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ABSTRACT: Mechanical alloying by high energy ball milling is an attractive solid – state technique for synthesizing a 
diverse range of equilibrium and non-equilibrium phase materials. We have studied the synthesis of n – type thermoelec-
tric Mg2Si0.4Sn0.6 solid solution, aiming for a fundamental understanding of the mechanisms underlying this synthesis 
technique. The investigations on powders by XRD and SEM show that milling leads to welding of Mg and Sn but fractur-
ing of Si. This fractured Si diffuses into the ductile matrix on longer milling times resulting in a phase mixture close to the 
nominal starting composition after 35h of milling. However, single phase pure material was only achievable after sinter-
ing, hence the synthesis of Mg2(Si,Sn) is a two – step  process. Furthermore, a thorough study on the effect of varying 
synthesis parameters on the thermoelectric properties was performed. No strong influence of milling time on the thermo-
electric properties was observed and just 2h of milling followed by compaction was sufficient to obtain a pellet with opti-
mal thermoelectric properties. Moreover, increasing sinter temperature/time deteriorated carrier concentration hence 
degrading the electronic properties. Thus, optimized thermoelectric properties were obtained for the powder consoli-
dated at 973K/20minutes. Mg2Si0.4Sn0.6 synthesized by mechanical alloying achieved a thermoelectric figure of merit 
zTmax~1.4.

Introduction 

Thermoelectrics (TE) is a principle of reversible 

coupling between heat and charge flow1. Thermoelectric 

materials are used in solid state devices either to harvest 

waste heat for power generation or for cooling applica-

tions. These solid state thermoelectric generators (TEGs) 

have been utilized in lunar and planetary landers in deep 

space probes for extra-terrestrial flight missions and 

commercially, for example for cathodic protection against 

corrosion of gas pipelines and in thermo-generators2, 3. To 

secure a place in the market, they should be inexpensive, 

environmentally benign and have high conversion effi-

ciency. Fulfilling these requirements could pave the way 

for their application in automotive and aviation industries 

since two third of the generated energy from primary 

sources, for example fossil fuels, is released as waste heat4, 

5. The conversion efficiency of a TEG is governed by fig-

ure-of-merit (𝑧𝑇) of the employed materials, which is 

given by 𝑧𝑇 = 𝑆2 𝜎𝑇 𝜅⁄ ; where 𝑆, 𝜎, T, and 𝜅 are Seebeck 

coefficient, electrical conductivity, absolute temperature 

and the total thermal conductivity, respectively. The lat-

ter comprises of electronic (𝜅el), bipolar (𝜅bip) and lattice 

(𝜅lat) contributions. Ideally to have maximum 𝑧𝑇, a TE 

material should obey the concept of PGEC-Phonon Glass 

Electron Crystal i.e. it concomitantly should possess the 

electronic properties of an ideal crystalline (heavily 

doped) semiconductor and the thermal properties of a 

glass. However, it is observed that the interlink between 

the electronic parameters (𝑆, 𝜎, 𝜅el and 𝜅bip) as well as a 

significant contribution from the lattice makes it chal-

lenging to achieve 𝑧𝑇avg~1.0 for mid-temperature materi-

als5. Amongst the various promising materials for inter-



 

mediate temperatures (500 – 800 K) such as PbTe6, 

TAGS7, Skutterudites8, Zn4Sb3
9

 and the half-Heuslers10, 

magnesium silicide (Mg2Si) based solid solutions (espe-

cially Mg2Si1-xSnx
11) have attracted a fair amount of atten-

tion in the last decade. This is due to their confirmed 

excellent thermoelectric properties 𝑧𝑇max~1.3 − 1.5 11, 12, 

low density, elemental abundance and environmental 

compatibility13. 

A variety of synthesis routes have been examined such as 

melting of the elements11, 14, self-propagating high temper-

ature synthesis (SHS)15, solid state reaction16 or combining 

these techniques as steps17 followed by a sintering process 

to obtain a pellet. Furthermore high energy ball milling 

has been utilized to synthesize Mg2Si and its solid-

solutions18-20. For the high temperature liquid synthesis 

route, precise Mg content control is challenging due to its 

high vapor pressure16,21. Mechanical alloying overcomes 

disadvantages of conventional synthesis mechanisms such 

as undesired material loss due to significant differences in 

the melting temperatures of the elements or chemical 

interaction of the melt with the crucibles/ampoules lead-

ing to off-stoichiometry and contamination. Furthermore 

MgO formation is often observe21-23 which is detrimental 

to the electrical conductivity of the material24. Besides the 

Mg2(Si,Sn) system high energy ball milling has become a 

very popular technique for the synthesis of various ther-

moelectric materials19, 25-28.  

