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We analyze numerically correspondence between the mechanical action, experienced by a spherical microparticle, and the internal
energy flows in the light field incident on the particle. The inhomogeneous incident field is modelled by superposition of two plane
waves; the mechanical action is calculated via the Mie theory for dielectric and conducting particles of different sizes and optical
properties. It is shown that both spin and orbital components of the field momentum can produce the mechanical action whose
value and sign depend on many additional details of the field-particle interaction. Besides, forces that are not associated with any
sort of the energy flow (e.g., the gradient force owing to the inhomogeneous intensity and the polarization-dependent dipole force
emerging due to inhomogeneous polarization) can strongly modify the observed mechanical action. The polarization-dependent
mechanical action on particles can be treated as a form of the spin-orbit interaction of light.

1. Introduction

During the past years, internal energy flows in light fields
(optical currents) are studied with growing interest [1–19].
They attract particular attention as physical characteristics of
light beams with clear and unambiguous physical meaning,
valid both for scalar and vector beams with arbitrary
polarization properties [1–9]. Specific patterns of the energy
circulation, appearing in connection to singular points of
the optical fields, stimulate intensive investigation of optical
currents within the frame of singular optics [1–5, 7–9, 15–
17]. The internal flows provide a convenient means for
characterization of spatial beam transformation during free
propagation as well as in the presence of obstacles [5, 6, 13,
18] and constitute a suitable set of optical field parameters,
immediately oriented at rapidly developing applications
related to optical trapping, sorting and micromanipulation
[20].

In case of free-space monochromatic electromagnetic
fields with radiation frequency ω, to which we are restricted
in this paper, the electric and magnetic vectors can be taken

in forms Re[E exp(−iωt)], Re[H exp(−iωt)]. The complex
vector amplitudes E and H provide suitable representations
of the time-average energy parameters of such fields [21].
The energy density equals to

w = g

2

(

|E|2 + |H|2
)

, (1)

and the energy flow density is expressed by the Poynting
vector S or the electromagnetic momentum density p dis-
tributions:

S = c2p = gcRe(E∗ ×H) (2)

(g = (8π)−1 in the Gaussian system of units, c is the light
velocity). Since quantities S and p are proportional, in many
cases they can be considered as equivalent so the energy
flow pattern can be characterized by the field momentum
distribution and vice versa. The total energy flow (2) can
be subdivided into the spin and orbital parts, p = pS + pO,
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according to which sort of the beam angular momentum they
are able to generate [9, 10, 14]:

pS =
g

4ω
Im[∇× (E∗ × E + H∗ ×H)],

pO =
g

2ω
Im[E∗ · (∇)E + H∗ · (∇)H].

(3)

The spin flow is usually associated with inhomogeneous
circular polarization while the orbital one owes to the explicit
energy redistribution within an optical beam. Peculiar
properties of the spin and orbital contributions reflect
specific features of the macroscopic energy transfer (pO) and
“intrinsic” rotation associated with the spin of photons (pS).
Quantities (3) provide deeper insight into thin details of
the light field evolution and allow one to describe mutual
conversion of the light energy between the spin and the
orbital degrees of freedom [17, 18].

Nevertheless, in spite of the above-listed attractive fea-
tures, wide usage of the internal flow parameters is hampered
by the lack of direct methods for their measurement [9, 17,
22]. As a promising approach to their detection and quan-
tification, the motion of small probe particles suspended
within the optical field was proposed and experimentally
tested [14, 17, 23]. This technique is based on the assumption
that the force acting on a particle is proportional to the
local value of the field momentum. However, its correctness
is rather questionable. Recent calculations performed for
various models of a particle and particle-field interaction
[12, 14, 20] have shown that the force acting on a particle
is, of course, related to the field momentum but in rather
intricate ways, and the simple proportional dependence
occurs likely as an exclusion. Even the physical model of
the momentum transfer from the field to a particle is not
clear. For example, usual explanation of the simple situation
when a particle absorbs some part of the light energy and
takes over the corresponding momentum, associated with
this energy, is not applicable to the spin momentum of a
circularly polarized wave. Such a wave, as well as any its
fragment, carries the “pure” angular momentum that can
cause spinning motion of the absorbing particle, but there
is no clear understanding whether and how the translational
or orbital motion will appear in this situation [12, 17].
Moreover, any particle placed in the electromagnetic field
distorts it, sometimes very strongly [24], so the real field
acting on the particle has little in common with the “original”
free-of-particle field whose parameters are the main subjects
of interest.

In this paper, we present an attempt of direct calculation
of relations between the force acting on the particle and the
energy flow in the optical field that existed before the particle
is placed there (“incident field” with vector amplitudes E

and H). The main idea is to determine the electromagnetic
field disturbed by the presence of a particle, to calculate
its momentum and to compare the result with the initial
momentum carried by the “pure” incident field.

Due to the particle presence, the scattered field Esc, Hsc

emerges that should be added to the incident field E, H [24]
so the total field momentum density is changed by

∆p = g

c
Re
[(

E∗ + E∗sc

)

× (H + Hsc)− E∗ ×H
]

= g

c
Re
(

E∗sc ×Hsc + E∗ ×Hsc + E∗sc ×H
)

.

