with those 

from the e-nose measurements or sensory panel measurements. Later, they employed a multivariate 

discriminant analysis method to classify the odors based on Fisher’s linear discriminant function. This 

supervised pattern recognition routine was employed to classify the boar taint based on concentrations 

and responses. By their approach they obtained a 90% correct classification rate in the training data set 

for classification based on concentrations and about 53% for the testing data set. However, they 

obtained 100% correct classification based on responses for the training set data and 84.2% correct 

classification for the testing set data. Annor Frempong et al. [41] concluded that pattern recognition 

using a multivariate discriminant function is a linear method and hence may not perform well in 

situations where the response relationship cannot be completely approximated by linear combinations. 

They thus proposed the use of proper neural network techniques for pattern recognition. 

Boothe and Arnold [42] also employed an electronic nose technique to analyze the volatile 

compounds emitted from poultry meat samples. Their sensor used MOS based sensors. Their study 

revealed that the electronic nose was able to detect changes in the volatile compounds associated with 

chicken meat based on the storage time and temperature. Their technique was also found to give 

reproducible results even after 6 months, indicating that the electronic nose was reliable. They had 

performed a Principal Component Analysis technique (PCA) on the data they obtained from their 

electronic nose. They reported that the PCA maps they obtained were able to differentiate (classify) the 

smell patterns obtained from different poultry meat samples (fresh and stored) and also between the 

samples stored at different temperatures. 

Blixt and Borch [43] obtained the same reproducible results in their tests using MOS sensor array 

based electronic nose for determining the spoilage of vacuum-packaged beef. They followed a 

multivariate regression analysis approach (PLS) to develop mathematical models to predict the degree 

of spoilage in vacuum packaged beef. They used information regarding to the sensorial traits (like 

acidic, sulphurous and spoilage odors) and the sensor signals to obtain the weighted regression 

coefficients and the r2 values from the partial least squares regression (PLS) analysis. The best 

prediction model they developed with the data obtained had an r2 value of 0.94. 

Di Natale et al. [44] described an electronic nose which employed a quartz microbalance (QMB) 

sensor coated with metallo-porphyrins and related compounds. Their electronic nose had eight QMB 

sensors each coated with different materials. For interpreting the resulting aroma patterns obtained, 

these researchers made use of a number of chemometrics based methods (principal component analysis 

and cluster analysis) and neural network based (feed forward back propagation trained networks, self 

organizing maps, adaptive resonance theory based networks) methods. They conducted their 

experiments at room temperature with an atmospheric relative humidity of about 40%. Their electronic 

nose system was found to be sensitive to organic compounds such as organic acids, alcohols, amines, 

sulphides and carbonyls which are some of the chief volatile components emitted during the 

breakdown of the chemical compounds in meat. Di Natale et al. [44] informed that their sensor was 

able to classify veal meat and codfish according to their storage days and can be correlated with the 

freshness of the products. 
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The spoilage of raw meat caused by microbiological processes taking place during storage 

represents a great problem in the meat industry and there is considerable waste in storage and handling 

of meat. Funazaki et al. [45] used one single semiconducting metal oxide gas sensor to determine 

freshness of sirloins from Holstein bulls. The sensor was specially designed to have a high specificity 

and sensitivity to ethyl acetate, one of the major components produced during the early stage of 

bacterial putrefaction in meat. The sensor had a linear range from l–200 ppm. They found a correlation 

factor of r2 = 0.8 between gas-sensor responses and bacterial counts. This example suggests that in 

some cases the sensor arrays of electronic noses have a too broad selectivity and that more specific and 

sensitive single gas sensors will be required for specific applications. 

Arnold and Senter [46] analyzed the VOCs emitting from poultry by different bacteria species using 

an electronic nose and a GC-MS. They found the percent area under the curve for a selected number of 

predominant volatiles and reported them for each species of bacteria, which were inoculated in the 

poultry meat. The smell patterns, which were obtained from the 32 sensors in the electronic nose was 

reduced into two dimensions using multiple discriminant analysis technique. These patterns were then 

analyzed by cluster analysis (Sammon mapping) and then plotted as a map. An artificial neural 

network was used to classify the smell print data. Finally, the data obtained from the electronic nose 

and the GC-MS was used to compare the gases emitted from the different bacteria species. Their 

research showed promising results justifying the use of an electronic nose for classifying food products 

depending on their quality. 