Several attempts to synthesize Mg2Si1-xSnx by mechanical 

alloying in the past have resulted in the formation of 

either multi-phase or impure materials29-34. Only recently, 

high energy ball milling combined with a compaction 

step has been employed successfully to obtain n-type 

Mg2Si as well as n- and p-type Mg2(Si,Sn)19, 20, 35, 36. So, 

based on the previous reports it is clear that high energy 

ball milling is an efficient and attractive synthesis route, 

however, an understanding of Mg2Si1-xSnx phase formation 

and underlying mechanism is yet missing. Therefore, a 

detailed phase formation analysis to comprehend the 

synthesis mechanism was performed. We decided to 

study the formation of Mg2Si0.4Sn0.6 because this composi-

tion has shown the best thermoelectric properties for this 

material class16, 37, 38. 

The sintering parameters play a crucial role in 

obtaining phase pure and homogeneous samples, they 

furthermore heavily influence the TE properties of the 

material.  For the Mg2Si0.4Sn0.6 system there is first no 

detailed analysis available correlating sintering parame-

ters with the TE properties, and second it remains unclear 

how sensitive the material is to the variation in these 

parameters. Instead, the previously reported sintering 

parameters differ and cause ambiguity17, 39-42. We have 

therefore systematically studied the changes that occur 

during sintering, and their effect on the TE properties was 

observed. 

 

Experimental Section 

The magnesium tin silicide solid solution was 

synthesized using commercially available starting ele-

ments (Mg turnings (Merck), Si (<6 mm, Chempure), Sn 

(<71 µm, Merck) and Sb (5 mm, Alfa Aesar)) all with puri-

ty >99.5%. A high-energy mechanical alloying mill (SPEX 

8000D Shaker Mill) was employed with stainless steel 

vials and balls. The elements were weighed according to 

the desired composition Mg2Si1-x-ySnxSby (x = 0.6, y = 

0.015). Magnesium was taken 3 at.% in excess to compen-

sate for possible Mg loss. There were two sets of experi-

ments performed. In the first set, a specific amount of 

powder (1.25 g) was removed for the analysis of the sam-

ple (XRD, SEM and particle size analysis), thus as the 

milling progressed the ball-to-powder ratio (BPR) in-

creased, see electronic supplementary information (Table 

S1 in ESI). In the second set the effect of milling time 

(rather than BPR) with constant BPR and 𝑡milling = 2 h, 4 h, 20 h, 50 h was investigated. All the samples were 

sintered at 973 K for 20 minutes.  

 In order to obtain homogeneous samples with 

optimum thermoelectric properties, different combina-

tions of sintering parameters were tested. The powder 

mechanically alloyed for 20 hours was utilized for this 



 

optimization study as this duration has been reported 

frequently in the literature20, 35, 36, 43. The powder handling 

during synthesis was done under argon to prevent oxida-

tion and contamination. The sample powder was sintered 

at three different temperatures/constant time (923 K / 

20min, 973 K / 20 min and 1023 K / 20min) combinations 

with constant temperature/different sintering times (973 

K / 5 min, 973 K / 10 min, 973 K / 20 min, 973 K / 30 min) 

to study the effect of varying sintering parameters. Pow-

der samples were sintered utilizing a Direct-Current Sin-

tering Press (DSP 510 SE) from Dr. Fritsch GmbH. Sinter-

ing was performed using a graphite mold Ø12.7 mm under 

vacuum (~10−5 bar) at a heating rate of 1 K/s.  The densi-

ty measurement for all the pellets was done using Archi-

medes method. The relative densities of the obtained 

pellets were >95% of the theoretical value (3.06 g cm-3). 

X-ray diffraction was performed on powders and 

sample pellets utilizing a Siemens D5000 Bragg–Brentano 

diffractometer with a secondary monochromator. The 

specifics used in the system were Cu-Kα radiation (1.5406 

Å) in the range (2θ: 20°–80°) with a step size of 0.01°. 