(4)

The change of the field momentum results in the recoil force
acting on the particle; the force can be determined by the
field momentum flux through the spherical surface AR with
radius R → ∞ surrounding the particle:

F = −c
∮

AR

∆pdA = −cR2

∮

∆pdΩ (5)

(dΩ means integration over the solid angle). This force de-
pends on the particle position, and our aim is to find corre-
spondence between F and the incident field momentum in
the point where the particle is placed.

In principle, the light scattered by a spherical particle can
be rather simply calculated following the Mie theory [24].
However, the original Mie approach is only applicable to an
incident field in the form of a plane monochromatic wave
whereas we are interested in studying the incident fields with
inhomogeneous configuration and well-developed pattern of
the internal energy flows. Such field configurations can be
modeled by superposition of many plane waves, and then
the scattered light can be found as a sum of the Mie results
obtained for every member of the superposition. This direct
and conceptually simple mode of operation leads, though,
to very extensive computing because even for a single plane
wave the Mie theory calculations deal with slowly converging
series of quickly oscillating functions and are generally
cumbersome. To avoid the unnecessary complications that,
additionally, may obscure the physical picture, in this paper
we consider the simplest models of spatially inhomogeneous
optical fields consisting of only two plane waves, which,
nevertheless, adequately represent the physical nature of the
spin and orbital flows in real inhomogeneous optical beams.

2. Model Description

2.1. Incident Field Configuration. Geometrical conditions of
the problem are illustrated by Figure 1. The center of a
spherical particle is situated at the origin of the laboratory
frame (xyz) and is illuminated by the light coming from the
lower hemisphere (z < 0). In contrast to the usual geometry
[24], we intend to consider the case of inhomogeneous
incident field distribution over the nominal transverse plane
z = 0. Such a field can be represented via superposition of
plane waves differently oriented with respect to the nominal
longitudinal axis z. The jth plane wave propagates along
axis z j that deviates from the laboratory axis z by the
incidence angle γ j ; in what follows, we restrict ourselves to
the case when angles γ j lie in the coordinate plane (yz).
Further, we introduce the “proper” coordinate frame (x,
y j , z j) associated with each member of the plane-wave
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Figure 1: Geometrical conditions of the light scattering analysis.
The particle is situated in the coordinate origin, incident light comes
from the lower hemisphere; other explanations see in text.

superposition; the “proper” and the laboratory coordinates
are united by known relations:

z j = z cos γ j + y sin γ j , y j = −z sin γ j + y cos γ j . (6)

In its proper frame, the electric and magnetic fields of a sep-
arate plane-wave component are described by equations:

Ea j

(

x, y j , z j
)

= E j exp
(

ikz j
)

=
⎛

⎝

Ex j

Ey j

⎞

⎠ exp
(

ikz j
)

,

Ha j

(

x, y j , z j
)

≡ H j exp
(

ikz j
)

= e j × Ea j

(

z j
)

,

(7)

where Ex j and Ey j are constants, e j is the unit vector of the
z j-axis and k is the wave number of the incident radiation.
The optical field, created by wave (7) in the common
reference plane z = 0, is generally inhomogeneous and in
the laboratory coordinates can be written in the form:

Ea j
(

x, y
)

=

⎛

⎜

⎜

⎜

⎝

Ex j

Ey j cos γ j

−Ey j sin γ j

⎞

⎟

⎟

⎟

⎠

exp
(

ikz j
)

,

Ha j
(

x, y
)

=

⎛

⎜

⎜

⎜

⎝

−Ey j

Ex j cos γ j

−Ex j sin γ j

⎞

⎟

⎟

⎟

⎠

exp
(

ikz j
)

,

(8)

where z j is related to y and z by first equation (6).
For the simplest superposition consisting of only two

plane waves, the electric and magnetic strengths of the in-
cident optical field equal to

E = Ea1 + Ea2, H = Ha1 + Ha2. (9)

After some algebra we find the optical field energy density (1)
and components of the spin and orbital momentum density
(3) in the following representations:

w = g
[

|E1|2 + |E2|2 + cos2 γ1 − γ2

2
D
(

y, z
)

]

, (10)

pSx =
g

2c
sin
(

γ1 − γ2

)

[(

E∗x2Ey1 − E∗y2Ex1

)

eik(z1−z2)

+
(

E∗y1Ex2 − E∗x1Ey2

)

eik(z2−z1)
]

,

(11)

pSy =
g

2c
sin2 γ1 − γ2

2

(

sin γ1 + sin γ2

)

D
(

y, z
)

, (12)

pSz =
g

2c
sin2 γ1 − γ2

2

(

cos γ1 + cos γ2

)

D
(

y, z
)

, (13)

pOx = 0, (14)

pOy =
g

c

[

|E1|2 sin γ1 + |E2|2 sin γ2

+
1

2
cos2 γ1 − γ2

2

(

sin γ1 + sin γ2

)

D
(

y, z
)

]

