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An all-metallic steerable beam antenna composed of an e-near-zero (ENZ) metamaterial lens is

experimentally demonstrated at 144GHz (k0¼ 2.083mm). The ENZ lens is realized by an array of

narrow hollow rectangular waveguides working just near and above the cut-off of the TE10 mode.

The lens focal arc on the xz-plane is initially estimated analytically as well as numerically and com-

pared with experimental results demonstrating good agreement. Next, a flange-ended WR-6.5

waveguide is placed along the lens focal arc to evaluate the ENZ-lens antenna steerability. A gain

scan loss below 3 dB is achieved for angles up to615�.VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4903865]

Within the framework of metamaterials,1,2 artificial

materials with e-near-zero (ENZ) have been increasingly

studied over the past few years due to their almost infinite

phase velocity property providing interesting effects such as

squeezing, tunneling, and supercoupling reported initially at

microwaves.3–7 These properties have also been demon-

strated recently using metal-dielectric-metal multilayers at

near infrared and visible frequencies.8–10 However, a simple,

yet effective approach to engineer ENZ-media for micro-

waves and the intermediate terahertz regime relies on

exploiting the dispersive behavior of narrow hollow rectan-

gular waveguides working near the cut-off frequency of the

dominant mode TE10.
5

ENZ-media hold promise for different applications such

as nanocircuits,11 dielectric sensing,12 multi-beam anten-

nas,13 and power splitting.14 Nevertheless, it is in the field of

lenses where they have been more intensively investi-

gated.15–18 Unlike other metamaterial lenses,15,19–27 narrow

hollow waveguides based ENZ lenses offer reduced reflec-

tion losses due to the squeezing/tunneling/supercoupling

effect-induced impedance matching with free space.16,17 In

addition, ENZ-lenses realized by all-metallic narrow hollow

rectangular waveguides have several advantages in compari-

son with lenses made partially or wholly from dielectrics,

such as resistant to hazardous conditions and higher opera-

tion power. Moreover, given the concave profile of an ENZ-

lens,28 the illumination efficiency is improved compared

with common dielectric lenses and some metamaterial lenses

with convex profiles whose most distant edges are poorly

illuminated.22,29

In this paper, the mechanical beam steering capabilities

of an all-metallic plano-concave ENZ-lens antenna16,18 are

experimentally demonstrated at 144GHz (D-band of milli-

meter waves). First, the radiated power is measured at seven

different angles (0�, 3�, 6�, 9�, 12�, 15�, and 18�) as a func-

tion of the feeder position on the xz-plane. Owing to reci-

procity, this is equivalent to raster scanning the xz-plane
when the ENZ-lens is illuminated obliquely from its planar

interface. These results are supported with analytical calcula-

tions based on the Huygens-Fresnel principle and numerical

simulations using a plane-wave under the proper oblique

incidence illumination. Second, the steering capability of the

proposed ENZ-lens antenna is experimentally demonstrated

by measuring the radiation pattern while shifting a flange-

ended WR-6.5 waveguide used as a feeder at the experimental

foci positions obtained in the first experiment. The experimen-

tal and analytical results demonstrate a high gain of 11 dB for

0� at the operational frequency and a gain scan loss below

3 dB for steering up to615�.
The fabricated plano-concave ENZ-lens is shown in Fig.

1(a). It is designed with an array of narrow hollow rectangu-

lar waveguides with a periodicity of dx� 1.4mm and

dy¼ 0.5mm, along x and y axes, respectively. The hollow

aperture of each single waveguide is hx¼ 1.16 0.025mm.

With this dimension, the cut-off frequency of the dominant

mode TE10 is 136.36GHz. In order to achieve impedance

matching with free space, a very small value of the dimen-

sion hy must be chosen, with a magnitude of hy¼ hx/
42¼ 0.056 0.02mm (i.e., hy � hx), see Ref. 18 for a

detailed illustration of the unit cell. The whole lens is fabri-

cated with total dimensions Lx¼ 76.2mm, Ly¼ 86.2mm,

and Lz¼ 40mm, with a total number of 33� 144 narrow hol-

low waveguides along x- and y-axes, respectively. As it has
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been described previously, metallic waveguides working

near cut-off can emulate an ENZ medium with near zero val-

ues of propagation constant and phase advance inside the

medium. Therefore, as it has been mentioned previously, if

one face of the lens is planar, the other one should be

designed with a concave hemi-spherical profile15,28 instead

of convex in order to convert a spherical phase front into a

planar phase front or vice versa. This is because the EM

waves emerging from an ENZ-medium are perpendicular to

its surface.6,14,16 In our case, the concave profiled face is

designed with a diameter d¼ 55.5mm.18 Notice that the

inner concave surface of the lens represents an ideal case for

proper illumination by an antenna in comparison to convex

lenses. The latter suffer from worse/lower illumination of the

most distant edges of the lens as well as diffraction from

them leading to undesirable side-lobes in the radiation pat-

tern. The more effective illumination of the concave lenses

yields to more homogeneous output phase fronts, and thus,

higher antenna gain can be reached.