Scanning electron micrographs (SEM) were taken using a 

Zeiss Ultra 55 equipped with an energy dispersive X-ray 

(EDX) detector. A laser-assisted particle size analyzer 

(Beckman Coulter IS3320) was used to analyze the parti-

cle size distribution of powder samples. The homogeneity 

of sample pellets was studied by an in-house developed 

surface-scanning Seebeck microprobe44. Also, the temper-

ature dependent electronic transport properties were 

measured utilizing an in-house developed facility utilizing 

a four-probe technique45, 46. The thermal diffusivity (𝛼) of 

the pellets was obtained using the Netzsch LFA 427 appa-

ratus. The thermal conductivity (𝜅) was obtained using 

the relation: 𝜅 = 𝛼 ∙ 𝜌 ∙ 𝐶p, where 𝜌 and 𝐶p are sample 

density and Dulong-Petit heat capacity. The 𝐶p value was 

obtained from the Dulong-Petit limit for 𝑐VDP: 𝐶p = 𝑐VDP +9𝐸t2T𝛽T𝜌 , 𝐸t~2 × 10−5 K-1 and 𝛽T~2.07 × 10−11 Pa-1 are the 

linear coefficient of thermal expansion and isothermal 

compressibility, respectively47. The measurements were 

performed in a temperature range from 300 K – 773 K 

under vacuum. The measurement uncertainties for 𝑆, 𝜎 

and 𝜅 are ± 5 %, ± 5 % and ± 8 %, respectively. For better 

visibility of the TE data the error bars are shown for one 

sample only. The room temperature Hall coefficient 𝑅H 

for different samples was determined using an in-house 

facility in a van der Pauw configuration under a varying 

magnetic field of maximum 0.5 T48. The Hall carrier con-

centration 𝑛H was estimated from 𝑅H assuming a single 

carrier type 𝑛H = 1𝑅H×e . Measurement uncertainties for 𝑛H 

and mobility 𝜇H are ± 10 %. 

 

Results 

The synthesis conditions and representative data for dif-

ferent samples are summarized in Table 1.  

 

Figure 1. X-ray patterns show the formation of the desired 
phase with increasing milling time. A shift of the prominent 

(220) peak with increasing milling time can be observed from 
the inset [2θ ~ 37°–39°] signifying that the material system is 

close to the desired phase after 35 h of milling. 

 



 

 

Table 1: Synthesis conditions, zTmax and room temperature carrier concentration nH and mobility µH of the 

Mg2Si0.4Sn0.6 samples 

Sample Name 

Milling time (h), 

Sintering temperature / time 

(K / min) 

Density  

(g∙cm
-3

) zTmax. nH (×10
20

) (cm
-3

) 

µH 

(cm
2∙V-1

s
-1

) 

MS – 2 – 973 / 20 2, 973 / 20 
3.02  

(98.6%) 

1.35±0.18  

(729 K) 
2.3 

54 

MS – 4 – 973 / 20 4, 973 / 20 
2.93  

(95.7%) 

1.37±0.19 

 (726 K) 
2.0 

51 

MS – 20 -973 / 20 20, 973 / 20 
2.97  

(97.0%) 

1.38±0.19 

 (759 K) 
2.1 

51 

MS – 50 – 973 / 20 50, 973 / 20 
2.95  

(96.4%) 

1.28±0.17  

(726 K) 
2.2 

52 

MS – 20 – 923 / 20 20, 923 / 20 
3.02  

(98.6%) 

1.28±0.17  

(779 K) 
2.4 

50 

MS – 20 – 1023 / 20 20, 1023 / 20 
2.94  

(96.0%) 

1.18±0.16  

(759 K) 
1.9 

50 

MS – 20 – 973 / 5 20, 973 / 5 
2.98  

(97.3%) 

1.34±0.18  

(756 K) 
2.3 

50 

MS – 20 – 973 / 10 20, 973 / 10 
2.98 

(97.3%) 

1.31±0.18  

(759 K) 
2.1 

47 

MS – 20 – 973 / 30 20, 973 / 30 
3.03 

(99.0%) 

1.21±0.16  

(760 K) 
1.9 

48 

 

XRD patterns of the powders milled for different du-

rations are presented in Figure 1. The formation of multi-

phase material with compositions close to Mg2Sn takes 

place within the first hour, while the formation of Si-rich 

Mg2(Si,Sn) is not observed. The participation of starting 

elements in the phase formation is visualized by the di-

minishing elemental peaks. However, the consumption 

time of the starting elements is different: while Sn has 

basically disappeared after 𝑡milling = 15 h, elemental Si 

still persists in the pattern at least until 𝑡milling = 25 h, 

asserting that incorporation of Si in the material system 

to form the Mg-Si-Sn phase takes place after longer mill-

ing time. A gradual shift of the Mg2(Si,Sn) peaks towards 

higher 2θ (~37°→39° for the 220 peak) with increasing ball 

milling time signifies decreasing lattice constant (Figure 1 

(inset)). Any impurity peaks corresponding to phases 

originating from the milling vial or grinding media were 

not found. The median of the particle size distribution 

decreases with increasing milling time (Figure 2). Initially 

(up to 𝑡milling ≈ 6 h) a strong decrease in particle size is 

observed, mainly due to fracturing of the starting ele-

ments. The curve corresponding to powder milled from 4 h to longer milling times have increasing fraction of 