,

(15)

pOz =
g

c

[

|E1|2 cos γ1 + |E2|2 cos γ2

+
1

2
cos2 γ1 − γ2

2

(

cos γ1 + cos γ2

)

D
(

y, z
)

]

,

(16)

where

D
(

y, z
)

=
(

E∗x2Ex1 + E∗y2Ey1

)

eik(z1−z2)

+
(

E∗x1Ex2 + E∗y1Ey2

)

eik(z2−z1).
(17)

Equations (11)–(16) show that our simple superposition can
serve a model of real inhomogeneous fields with nonzero
spin and orbital flows. The y- and z-components of the
orbital flow contain trivial contributions owing to the
longitudinal energy transfer by both superposed plane waves
(the first and second summands in brackets of (15) and
(16)); the internal flows “per se” are expressed by the last
(“interference”) summands depending on the incident field
inhomogeneity. Noteworthy (see (14)), in the considered
field geometry, the x-component of the orbital flow is absent,
and the whole x-directed flow is of the spin nature (11).
We can also account for the particle displacement from the
coordinate origin by equivalent shift of the inhomogeneous
field pattern: if, say, the initial phase of the second wave
changes, E2 → E2eiδ , it is equivalent to the particle position
at

y = − δ

k
(

sin γ1 − sin γ2

) . (18)

2.2. Scattered Field and Mechanical Action. The light scat-
tered by a spherical particle illuminated by a plane mono-
chromatic wave can be calculated with using the Mie theory
[24]. To find the field mechanical action (5), one should
know the scattered field at R → ∞. For such conditions,
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the scattered field produced by the jth plane wave (8) can
be found via relations

Esc j =
eikR

−ikREs j , Hsc j =
eikR

−ikRHs j , (19)

where

Es j =
⎛

⎝

Eθs j

Eφs j

⎞

⎠ =
⎛

⎝

S2 0

0 S1

⎞

⎠

⎛

⎝

Eθ j

Eφ j

⎞

⎠

=
⎛

⎝

S2 0

0 S1

⎞

⎠

⎛

⎝

Ex j cosφ j + Ey j sinφ j

−Ex j sinφ j + Ey j cosφ j

⎞

⎠,

Hs j =
⎛

⎝

Hθs j

Hφs j

⎞

⎠ =
⎛

⎝

0 −1

1 0

⎞

⎠

⎛

⎝

Eθs j

Eφs j

⎞

⎠,

(20)

S1 ≡ S1(cos θ j) and S2 ≡ S2(cos θ j) are elements of the
scattering matrix [24] depending on the wave number k,
particle radius a, and the complex refraction index m, and
Cartesian and spherical coordinates are measured in the
frame (x, y j , z j) associated with the jth incident plane wave
(see Figure 1). The scattered field is completely transverse:
all the components of (20) are orthogonal to the unit vector
eR. In the simplest case of the Rayleigh scattering, when the
particle is much less than the wavelength,

S1 = −i(ka)3 m2 − 1

m2 + 2
, S2 = S1 cos θ j . (21)

In more general situations, S1 and S2 are expressed via the
spherical functions [24] and can be calculated numerically.
Each plane wave of the incident field is scattered inde-
pendently so the resulting scattered field can be found by
vector summation of the results obtained via (20). In view
of relations (19) and for future convenience, we represent it
in the form:

Esc1 + Esc2 = Es
eikR

kR
, Hsc1 + Hsc2 = Hs

eikR

kR
. (22)

Introduced quantities Es and Hs are merely the scattered field
amplitudes without the “spherical wave” factor eikR/(−ikR).

Now, by using (7), (4) can be written as

∆p = g

ckR
Re

[

E∗s ×Hs

kR
+ E∗1 ×Hse

ik(R−z1) + E∗2 ×Hse
ik(R−z2)

+ E∗s ×H1e
−ik(R−z1) + E∗s ×H2e

−ik(R−z2)

]

(23)

which should be substituted into (3). Then, due to (20), the
first term in brackets transforms to

Fs = −
g

(kR)2

∮

AR

E∗s ×HsdA

= − g

k2

∫ 2π

0
dφ

∫ π

0

(

|Eθs|2 +
∣

∣

∣Eφs
∣

∣

∣

2
)

eR
(

θ,φ
)

sin θdθ

(24)

and can be evaluated numerically. Note that, for other terms,
numerical integration is practically impossible because of
quickly oscillating interference factors exp[±ik(R − z j)].
However, their behavior at R → ∞ can be evaluated ana-
lytically. They contain integrals in the following form with
easily derived asymptotic:

∫ π

0
F(θ)e±ikR(1−cos θ) sin θ dθ

= e±ikR

∓ikR
[

e±ikRF(θ)θ=π − e∓ikRF(θ)θ=0

]

+ O
(

1

k2R2

)

,

(25)

the latter transformation is valid for any function F(θ) with
sufficiently regular behavior. In application to summands of
(23), this rule yields

R2 Re

∫ 2π

0
dφ j

∫ π

0

[

E∗j ×Hse
ik(R−z j )

+ E∗s ×H je
−ik(R−z j )

]

sin θ jdθ j

= R2 2π

kR
Im

[

e2ikR
(

E∗j ×Hs

)

θ j=π
−
(

E∗j ×Hs

)

θ j=0

− e−2ikR
(

E∗s ×H j

)

θ j=π
+
(

E∗s ×H j

)

θ j=0

]

.