In order to evaluate the performance of the ENZ-lens

under oblique incidence from the flat side of the lens, the

equivalent effective isotropic 2D lens is studied analytically,

applying the Huygens-Fresnel approximation considering an

array of isotropic dipoles emitting cylindrical waves and

placed at the output of each waveguide. Moreover, each

dipole emits with unit amplitude and phase (/) calculated as

/ðmÞ ¼ k0½
ffiffiffiffiffiffiffiffiffiffi

er eff
p

lðmÞz þ sin ðhÞxðmÞ�; (1)

where, m¼ 0, 1, 2, 3, …, represents the waveguide number,

lðmÞz is the length of the mth waveguide calculated as

lðmÞz ¼
�

d

2

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

d

2

�2

� ½xðmÞ�2
s

;

x(m) is the position of each waveguide along x-axis [see Fig.

1(c)], k0 is the wavenumber in free space calculated as 2pf/c
with c the velocity of light in the medium filling the waveguide,

h is the angle of incidence of the plane-wave, and er_eff is the

effective permittivity of the lens. In our case, the experimental

ENZ frequency is 144GHz (k0¼ 2.083mm), which is above

the cut-off frequency of the waveguides and is used as the oper-

ating frequency. At this frequency, the effective permittivity

value of the ENZ lens is er_eff¼ 0.103.18 Based on this, the ana-

lytical results of the normalized power distribution in the

xz-plane (in front of the concave face of the lens) are shown in

Figs. 2(a)–2(g) when a plane-wave impinges on the flat surface

with the input angles: h¼ 0�, 3�, 6�, 9�, 12�, 15�, and 18�,
respectively. It is clearly observed that the focal spot is deflected

on the xz-plane when a plane wave impinges obliquely.

Moreover, in order to validate the analytical model and

extend the theoretical analysis, the whole fabricated 3D lens

was modeled using the finite-integration software CST

Microwave Studio
TM

. To this end, the transient solver was

used along with an extremely fine hexahedral mesh with a

minimum mesh size along x-axis of 0.0125mm (0.006k0)

and a total number of �370� 106 mesh cells.

Aluminum (rAl¼ 3.56� 107S/m) was chosen for the

metallization and the lens was illuminated from its planar

face with a vertically polarized (Ey) plane-wave varying the

angle of incidence. Simulation results of the normalized

power distribution on the xz-plane are presented in Figs.

2(h)–2(n) for the input angles h¼ 0�, 3�, 6�, 9�, 12�, 15,� and
18�, respectively. They confirm the deflection of focal spot

in good agreement with the analytical calculations using

Huygens-Fresnel approximation.

The experimental characterization was performed using

an ABmm
TM

Millimeter-Wave Vector Network Analyzer [see

schematic in Figs. 1(b) and 1(c)] and the procedure was as

follows: The lens was rotated at the desired output angle

(OA) (h¼ 0�, 3�, 6�, 9�, 12�, 15�, and 18�) with respect to

the a D-band horn antenna placed at 1300mm (�624k0)

from the planar face of the lens. After this, a 2D scan was

FIG. 1. (a) Lateral (left) and perspective (right) view of the fabricated ENZ-

lens at the D-band of the millimeter waves with total dimensions:

Lx¼ 76.2mm, Ly¼ 86.2mm, Lz¼ 40mm, and d¼ 55.5mm. (b)

Experimental configuration used to characterize the radiation pattern of the

lens. (c) Top view of the setup shown in (b) along with the lens focal arc

(purple curve).
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performed on the xz-plane by moving a flange-ended WR-

6.5 waveguide from �5 to 15mm and from 0 to 30mm

along x- and z-axes respectively with a step of 1mm. This

was done for every illumination angle. This experiment

allows us to reproduce the aforementioned simulation and

thus to find experimentally the lens focal arc.

The experimental results of the normalized spatial

power distribution on the xz-plane are presented in Figs.

2(o)–2(u) for the angles h¼ 0�, 3�, 6�, 9�, 12�, 15�, and 18�,
respectively. By inspecting the whole Fig. 2, it is clear that

the analytical, simulation and experimental results follow

similar trends. For a quantitative comparison, the positions

of the maximum (i.e., focus) on the xz-plane for each study

are summarized in Table I. Note that for all the experimental

cases, the positions along x are in good agreement with ana-

lytical and numerical results. However, there is some dis-

agreement in the z position. This can arguably be due to the

effect of the flange-ended WR-6.5 waveguide and its phase

center uncertainty, which is not considered in the theoretical

study. Finally, the maximum deflection experienced by the

focus happens as expected for h¼ 18� and is (x¼ 11.5,

z¼ 9.9), (x¼ 12.4, z¼ 12.8), and (x¼ 14.5, z¼ 16) for the

analytical, simulation, and experimental results, respectively.