Grigioni et al. [47] have explained how an electronic nose system could be used to identify warmed 

over flavor (WOF) aroma in vacuum cook-in-bag/tray processed beef. They used multivariate analysis 

approach to classify their data into two groups depending on the WOF odor. They used a principal 

component analysis approach for data reduction. The trained artificial neural network model obtained 

by these researchers was able to classify the beef samples were significant WOF odor could be 

detected into class II with above 75% recognition confidence. 

Neely et al. [48] used an electronic nose to distinguish between different types of meat. Their nose 

was equipped with semi-conducting polymer film (14 in number) sensors. The data from the electronic 

nose was analyzed by linear discriminant analysis method. The underlying technique employed by this 

method for discrimination is to form linear functions of the data to maximize the ratio of the between-

group sum of squares to the within-group sum of squares. These linear functions are orthogonal. Once 

the linear functions are computed, the classification process is affected by finding out the Euclidean 

distance of an observation from the group of centroids, projected onto the subspace defined by a subset 

of the linear functions [49]. The observation is then assigned to the closest group. To evaluate the 

performance of this method, the “leave-one-out” cross validation method of estimating the centroids 

was used. Their tests showed that their electronic nose classified the meat types accurately. 

Panigrahi et al. [49] have described in detail the data analysis technique used by them to analyze 

their output obtained from a metal oxide based electronic nose to classify beef strip loins stored at two 

different temperatures. They employed a fuzzy-c means clustering technique for their analysis. The 

area under the curve for each sensor response was used as the input dataset and two clusters were 

achieved. They achieved a maximum total classification accuracy of about 95% in classifying the meat 

samples into the two selected groups. 
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As known, the gas sensor array technology may as well be interesting to use in the monitoring of 

food processing. By adding starter cultures the desired aroma and flavor characteristics of fermented 

sausages are obtained. Eklov et al. [33] evaluated the use of a gas sensor array for monitoring the 

fermentation of sausages over a 52 hours period. They used a sensor array consisting of 10 MOSFET 

and four Taguchi (MOS) gas-sensors. With an artificial neural network model they could predict the 

fermentation process of 52 hour duration with an error of 2.7 hour. Berdague and Talou [25] used a 

chamber with one semiconductor gas sensor to monitor the maturation of unspiced sausages over a 90 

day period. The sensor responses correlated with increased odor intensity with time and odor 

maximum at the late stage of maturation. They also analysed back fat from female and male pigs and 

could demonstrate significant differences in sensor responses related to sex. Accordingly, this 

technique should represent a rapid way to identify meat from male and female pigs. 

In a study done at North Dakota State University, Amamcharla and Panigrahi [50] conducted a 

research to select appropriate porphyrin and related compounds suitable for the characterization of beef 

spoilage, design and developing optical electronic nose system and characterization of one of the 

indicator compound, ethanol, associated with contamination of packaged beef. In their work, A 

prototype configuration of an optical sensing system in reflectance mode was designed and developed 

to evaluate the change in the thin film reflectance in the presence of ethanol vapor between 400 to  

800 nm. It was found that CuP and RuOEPCO were sensitivity towards the 100 ppm ethanol vapor. A 

schematic representation of the set up used is shown in Figure 9. 

Figure 9. The schematic diagram of opto-electronic nose system for detection of VOC. 
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Modeling quality changes of meat products during storage, e.g., sensory and/or microbiological 

spoilage by electronic nose systems have recently shown promising results in terms of monitoring 

quality changes. Hansen et al. [51] found that an electronic nose system comprising six MOS could 

detect the raw materials that led to unacceptable products (meat loaf), as determined by two types of 

sensory analyses. The electronic nose system could, however, not detect all the sensory unacceptable 

meat loaf samples due to changes in volatile composition after cooking. In a study on early stages of 

lipid oxidation, Olsen et al. [52] found that an electronic nose detected changes in pork back fat at the 

same time as a sensory panel. 