(26)

Further, since H j = ez j × E j and Hs = eR × Es,

E∗s ×H j = E∗s ×
(

ez j × E j

)

= ez j

(

E∗s · E j

)

− E j

(

ez j · E∗s
)

,

E∗j ×Hs = E∗j × (eR × Es) = eR

(

E∗j · Es

)

− Es

(

eR · E∗j
)

.

(27)

In point θ j = 0, eR = ez j , in point θ j = π, eR = −ez j .
Accordingly, the second summands of the above equations
vanish and

(

E∗j ×Hs

)

θ j=0
=
(

E∗s ×H j

)∗

θ j=0
,

(

E∗s ×H j

)

θ j=π
= −

(

E∗j ×Hs

)∗

θ j=π
.

(28)

As a result, contribution of points θ j = π in expression (26)
vanishes and, combining (26), (28), (23) and (3), one obtains

F = Fs − g
4π

k2
Im
[

(

E∗s ×H1

)

θ1=0 +
(

E∗s ×H2

)

θ2=0

]

, (29)

where Fs is given by (24), Es is determined by (22), (19),
and (20), and H j is the amplitude of the incident plane-
wave component as defined in (7). Note that, due to the
accepted incident field geometry (Figure 1), both summands
in brackets of (29) are vectors belonging to plane (yz), and
the x-component of force Fx = Fxs is fully determined by the
momentum of the scattered field alone (24).

Thus, the procedure of calculating the mechanical action
of the field described in Section 2.1 is clear and can be
realized numerically.
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3. Simple Symmetrical Configurations of the
Incident Field

Equations (8) and (10)–(16) allow to analyze various situa-
tions. Our purpose of studying the role of spin and orbital
flows can be achieved via considering some symmetric su-
perpositions of plane waves (8) that appear if

γ1 = −γ2 = γ, (30)

and both waves are identical with possible phase shift; that is,

Ex2 = Ex1e
iδ , Ey2 = Ey1e

iδ . (31)

Then

E = 2 exp

(

ikz cos γ + i
δ

2

)

×
(

exEx1 cosΦ + eyEy1 cos γ cosΦ

− eziEy1 sin γ sinΦ

)

,

H = 2 exp

(

ikz cos γ + i
δ

2

)

×
(

−exEy1 cosΦ + eyEx1 cos γ cosΦ

−eziEx1 sin γ sinΦ
)

,

(32)

where

Φ = ky sin γ − δ

2
, (33)

and (10)–(16) reduce to

w = 2g
(

|Ex1|2 +
∣

∣

∣Ey1

∣

∣

∣

2
)

(

1 + cos2γ cos 2Φ
)

, (34)

pSx = −
g

c
i
(

Ex1E
∗
y1 − Ey1E

∗
x1

)

sin 2γ sin 2Φ, (35)

pSy = pOy = pOx = 0,

pSz =
2g

c

(

|Ex1|2 +
∣

∣

∣Ey1

∣

∣

∣

2
)

cos γ sin2γ cos 2Φ,
(36)

pOz =
2g

c

(

|Ex1|2 +
∣

∣

∣Ey1

∣

∣

∣

2
)

cos γ
(

1 + cos2γ cos 2Φ
)

. (37)

Noticeably, the spin momentum (35) agrees with the z-
component of the “paraxial” relation [9, 17]:

pS = −
1

2ωc
[ez ×∇⊥s3], (38)

where

s3 = icg
(

ExE
∗
y − E∗x Ey

)

= 2icg
(

Ex1E
∗
y1 − E∗x1Ey1

)

(1 + cos 2Φ)
(39)

is the “third Stokes parameter” describing the polarization
ellipticity in the plane (xy) [9].

An interesting consequence of the above results is that
the spin flow does not vanish even in case when the incident
field polarization is linear and uniform—in contrary to the
usual notions, according to which the spin flow is associated
with the inhomogeneous circular or elliptic polarization [9,
10, 12]. For example, in x- or y-polarized fields where

Ex1 = 0, Ey1 /= 0 or Ey1 = 0, Ex1 /= 0, (40)

x-component (35) of the spin momentum behaves “nor-
mally”, pSx = 0, but its z-component (36) is still nonzero.
This paradoxical feature can be explained if the longitudinal
field components are taken into account. In general, in planes
(xz) and (yz), the field of (32) is elliptically polarized, and
the presence of circular component can be characterized

by corresponding analogs s(xz)
3 and s

(yz)
3 of the third Stokes

parameter (39). They can be calculated similarly to (39); the
only precaution is that, because of the field nonparaxiality,
contributions of the electric and magnetic fields generally
differ and must, therefore, be added with equal weights:

s(xz)
3 = i

2
cg
(

ExE
∗
z − E∗x Ez + HxH

∗
z −H∗

x Hz
)