particles in the sub 10 micron region which is not ob-

served for the shorter milled powders which is further 

followed by a plateau between 10 h −  25 h (the particle 

size distributions for exemplary powder samples is pro-

vided in Fig. S1 in the ESI). This is because the system 

tends to form a dynamic equilibrium between the reduc-

tion in particle size and re-agglomeration. On continu-

ously milling, the ductile phase particles get work hard-

ened. Later, this work hardened system undergoes pro-

gressive brittle cracking and/or further fragmentation of 

fragile components leading to a decrease in particle size 

for 𝑡milling > 25 h. 



 

 

 

The SEM analysis was performed on the cross 

section of the powder particles milled for 𝑡milling =4 h, 20 h and 35 h as shown in Figure 3. The observations 

from 4 h milled powder suggest that individual particles 

comprise of different starting particles cold welded to-

gether. The EDAX analysis suggests that the Mg particles 

preferentially tend to interact with Sn particles. The area 

on which the EDAX mapping and line scans were done 

shows that the Si particles get trapped within Mg-Sn rich 

particle matrix. Further investigations on 20 h  milled 

powder particles show significant size reduction in com-

parison to the 4 h milled powder. The line scans per-

formed on the Mg – Si / (Mg – Sn) – Si interfaces on the 

particles show that the Si concentration in the corre-

sponding rich area decreases and the Mg and Sn concen-

trations become significantly larger in comparison to the 4 h milled sample. Similarly, the investigations on 35 h 

milled powder suggested less Si rich areas on the powder 

particle compared to 20 h milled powder sample. Alt-

hough the Si rich region had atomic fraction(s) almost 

comparable to those for 20 h  samples but some areas 

appeared to be diffusing into the Mg – Sn matrix. The 

additional line scans corresponding to 𝑡milling =

4 h, 20 h, and 35 h are also provided in the ESI (Fig. S2, S3, 

S4). 

Discussion 

The combined analysis of SEM, XRD and particle 

size gave us an understanding of the phase formation of 

Mg2Si1-xSnx using high energy ball milling which is depict-

ed in Figure 4. The cold welding and fracturing to a large 

extent depends on the deformation characteristics of the 

starting materials. Mg and Sn are ductile elements with 

lower shear modulus, Young’s and bulk modulus com-

pared to the more brittle silicon49, 50 . During the complete 

process of mechanical alloying first, the ductile Mg and 

Sn dominantly experience plastic deformation (repeated 

cold welding and flattening) resulting in the formation of 

fresh interfaces. These new interfaces act as centers for 

the other elements to cold weld. On the other hand, the 

silicon particles are initially subject to comminution and 

mostly get trapped within these flattened Mg and Mg – Sn 

constituents. Additionally, the Si owing to higher values 

of moduli require either higher impact energy from the 

balls or longer impact time to diffuse into the complete 

Mg-Sn rich particle matrix as the milling progresses. 

Thus, the reaction time towards the desired phase gets 

prolonged (compared to e.g. Mg and Sn only, see ref.30). 

With increasing milling times the Sn-rich Mg2Si1-xSnx 

particles get work hardened, which increases the brittle-

ness of the system together with the progressing Si incor-

poration. From this stage, the size of powder particles 

decreases further. Simultaneously, the Si particles get 

completely diffused into the Mg-Sn rich matrix leading to 

the formation of Mg2Si1-xSnx solid solution with 0 < x < 1. 

This is in agreement with previous reports on mechanical 

alloying of Mg2X (X: Si, Sn and Ge) based materials19, 30, 51 

where the formation of Mg2Sn comprising of ductile-

ductile constituents was found to be comparatively faster 

than Mg2Si (ductile – brittle system). Moreover, the ex-

perimental and theoretical values of the formation en-

thalpy of Mg2Sn: -80.75 kJ/mol and -80 kJ/mol (at 298 K)

Figure 2. Particle size median versus ball milling time. 
Particle size decreases with longer milling time. Curve 

shows a plateau from 10 h to 25 h attributed to a dynamic 
equilibrium existing between cold welding of ductile phase 

particles (here Mg-Sn) and comminution of brittle phase 
particles (Si particles). 