Recently, a research done by Zhang et al. [53] was published. Referring to their work, separate 

sensors were used to construct a sensor matrix and the relationship between the matrix and beef quality 

was investigated. The test results show that some sensors could not be used for detecting beef quality 

and the relationship between the output of some sensors and the storage time of beef is linear, but the 

decay of the beef could not be detected clearly. Some sensors have no reaction to the fresh beef but 

have intense reaction to the decayed beef. A sensor matrix assembled from sensors that react 

differently to beef freshness could improve the reliability and the sensitivity of detection. 

Continuous odor monitoring technologies are necessary to understand the complex odor-generating 

mechanisms within poultry housing as well as to identify strategies to reduce the impact of odor 

emissions on local communities. To evaluate electronic nose (EN) technologies for continuously 

assessing odor concentration in poultry housing, a mobile laboratory containing an electronic nose and 

an associated sample delivery system was deployed by Sohn et al. [54] to a commercial poultry farm 

and tested over a broiler production cycle. The results demonstrated that it was possible to develop a 

model to allow an electronic nose to provide a semi-continuous measurement of odor concentrations. 

The electronic nose was also able to demonstrate the influence of shed conditions on odor emissions. 

A custom-built metal oxide-based olfactory sensing system was used by Balasubramanian et al. 

[55] to analyze the headspace from beef strip loins (M. Longissimus lumborum) stored at 4 °C and 10 

°C. Classification models using radial basis function neural networks were developed using the 

extracted features and performance tested using leave-one-out cross validation method. The developed 

models classified the beef samples into two groups; ‘‘unspoiled” (<6.0 log10cfu/g) and ‘‘spoiled”  

(P 6.0 log10cfu/g) based on the microbial population. Maximum total classification accuracies above 

90% were obtained for the samples stored at the two temperature values. Scaling the signals did have a 

positive influence in improving the classification accuracies obtained. Back propagation neural 

network prediction model using the pooled data (containing the area scaled feature) resulted in a R-

squared of >0.70 between predicted and actual spoilage population from the 10 °C and 4 °C  

stored samples. 

Modified atmosphere packaging is commonly applied to various fresh products including poultry 

meat to extend the shelf-life of the product. Inhibition of microbial growth is achieved by elevated 

carbon dioxide level and/or by minimised oxygen level in the package headspace. By  

Rajamaki et al. [56] the applicability of an electronic nose for the quality control of modified 

atmosphere (MA) packaged broiler chicken cuts was evaluated in different temperature regimes. The 

electronic nose results were compared with those obtained by microbiological, sensory and headspace 

GC analyses. The electronic nose could clearly distinguish broiler chicken packages with deteriorated 

quality from fresh packages either earlier than or at the same time as the sensory quality deteriorated. 
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Concerning the microbiological quality, the counts of Enterobacteriaceae and hydrogen sulphide-

producing bacteria were most consistent with the electronic nose results. The results indicated that the 

electronic nose was capable of detecting even early signals of spoilage in MA packed poultry meat. 

Vestergaard et al. [57] conducted a study in Finland to investigate the predictability of an electronic 

nose system based on ion mobility regarding storage time as well as sensory quality changes during 

storage of a pork meat pizza topping product. The study included two independent test sets; “known” 

production samples and “unknown” samples purchased from a local supermarket (all samples stored at 

51 °C after production or purchasing). Models for predicting storage time and sensory quality changes 

during storage from electronic nose data were estimated by projection of test set samples onto 

calibration models based on partial least square regression (PLSR). The results showed that storage 

time of “known” samples was very well predicted. Also, the storage time of “unknown” samples could 

be fairly well predicted. Sensory quality changes during storage were in general fairly well and 

significantly predicted for descriptors related to odor and color, whereas only few descriptors related to 

texture were found fairly well predicted. Descriptors found predictable for individual test sets clearly 

related to different stages of the storage time characterizing samples in the test sets, e.g., the test set of 

“known” samples comprised mainly of samples in the later stage of the storage time and thus 

descriptors mainly relating to the later stage of the storage time were well predicted, i.e., rancidity and 

greasy mouthfeel. Overall this study gave evidence of the electronic nose system to be a relevant 

device for future at or on-line implementation in quality control (QC) of a pork meat pizza  

topping product.  