= 0,

s
(yz)
3 = i

2
cg
(

EyE
∗
z − E∗y Ez + HyH

∗
z −H∗

y Hz

)

= −gc
(

|Ex1|2 +
∣

∣

∣Ey1

∣

∣

∣

2
)

sin 2γ sin 2Φ,

(41)

(in plane (xz), projections of the electric and magnetic
vectors rotate oppositely while in plane (yz) they rotate
identically). Interestingly, the relation between the spin mo-
mentum (36) and parameter (41),

pSz = −
1

2ωc

∂s
(yz)
3

∂y
, (42)

exactly reproduces the paraxial formula (38) if the “trans-
verse” (xy) plane is replaced by the (yz) plane and the
“longitudinal” direction is associated with ex. Usual rules
for the spin flow, derived for paraxial beams [9, 10], are
also applicable. For example, within the (yz) plane, the spin
flow is oriented along the constant-level lines of function

s
(yz)
3 (y, z) and directed so that the region with higher

s
(yz)
3 (y, z) lies to the left when seen from the positive end of

axis x.
We focused upon the simple plane-polarized configu-

ration of (40) because optical currents in this field were
recently considered in detail [23]. However, it is not favoura-
ble for studying the specific features and roles of the spin and
orbital flows. An essential aspect that differentiates it from
the common paraxial fields is that here the spin flow, as well
as the orbital one, is directed in accord with predominant
beam propagation and constitutes a part of the main
(longitudinal) energy flow of the beam. In such a situation,
there is no physical difference between the spin and orbital
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momenta; in fact, they are likely to be indistinguishable, and
only their (algebraic) sum can be observed. In our opinion,
this serves an additional argument for the mechanical equiv-
alence between the spin and orbital momenta and testifies
that physical manifestations of both contributions should be
the same.

Nevertheless, it would be useful to support this idea with
a direct analysis of mechanical action of the spin momentum.
To search the conditions where the spin momentum repre-
sents itself “in pure form”, with all its specific properties, we
concentrate on an alternative situation where the superposed
waves are circularly polarized; that is, instead of (40),

Ex1 =
E0√

2
, Ey1 = iσ

E0√
2

, σ = ±1. (43)

Then an x-component of the spin flow appears whose form
is dictated by (35) and (43) as follows:

pSx = −
g

c
σ|E0|2 sin 2γ sin 2Φ. (44)

In contrast to other frequent situations where the spin and
orbital flows are present simultaneously [9, 10, 12, 14–17],
this x-directed spin flow is unique and cannot be contami-
nated with any orbital contribution; moreover, an x-directed
energy flow in this geometry seems counterintuitive, and its
observation would be an impressive evidence for the physical
consistence of the spin momentum.

4. Numerical Analysis and Discussion

To assess the mechanical action of the incident field, we
calculated Cartesian components of the force (29) Fx, Fy , Fz
that act on a probe particle placed within the field satisfying
conditions (30), (31), and (43). The results for particles of
different physical nature modeled by the relative refraction
index m are presented in Figures 2(a)–2(c) as functions of the
diffraction parameter ξ = ka where a is the particle radius
[24]. Upon calculations, the condition

2Φ = −π

2
(45)

(y = 0, δ = π/2 or δ = 0, y = π/(4k sin γ)) was chosen
that corresponds to maximum absolute value of the spin
flow (35) or (44); the angle value γ = 0.01 rad allows one
to consider the near-paraxial regime frequently occurring in
practice. To decrease the dynamical range of presented data,
they are normalized by means of dividing all calculated forces
by the total momentum flux of the incident field through the
particle cross section,

F0 = 2g
(

|Ex1|2 +
∣

∣

∣Ey1

∣

∣

∣

2
)

· πa2. (46)

Figure 2(a) presents results obtained for a metallic
reflecting particle (m = 0.32 + 2.65i corresponds to Au
particles suspended in water [25]), Figure 2(b) was calcu-
lated for the model of strongly reflecting dielectric particle
(m = 200+i), and Figure 2(c) describes the behavior of usual

dielectric particles (m = 1.5 is typical for various glass or
latex materials [20]). For comparison, “pure” contributions
of the scattered field Fys, Fzs following from (24) are also
presented by dashed lines (Fxs ≡ Fx, see the note below (29)).

All the calculated dependences possess an oscillatory
character typical for the Mie scattering [24, 25] and ex-
plained by resonance properties of the particle (noticeable
oscillations in the initial segment of curve Fz in Figure 2(b)
are an artifact of the nonphysically high refraction index).
The results of Figure 2 should be confronted with the inci-
dent field momentum components (35)–(37). The longitu-
dinal force (blue curves Fz and Fzs) represents the usual light
pressure effect; the transverse y-component (black curves Fy

and Fys) corresponds to the gradient force that attracts a
particle to or repels it from regions of high electromagnetic
energy concentration [26]: under condition (45), the energy
density (34) possesses the maximum gradient. The gradient
nature of the force Fy is confirmed by the linear behavior
of solid black curves in Figures 2(a)–2(d) at small ξ. With
account for normalization divider (46), this means that the
force is proportional to the particle volume, which is clearly
seen in Figure 3 showing the dependences of Figures 2(c) and
2(d) at the small-particle region in logarithmic scale.