Once the experimental lens focal arc was found, the

flange-ended rectangular waveguide was placed at each posi-

tion of Table I, and the angular distribution of the lens

antenna radiation from the planar side was measured for

�25� to 10� with a step of 0.5�. Experimental results of the

normalized radiation pattern are presented in the left column

of Fig. 3 (each curve is normalized to the maximum obtained

at 0�). Moreover, by using the Huygens-Fresnel approxima-

tion, the power angular distribution at the same distance as

for experimental measurements (1300mm� 624k0) is calcu-

lated for each OA and shown in the right column of Fig. 3. It

can be observed that both, analytical and experimental,

results are in good agreement with the experimental OA’s

close to the values calculated analytically.

The analytical and experimental results of the beam

steering performance of the ENZ-lens are compared quanti-

tatively in Table II in terms of the OA, maximum normalized

radiation power (MNRP) at the OA, half power beam width

(h�3dB), and side lobe level (SLL). It can be observed that

the OA’s are close to the original angle. Moreover, it is

shown that the experimental values of the h�3dB are between

2.5� and 4.5� with the minimum for the OA of 0� and maxi-

mum for the higher angle (18�) as expected. It can be

observed that the same analytical h�3dB is obtained for all

TABLE I. Analytical, simulation, and experimental positions of the focus

on the xz-plane. (All the values are in mm.)

Results Coordinate h¼ 0� h¼ 3� h¼ 6� h¼ 9 � h¼ 12 h¼ 15� h¼ 18�

Analytical x 0 2 3.9 5.9 7.8 9.6 11.5

z 12.3 12.3 11.9 11.7 11.2 10.4 9.9

Simulation x 0 1.8 4 5.8 8 10.2 12.4

z 11.6 13.2 13.2 13.2 13.2 13.2 12.8

Experimental x 1 2 4 6 10 11 14.5

z 17 17 18 16 16 15 16

FIG. 2. Normalized spatial distribution of power on xz-plane for angles from 0� to 18� with a step of 3�: 2D analytical results using the Huygens-Fresnel

approximation (a)–(g), 3D simulation results using the commercial software CST Microwave Studio
TM

(h)–(n) and experimental results (o)–(u). The scale bar

is in dB.
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the OA’s because of the ideal conditions. Furthermore, the

higher side lobe level is obtained for an OA of 18� in the

experiment with a value of �4.85 dB, which is closer to the

main lobe compared with the other angles. The experimental

gain (defined as the ratio of the radiated power density in the

direction of maximum emission and the power density radi-

ated by an ideal lossless isotropic radiation that emits all the

power fed by the source26) at the working frequency

(144GHz) has a maximum of 11 dB at 0�, which is obtained

comparing the ENZ-lens with a horn antenna using the com-

parison method.30 Moreover, it is shown that the maximum

normalized radiation power at 18� is below �3 dB, which is

used as a standard of the maximum scan loss allowed for a

suitable beam steering. Based on this, the ENZ-lens here pro-

posed has a suitable beam steering up to 615�.
In conclusion, the mechanical beam steering perform-

ance of a plano-concave ENZ-lens working at the D-band of

millimeter waves has been demonstrated experimentally and

compared with 3D full-wave numerical simulations and 2D

analytical results using the Huygens-Fresnel approximation.

By invoking reciprocity, the experimental lens focal arc is

found, which is in good agreement with numerical and ana-

lytical results. The beam steering capability of the ENZ-lens

has been experimentally studied by placing the feeder at the

focal positions along the lens focal arc obtained experimen-

tally and evaluating the radiation pattern. A high gain of

11 dB at 144GHz has been experimentally obtained at 0�.
Meanwhile, the gain scan loss (figure of merit used to evalu-

ate the steering performance of a lens antenna) remains

below 3 dB up to 615�. The lens here presented may find

applications in antenna’s systems that require steerable per-

formance of the output beam with high gain and low losses

under hazardous conditions.
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FIG. 3. Experimental (left column) and 2D analytical (right column) of the

normalized radiation pattern for the output angles: (a) 0�, (b) 3�, (c) 6�, (d)
9�, (e) 12�, (f) 15�, and (g) 18� when the feeder is placed at the experimental

and analytical (x,z) coordinates of Table I, respectively. The black dashed

line on each plot corresponds to �3 dB, which is a standard of the maximum

scan loss allowed for a suitable beam steering.

TABLE II. Experimental and analytical results of the beam steering per-

formance using the ENZ-lens.

OAa (�) MNRPb (dB) h�3dB
c (�) SLLd (dB)

Original Exp. Analytical Exp. Analytical Exp. Analytical Exp. Analytical

0 0.5 0 0 0 2.5 2.2 �10.57 �12.8

3 2 3 �0.05 �0.093 3.75 2.2 �11.58 �11.45

6 6 6 �0.36 �0.06 4 2.2 �5.3 �10.9

9 9 9.2 �0.84 �0.37 3 2.2 �10.5 �10

12 13 12.2 �1.88 �0.57 3 2.2 �9.5 �9.81

15 15 15 �2.87 �0.78 2.5 2.2 �11.3 �8.52

18 18 18 �3.45 �1.29 4.5 2.2 �4.85 �7.65

aOA is the output angle.
bMNRP is the maximum normalized radiation power at the output angle.
ch�3dB is the half power beam width.
dSLL is the side lobe level.
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