 



 

 
 

 

 

Figure 3. Electron micrographs, EDAX line scans and elemental mapping of (a) 4 h (b) 20 h and (c) 35 h milled powders. 

 

 

 

 

Figure 4. Formation mechanism of Mg2Si1-xSnx phase through high energy mechanical alloying. 

respectively are higher than those of Mg2Si (-68 kJ/mol, -

64.8 kJ/mol (at 298 K)) respectively30, 52, 53 which suggests 

the formation of Mg2Sn to be thermodynamically more 

favorable. Therefore, the observed faster (Mg – Sn) for-

mation is also expected from a thermodynamic point of 

view. The cross section image of the 4 h milled powders 

(in Figure 3a) and the line scan on the highlighted region 

of particle shows a clear gradient in the atomic fraction. 

The brighter region is Mg – Sn rich whereas the dark grey 

area is Si rich. The gradient in atomic fraction curve is 

more evident at the Mg – Sn / Si interface suggesting that 

the diffusion of Si in to Mg – Sn rich matrix has not start-

ed yet. On milling for longer time, the particles appear to 

be smaller and of uniform size. The SEM analysis on a 



 

20 h  milled powder particle shows less grey areas sug-

gesting that less Si particles are occluded by the ductile 

phase. The EDAX line scans on these powder particles 

show an increase in atomic fraction of Mg and Sn in the Si 

- rich particle compared to 4 h milled powder particles 

(Figure 3b). This indicates an onset but slow diffusion of 

silicon into the Mg – Sn matrix. This also implies that the 

intermetallic Mg2Si formation at the Mg – Si interface 

readily takes place but the interdiffusion of ductile-brittle 

constituents requires prolonged mechanical force for the 

reaction to proceed. It can be visualized by the X-ray 

pattern corresponding to the 1 h milled sample showing 

some reflections corresponding to Mg2Si either being Mg 

- or Si – rich (Figure 1). This is also supported by a previ-

ous report30. In addition to this, Aizawa et. al. found Si 

particles trapped in ductile matrix sustain lower strain 

when milled for longer time even when experiencing the 

same mechanical stress/force). This is because Si particles 

become mobile together with plastically deformed ductile 

constituents and experience a lower flow stress51. But on 

longer milling (𝑡milling ≥ 25 h), the short range diffusion 

in the ductile matrix was evident from the diminishing Si 

peaks from the X-ray pattern and lowering of Si rich areas 

from the EDAX maps on 35 h milled powder. The dark Si 

rich regions had atomic fractions comparable to those 

found on the 20 h sample as evident from EDAX maps. 

Furthermore, the increase in the atomic fraction of Mg 

and Sn in Si rich area(s) observed from the line scans on 

dark (~2μm scan length) and light grey areas (at ~3 −4μm scan length) asserts slow diffusion of Si in Mg-Sn 

matrix as (Figure 3(c)). This also confirms that most of 

the Si diffusion into Mg – Sn rich particle matrix took 

place almost completely. Thus, this led to formation of 

desired the Mg2Si1-xSnx composition (with varying 𝑥). This 

is evident from the X – ray pattern of 35 h  milled samples 

having convoluted peaks at 2θ~37.5° as shown in Figure 

1. 

However, a single phase sample is achieved only after a 

high temperature sintering step (see Fig. S6 in the ESI).  

 Effect of milling time on thermoelectric parame-

ters 

In order to determine the minimum milling time 

required to obtain phase pure material after sintering, the 

starting elements were mechanically alloyed for different 

times (𝑡milling = 2 h, 4 h, 20 h and 50 h). The ball-to-

powder ratio was kept almost constant for all the powders 

(1.6:1 for 𝑡milling = 2 h, 20 h and 50 h and 2.2:1 for 𝑡milling =4 h). Please note that the previously discussed powders 

were obtained with a strongly increasing ball-to-powder 

ratio and the times are therefore not directly comparable. 

The X-ray data asserts that a phase pure sample was ob-

tained after sintering the powder material milled for 2 h 

(Figure 5a) already. Accordingly, samples from longer 

milled powder are also phase pure and the XRD patterns 

are nearly identical. The diffractograms of the sample 

pellets were indexed with standard Mg2Si0.4Sn0.6 pattern 

(ICSD PDF Number: 01-089-4254) confirming the for-

mation of desired solid solution phase (fcc, space group: 

Fm – 3m). Also, the samples show no MgO impurity, 

which is often observed for other synthesis procedures. 