The most interesting results relate to the component
Fx—the only force component that can be associated with
the spin flow (44). This attribution is directly supported by
the fact that, in full agreement with the spin flow behavior,
Fx changes the sign with inversion of the incident beam
helicity σ (compare curves Fx+ and Fx− in Figures 2(a)–
2(c))—while all other curves remain the same. Additional
arguments for the proposed interpretation follow from
analysis of mechanical action of x- or y-polarized incident
fields (conditions (40) are fulfilled). Corresponding results
are not presented in Figure 2 because in all cases curves
Fz, Fzs, Fy , Fys are close to the ones calculated for circular
polarization but Fx completely vanishes.

Similar conclusions can be derived from Figure 4 that
illustrates how the force components depend on the particle
position via parameter Φ (see (33)). The spatial dependence
of Fy , Fys exactly reproduces the gradient of the energy
density (34), and Fz, Fzs behave in accordance with the
total longitudinal momentum of the incident field (sum of
expressions (36) and (37)). Fx varies proportionally to the
spin momentum (44) in case of circular polarization (lines
Fx+ and Fx− in Figure 4(a)) and disappears for the x- or y-
linearly polarized fields (Figures 4(c) and 4(d)).

All the above arguments witness that the force experi-
enced by a probe particle, really, can reflect the local value of
the internal energy flow. However, there are some additional
factors that also affect the possible particle’s motion and
must, thus, be taken into account in the interpretation of
the probe particle experiments. The first one is the already
mentioned gradient force that is a source of Fy in the
considered field configuration. Secondly, Figure 2(c) shows
that a probe particle can experience the mechanical action
directed against the spin momentum (in this panel, signs of
Fx+ and Fx− are just opposite to those in Figures 2(a) and
2(b) and to what is dictated by (44)). In contrast to known
reports of the reverse mechanical action [27], the present
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Figure 2: Components of the force experienced by a spherical particle versus the diffraction parameter ξ = ka in the inhomogeneous
incident field described by (30)–(37), γ = 0.01, Φ = −π/2, with (a–c) circular polarization of (43) and (d) 45◦ linear polarization of (31)
(Ey1 = ±Ex1). Data are normalized by F0 (46), curve labels: (Fy , Fz) Cartesian components of the total force (29), (Fys, Fzs) components of
the force (24) (dashed lines), (Fx+, Fx−) force component associated with the spin flow (44) for σ = ±1, (Fx/ , Fx\) x-component of the force
in case of 45◦ linear polarization with Ey1 = ±Ex1. The particle refraction index equals to (a) m = 0.32 + 2.65i; (b) m = 200 + i; (c) and (d)
m = 1.5.

effect is expected to take place for spherical particles in
homogeneous media. This fact deserves special investigation;
at the moment, we may suppose that it is similar to recently
reported effects of the negative light pressure [28, 29] caused
by specific character of the particle-induced field distortion
and particle-field interaction. Anyway, the spin-induced
nature of the force Fx in conditions of Figure 2(c) is doubtless
for it reverses with changing the sign of σ and disappears for
x- and y-polarized incident fields (Figures 4(c) and 4(d)).

5. Non-Poynting Sources of
the Mechanical Action

An important consequence of the performed analysis is the
conclusion that an optical field may exert the mechanical
force that cannot be associated with any component of the
field momentum (energy flow) in the incident beam. This

result agrees with numerous analytical and numerical studies
(see, e.g., [20, 30, 31]) and is especially significant for the
problem of visualization of optical currents. A characteristic
example is provided by the force Fy in Figures 2–4 that does
not vanish despite that under conditions (30), (31) pSy =
pOy = 0. This force does not depend on the polarization
state, and its spatial variation corresponds clearly to the
gradient of the energy density distribution (34) (see Figures
4(a), 4(c), 4(d)), so it was identified in the above section with
the known gradient force [20, 30, 31] that pushes a particle
to or from the high-intensity regions.

However, our results show that a certain force may
appear even in the direction where both the incident field
momentum and the energy density gradient equal to zero.
For example, an x-directed force exists in a linearly polarized
incident field provided that, in contrast to conditions (40),
both x- and y-components are nonzero (lines Fx/ and Fx\ in
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Figure 3: Particle-size dependence of the field-induced force
components acting on a small dielectric particle with refraction
index m = 1.5 in a circularly polarized (Fx±) and 45◦ linear
polarized (Fx/) incident field (conditions of Figures 2(c) and 2(d))
in the double logarithmic scale. Line labels are the same as in
Figure 2, and the orders of growth are added; lines Fy , Fys, Fz, and
Fzs for both polarization cases are identical.