According to Barbri et al. [58] the reference method currently used for determining the spoilage 

status of meat is analysing the total count of bacteria and/or specific spoilage bacteria. An obvious 

drawback with such a bacteriological method is the incubation period of 1–2 days that is required for 

colony formation and, additionally, the lack of correlation between the degree of spoilage (from the 

sensorial point of view) and the total count of bacteria that is often observed [59]. Although, bacterial 

growth on meat samples has been extensively studied, methods based on the total count of bacteria that 

correlate well with shelf-life determination are still under investigation [60]. In spite of its drawbacks, 

bacteriological methods can be employed in many cases to define the desired product quality and are a 

good indicator of product safety. Furthermore, the results obtained from a bacteriological analysis can 

then be used to train alternative methods such as an electronic nose system. Barbri et al., [58] 

developed an electronic nose for the quality control of red meat. Electronic nose and bacteriological 

measurements were performed to analyze samples of beef and sheep meat stored at 4 °C for up to  

15 days. Principal component analysis (PCA) and support vector machine (SVM) based classification 

techniques are used to investigate the performance of the electronic nose system in the spoilage 

classification of red meats. The bacteriological method was selected as the reference method to 

consistently train the electronic nose system. The SVM models built classified meat samples based on 

the total microbial population into “unspoiled” (microbial counts <6 log10cfu/g) and “spoiled” 

(microbial counts 6 log10cfu/g). The preliminary results obtained by the bacteria total viable counts 

(TVC) show that the shelf-life of beef and sheep meats stored at 4 °C are 7 and 5 days, respectively. 

The electronic nose system coupled to SVM could discriminate between unspoiled/ spoiled beef or 

sheep meats with a success rate of 98.81 % or 96.43 %, respectively. To investigate whether the results 

of the electronic nose correlated well with the results of the bacteriological analysis, partial least 
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squares (PLS) calibration models were built and validated. Good correlation coefficients between the 

electronic nose signals and bacteriological data were obtained, a clear indication that the electronic 

nose system can become a simple and rapid technique for the quality control of red meats. 

The utility of chemosensor array (EN) signals of head-space volatiles of aerobically stored pork 

cutlets as a non-invasive technique for monitoring their microbiological load was studied by  

Horvath et al. [61] during storage at 4, 8 and 12 °C, respectively. The bacteriological quality of the 

meat samples was determined by standard total aerobic plate counts (TAPC) and colony count of 

selectively estimated Pseudomonas (PS) spp., the predominant aerobic spoilage bacteria. Statistical 

analysis of the electronic nose measurements were principal component analysis (PCA), and canonical 

discriminant analysis (CDA). Partial least squares (PLS) regression was used to model correlation 

between microbial loads and EN signal responses, the degree of bacteriological spoilage, 

independently of the temperature of the refrigerated storage. Sensor selection techniques were applied 

to reduce the dimensionality and more robust calibration models were computed by determining few 

individual sensors having the smallest cross correlations and highest correlations with the reference 

data. Correlations between the predicted and “real” values were given on cross-validated data from 

both data reduced models and for full calibrations using the 23 sensor elements. At the same time, 

sensorial quality of the raw cutlets was noted subjectively on faultiness of the odor and color, and drip 

formation of the samples. These preliminary studies indicated that the electronic nose technique has a 

potential to detect bacteriological spoilage earlier or at the same time as olfactory quality deterioration. 

By Tikk et al. [62], a sensory analysis of meatballs was carried out to monitor the warmed-over 

flavor (WOF) development in cooked, cold-stored (at 4 °C for 0, 2 and 4 days) and reheated meatballs 

derived from M. longissimus dorsi (LD) and M. semimembranosus (SM) of pigs fed a standard diet 

supplemented with either 3% of rapeseed oil or 3% of palm oil. This was performed in combination 

with measurement of volatile compounds using a solid-state-based gas sensor array system (electronic 

nose) and gas chromatography/mass spectrometry together with measurement of thiobarbitoric acid 

reactive substances (TBARS). Subsequently, to elucidate the relations and predictability between the 

obtained data, the gas sensor responses were correlated with chemical (volatile and non-volatile 

secondary lipid oxidation products) and sensory data (flavor and odor attributes), using partial least 

squares regression modeling (PLSR). The TBARS, hexanal, pentanal, pentanol and nonanal all 

correlated to the sensory attributes associated to WOF formation. Moreover, the responses from eight 

of the MOS (metal oxide semiconductor) sensors within the electronic nose proved to be significantly 

related to WOF characteristics detected by both sensory and chemical analysis, while six of the 