The SEM and EDAX mapping on the MS – 20 – 973 / 20  

sample showed that the sample was homogeneous. The 

grain boundaries were quite visible and the grain sizes 

were in the range of 4 – 6 µm. We found that the sample 

had evenly distributed elemental constituents, though Si 

– rich areas in the matrix are visible (Figure 5b, 5c). The 

obtained pellet was dense with little porosity. The surface 

Seebeck scans performed on the top and bottom surfaces 

of the sample revealed the homogeneity of the sample. 

The sample was found to be homogeneous in terms of 

room temperature Seebeck values (top surface: 132.1 ± 2.6 µV∙K-1 and bottom surface: 132.2 ± 2.6 µV∙K-

1). The values are in agreement with the room tempera-

ture data of the integral temperature dependent meas-

urements. 

The transport properties of samples obtained 

from the 2nd set of synthesis in the temperature range 350 

K – 735 K are shown in Figure 6. 



 

 

 

 

Figure 5. (a) XRD for samples with identical compaction parameters but different milling times, (b) microstructure, (c) surface See-
beck scan and (d) EDAX mapping of the compacted pellet MS – 20 – 973 / 20.

The lattice thermal conductivity plus the bipolar 

contribution (𝜅 − 𝜅el) was calculated using 𝜅lat + 𝜅bip =𝜅 − 𝜅el = 𝜅 − L ∙ 𝜎 ∙ T, where 𝜅el is the electronic contribu-

tion to the thermal conductivity and the Lorenz number 

(L) was calculated using the Seebeck coefficient values54. 

The Seebeck coefficient shows n-type behavior signifying 

electron dominated transport. Correspondingly, the elec-

trical conductivity decreases with increasing temperature. 

Thus all the samples show degenerate semiconducting 

behavior. The high values of Seebeck coefficient -125 

µV∙K-1 and electrical conductivity 1560–1700 S∙cm-1  at 350 K are attributed to the high carrier concentration 

combined with a large density of states carrier effective 

mass due to the band convergence at that composition11, 16. 

At higher temperatures (~730 K), the Seebeck coefficient 

increases (-225 µV∙K-1) and electrical conductivity corres-



 

 

 

 

Figure 6. Thermoelectric properties of differently long (2 h, 4 h, 20 h and 50 h) milled powder samples. Fluctuations in the electronic 
properties can be observed but no systematic trend with increasing milling time. In particular, κ-κel remains almost unchanged. 

-pondingly decreases to 800 – 930 S∙cm-1 due to acoustic 

phonon scattering and alloy scattering of the charge car-

riers. Small and non-systematic differences can be ob-

served between the samples, which can be attributed to 

small variations in carrier concentration (±10%), see 

Table 1. Nevertheless, the power factor lies in the same 

range for all the samples with maximum value of 39 – 42 

[× 10-4 ] W∙m-1∙K-2 within the temperature region 600 – 

700K. 

The total thermal conductivity expectedly decreased 

with increasing temperature for all the samples. The bipo-

lar effect observed in the calculated (𝜅 − 𝜅el) plot was 

stronger for the MS – 20 – 973 / 20 and MS – 50 – 973 / 20 

samples at temperature values >650 K. The results for the 



 

lattice thermal conductivity indicate no significant effect 

of ball milling time. The observed small differences in the 

total thermal conductivity are due to the electronic con-

tribution of the thermal conductivity of respective sam-

ples. The 𝑧𝑇max for all of the samples is tabulated in Table 

1 (𝑧𝑇max~1.4). It is now thus demonstrated that the ther-

moelectric properties remain unaffected by milling for 

higher times. 

The room temperature carrier concentration values 

summarized in Table 1 were calculated from the Seebeck 

coefficient values using a single parabolic band (SPB) 

model. We have employed an average value for the densi-

ty of states effective mass (𝑚D∗ = 2.3 𝑚0) after conducting 

room temperature Hall measurements on several samples 

of the present study. The assumption of a constant 𝑚𝐷∗  is 

reasonable due to the relatively narrow carrier concentra-

tion interval; the value is furthermore in agreement with 

previous reports38, 55. The calculated Hall mobility (μH) is 

also tabulated (Table 1) and ranges between 50 ± 5 cm2∙V-

1s-1. The values of 𝑛H and μH are comparable to those re-

ported by Farahi et. al.17 for Mg2Si0.3Sn0.665Bi0.035 and Liu et. 

al.16 for Mg2.14Si0.39Sn0.6Sb0.009 samples. The observed differ-

ences in electrical conductivity are mainly due to differ-

ences in  𝑛H. This also indicates that high energy mechan-

ical alloying does not cause a visible reduction in the 

carrier mobility of the Mg2Si1-xSnx solid solutions com-

pared to high temperature synthesis routes. This is in 

contrast to the observed mobility values reported for 

(Bi,Sb)2(Se,Te)3 solid-solutions and bulk Si samples, which 

decreased down on mechanical alloying56, 57. Furthermore, 

the expected decrease of lattice thermal conductivity with 

higher milling time was not observed and remained con-

stant. The grain size of MS – 2 – 973 / 20 sample was 4 – 7 

µm comparable to MS – 20 – 973 / 20 (4 – 6 µm) which 

could be a possible reason for no observable difference in 

the lattice thermal conductivity values (please refer to Fig. 