Figures 2(d) and 4(b)). This phenomenon can be ascribed to
the polarization-dependent dipole (PDD) force that emerges
in inhomogeneously polarized fields [10, 26]. In paraxial case
and for weak electric polarization of the medium exposed to
the field, the transverse component of this force exerted to
the unit volume of the medium is proportional to [10]

Fdip = εr − 1

2c

[(

−ex
∂

∂x
+ ey

∂

∂y

)

s1 −
(

ex
∂

∂y
+ ey

∂

∂x

)

s2

]

,

(47)

where εr is the real part of the medium permittivity; s1(x, y)
and s2(x, y) are transverse distributions of the first and
second Stokes parameters [24]. In the situation of (30), (31),
they can be represented similarly to (39):

s1 = gc
(

|Ex|2 −
∣

∣

∣Ey

∣

∣

∣

2
)

= 2gc
(

|Ex1|2 −
∣

∣

∣Ey1

∣

∣

∣

2
cos2γ

)

(1 + cos 2Φ),

s2 = gc
(

ExE
∗
y + EyE

∗
x

)

= 2gc
(

Ex1E
∗
y1 + Ey1E

∗
x1

)

cos γ(1 + cos 2Φ).

(48)

Again, like in the above-considered situations, the exact
value of the force is mediated by a number of complicated
details of the field-particle interaction, so presence of the
PDD force (47) can be detected via specific features of its
dependence on the particle position and on the incident field

polarization. Since quantities (48) depend only on y, the
general expression (47) reduces to

F
dip
x ∝ gk

(

Ex1E
∗
y1 + Ey1E

∗
x1

)

sin 2γ sin 2Φ, (49)

F
dip
y ∝ −2gk

(

|Ex1|2 −
∣

∣

∣Ey1

∣

∣

∣

2
cos2γ

)

sin γ sin 2Φ. (50)

Hence, the x-component (49) vanishes in the x- or y-
polarized field but differs from zero for any other case of
plane polarization, and the sign reversal of the product

Ex1Ey1 causes inversion of F
dip
x . These features, equally

specific for the x-component of force that appears in case of
“oblique” linear polarization (curves Fx/ and Fx\ in Figure
2(d)), allow the latter to be identified with the x-component
of the PDD force (47). Its spatial dependence (curves Fx/ and
Fx\ in Figure 4(b)) also agrees with (49) (and, by the way, is
identical to that of the spin flow (44) (see Figure 4(a)).

Generally, in the situation of (30), (31), the discussed x-
component of the PDD force (49) acts similarly to the spin
flow (44). However, it is associated with linear polarization
and vanishes in circularly polarized fields while the force
originating from the spin flow, quite oppositely, vanishes in
plane-polarized fields. Both forces show different behavior
in respect to the particle size: for small particles, the spin-
induced action grows proportionally to a8 while the PDD
force grows as a11 (see lines Fx± and Fx/ in Figure 3). The
apparent deviation from the particle-volume proportionality
dictated by (47), can be ascribed to approximate character
of (47) derived for the Drude model of weakly polarized
media [10] and to the details of the field-particle interaction
that are omitted in the above estimates (after all, the real
PDD force is determined by (47) with the field parameters
measured inside the particle whereas, in (49) and (50), the
characteristics of the unperturbed incident field were used).
In the middle-size region, force Fx± shows the tendency to
unidirectional growth, though in oscillatory manner (curves
Fx+ and Fx− in Figures 2(a)–2(c)), while components Fx/
and Fx\ in Figure 2(d) oscillate near the zero line. In real
situations, the spin-flow force and the x-component of the
PDD force seem to act jointly, but the actual value and even
the sign of each contribution is a complicated function of
the field characteristics and of the particle optical properties.
Detailed study of this problem is out of the scope of the
present paper.

The y-component of the PDD force is less interesting
because, according to (50) and (34), it acts similarly to the
gradient force in all cases. Regarding the field and particle
characteristics, it can slightly modify the resulting value of Fy ,
which explains small difference between curves Fy in Figures
2(c), 2(d) and 4(c), 4(d).

Most impressively, the PDD force manifests itself in
conditions where all other sources of the field mechanical
action are absent. This is realized if, instead of (31), the
following conditions hold:

Ex1 = Ex2e
−iδ = E0√

2
, Ey1 = −Ey2e

−iδ = i
E0√

2
, (51)

(both plane waves of the superposition (9) are circularly po-
larized, but, in contrary to (43), their helicities are opposite).
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Figure 4: Coordinate dependence of the force acting on the spherical particle with diffraction parameter ξ = 5 and refraction index m = 1.5
in the incident field of (30)–(37), γ = 0.01 (conditions of Figures 2(c), 2(d)) with: (a) circular polarization of (43); (b) 45◦ linear polarization
of (31) (Ey1 = ±Ex1); (c) x- and (d) y-polarizations of (40). Force values are normalized by (46).