MOSFET (metal oxide semiconductor field effect transistor) sensors were related to freshly cooked 

meat attributes determined by sensory analysis. The obtained results show the potential of the present 

gas sensor technology to monitor WOF formation in pork. 

In a research conducted by Balasubramanian et al. [63], the changes in the headspace from stored 

beef strip loins inoculated with Salmonella typhimurium and stored at 20 °C were detected using an 

electronic nose system. Once the data was obtained six area-based features were extracted from the 

collected sensor data pertaining to the six metal oxide sensors present in the electronic nose. These 

extracted features were next dimensionally reduced by principal component analysis (PCA) and the 

independent components (IC) were extracted by FastICA package. The extracted independent 

components and principal components (PC) were compared by plotting them individually against the 
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Salmonella population counts. A stepwise linear regression prediction model with the IC and PC as 

inputs was also built. The prediction model with IC as input performed better with an average 

prediction accuracy of 82.99%, and root mean squared error (RMSE) of 0.803. For the model using the 

PC as the input, the average prediction accuracy was 69.64% and the RMSE was 1.358. The results 

obtained suggest that the use of higher-order statistical techniques like ICA could help in extracting 

more useful information than PCA and could help in improving the performance of the sensor system. 

Further analysis needs to be carried out on larger datasets, and by using non-parametric data analysis 

techniques like artificial neural networks to build the prediction models from the ICA  

extracted components. 

 
6. Conclusions 
 

An “electronic nose” is a system originally created to mimic the function of an animal nose. 

However, this analytical instrument is more a “multi-sensor array technology” than a real “nose”. 

Whatever the sensor technology, it is still far from the sensitivity and selectivity of a mammalian nose. 

Therefore, its aim is not to totally replace either the human nose or other analytical methods. A sensory 

panel is necessary to define the desired product quality which can then be used to train the system. 

Traditional analytical methods such as GC-analysis will always be needed to determine qualitatively 

or/and quantitatively why one food sample differs from others. The “electronic nose” can only perform 

quick “yes or no” tests in comparison to other products. It could occasionally replace sensory analysis 

and even perform better than a sensory panel in routine work, or in cases where non-odorous or irritant 

gases need to be detected. Therefore, an “electronic nose” can be regarded as an interesting tool for a 

quick quality test in various food applications. However, before it can be treated as a completely 

reliable, industrial instrument, much improvement is still needed, such as a reduction of the dead 

volume, development of calibration methods, etc. Odor reception in biology and the design of 

electronic as well as bioelectronic noses are fascinating fields of current research and development. 

First attempts are promising to build electronic noses for monitoring concentrations of different 

molecules in mixtures or for characterizing odors. These systems are based on simple inorganic and 

organic sensor elements, utilize a modular sensor approach with arrays of different groups of sensor 

elements combined for one transducer principle, and make use of qualitative and quantitative pattern 

recognition evaluation schemes. The next steps in the development of bioelectronic noses are driven 

by (1) the need to monitor parameters which represent more directly impressions of human odor 

sensations and (2) the need for designing hybrid systems in order to make an optimum use of 

similarities and differences between technical and biological chemosensory systems. 

At the end, this suggested that on-line sensors play a key role in the automation of meat control and 

processing. In near future when the basic issues of the gas-sensors have been solved, we will see more 

online gas-sensors implemented in the industry. For each application, however, technical problems 

have to be solved for implementation on-line. One interesting vision for the future would be to have a 

fully automated plattform of different kind of sensors to monitor the essential information required for 

the characterising of quality of the raw material, process or product. Gas-sensors would make up a 

vital part of such a multisensor system. This may be realised in the meat industry in the future. 
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