S5 in ESI). The 𝑧𝑇max values shows that high performance 

Mg2(Si,Sn) can be synthesized after only 2 h of mechani-

cal alloying. 

 Effect of sintering parameters on Thermoelectric 

Properties: 

As discussed above a sintering step is necessary 

to obtain phase pure Mg2(Si,Sn). Powder compaction is 

sensitive to sintering parameters, namely to ramp up / 

down temperature, holding time, pressure (or load), sin-

tering atmosphere etc. We have studied the effect of sin-

tering parameters in two sets of experiments, adjusting 

sintering temperature in the first set while varying sinter 

holding time in the second. The various combinations are 

listed in Table 1. The pressure was kept constant for all 

the experiments (67 MPa) since no strong influence of 

sintering pressure on the TE properties was observed for 

this class of materials58. 

 

I. Effect of sintering temperature at constant time 

The transport properties of the samples sintered 

for 20 min at different temperatures (MS – 20 – 923 / 20, 

MS – 20 – 973 / 20 and MS – 20 – 1023 / 20) were acquired 

after sintering the powder obtained by mechanical alloy-

ing for 20 h, see Figure 7. The Seebeck coefficient in-

creased and electrical conductivity vice-versa experienced 

a reduction with increase in temperature. The relatively 

high PF value of MS – 20 – 923 / 20 is due to slightly high-

er carrier concentration than that of MS – 20 – 973 / 20 

and MS – 20 – 1023 / 20 samples. The results for 𝜅 differ 

due to different electrical conductivities and differences 

in the lattice thermal conductivity which do not follow a 

discernable trend. The bipolar contribution is clearly 

visible above 600 K and comparable for all samples. In 

summary, MS – 20 – 973 / 20 display the best performance 

with 𝑧𝑇max = 1.38 ± 0.19. 

II. Effect of Sintering Time at Constant Tempera-

ture 

This study was performed to identify the required 

sinter holding time after determining the appropriate 

sinter temperature. The thermoelectric data is presented 

in Figure 8. The electronic properties and lattice thermal 

conductivity were affected similarly to the varying  



 

 

 

 

Figure 7. Thermoelectric properties of the samples sintered at different temperatures (923 K, 973 K, 1023 K) for tsinter.=20 min. The 
nomenclature of the sample is MS-20-Tsinter. / tsinter. 

 temperature study. The (absolute) Seebeck coefficient 

values show a slight increase with increasing time of 

compaction, while the inverse trend is observed for the 

electrical conductivity data. This is in line with the ob-

served decreasing carrier concentration, see Table 1. The 

samples compacted under a holding time of 5 and 30 

minutes thus have slightly lower PF values. The loss of 

charge carriers at higher holding time could be attributed 

to the migration of antimony to the grain boundaries. The 

lattice thermal conductivity shows an overall increase 

with increasing sintering time and the bipolar contribu-

tion is roughly comparable for all samples. Although the 

overall thermoelectric performances of the 5, 10 and 20 

min samples are comparable, we choose 20 min as pre-

ferred sintering time due to the better sample homogene-

ity (see Seebeck scan in Figure 5 and Figure S7 in ESI). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Thermoelectric properties of the samples sintered at Tsinter.= 700 °C for varying tsinter. (5, 10, 20 and 30 minutes). 