Then, taking into account condition (30), one obtains from
(10)–(16) that D(y, z) = 0, w = 2|E0|2= const, and the
transverse flow components pSx = pSy = pOx = pOy = 0.
However, the PDD force (47) still exists, and, due to (49) and
(50),

Fx ∝ 2gk|E0|2 sin γ cos γ cos 2Φ,

Fy ∝ −gk|E0|2
(

1 + cos2γ
)

sin γ sin 2Φ.
(52)

Results of the corresponding numerical calculations are
illustrated by Figure 5. Normalized force components Fx and
Fy (Figure 5(a)) behave in full accordance to (52), which
confirms that the calculated mechanical action, indeed, can
be identified with the PDD force. Even the component values
are close to each other, as it ought to be from (52) at 2Φ =
−π/4. Note that, in full compliance with the homogeneous
intensity of the field obeying (30) and (51), the longitudinal
force Fz, as a function of Φ, is almost constant (Figure 5(a));
its dependence on the particle size parameter ξ is practically

the same for different polarization states (compare curves Fz,
Fzs in Figures 2(c), 2(d), and 5(b)). Such a behavior of the
longitudinal force is quite expectable; in contrast, the very
existence of the transverse force components seems, at first
glance, counterintuitive, until the PDD force (47) and (52) is
taken into consideration. The incident field configuration of
(30) and (51) represents an instructive example of the optical
field where the transverse ponderomotive action appears
exclusively due to the inhomogeneous polarization, without
any intensity gradients and internal energy flows.

Based on the materials of this section, it is important
to emphasize that in inhomogeneous optical fields, forces
of other origin, which are not related to the energy flows,
may appear whose action can substantially modify and even
mask the field momentum action. Beside the known gradient
force determined by the nonuniform distribution of the field
energy, the PDD force (47) can exert an action that non-
trivially depends on the polarization inhomogeneity. Their
masking influence can be reduced or eliminated in certain
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Figure 5: (a) Coordinate and (b) size dependence of the field-induced force components exerted to the spherical particle with refraction
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specially designed field configurations. For example, in the
geometric arrangement discussed in this paper (Figure 1),
the gradient force “pushes” a particle along the y-direction
while the internal flows are expected to produce motions
along axes z and x. The PDD force that, in the considered
arrangement acts “together” with the spin flow, can be sepa-
rated due to specific relation to the field polarization: it van-
ishes for the circular polarization of the incident field, when
the spin flow is maximal, and reaches the maximum at 45◦

linear polarization while the spin flow completely disappears.

6. Conclusion

A model of spatially inhomogeneous optical field is proposed
that is formed by superposition of two plane waves. Despite
its simplicity, the model adequately represents some general
properties of inhomogeneous fields, including regularities in
the behavior of internal energy flow and its spin and orbital
parts. Using the Mie theory, the mechanical force acting on
a probe particle is calculated numerically. This force consists
of several contributions that can be associated with the spin
and orbital parts of the internal energy flow of the incident
field. In general, this testifies to the mechanical equivalence of
the spin and orbital parts of the electromagnetic momentum
and shows the possibility of detecting the internal flows
by translational and/or orbital motion of probe particles
suspended within the field.

However, some precautions should be kept in mind when
interpreting the probe particle behavior. First of all, the
field mechanical action depends on the particle size and re-
fraction index in rather complicated and non-monotonous
way (see, e.g., Figures 2(a)–2(d)). Besides, the particle
strongly disturbs the incident field pattern, and in some cases
the resulting force is rather far from naı̈ve expectations that
the mechanical action is proportional to the local value of
the incident field momentum density in the point where

the particle is placed. In essence, only the line along which
the particle is “moved” by a certain flow component usually
coincides with the flow line; the actual force magnitude and
even its sign cannot be predicted from the flow pattern
alone. Additionally, forces that are not directly associated
with the field momentum (e.g., the gradient force and the
polarization-dependent dipole force) can provide the pon-
deromotive action apparently similar to the field momentum
action.

Based on the presented examples, we suppose that vari-
ous situations where an optical field exerts the polarization-
dependent mechanical action on isotropic particles (and, of
course, the scattered field acquires the corresponding recoil
momentum and the polarization-induced spatial anisot-
ropy) can be treated as a new form of the spin-orbit inter-
action of light. Its origination is likely the same as reported
previously for the scattering of a circularly polarized plane
wave [32] (generation of optical vortices in the scattered
field), but now this phenomenon is accompanied by the
symmetry-breaking interference of the scattered fields from
different plane waves of the superposition. In fact, the spatial
distribution of the scattered field demonstrates some distinct
polarization-dependent features that constitute a separate
interest and will be considered elsewhere. Here, we only
mention that an incident field with the spin momentum
induces the scattering anisotropy even in the Rayleigh scat-
tering regime (corresponding corrections to (21) are anti-
symmetric with respect to the longitudinal dimension z).
The field scattered into the forward hemisphere acquires the
integrated transverse momentum, approximately the same
momentum but with opposite sign is imparted to the
back-scattered field. These values are about two orders of
magnitude higher than the total momentum imparted to the
particle.

Finally, we emphasize that the model of inhomogeneous
optical field developed in this paper, even in its simplest
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version, provides consistent deductions that will be useful
in planning and performing the probe particle experiments.
Besides, the presented model can be easily generalized to
describe more complicated situations to reflect fine features
of the real optical fields.
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