 

Discussion 

  The effect of sintering temperature and time on 

carrier concentration and 𝜅 − 𝜅el of different samples is 

summarized in Figure 9. The carrier concentration de-

creases with increasing sintering temperature, affecting 

the electronic properties. For our samples we find that 

increasing sintering time decreases the carrier concentra-

tion out of the optimum range thus leading to lower pow-

er factor values. The 𝑆2𝜎 values of MS – 20 – 923 / 20 and 

MS – 20 – 973 / 20 (41.5 × 10-4 W∙m-1K-1) were comparable 

to the literature values21. Similarly, the effect of sinter 

holding time is shown in Figure 9(b). The increasing 

sintering time affected nH leading to slightly lower power 



 

factor values for both the 5 min and 30 min sintered sam-

ples.  The observed effect of sintering time and sintering 

temperature is presumably a consequence of dopant seg-

regation at the grain boundaries. It has been observed 

experimentally that heavy dopants (such as Sb, Bi) can 

migrate and settle at the grain boundaries17. We observe a 

small overall increase in lattice thermal conductivity with 

increasing sintering time and temperature. The reason for 

that remains to be found but is not an obvious grain 

growth. The absolute value of 𝜅 − 𝜅el for the samples 

(1.5 ± 0.1 − 1.8) is comparable to those reported by 

Farahi et. al. for Mg2Si0.365Sn0.6Bi0.035 (1.39 W∙m-1K-1 at 

320K)17 and calculated values by Tan et. al. for 

Mg2Si0.365Sn0.625 showed 𝜅 − 𝜅el~1.62 W∙m-1K-1 (at 300 K)59. 

Overall, it was observed that two hours of milling is 

enough to obtain a phase pure pellet. The thermoelectric 

properties are almost unaffected by increasing the milling 

time. The thermoelectric performance of the best samples 

is found to be competitive to some other previously re-

ported studies for the same material21, 38 utilizing different 

synthesis procedures. The ambiguity that arose as a result 

of reports of different sintering conditions for 

Mg2Si0.4Sn0.6 material(s)17, 39, 41, 60 is resolved by a detailed 

study on varying time and temperature in different com-

bination. The increase in sintering temperature and time 

was observed to affect the carrier concentration and lat-

tice thermal conductivity of different samples leading to 

changes in the thermoelectric properties. Nevertheless 

the 𝑧𝑇max of different samples was found to vary between 

1.2 - 1.4 suggesting that the thermoelectric properties of 

Mg2X solid solutions are quite robust with respect to the 

synthesis parameters. 

This is in contrast to other material system, where the 

thermoelectric properties were found to be more sensitive 

to the compaction parameters, e.g. CoSb3 based 

Skutterudites61, Zn4Sb362 and AgSnmSbTe2+m materials63. 

 

 

 

Conclusion 

The formation mechanism of Mg2Si0.4Sn0.6 by 

mechanical alloying was investigated. Initially Sn-rich 

Mg2(Si,Sn) is formed followed by the slow incorporation 

of Si driving the composition towards the desired 

Mg2Si0.4Sn0.6 phase. This is supported by the XRD peak 

shift towards higher angles and an increasing homogeni-

zation as observed from the cross-sectional SEM images 

of the powder. However, we also find that within the 

observed milling time no phase pure Mg2Si0.4Sn0.6 was 

obtained by high energy mechanical alloying only, but 

rather a somewhat broad phase mixture. In order to ob-

tain a phase pure pellet a high temperature sintering step 

is required. We have therefore shown that the 

Mg2Si0.4Sn0.6 material synthesis is a two-step process in-

volving high energy mechanical alloying and high tem-

perature pressing of the mechanically alloyed powder. We 

have found the same phenomenon experimentally also for 

other ternary compositions of (Mg2Si,Sn) in contrast to 

previous reports on  binary Mg2X (X: Si, Sn, Ge). Investi-

gations on the phase pure samples synthesized by me-

chanical alloying for different milling time (tmilling =2 h, 4 h, 20 h, 50 h) led to the conclusion that two hours of 

mechanical alloying is sufficient and no significant influ-

ence of milling time on the TE properties was found. On 

the other hand, systematic effects of the sintering param-

eters were observed: An increase in sintering time and 

temperature lead to a shift of optimum carrier concentra-

tion and hence caused changes in the electronic proper-

Figure 9. Plots showing change in carrier concentration (𝐧𝐇) 
and lattice thermal conductivity (𝜿 − 𝜿𝐞𝐥) on varying (a) 

sintering temperature (tsinter.- 20 minutes) (b) sintering time 
(Tsinter. 973 K). 



 

ties. In contrast, the thermal properties showed an in-

creasing trend while tuning these parameters. This also 

suggests that the grain size does not change a lot and is 

large enough to cause any significant effect on thermal 

properties of Mg2X based solid solutions. In summary, we 

found the optimum thermoelectric properties for sinter-

ing at 973 K for 20 minutes. We also found that the syn-

thesis route has a good reproducibility and is relatively 

robust against small changes of the synthesis parameters. 

Mechanical alloying is thus a sound and attractive tech-

nique that can be utilized for high performance Mg2X 

based solid solutions. 
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